EP0975776A1 - Gene involved in basidiomycete fungi fruit body development and uses - Google Patents
Gene involved in basidiomycete fungi fruit body development and usesInfo
- Publication number
- EP0975776A1 EP0975776A1 EP98920609A EP98920609A EP0975776A1 EP 0975776 A1 EP0975776 A1 EP 0975776A1 EP 98920609 A EP98920609 A EP 98920609A EP 98920609 A EP98920609 A EP 98920609A EP 0975776 A1 EP0975776 A1 EP 0975776A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- sequence
- gene
- protein
- nucleotide
- pril
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/37—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi
- C07K14/375—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from Basidiomycetes
Definitions
- the present invention relates to a gene involved in the fruiting of the edible fungus Agrocybe aegerita as well as the use of this gene.
- the basidiomycetes of the basidiomycetes are the most complex structures produced among fungi; in edible industrial mushrooms these structures, which constitute the commercial product, are of great economic added value. Consequently, knowledge of the genes which trigger the start of basidiocarp differentiation is of interest both for the elucidation of the regulation of eukaryotic differentiation and for the industrial culture of fungi because the yield of an industrial culture depends on the regulation fruiting.
- basidiomycetes the genes which intervene at various stages in the development of basidiocarps have been isolated from the fungus Schizophyllum commune and from the fungi Agaricus bisporus and
- S. sessarily are expressed from initiation to maturation of the basidiocarp, which suggests that these genes have a role in the expansion and / or maintenance of the basidiocarp rather than in its differentiation.
- Three genes are characterized as being specific for the initiation of fruiting, the priA (Kajiwara et al., 1992) and priBc (Endo et al., 1994) genes from L.edodes and the Salt gene (Dons et al., 1984) of S. ses.
- priA Koreana et al., 1992
- priBc Endo et al., 1994 genes from L.edodes
- the Salt gene Dons et al., 1984
- a different case is that of the FRT1 gene isolated from S. ses, which is expressed in mycelial growth as well as in fruiting, however the ectopic genomic integration of the FRT1 gene makes it possible to induce fruiting (Horton and Râper, 1995 ).
- a genomic bank ⁇ A. aegerita was screened using the previously cloned EMAa-4 cDNA as a probe, resulting in the isolation of the corresponding genomic sequence called Aa-Pril.
- the nucleotide sequences of the cDNA and the cloned genomic DNA were determined and compared in order to determine the structure of the Aa-Pril gene and the possible presence of introns.
- the regions of the neighboring gene at 5 'and 3' have been sequenced and studied, looking for the regulatory signals involved in transcription. Transcription start points (tsp) were identified by primer extension.
- Aa-Pril during fruiting was confirmed using EMAa-4 cDNA to probe a Northern blot of total RNA from vegetative mycelia and three stages of basidiocarp development (aggregates / pre-primordial, primordial primordia, basidiocarps).
- the amino acid sequence deduced from the Aa-Pril gene was analyzed and compared with protein databases.
- the Aa-Pril gene is specifically transcribed at the immature primordia / basidiocarp stage, suggesting that it plays a role during the start of fruiting, but not for maintaining the structure of the basidiocarp.
- the complete nucleotide sequence of the gene (492 bp) and the regions upstream and downstream has been determined.
- SEQ ID NO: 1 represents a nucleotide DNA genomic sequence of Agrocybe aegerita comprising the coding part of the Aa-Pril gene (comprising an intron) framed by the 5 'and 3' non-coding portions. This sequence is also shown in Figure 1B.
- the present invention therefore relates to a nucleotide sequence corresponding to: a) a sequence according to SEQ LD No. 1 in whole or in part; b) a sequence hybridizing with a); or c) a sequence having at least 80% homology with a) or b).
- nucleotide sequence corresponding to a gene or a gene fragment comprising: a) a part of the sequence according to SEQ LD No. 1; b) a sequence hybridizing with a); c) a sequence having at least 80% homology with a) or b); d) a sequence coding for a protein coded by a gene or a gene fragment according to a), b) or c), or for an equivalent protein.
- the nucleotide sequences can be either DNA or RNA (including mRNA) or sequences in which some of the nucleotides are modified in any way (including substituted by unnatural nucleotides) , either to improve any of their properties, or to allow their identification.
- sequences mentioned in (b) are essentially the total or partial complementary sequences (in particular for the cases mentioned above).
- the present invention covers both the nucleotide sequence corresponding to the whole gene and fragments of this gene, in particular when they code for an equivalent protein as will be described below.
- the invention also relates to the nucleotide sequences having a strong homology with the nucleotide sequence or the gene mentioned above, preferably a homology greater than 80% on the essential parts of said gene, ie in general at least 50% of the sequence; more preferably the homology on the essential parts will be greater than 90% (determined in particular by the software Clustal. W, version 1.4 for Macintosh).
- the present invention also relates to the sequences coding for the same protein, taking into account the degeneration of the genetic code, but also for equivalent proteins, that is to say producing the same effects, in particular proteins deleted and / or having undergone point mutations.
- FIG. 1A shows the structure of the Aa-Pri gene from Agrocybe aegerita.
- FIG. 1A is a schematic representation of the EcoRI- genomic fragment
- FIG. 1B represents the nucleotide sequence and the predicted amino acid sequence of the Aa-Pri gene.
- An asterisk (*) marks the stop codon (TTA).
- the CCAAT and TATAAAT boxes are grayed out.
- the starting points for transcription determined by primer extension and by S1 nuclease mapping are indicated by arrows and by a black circle respectively.
- the intronic sequences possibly involved in the splicing phenomenon and the formation of a lasso are identified in bold and are underlined.
- the sequences resembling the polyadenilation signal are framed and the beginning of the poly (A) tail is represented by a triangle.
- FIG. 2 shows the structural characteristics of the deduced Aa-Pri protein.
- the AMP cyclic-dependent protein kinase phosphorylation site is represented by a gray box
- the casein kinase II phosphorylation sites are represented by gray boxes
- the protein kinase C phosphorylation is shown below.
- Putative glycosylation sites are indicated by arrows.
- the Aa- Pril gene follows the basic patterns in the use of the third base described for the constitutive or highly expressed genes originating from yeasts and filamentous fungi (Gurr et al, 1987): when there is a choice between purines and pyrimidines, there is a preference for codons which end in pyrimidines, in particular C which is used in 66% of the codons, and similarly, if a purine is required in the floating position, 66% of the codons use G .
- the comparison of cDNA and genomic sequences shows a short intron 54 bp long at nucleotide positions +125 to +179.
- Short introns located in the 5 ′ part of the fungal genes are described in the pyrG ⁇ 'Aspergillus nidulans and cutA genes of Fusarium solani, which have an intron of 59 bp at nucleotide +53 and 52 bp at the level of nucleotide +66, (Gurr et al., 1987).
- the intron of the Aa-Pril gene is a class II intron according to the consensus sequences at the intron-exon limits (5'GT / AG 3 ') (Michel et al., 1989). At the 5 'limit, instead of the classic GT, the intron of the Aa- gene
- Pril has the GC nucleotide pair.
- Other exceptions to the GT limit rule have been found in fungi in the des-1 and qa-IS genes from Neurospora crassa (Gurr et al., 1987) and in the pgal and ras genes spAspergillus niger and L .edodes, respectively (Unkless, 1992).
- Analysis of the 5 'non-coding region reveals the presence of a motif
- TATAAAT at nucleotide -83 and a CCAAT motif at nucleotide -156 (73 nucleotides upstream of the predicted TATA box) (Fig. 1).
- TATA and CAAT boxes have been located in positions -96 and - 188 respectively in the cbh2 promoter from Trichoderma reesei (Unkless, 1992) and in positions -111 and -167 in the priA promoter from L.edodes (Kajiwara et al., 1992).
- pdt potential transcription starting points identified by primer extension (nt -49, -85 and -91)
- the pdt located at -49 seems more likely, and the two other pdt are both located in upstream of the putative TATAA box.
- this pdt begins with an A preceded by a C, which is the most common dinucleotide pair found in eukaryotic pdt (Breathnach and Chambon, 1981) and is surrounded by a strong inducing sequence (CCA + * TTCC) corresponding to the consensus initiation sequence YYA + ⁇ NWYY
- the poly (A) tail begins 145 nucleotides downstream from the predicted translation stop codon (TAA).
- TAA predicted translation stop codon
- the Aa-Pril gene potentially codes for a polypeptide at 145 aa of 16093 Da (calculated according to the DNA Strider 1.2 software). Although its homology with Asp-hemolysin to A. fiimigatus (Ebina et al., 1994) is significant, it does not provide concrete elements on the function to! Aa-Pril in the differentiation of primordia. Cytolytic agents are synthesized by various microorganisms, plants and animals.
- Aa-Pril in the binding to specific receptors located on the surface of the vegetative hyphae, which could allow their agglutination and their packing to form the primordia.
- Aa-Pril contains several residues (lysine, serine and threonine) which can act as substrates for phosphorylation by different types of protein kinases.
- a putative site of protein kinase dependent phosphorylation of cAMP (KRNT) begins at residue lysine 106.
- KRNT protein kinase dependent phosphorylation of cAMP
- cyclic AMP is closely related to the onset of fruiting and / or the formation of primordia in the fungus L.edodes (Takagi et al., 1987) and that a putative AMP-dependent protein kinase phosphorylation site (RRNS) has been found in the priBc protein which is preferentially synthesized at the primordial stage (Endo et al., 1994).
- SNKD and SGTE Two casein kinase II phosphorylation sites, SNKD and SGTE were located at the serine residues and respectively (Fig. 2).
- SNKD site overlaps with a protein kinase C (SNK) phosphorylation site; two other consensus sites for protein kinase C phosphorylation, TIR and
- SKR are located at the tailings respectively. Activation of the protein Aa-Pril by phosphorylation can lead to reactions involved in the differentiation of basidiocarps from primordia by analogy with other growth phenomena such as cell division or the development of a tumor in which functions protein kinase regulators seem to be involved (Hanks et al., 1988). In basidiomycetes, various genes intervening at different stages of basidiocarp development have been isolated.
- PriA and PriBc genes of the fungus L.edodes the corresponding proteins of which presumably control the expression of the gene or genes which are in relationship with the appearance of fruiting bodies (Kajiwara et al., 1992; Endo et al., 1994) and of the salt gene of the common fungus, coding for a hydrophobin protein which develops an insoluble complex in the cell walls of the emerging hyphae (Dons et al. 1984; Wessels et al. 1991).
- the function of the protein Aa-Pril specifically expressed during the formation of primordia, remains unknown. Although the homology with Asp-hemolysin dA.fumigatus is significant, it does not provide clear evidence of the putative function of the protein Aa-Pril because the functional regions of Asp hemolysin have not been identified. It is however interesting to note that the two proteins could interact with the membrane. In addition, like the pri Bc protein of L. edodes, the Aa-Pril protein has a cAMP-dependent phosphorylation site, which suggests that the corresponding structural gene could be regulated by the amount of AMP in cells. .
- the present invention also relates to the use of a sequence mentioned above to induce fruiting not only in Agrocybe aegerita but also in any other species of basidiomycete fungus.
- This use includes the insertion by transformation of said sequence into a cell, a hyphe or a sexual or asexual spore of basidiomycete, said transformation possibly being carried out by means of a vector.
- the aim of the present invention is in particular to better control the fruiting of edible basidiomycete fungi.
- the "natural" fruiting of mushrooms is only triggered by the activation of key genes themselves under the influence of more or less complex and difficult to control external factors.
- the Aa-Pril gene is a good candidate to be one of these key genes. Consequently, its use, or rather that of SEQ LD N ° 1 or N ° 2, in whole or in part, modified if necessary (for example by mutation) should allow, by its insertion within hyphae of basidiomycetes by a means transforming any, for example a vector, then possibly by its integration within the genome, to overcome the uncertainty of the expression of the natural gene.
- the introduced sequence could be sensitive to lower thresholds of “stimulation” by external factors or only to some of them or could be spontaneously functional as soon as the basidiocarp has reached a certain stage of maturation.
- the subject of the invention is therefore the cells, hyphae and sexual or asexual spores of basidiomycete fungus transformed by a nucleotide sequence according to the invention.
- Another subject of the invention relates to the use of a nucleotide sequence according to the invention comprising at least one coding part for producing a protein or protein fragment.
- This use includes the insertion of the sequence in question into an expression vector capable of transforming prokaryotic or eukaryotic cells and the transformation of said cells with said expression vector.
- the invention also relates to expression vectors capable of transforming prokaryotic or encaryotic cells. These vectors in question express the protein sequence corresponding to the nucleotide sequence which they contain in the transformed cell, said protein sequence which can then be recovered by conventional techniques.
- Another subject of the invention relates to prokaryotic or eukaryotic cells transformed by an expression vector according to the invention or by any means whatsoever.
- the invention relates to a protein or a protein fragment capable of being obtained by culture of the above-mentioned transformed cells.
- the dicaryotic strain of A. aegerita comes from subcultures of basidiocarp fragments of the wild type strain SM51 (A1B1 / A2B2).
- basidiocarps 5 mm dicaryotic mycelium fragments are inoculated into petri dishes containing a solid complete grating medium (Râper et al., 1972), and cultured for 10 days in the dark at 25 ° C (vegetative growth) then they are transferred under fruiting conditions (room temperature under natural conditions of light / dark).
- the stages of development are defined previously (Salvado and Labarère, 1991).
- the vegetative mycelium is cultivated on complete liquid medium (Râper et al., 1972) in Roux vials without shaking in the dark at 25 ° C.
- the JM83 strain of Escherichia coli (Yanish-Perron et al., 1985) used for the propagation of the plasmids is cultivated at 37 ° C. in a liquid or solid LB medium containing 50 ⁇ g / ml of ampicillin. DNA isolation and analysis
- the total DNA is isolated according to the process of N-cethyl-NNN-trimethyl ammonium bromide (No ⁇ l and Labarère, 1989).
- the digested DNA is separated in a 0.8% agarose gel and then transferred to a nylon membrane (Hybond-N + , Amersham Corp.) according to the manufacturer's method and using a vacuum blotting system. (Appligene).
- Hybridization of the total digested DNA is carried out with the labeled cDNAs (see preparation of the radioactive probes) in a reference hybridization buffer containing 6 x SSC (1 x SSC in 0.15 M NaCl and 0.015 M sodium citrate, pH 7.6), 5 x Denhardt solution, 0.5% SDS (w / v) , DNA from herring sperm denatured at 100 ⁇ g / ml.
- the filters are washed successively twice (2 x 5 minutes) in 6 x 0.1% SSC / SDS, twice (2 x 10 minutes) in 2 x 0.1% SSC / SDS then twice (2 x 15 minutes) in 0.2 x
- RNAs are fractionated in 1.4% formaldehyde agarose gel according to Maniatis et al. (1982) then it is blotted on a nylon membrane by capillary transfer using 1.5 M NaCl / 0.5 M NaOH as transfer buffer.
- Hybridizations are carried out with the EMAa-4 cDNA or the 18 S rDNA of Pleurotus comucopiae used as probes, at 42 ° C. in the reference hybridization buffer in the presence of 50% formamide.
- the nylon membranes are washed for 20 minutes with 1 x 0.1% SSC / SDS at 25 ° C and then for 10 minutes with 0.2 x 0.1% SSC / SDS at 55 ° C.
- RNAs are prepared using the polyAtract mRNA system (Promega), according to the manufacturer's instructions. The poly (A) isolated by this method represents 0.5% of the total RNA. Preparation of radioactive probes
- the EMA inserts released after the digestion of the pEMA plasmids with BamHI are purified, from an electrophoresis on agarose gel by the "Gene Clean" system (BIO 101).
- the linearized pEMA inserts and plasmids are labeled with BamY ⁇ . by means of a random priming with 25 ⁇ Ci of a-32p.
- dCTP (000 Ci / mmole, Amersham Corp.) up to a specific activity of 10 ⁇ - 10 ⁇ cpm / ⁇ g, using the Primer-a-Gene labeling system (Promega).
- the 18S rDNA of Pleurotus comucopiae used in the Northern blot analysis is obtained by digestion with Sali-Eco RI of the insert pPcRl containing a part of the rDNA unit of P.cornucopiae (Iraçabal and Labardère, 1994) and mark as described above.
- the genomic DNA isolated from the vegetative mycelium of A. is digested with Pst 1. aegerita and separated on 0.8% agarose gels. The gel segment containing DNA fragments of between 2.9 and 3.3 kb is cut and the DNA is purified from an agarose gel using the "Gene clean" system (Bio 101). The purified DNA is ligated to the vector pUC18 previously digested with Pst 1 and dephosphorylated by treatment with bacterial alkaline phosphatase. The ligation mixture is used to transform E. coli JM83 cells, 3000 transforming clones are screened by hybridization on colonies using a labeled EMAa-4 cDNA insert (Salvado and Labarère, 1991) as probe. Sequencing and sequence analysis
- nucleotide sequences of the 2.4 kb EcoRI genomic fragment and the corresponding d ⁇ MAa-4 cDNA insert on the two strands are determined using a series of overlapping deleted subclones produced by the method d 'Ffenikoff (1984) with the Erase-A kit (Promega). Ambiguities in the sequence are removed using specific oligonucleotides as the sequencing primers. Sequencing is carried out with the Sequenase version 2.0 kit (United States Biochemical) using the deoxyribonucleotide method (Sanger et al., 1977).
- the predicted amino acid sequence is determined using the universal genetic code and compared with proteins from GenBank and EMBL databases using the search algorithm (Altschul et al., 1990). To compare DNA sequences, we use the Genetics program
- extension products After extraction with chloroform phenol and precipitation, the extension products are air dried, they are separated in a gel on electrophoresis of 7M urea / 6% polyacrylamide and they are visualized by autoradiography.
- the size of the extension products is determined by comparison with the sequencing scales (GATC) which are derived from the control DNA (bacteriophage M13mpl 8) included in the Sequenase 2.0 kit using a universal 17-mer primer.
- the plasmid pEMAa-4 carries a cDNA corresponding to an mRNA preferentially transcribed during the differentiation of the basidiocarp primordia (Salvado and Labarère, 1991). In all cases, a single hybridization band is detected having an estimated size of 2.4, 2.7 and 3.1 kb respectively (results not shown).
- the genomic fragment carrying the corresponding gene the total DNA of A. is digested. aegerita with the endonuclease Pst I and it is separated by electrophoresis.
- the DNA fragments ranging from 2.9 to 3.1 kb are purified from the agarose gel and ligated to the vector pUC18 linearized with Pst I.
- the recombinant plasmids are used to transform the d ⁇ cells. .coli.
- 12 positive clones were identified carrying a Pst I insert at 3.1 kb. One of them is chosen randomly. Analysis of the restriction map of the Pst I insert of 3.1 kb from A.
- aegerita by 10 restriction endonucleases (Ava I, BamH I, EcoR I, Hind III, Kpn I, Sal I, Sma I, Sph I, Xba I and Sma I), these restriction sites being located in the multisite linker (linker) pUC18, does not make it possible to find a combination of a sensitive site and a site resistant to digestion by exonuclease III, that is to say that is, two types of sites located on the same side of the insert. Therefore, it was decided to subclone the 2.4 kb internal EcoR I fragment. In fact, it was previously established by Southern blot analysis of the total DNA of A.
- the 2.4 kb fragment is released by digestion with EcoR I of the 3.1 kb Pst I fragment, it is separated by agarose gel electrophoresis then it is purified and it is introduced into the vector pUC18 following the method described for the 3.1 kb Pst I fragment.
- the EcoR I fragment is subcloned in the two orientations as shown from the analysis of the BamH I digestion schemes of the recombinant plasmids obtained (two BamH I fragments of 2.9 and 2.2 kb for orientation and two BamH I fragments of 0.2 and 4.9 kb for the other).
- the recombinant plasmids representing each orientation of the EcoR I fragment are used as bases for DNA sequencing after construction by treatment with exonuclease III of the deleted overlapping subclones.
- nucleotide sequences of the entire gene, of the open reading frame (ORF) called the Aa-Pril gene (492 bp) and of a part of its neighboring regions in 5 '(400 bp) and 3' (186 bp) are reported in Figure 1B.
- ATACCATGGG sequence around the start of tracuction site (ATG) of 4 nucleotides out of 7 corresponds to the consensus sequence CC (A / G ) CCATGGC de Kozac (1984) in which the nucleotide -3 is always a purine, and generally an A.
- a / G consensus sequence
- CCATGGC de Kozac (1984) in which the nucleotide -3 is always a purine, and generally an A.
- this sequence is involved in the recognition of the correct AUG codon by the ribosome (Ballance, 1991).
- genomic sequence contains a 54 bp intron located at nucleotides + 125 to +179.
- YAG C or T
- the intron has the GC nucleotide pair instead of the classic GT.
- TATAAAT TATA box
- CCAAT CAAT box
- the translation of the open reading frame stripped of its intron, using the universal genetic code, shows that it codes for an acidic protein (pi 5.8 calculated with the Isoelectric-GCG-WISCONSLN Package program, v 9.0) of 145 amino acids with a calculated molecular weight of 16093 Da (calculated from DNA Srider 1.2 software).
- the protein deduced is rich in aspartic acid (7.5%), asparagine (8.9%), glycine (11-1%), lysine (7.5%) and serine (9.6%).
- the hydrophobicity curve of Kyte and Doolittle reveals that the Aa-Pril protein is mainly hydrophilic.
- NXS / TX, X'P Two putative N-glycosylation sites (NXS / TX, X'P) namely NASS and NKTI are located at positions 73 and 91, respectively.
- RNAs were isolated from four stages of development: vegetative mycelia, aggregates, primordia / immature fruit bodies and mature fruit bodies. For each stage, the total RNAs were subjected to Northern blot analysis using the labeled EMAa-4 cDNA insert as a probe. The same amount of total RNA (30 ⁇ g) is loaded into each lane, which is verified by staining the gel with ethidium bromide before transfer. Northern analysis with the EMAa-4 cDNA probe revealed a strong signal corresponding to a 600 b RNA band in the primordium extract. Vegetative mycelia, aggregates and mature fruiting bodies do not contain detectable amounts of the Aa-Pril transcript (data not shown).
- the stoichiometric transfer of the four RNA preparations is examined by washing and new hybridization of the band with the 18S rDNA of Pleurotus comucopiae (see above) differential expression during the life cycle.
- 18S rDNA signals were detected in all RNA bands with similar intensities (data not mentioned). Since the RNA concentrations in each sample are similar, it is evident that the Aa-Pril gene is only actively transcribed at the stage of primordia / immature fruiting bodies.
- the Agaricus bisporus hypA gene encodes a hydrophobin and specifically accumulâtes in peel tissue of mushroom caps during fruit body development. J. Mol. Biol. 257: 1008-1018.
- a fruiting body-specific cDNA, mfbAc, from the mushroom Lentinus edodes encodes a high-molecularweigth cell-adhesion protein contaimng an Arg-Gly-Asp motif.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Mycology (AREA)
- Genetics & Genomics (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Gastroenterology & Hepatology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
The invention concerns a gene involved in the fruit body development of the edible mushroom Agrocybe aegerita and the use thereof to induce said fruit body development in basidiomycete fungi. The invention concerns in particular a nucleotide sequence corresponding to: a) a sequence according to SEQ ID N°1 partially or wholly; b) a sequence hybridised with a); or c) a sequence with at least 80 % homology with a) or b).
Description
GENE IMPLIQUE DANS LA FRUCTIFICATION DES CHAMPIGNONS BASIDIOMYCETES ET UTILISATIONS GENE INVOLVED IN THE FRUCTIFICATION OF BASIDIOMYCET MUSHROOMS AND USES
La présente invention a pour objet un gène impliqué dans la fructification du champignon comestible Agrocybe aegerita ainsi que l'utilisation de ce gène. Les basidiocarpes des basidiomycètes sont les structures les plus complexes produites parmi les champignons ; chez les champignons comestibles industriels ces structures, qui constituent le produit commercial, sont d'une grande valeur ajoutée économique. Par conséquent, la connaissance des gènes qui déclenchent le début de la différenciation du basidiocarpe présente un intérêt tant pour l'élucidation de la régulation de la différentiation eucaryote que pour la culture industrielle des champignons car le rendement d'une culture industrielle dépend de la régulation de la fructification. Chez les champignons, la plupart des études ont été effectuées sur l'influence des facteurs de l'environnement sur la fructification (Raudaskoski et Viitanen, 1982; Sietsma et al., 1977), mais la régulation des gènes qui interviennent de façon spécifique dans ce phénomène est peu connue.The present invention relates to a gene involved in the fruiting of the edible fungus Agrocybe aegerita as well as the use of this gene. The basidiomycetes of the basidiomycetes are the most complex structures produced among fungi; in edible industrial mushrooms these structures, which constitute the commercial product, are of great economic added value. Consequently, knowledge of the genes which trigger the start of basidiocarp differentiation is of interest both for the elucidation of the regulation of eukaryotic differentiation and for the industrial culture of fungi because the yield of an industrial culture depends on the regulation fruiting. In fungi, most studies have been carried out on the influence of environmental factors on fruiting (Raudaskoski and Viitanen, 1982; Sietsma et al., 1977), but the regulation of genes that play a specific role in little is known about this phenomenon.
En effet, l'un des problèmes majeurs de la culture industrielle des champignons comestibles est d'obtenir l'initiation ou le déclenchement de la fructification. Dans les conditions de culture industrielle, la fructification est obtenue après l'envahissement du substrat de culture par le mycélium dicaryotique, sous l'action de facteurs extérieurs (température, humidité, C02, gobetage, etc..) et nutritifs complexes. Ces facteurs, souvent difficiles à contrôler, mettent en activité des gènes spécifiques de la différentiation.Indeed, one of the major problems in the industrial culture of edible mushrooms is to obtain the initiation or the initiation of fruiting. Under industrial culture conditions, fruiting is obtained after the culture substrate has been invaded by the dicaryotic mycelium, under the action of external factors (temperature, humidity, CO2, casing, etc.) and complex nutrients. These factors, which are often difficult to control, activate specific differentiation genes.
Chez les basidiomycètes, les gènes qui interviennent à divers stades du développement des basidiocarpes ont été isolés à partir du champignon Schizophyllum commune et à partir des champignons Agaricus bisporus etIn basidiomycetes, the genes which intervene at various stages in the development of basidiocarps have been isolated from the fungus Schizophyllum commune and from the fungi Agaricus bisporus and
Lentinula edodes. Le gène Sc7 (Shuren et al., 1993) et le gène mfbAc (Kondoh et al., 1995) sont exprimés de façon préférentielle au cours des derniers stades de la différenciation des basidiocarpes chez S. commune et L. edodes, respectivement. Les gènes hypA (De Groot et al., 1996) et ABH1 (Lugones et al., 1996), l'un et l'autre isolés à partir d'A. bisporus, et le gène Sc4 (Shuren et Wessels, 1990) deLentinula edodes. The Sc7 gene (Shuren et al., 1993) and the mfbAc gene (Kondoh et al., 1995) are preferentially expressed during the later stages of basidiocarp differentiation in S. commune and L. edodes, respectively. The hypA (De Groot et al., 1996) and ABH1 (Lugones et al., 1996) genes, both isolated from A. bisporus, and the Sc4 gene (Shuren and Wessels, 1990) from
S. commune sont exprimés de l'initiation jusqu'à la maturation du basidiocarpe, ce qui semble indiquer que ces gènes ont un rôle dans l'expansion et/ou le maintien
du basidiocarpe plutôt que dans sa différenciation. Trois gènes sont caractérisés comme étant spécifiques de l'initiation de la fructification, les gènes priA (Kajiwara et al., 1992) e priBc (Endo et al., 1994) de L.edodes et le gène Sel (Dons et al., 1984) de S. commune. Un cas différent est celui du gène FRT1 isolé à partir de S. commune, qui est exprimé dans la croissance mycéliale ainsi que dans la fructification, cependant l'intégration génomique ectopique du gène FRT1 permet d'induire la fructification (Horton et Râper, 1995).S. commune are expressed from initiation to maturation of the basidiocarp, which suggests that these genes have a role in the expansion and / or maintenance of the basidiocarp rather than in its differentiation. Three genes are characterized as being specific for the initiation of fruiting, the priA (Kajiwara et al., 1992) and priBc (Endo et al., 1994) genes from L.edodes and the Salt gene (Dons et al., 1984) of S. commune. A different case is that of the FRT1 gene isolated from S. commune, which is expressed in mycelial growth as well as in fruiting, however the ectopic genomic integration of the FRT1 gene makes it possible to induce fruiting (Horton and Râper, 1995 ).
L'étude de nouveaux gènes de morphogénèse intervenant spécifiquement dans les premiers stades du développement des primordia semble d'un intérêt particulier pour connaître le déterminisme génétique de la fructification. Chez le champignon comestible Agrocybe aegerita huit clones d'ADNc (EMAa-1 à EMAa- 8) préférentiellement exprimés au cours de la différenciation des primordia de basidiocarpes ont été isolés (Salvado et Labadère, 1991). Ce champignon est un modèle performant pour les études de développement, car il peut différencier les basidiocarpes sur un milieu synthétique, et la transformation est maîtrisée chez cet organisme (Noël et Labarère, 1994), aussi il fournit un bon outil pour étudier la fonction et la régulation des gènes morphogénétiques clones.The study of new morphogenesis genes intervening specifically in the early stages of the development of primordia seems to be of particular interest for understanding the genetic determinism of fruiting. Eight cDNA clones (EMAa-1 to EMAa-8) preferentially expressed during the differentiation of basidiocarp primordia have been isolated from the edible fungus Agrocybe aegerita (Salvado and Labadère, 1991). This fungus is a powerful model for development studies, because it can differentiate the basidiocarps on a synthetic medium, and transformation is mastered in this organism (Noël and Labarère, 1994), also it provides a good tool to study the function and regulation of cloned morphogenetic genes.
Une banque génomique άA. aegerita a été criblée en utilisant comme sonde l'ADNc d'EMAa-4 préalablement clone, aboutissant à l'isolement de la séquence génomique correspondante appelée Aa-Pril. Les séquences nucléotidiques de l'ADNc et de l'ADN génomique clone ont été déterminées et comparées afin de déterminer la structure du gène Aa-Pril et la présence possible d'introns. Les régions du gène voisines en 5' et 3' ont été séquencées et étudiées, en recherchant les signaux de régulation intervenant dans la transcription. Les points de départ de transcription (tsp) ont été identifiés par extension d'amorce. L'expression du gèneA genomic bank άA. aegerita was screened using the previously cloned EMAa-4 cDNA as a probe, resulting in the isolation of the corresponding genomic sequence called Aa-Pril. The nucleotide sequences of the cDNA and the cloned genomic DNA were determined and compared in order to determine the structure of the Aa-Pril gene and the possible presence of introns. The regions of the neighboring gene at 5 'and 3' have been sequenced and studied, looking for the regulatory signals involved in transcription. Transcription start points (tsp) were identified by primer extension. Gene expression
Aa-Pril au cours de la fructification a été confirmée en utilisant l'ADNc d'EMAa-4 pour sonder un buvardage Northern d'ARN totaux provenant de mycélia végétatifs et de trois stades de développement de basidiocarpes (agrégats/préprimordiaux, primordia immatures, basidiocarpes). La séquence d'acides aminés déduite du gène Aa-Pril a été analysée et comparée avec les banques de données protéiques.
Le gène Aa-Pril est spécifiquement transcrit au stade des primordia/basidiocarpes immatures, ce qui suggère qu'il joue un rôle au cours du début de la fructification, mais non pour le maintien de la structure du basidiocarpe. La séquence nucléotidique complète du gène (492 pb) et des régions situées en amont et en aval a été déterminée.Aa-Pril during fruiting was confirmed using EMAa-4 cDNA to probe a Northern blot of total RNA from vegetative mycelia and three stages of basidiocarp development (aggregates / pre-primordial, primordial primordia, basidiocarps). The amino acid sequence deduced from the Aa-Pril gene was analyzed and compared with protein databases. The Aa-Pril gene is specifically transcribed at the immature primordia / basidiocarp stage, suggesting that it plays a role during the start of fruiting, but not for maintaining the structure of the basidiocarp. The complete nucleotide sequence of the gene (492 bp) and the regions upstream and downstream has been determined.
La SEQ ID N° 1 représente une séquence nucléotidique d'ADN génomique d 'Agrocybe aegerita comprenant la partie codante du gène Aa-Pril (comprenant un intron) encadrée des portions 5' et 3' non codantes. Cette séquence est également représentée sur la figure 1B. La présente invention a donc pour objet une séquence nucléotidique correspondant à : a) une séquence selon SEQ LD N° 1 en tout ou en partie ; b) une séquence s'hybridant avec a) ; ou c) une séquence présentant au moins 80 % d'homologie avec a) ou b). Plus particulièrement, elle a pour objet une séquence nucléotidique correspondant à un gène ou un fragment de gène comportant : a) une partie de la séquence selon SEQ LD N° 1 ; b) une séquence s'hybridant avec a) ; c) une séquence présentant au moins 80 % d'homologie avec a) ou b) ; d) une séquence codant pour une protéine codée par un gène ou un fragment de gène selon a), b) ou c), ou pour une protéine équivalente.SEQ ID NO: 1 represents a nucleotide DNA genomic sequence of Agrocybe aegerita comprising the coding part of the Aa-Pril gene (comprising an intron) framed by the 5 'and 3' non-coding portions. This sequence is also shown in Figure 1B. The present invention therefore relates to a nucleotide sequence corresponding to: a) a sequence according to SEQ LD No. 1 in whole or in part; b) a sequence hybridizing with a); or c) a sequence having at least 80% homology with a) or b). More particularly, it relates to a nucleotide sequence corresponding to a gene or a gene fragment comprising: a) a part of the sequence according to SEQ LD No. 1; b) a sequence hybridizing with a); c) a sequence having at least 80% homology with a) or b); d) a sequence coding for a protein coded by a gene or a gene fragment according to a), b) or c), or for an equivalent protein.
Les séquences nucléotidiques peuvent être aussi bien de l'ADN que de l'ARN (y compris de l'ARNm) ou des séquences dans lesquelles certains des nucléotides sont modifiés de quelque manière que ce soit (y compris substitués par des nucléotides non naturels), soit pour améliorer l'une quelconque de leurs propriétés, soit pour permettre leur identification.The nucleotide sequences can be either DNA or RNA (including mRNA) or sequences in which some of the nucleotides are modified in any way (including substituted by unnatural nucleotides) , either to improve any of their properties, or to allow their identification.
Les séquences mentionnées en (b) sont essentiellement les séquences complémentaires totales ou partielles (notamment pour les cas évoqués précédemment). De plus, il convient de rappeler que la présente invention couvre aussi bien la séquence nucléotidique correspondant au gène entier que des fragments de ce
gène, notamment lorsqu'ils codent pour une protéine équivalente comme cela sera décrit ci-après.The sequences mentioned in (b) are essentially the total or partial complementary sequences (in particular for the cases mentioned above). In addition, it should be recalled that the present invention covers both the nucleotide sequence corresponding to the whole gene and fragments of this gene, in particular when they code for an equivalent protein as will be described below.
L'invention concerne également les séquences nucléotidiques présentant une forte homologie avec la séquence nucléotidique ou le gène mentionné précédemment, de préférence une homologie supérieure à 80 % sur les parties essentielles dudit gène, soit en général au moins 50 % de la séquence ; plus préférenciellement Fhomologie sur les parties essentielles sera supérieure à 90 % (déterminée notamment par le logiciel Clustal. W, version 1.4 pour Macintosh).The invention also relates to the nucleotide sequences having a strong homology with the nucleotide sequence or the gene mentioned above, preferably a homology greater than 80% on the essential parts of said gene, ie in general at least 50% of the sequence; more preferably the homology on the essential parts will be greater than 90% (determined in particular by the software Clustal. W, version 1.4 for Macintosh).
Enfin, lorsque ledit gène ou fragment de gène code pour une protéine, la présente invention concerne également les séquences codant pour la même protéine, compte tenu de la dégénérescence du code génétique, mais également pour les protéines équivalentes, c'est-à-dire produisant les mêmes effets, notamment les protéines délétées et/ou ayant subi des mutations ponctuelles.Finally, when said gene or gene fragment codes for a protein, the present invention also relates to the sequences coding for the same protein, taking into account the degeneration of the genetic code, but also for equivalent proteins, that is to say producing the same effects, in particular proteins deleted and / or having undergone point mutations.
La Figure 1 représente la structure du gène Aa-Pri d Agrocybe aegerita. La figure 1A est une représentation schématique du fragment génomique EcoRI-Figure 1 shows the structure of the Aa-Pri gene from Agrocybe aegerita. FIG. 1A is a schematic representation of the EcoRI- genomic fragment
EcoRI de 2,4 Kb contenant Aa-Pri. L'encadré grisé représente la région codante pour Aa-Pri avec l'intron (segment gris foncé) et les positions 5' et 3' non traduites. La figure 1B représente la séquence nucléotidique et la séquence prédite en acides aminés du gène Aa-Pri. Un astérisque (*) marque le codon stop (TTA). Les boîtes CCAAT et TATAAAT sont grisées. Les points de départ de la transcription déterminés par extension d'amorce et par une cartographie à la nucléase SI sont indiqués par des flèches et par un rond noir respectivement. Les séquences introniques éventuellement impliquées dans le phénomène d'épissage et la formation d'un lasso sont repérées en gras et sont soulignées. Les séquences s' apparentant au signal de polyadénilation sont encadrées et le commencement de la queue poly (A) est représenté par un triangle.2.4 Kb EcoRI containing Aa-Pri. The gray box represents the coding region for Aa-Pri with the intron (dark gray segment) and the 5 'and 3' positions not translated. FIG. 1B represents the nucleotide sequence and the predicted amino acid sequence of the Aa-Pri gene. An asterisk (*) marks the stop codon (TTA). The CCAAT and TATAAAT boxes are grayed out. The starting points for transcription determined by primer extension and by S1 nuclease mapping are indicated by arrows and by a black circle respectively. The intronic sequences possibly involved in the splicing phenomenon and the formation of a lasso are identified in bold and are underlined. The sequences resembling the polyadenilation signal are framed and the beginning of the poly (A) tail is represented by a triangle.
La Figure 2 représente les caractéristiques structurales de la protéine Aa-Pri déduite. Le site de phosphorylation de la protéine kinase dépendant de l'AMP cyclic est représenté par un encadré non grisé, les sites de phosphorylation de la caséine kinase II sont représentés par des encadrés grisés et les sites de
phosphorylation de la protéine kinase C sont indiqués en-dessous. Les sites putatifs de glycosylation (NAS S et NKTI) sont indiqués par des flèches.Figure 2 shows the structural characteristics of the deduced Aa-Pri protein. The AMP cyclic-dependent protein kinase phosphorylation site is represented by a gray box, the casein kinase II phosphorylation sites are represented by gray boxes and the protein kinase C phosphorylation is shown below. Putative glycosylation sites (NAS S and NKTI) are indicated by arrows.
Pour la traduction du gène, on n'utilise que 49 codons sens sur 61, ce qui montre un biais dans l'utilisation des codons. Cependant, le degré de biais du gène Aa-Pril est moins marqué que dans les gènes fongiques hautement exprimés dans lesquels à peine 28 codons peuvent être utilisés (Gurr et al., 1987). Le gène Aa- Pril suit les schémas de base dans l'utilisation de la troisième base décrite pour les gènes constitutifs ou hautement exprimés provenant de levures et de champignons filamenteux (Gurr et al, 1987) : lorsqu'il existe un choix entre les purines et les pyrimidines, on note une préférence pour les codons qui se terminent par des pyrimidines, en particulier C qui est utilisée dans 66% des codons, et de même, si une purine est requise en position de flottement, 66% des codons utilisent G.For the translation of the gene, only 49 of 61 sense codons are used, which shows a bias in the use of codons. However, the degree of bias of the Aa-Pril gene is less marked than in the highly expressed fungal genes in which barely 28 codons can be used (Gurr et al., 1987). The Aa- Pril gene follows the basic patterns in the use of the third base described for the constitutive or highly expressed genes originating from yeasts and filamentous fungi (Gurr et al, 1987): when there is a choice between purines and pyrimidines, there is a preference for codons which end in pyrimidines, in particular C which is used in 66% of the codons, and similarly, if a purine is required in the floating position, 66% of the codons use G .
La comparaison de l'ADNc et des séquences génomiques montre un court intron long de 54 pb aux positions nucléotidiques +125 à +179. De courts introns situés dans la partie en 5' des gènes fongiques sont décrits dans les gènes pyrG ά'Aspergillus nidulans et cutA de Fusarium solani, qui possèdent respectivement un intron de 59 pb au niveau du nucléotide +53 et de 52 pb au niveau du nucléotide +66, (Gurr et al., 1987). L'intron du gène Aa-Pril est un intron de classe II d'après les séquences consensus aux limites intron-exon (5'GT/AG 3') (Michel et al., 1989). A la limite 5', au lieu du classique GT, l'intron du gène Aa-The comparison of cDNA and genomic sequences shows a short intron 54 bp long at nucleotide positions +125 to +179. Short introns located in the 5 ′ part of the fungal genes are described in the pyrG ά'Aspergillus nidulans and cutA genes of Fusarium solani, which have an intron of 59 bp at nucleotide +53 and 52 bp at the level of nucleotide +66, (Gurr et al., 1987). The intron of the Aa-Pril gene is a class II intron according to the consensus sequences at the intron-exon limits (5'GT / AG 3 ') (Michel et al., 1989). At the 5 'limit, instead of the classic GT, the intron of the Aa- gene
Pril possède la paire de nucléotides GC. On a trouvé d'autres exceptions à la règle de la limite GT chez des champignons dans les gènes des-1 et qa-IS provenant de Neurospora crassa (Gurr et al., 1987) et dans les gènes pgal et ras άAspergillus niger et L.edodes, respectivement (Unkless, 1992). L'analyse de la région non codante en 5' révèle la présence d'un motifPril has the GC nucleotide pair. Other exceptions to the GT limit rule have been found in fungi in the des-1 and qa-IS genes from Neurospora crassa (Gurr et al., 1987) and in the pgal and ras genes spAspergillus niger and L .edodes, respectively (Unkless, 1992). Analysis of the 5 'non-coding region reveals the presence of a motif
TATAAAT au niveau du nucléotide -83 et d'un motif CCAAT au niveau du nucléotide -156 (73 nucléotides en amont de la boîte TATA prédite) (Fig. 1). Ces deux séquences intervenant dans la transcription des gènes codant pour des protéines eucaryotes (McKnight et Kingsbury, 1982), ont été identifiées dans de nombreux gènes fongiques respectivement aux environs de 30-350 pb et 83-500 pb à partir du site d'initiation de la traduction (Gurr et al., 1987 et Unkless, 1992).
A titre d'exemples, on a localisé des boîtes TATA et CAAT en positions -96 et - 188 respectivement dans le promoteur cbh2 de Trichoderma reesei (Unkless, 1992) et en positions -111 et -167 dans le promoteur priA de L.edodes (Kajiwara et al., 1992). Sur trois points de départ de la transcription (pdt) potentiels identifiés par extension d'amorce (nt -49, -85 et -91), le pdt situé à -49 semble plus probable, et les deux autres pdt sont tous deux localisés en amont de la boîte TATAA putative. De plus, ce pdt commence par un A précédé par un C, ce qui est la paire dinucléotidique la plus courante que l'on trouve dans les pdt eucaryotes (Breathnach et Chambon, 1981) et est entourée par une forte séquence inductrice (CCA+*TTCC) correspondant à la séquence d'initiation consensus YYA+^NWYYTATAAAT at nucleotide -83 and a CCAAT motif at nucleotide -156 (73 nucleotides upstream of the predicted TATA box) (Fig. 1). These two sequences involved in the transcription of genes coding for eukaryotic proteins (McKnight and Kingsbury, 1982), have been identified in numerous fungal genes respectively around 30-350 bp and 83-500 bp from the site of initiation of translation (Gurr et al., 1987 and Unkless, 1992). By way of examples, TATA and CAAT boxes have been located in positions -96 and - 188 respectively in the cbh2 promoter from Trichoderma reesei (Unkless, 1992) and in positions -111 and -167 in the priA promoter from L.edodes (Kajiwara et al., 1992). Out of three potential transcription starting points (pdt) identified by primer extension (nt -49, -85 and -91), the pdt located at -49 seems more likely, and the two other pdt are both located in upstream of the putative TATAA box. In addition, this pdt begins with an A preceded by a C, which is the most common dinucleotide pair found in eukaryotic pdt (Breathnach and Chambon, 1981) and is surrounded by a strong inducing sequence (CCA + * TTCC) corresponding to the consensus initiation sequence YYA + ^ NWYY
(W=A ou T; Y=C ou T)(Javahery et al., 1984) dans laquelle un T en position +3 et un environnement riche en pyrimidine semblent être importants pour une forte initiation (Javahery et al., 1984).(W = A or T; Y = C or T) (Javahery et al., 1984) in which a T at position +3 and an environment rich in pyrimidine seem to be important for a strong initiation (Javahery et al., 1984) .
A l'extrémité 3' du gène Aa-Pril, la queue poly(A) commence à 145 nucléotides en aval du codon stop de traduction prédit (TAA). La séquence de polyadénylation AATAAA que l'on trouve fréquemment dans les gènes eucaryotiques (Gurr et al., 1987) n'est pas retrouvée dans la région Aa-Pril non codante en 3', mais des séquences similaires : [T(A)5TA] et [T(A)3T(A)4T(A) J ont été identifiées à 44 nucléotides et 29 nucléotides respectivement en amont du site de polyadénylation.At the 3 'end of the Aa-Pril gene, the poly (A) tail begins 145 nucleotides downstream from the predicted translation stop codon (TAA). The polyadenylation sequence AATAAA which is frequently found in eukaryotic genes (Gurr et al., 1987) is not found in the non-coding Aa-Pril region at 3 ', but similar sequences: [T (A) 5TA] and [T (A) 3T (A) 4T (A) J were identified at 44 nucleotides and 29 nucleotides respectively upstream of the polyadenylation site.
Le gène Aa-Pril code potentiellement pour un polypeptide à 145 aa de 16093 Da (calculé d'après le logiciel DNA Strider 1.2). Bien que son homologie avec l'Asp-hémolysine à'A.fiimigatus (Ebina et al., 1994) soit significative, elle ne fournit pas d'éléments concrets sur la fonction à! Aa-Pril dans la différenciation des primordia. Les agents cytolytiques sont synthétisés par divers microorganismes, plantes et animaux. Des hémolysines fongiques ont été signalées chez les champignons Gyromitra esculenta (Gray, 1973), Tricholoma populinum (Lindequist et al., 1989) et Laetiporus sulfureus (Konska et al., 1994) ; une protéine cytolytique a été purifiée (pleurotolysine) à partir du champignon Pleurotus ostreatus (Bemheimer et Avigad, 1979), et on a signalé l'activité cytolytique de la rubescenslysine et de la phallolysine provenant άAmanita
rubescens et d'Amanita phalloides, respectivement (Seeger et Wachter, 1981) ; mais les fonctions biologiques in vivo dans les cellules fongiques ne sont pas claires. Quoiqu'il en soit, à partir de l'aptitude de l'Asp-hémolysine, classée comme cytolysine, à interagir avec les récepteurs spécifiques dans les membranes (Thelestam et Môlby, 1979), on peut prédire un rôle hypothétique de la protéineThe Aa-Pril gene potentially codes for a polypeptide at 145 aa of 16093 Da (calculated according to the DNA Strider 1.2 software). Although its homology with Asp-hemolysin to A. fiimigatus (Ebina et al., 1994) is significant, it does not provide concrete elements on the function to! Aa-Pril in the differentiation of primordia. Cytolytic agents are synthesized by various microorganisms, plants and animals. Fungal hemolysins have been reported in the fungi Gyromitra esculenta (Gray, 1973), Tricholoma populinum (Lindequist et al., 1989) and Laetiporus sulfureus (Konska et al., 1994); a cytolytic protein has been purified (pleurotolysin) from the fungus Pleurotus ostreatus (Bemheimer and Avigad, 1979), and the cytolytic activity of rubescenslysine and phallolysin from manAmanita has been reported rubescens and Amanita phalloides, respectively (Seeger and Wachter, 1981); however, the in vivo biological functions in fungal cells are unclear. In any case, from the ability of Asp-hemolysin, classified as cytolysin, to interact with specific receptors in the membranes (Thelestam and Môlby, 1979), we can predict a hypothetical role for the protein.
Aa-Pril, dans la liaison à des récepteurs spécifiques situés à la surface des hyphes végétatives, ce qui pourrait permettre leur agglutination et leur tassement pour former les primordia. La propriété de liaison à une membrane cellulaire et/ou nucléaire a été signalée pour la protéine priA provenant de L.edodes qui semble jouer un ou plusieurs rôles au cours du début de la fructification (Kajiwara et al., 1992), mais le mécanisme de la liaison putative semble être différent pour les deux protéines car on n'a trouvé aucune boîte Cys-Aaa-Aaa-Xaa C-terminale (Aaa=acide aliphatique, Xaa= n'importe quel aa) dans la protéine Aa-Pril.Aa-Pril, in the binding to specific receptors located on the surface of the vegetative hyphae, which could allow their agglutination and their packing to form the primordia. The binding property to a cell and / or nuclear membrane has been reported for the priA protein from L.edodes which seems to play one or more roles during the beginning of fruiting (Kajiwara et al., 1992), but the mechanism of the putative bond seems to be different for the two proteins since no Cys-Aaa-Aaa-Xaa C-terminal box (Aaa = aliphatic acid, Xaa = any aa) was found in the protein Aa-Pril.
Il semble particulièrement intéressant que la protéine Aa-Pril contienne plusieurs résidus (lysine, serine et thréonine) pouvant agir comme substrats pour la phosphorylation par différents types de protéine kinases. Un site putatif de phosphorylation de protéine kinase dépendant de l'AMPc (KRNT) commence au résidu lysine 106. τjn r5ie possible de l'AMP cyclique dans la formation des basidiocarpes de Coprinus macrorhi∑us a été supposé en fonction des protéines disponibles pour la phosphorylation par les protéine kinases dépendantes de l'AMP cyclique (Ishika a et Uno, 1977). De plus, il est connu que des niveaux élevés d'AMP cyclique sont étroitement apparentés à l'apparition d'une fructification et/ou à la formation de primordia chez le champignon L.edodes (Takagi et al., 1987) et qu'on a trouvé un site putatif de phosphorylation de protéine kinase dépendant de l'AMP (RRNS) dans la protéine priBc qui est synthétisée de façon préférentielle au stade primordia (Endo et al., 1994).It seems particularly interesting that the protein Aa-Pril contains several residues (lysine, serine and threonine) which can act as substrates for phosphorylation by different types of protein kinases. A putative site of protein kinase dependent phosphorylation of cAMP (KRNT) begins at residue lysine 106. τj nr 5i e possible to cyclic AMP in the formation of basidiocarps Coprinus macrorhiΣus was assumed based on available protein for phosphorylation by cyclic AMP-dependent protein kinases (Ishika a and Uno, 1977). In addition, it is known that high levels of cyclic AMP are closely related to the onset of fruiting and / or the formation of primordia in the fungus L.edodes (Takagi et al., 1987) and that a putative AMP-dependent protein kinase phosphorylation site (RRNS) has been found in the priBc protein which is preferentially synthesized at the primordial stage (Endo et al., 1994).
Deux sites de phosphorylation de caséine kinase II, SNKD et SGTE ont été localisés aux résidus serine et
respectivement (Fig. 2). Le site SNKD se chevauche avec un site de phosphorylation de protéine kinase C (SNK) ; deux autres sites consensus pour la phosphorylation de la protéine kinase C, TIR etTwo casein kinase II phosphorylation sites, SNKD and SGTE were located at the serine residues and respectively (Fig. 2). The SNKD site overlaps with a protein kinase C (SNK) phosphorylation site; two other consensus sites for protein kinase C phosphorylation, TIR and
SKR, sont situés aux résidus
respectivement.
L'activation de la protéine Aa-Pril par phosphorylation peut aboutir à des réactions intervenant dans la différenciation des basidiocarpes à partir de primordia par analogie avec d'autres phénomènes de croissance comme la division cellulaire ou le développement d'une tumeur dans lesquels des fonctions régulatrices de protéine kinases semblent être impliquées (Hanks et al., 1988). Chez les basidiomycètes, on a isolé divers gènes intervenant à différents stades du développement des basidiocarpes. Des études sur la régulation de leur transcription ont montré que seuls trois gènes sont spécifiques du stade primordia/corps fructifiant immature : les gènes PriA et PriBc du champignon L.edodes dont les protéines correspondantes commandent vraisemblablement l'expression du ou des gènes qui sont en relation avec l'apparition de fructification (Kajiwara et al., 1992 ; Endo et al., 1994) et du gène Sel du champignon S.commune, codant pour une protéine hydrophobine qui développe un complexe insoluble dans les parois cellulaires des hyphes qui émergent (Dons et al. 1984 ; Wessels et al.1991).SKR, are located at the tailings respectively. Activation of the protein Aa-Pril by phosphorylation can lead to reactions involved in the differentiation of basidiocarps from primordia by analogy with other growth phenomena such as cell division or the development of a tumor in which functions protein kinase regulators seem to be involved (Hanks et al., 1988). In basidiomycetes, various genes intervening at different stages of basidiocarp development have been isolated. Studies on the regulation of their transcription have shown that only three genes are specific for the primordial stage / immature fruiting body: the PriA and PriBc genes of the fungus L.edodes, the corresponding proteins of which presumably control the expression of the gene or genes which are in relationship with the appearance of fruiting bodies (Kajiwara et al., 1992; Endo et al., 1994) and of the salt gene of the common fungus, coding for a hydrophobin protein which develops an insoluble complex in the cell walls of the emerging hyphae (Dons et al. 1984; Wessels et al. 1991).
La fonction de la protéine Aa-Pril, spécifiquement exprimée au cours de la formation des primordia, reste inconnue. Bien que l'homologie avec l'Asp- hémolysine dA.fumigatus soit significative, elle ne fournit pas de preuve manifeste de la fonction putative de la protéine Aa-Pril car les régions fonctionnelles de l'hémolysine d'Asp n'ont pas été identifiées. Il est cependant intéressant de noter que les deux protéines pourraient interagir avec la membrane. De plus, comme la protéine pri Bc de L. edodes, la protéine Aa-Pril possède un site de phosphorylation dépendant de l'AMPc, ce qui suggère que le gène de structure correspondant pourrait être régulé par la quantité d'AMPe dans les cellules. La présente invention a également pour objet l'utilisation d'une séquence ci- dessus mentionnée pour induire la fructification non seulement chez Agrocybe aegerita mais également chez tout autre espèce de champignon basidiomycète. Cette utilisation comprend l'insertion par transformation de ladite séquence dans une cellule, une hyphe ou une spore sexuée ou asexuée de basidiomycète, ladite transformation pouvant être réalisée au moyen d'un vecteur.
En effet, la présente invention a notamment pour but une meilleur maîtrise de la fructification des champignons comestibles basidiomycètes. Comme indiqué précédemment, la fructification «naturelle » des champignons n'est déclenchée que par l'activation de gènes clefs eux-mêmes sous l'influence de facteurs extérieurs plus ou moins complexes et difficilement contrôlables. Comme cela sera montré dans l'exemple ci-après, le gène Aa-Pril est un bon candidat pour être l'un de ces gènes clefs. Par conséquent, son utilisation, ou plutôt celle de SEQ LD N° 1 ou N° 2, en tout ou partie, modifiée si nécessaire (par exemple par mutation) devrait permettre, par son insertion au sein d'hyphes de basidiomycètes par un moyen transformant quelconque, par exemple un vecteur, puis éventuellement par son intégration au sein du génome, de pallier à l'incertitude de l'expression du gène naturel. Par exemple, la séquence introduite pourrait être sensible à des seuils inférieurs de « stimulations » par les facteurs extérieurs ou seulement à certaines d'entre elles ou encore pourrait être fonctionnelle spontanément dès que le basidiocarpe a atteint un certain stade de maturation.The function of the protein Aa-Pril, specifically expressed during the formation of primordia, remains unknown. Although the homology with Asp-hemolysin dA.fumigatus is significant, it does not provide clear evidence of the putative function of the protein Aa-Pril because the functional regions of Asp hemolysin have not been identified. It is however interesting to note that the two proteins could interact with the membrane. In addition, like the pri Bc protein of L. edodes, the Aa-Pril protein has a cAMP-dependent phosphorylation site, which suggests that the corresponding structural gene could be regulated by the amount of AMP in cells. . The present invention also relates to the use of a sequence mentioned above to induce fruiting not only in Agrocybe aegerita but also in any other species of basidiomycete fungus. This use includes the insertion by transformation of said sequence into a cell, a hyphe or a sexual or asexual spore of basidiomycete, said transformation possibly being carried out by means of a vector. In fact, the aim of the present invention is in particular to better control the fruiting of edible basidiomycete fungi. As indicated above, the "natural" fruiting of mushrooms is only triggered by the activation of key genes themselves under the influence of more or less complex and difficult to control external factors. As will be shown in the example below, the Aa-Pril gene is a good candidate to be one of these key genes. Consequently, its use, or rather that of SEQ LD N ° 1 or N ° 2, in whole or in part, modified if necessary (for example by mutation) should allow, by its insertion within hyphae of basidiomycetes by a means transforming any, for example a vector, then possibly by its integration within the genome, to overcome the uncertainty of the expression of the natural gene. For example, the introduced sequence could be sensitive to lower thresholds of “stimulation” by external factors or only to some of them or could be spontaneously functional as soon as the basidiocarp has reached a certain stage of maturation.
L'invention a donc pour objet les cellules, hyphes et spores sexuées ou asexuées de champignon basidiomycète transformées par une séquence nucléotidique selon l'invention.The subject of the invention is therefore the cells, hyphae and sexual or asexual spores of basidiomycete fungus transformed by a nucleotide sequence according to the invention.
Un autre objet de l'invention concerne l'utilisation d'une séquence nucléotidique selon l'invention comprenant au moins une partie codante pour produire une protéine ou fragment protéique. Cette utilisation comprend l'insertion de la séquence en question dans un vecteur d'expression apte à transformer des cellules procaryotes ou eucaryotes et la transformation desdites cellules avec ledit vecteur d'expression. Outre le vecteur transformant mentionné ci-dessus, l'invention concerne également les vecteurs d'expression aptes à transformer des cellules procaryotes ou encaryotes. Ces vecteurs en question expriment la séquence protéique correspondant à la séquence nucléotidique qu'ils contiennent dans la cellule transformée ladite séquence protéique pouvant ensuite être récupérée par des techniques conventionnelles.
Un autre objet de l'invention concerne les cellules procaryotes ou eucaryotes transformées par un vecteur d'expression selon l'invention ou par quelque moyen que ce soit.Another subject of the invention relates to the use of a nucleotide sequence according to the invention comprising at least one coding part for producing a protein or protein fragment. This use includes the insertion of the sequence in question into an expression vector capable of transforming prokaryotic or eukaryotic cells and the transformation of said cells with said expression vector. In addition to the transforming vector mentioned above, the invention also relates to expression vectors capable of transforming prokaryotic or encaryotic cells. These vectors in question express the protein sequence corresponding to the nucleotide sequence which they contain in the transformed cell, said protein sequence which can then be recovered by conventional techniques. Another subject of the invention relates to prokaryotic or eukaryotic cells transformed by an expression vector according to the invention or by any means whatsoever.
Enfin, l'invention concerne une protéine ou un fragment protéique susceptible d'être obtenu par culture des susdites cellules transformées.Finally, the invention relates to a protein or a protein fragment capable of being obtained by culture of the above-mentioned transformed cells.
La présente invention ne se limite pas à la description ci-dessus. Elle sera mieux comprise à la lumière de l'exemple ci-dessous qui n'est mentionné qu'à titre purement illustratif. Exemple : Souches et conditions de cultureThe present invention is not limited to the description above. It will be better understood in the light of the example below which is only mentioned for illustrative purposes. Example: Strains and growing conditions
La souche dicaryotique d'A. aegerita provient de sous-cultures de fragments de basidiocarpes de la souche de type sauvage SM51 (A1B1/A2B2). Pour obtenir les basidiocarpes à divers stades de développement, on inocule des fragements de mycélium dicaryotiques de 5 mm dans des boîtes de Pétri contenant un milieu Râper complet solide (Râper et al., 1972), on cultive pendant 10 jours à l'obscurité à 25°C (croissance végétative) puis on les transfère dans des conditions de fructification (température ambiante dans des conditions naturelles de lumière/obscurité). Les stades de développement sont définis antérieurement (Salvado et Labarère, 1991). On cultive le mycélium végétatif sur du milieu complet liquide (Râper et al., 1972) dans des fioles de Roux sans agitation dans l'obscurité à 25°C.The dicaryotic strain of A. aegerita comes from subcultures of basidiocarp fragments of the wild type strain SM51 (A1B1 / A2B2). To obtain basidiocarps at various stages of development, 5 mm dicaryotic mycelium fragments are inoculated into petri dishes containing a solid complete grating medium (Râper et al., 1972), and cultured for 10 days in the dark at 25 ° C (vegetative growth) then they are transferred under fruiting conditions (room temperature under natural conditions of light / dark). The stages of development are defined previously (Salvado and Labarère, 1991). The vegetative mycelium is cultivated on complete liquid medium (Râper et al., 1972) in Roux vials without shaking in the dark at 25 ° C.
On cultive la souche JM83 d'Escherichia coli (Yanish-Perron et al., 1985) utilisée pour la propagation des plasmides, à 37°C dans un milieu LB liquide ou solide contenant 50 μg/ ml d'ampicilline. Isolement et analyse de l'ADNThe JM83 strain of Escherichia coli (Yanish-Perron et al., 1985) used for the propagation of the plasmids is cultivated at 37 ° C. in a liquid or solid LB medium containing 50 μg / ml of ampicillin. DNA isolation and analysis
On isole 1ΑDN total selon le procédé du bromure de N-céthyl-NNN- triméthyl ammonium (Noël et Labarère, 1989). On sépare l'ADN digéré dans un gel d'agarose à 0,8% puis on le transfère sur une membrane de nylon (Hybond-N+, Amersham Corp.) selon le procédé du fabricant et en utilisant un système de buvardage sous vide (Appligene). On effectue les hybridations de l'ADN digéré total avec les ADNc marqués (voir préparation des sondes radioactives) dans un
tampon d'hybridation de référence contenant 6 x SSC (1 x SSC dans NaCl 0,15 M et citrate de sodium 0,015 M, pH 7,6), 5 x solution de Denhardt, SDS à 0,5% (p/v), ADN de sperme de hareng dénaturé à 100 μg/ml. On lave successivement deux fois les filtres (2 x 5 minutes) dans 6 x SSC/SDS à 0,1%, deux fois (2 x 10 minutes) dans 2 x SSC/SDS à 0,1% puis deux fois (2 x 15 minutes) dans 0,2 xThe total DNA is isolated according to the process of N-cethyl-NNN-trimethyl ammonium bromide (Noël and Labarère, 1989). The digested DNA is separated in a 0.8% agarose gel and then transferred to a nylon membrane (Hybond-N + , Amersham Corp.) according to the manufacturer's method and using a vacuum blotting system. (Appligene). Hybridization of the total digested DNA is carried out with the labeled cDNAs (see preparation of the radioactive probes) in a reference hybridization buffer containing 6 x SSC (1 x SSC in 0.15 M NaCl and 0.015 M sodium citrate, pH 7.6), 5 x Denhardt solution, 0.5% SDS (w / v) , DNA from herring sperm denatured at 100 μg / ml. The filters are washed successively twice (2 x 5 minutes) in 6 x 0.1% SSC / SDS, twice (2 x 10 minutes) in 2 x 0.1% SSC / SDS then twice (2 x 15 minutes) in 0.2 x
SSC/SDS à 0,1%.0.1% SSC / SDS.
On effectue la construction et l'isolement des ADN de plasmide selon Maniatis et al. (1982). Isolement et analyse de TARN On isole les ARN totaux en utilisant le procédé du phénol chaud (De Vries et al., 1980). On fractionne les ARN dans du gel d'agarose à 1,4%-formaldéhyde selon Maniatis et al. (1982) puis on buvarde sur une membrane de nylon par transfert capillaire en utilisant NaCl l,5M/NaOH 0,5 M comme tampon de transfert. On effectue les hybridations avec l'ADNc d'EMAa-4 ou l'ADNr 18 S de Pleurotus comucopiae utilisés comme sondes, à 42°C dans le tampon d'hybridation de référence en présence de formamide à 50%. On lave les membranes de nylon 20 minutes avec 1 x SSC/SDS à 0,1% à 25°C puis pendant 10 minutes avec 0,2 x SSC/SDS à 0,1% à 55°C.The construction and isolation of the plasmid DNAs is carried out according to Maniatis et al. (1982). Isolation and Analysis of RNA Total RNA is isolated using the hot phenol method (De Vries et al., 1980). The RNAs are fractionated in 1.4% formaldehyde agarose gel according to Maniatis et al. (1982) then it is blotted on a nylon membrane by capillary transfer using 1.5 M NaCl / 0.5 M NaOH as transfer buffer. Hybridizations are carried out with the EMAa-4 cDNA or the 18 S rDNA of Pleurotus comucopiae used as probes, at 42 ° C. in the reference hybridization buffer in the presence of 50% formamide. The nylon membranes are washed for 20 minutes with 1 x 0.1% SSC / SDS at 25 ° C and then for 10 minutes with 0.2 x 0.1% SSC / SDS at 55 ° C.
On prépare des ARN poly(A) en utilisant le système d'ARNm polyAtract (Promega), selon les instructions du fabricant. Le poly(A) isolé par ce procédé représente 0,5% des ARN totaux. Préparation des sondes radioactivesPoly (A) RNAs are prepared using the polyAtract mRNA system (Promega), according to the manufacturer's instructions. The poly (A) isolated by this method represents 0.5% of the total RNA. Preparation of radioactive probes
On purifie les inserts d'EMA libérés après la digestion des plasmides de pEMA par BamHI, à partir d'une électrophorèse sur gel d'agarose par le système "Gène Clean" (BIO 101). On marque les inserts et les plasmides de pEMA linéarisés avec BamYΩ. au moyen d'un amorçage aléatoire avec 25 μCi d'a-32p. dCTP (3000 Ci/mmole, Amersham Corp.) jusqu'à une activité spécifique de 10^- 10^ cpm/μg, en utilisant le système de marquage Primer-a-Gene (Promega).The EMA inserts released after the digestion of the pEMA plasmids with BamHI are purified, from an electrophoresis on agarose gel by the "Gene Clean" system (BIO 101). The linearized pEMA inserts and plasmids are labeled with BamYΩ. by means of a random priming with 25 μCi of a-32p. dCTP (3000 Ci / mmole, Amersham Corp.) up to a specific activity of 10 ^ - 10 ^ cpm / μg, using the Primer-a-Gene labeling system (Promega).
On obtient l'ADNr 18S de Pleurotus comucopiae utilisé dans l'analyse de buvardage Northern, par digestion par Sali-Eco RI de l'insert pPcRl contenant une
partie de l'unité de l'ADNr de P.cornucopiae (Iraçabal et Labardère, 1994) et on marque comme il est dit ci-dessus.The 18S rDNA of Pleurotus comucopiae used in the Northern blot analysis is obtained by digestion with Sali-Eco RI of the insert pPcRl containing a part of the rDNA unit of P.cornucopiae (Iraçabal and Labardère, 1994) and mark as described above.
Construction de la banque génomique et criblageConstruction of the genomic library and screening
On digère avec Pst 1 l'ADN génomique isolé à partir du mycélium végétatif d'A. aegerita et on le sépare sur des gels d'agarose à 0,8%. On découpe le segment de gel contenant des fragments d'ADN compris entre 2,9 et 3,3 kb et on purifie l'ADN à partir d'un gel d'agarose en utilisant le système "Gène clean" (Bio 101). On ligature l'ADN purifié au vecteur pUC18 préalablement digéré par Pst 1 et déphosphorylé par traitement à la phosphatase alcaline bactérienne. On utilise le mélange de ligature pour transformer des cellules d'E.coli JM83, on crible 3000 clones transformants par hybridation sur colonies en utilisant un insert d'ADNc EMAa-4 marqué (Salvado et Labarère, 1991) comme sonde. Séquençage et analyse de séquenceThe genomic DNA isolated from the vegetative mycelium of A. is digested with Pst 1. aegerita and separated on 0.8% agarose gels. The gel segment containing DNA fragments of between 2.9 and 3.3 kb is cut and the DNA is purified from an agarose gel using the "Gene clean" system (Bio 101). The purified DNA is ligated to the vector pUC18 previously digested with Pst 1 and dephosphorylated by treatment with bacterial alkaline phosphatase. The ligation mixture is used to transform E. coli JM83 cells, 3000 transforming clones are screened by hybridization on colonies using a labeled EMAa-4 cDNA insert (Salvado and Labarère, 1991) as probe. Sequencing and sequence analysis
On détermine les séquences nucléotidiques du fragment génomique d'EcoRI à 2,4 kb et de l'insert d'ADNc dΕMAa-4 correspondant sur les deux brins en utilisant une série de sous-clones délétés qui se chevauchent, produits par le procédé d'Ffenikoff (1984) avec le kit Erase-A (Promega). On élimine les ambiguïtés de la séquence en utilisant des oligo-nucléotides spécifiques comme amorces de séquençage. On effectue la séquençage avec le kit Sequenase version 2.0 (United States Biochemical) en utilisant le procédé du désoxyribonucléotide (Sanger et al., 1977).The nucleotide sequences of the 2.4 kb EcoRI genomic fragment and the corresponding dΕMAa-4 cDNA insert on the two strands are determined using a series of overlapping deleted subclones produced by the method d 'Ffenikoff (1984) with the Erase-A kit (Promega). Ambiguities in the sequence are removed using specific oligonucleotides as the sequencing primers. Sequencing is carried out with the Sequenase version 2.0 kit (United States Biochemical) using the deoxyribonucleotide method (Sanger et al., 1977).
On détermine la séquence d'acides aminés prédite en utilisant le code génétique universel et on compare avec les protéines provenant de GenBank et des bases de données EMBL en utilisant l'algorithme de recherche (Altschul et al., 1990). Pour comparer les séquences d'ADN, on utilise le programme de GeneticsThe predicted amino acid sequence is determined using the universal genetic code and compared with proteins from GenBank and EMBL databases using the search algorithm (Altschul et al., 1990). To compare DNA sequences, we use the Genetics program
Computer Group (BESTFIT - GCG - ensemble Wisconsin). On produit une courbe d'hydrophobicité avec le programme DNA Strider (1.2) basé sur l'algorithme de Kyte-Doolittle. Extension de l'amorce On détermine les points de départ de transcription par extension d'amorce.Computer Group (BESTFIT - GCG - Wisconsin group). A hydrophobicity curve is produced with the DNA Strider program (1.2) based on the Kyte-Doolittle algorithm. Extension of the primer The transcription starting points are determined by extension of the primer.
On suit le procédé de Kajiwara et al. (1992) avec des modification mineures : (i)
on fixe 2,2 μg sur un oligonucléotide 18-mère (5'-GAG CAT AGG CCC TTT CAT) correspondant au brin anti-sens allant du nucléotide 17 à 34, les ARN poly(A) (4,4 μg) pendant 5 minutes à 70°C, (ii) on ajoute une transcriptase inverse (67 unités de transcriptase inverse AMV, Promega) et 25 μCi d'α-32p-dCTP (3000 Ci/mmole, Amersham Corp.) et on procède à l'incubation à 42°C pendant 60 minutes.We follow the method of Kajiwara et al. (1992) with minor modifications: (i) 2.2 μg are fixed on an 18-mer oligonucleotide (5'-GAG CAT AGG CCC TTT CAT) corresponding to the antisense strand going from nucleotide 17 to 34, the poly (A) RNAs (4.4 μg) for 5 minutes at 70 ° C, (ii) a reverse transcriptase (67 units of AMV reverse transcriptase, Promega) and 25 μCi of α-32p-dCTP (3000 Ci / mmol, Amersham Corp.) are added and incubation at 42 ° C for 60 minutes.
Après extraction au phénol chloroforme et précipitation, on sèche à l'air les produits d'extension, on les sépare dans un gel sur électrophorèse d'urée 7M/polyacrylamide à 6% et on les visualise par autoradiographie. On détermine la taille des produits d'extension par comparaison avec les échelles de séquençage (GATC) qui sont dérivées de l'ADN témoin (bactériophage M13mpl 8) inclus dans le kit Sequenase 2.0 en utilisant une amorce 17-mère universelle. Clonage d'un fragment d'ADN génomique ά} Agrocybe aegerita s'hybridant à l'insert d'ADNc d'EMAa-4 On digère l'ADN total à! A. aegerita avec les endonucléases EcoRl, Hindïïl etAfter extraction with chloroform phenol and precipitation, the extension products are air dried, they are separated in a gel on electrophoresis of 7M urea / 6% polyacrylamide and they are visualized by autoradiography. The size of the extension products is determined by comparison with the sequencing scales (GATC) which are derived from the control DNA (bacteriophage M13mpl 8) included in the Sequenase 2.0 kit using a universal 17-mer primer. Cloning of a fragment of genomic DNA ά } Agrocybe aegerita hybridizing with the cDNA insert of EMAa-4 We digest the total DNA at! A. aegerita with the endonucleases EcoRl, Hindïïl and
Pst I et on hybride avec la sonde plasmidique pEMAa-4 selon Southern (1975) dans des conditions d'hybridation hautement stringentes. Le plasmide pEMAa-4 porte un ADNc correspondant à un ARNm préférentiellement transcrit au cours de la différenciation des primordia du basidiocarpe (Salvado et Labarère, 1991). Dans tous les cas, on détecte une seule bande d'hybridation ayant une taille estimée de 2,4, 2,7 et 3, 1 kb respectivement (résultats non représentés). Pour cloner le fragment génomique portant le gène correspondant, on digère l'ADN total d'A. aegerita avec l'endonucléase Pst I et on le sépare par électrophorèse. On purifie les fragments d'ADN d'une taille allant de 2,9 à 3, 1 kb à partir du gel d'agarose et on les ligature au vecteur pUC18 linéarisé avec Pst I. On utilise les plasmides recombinants pour transformer les cellules dΕ.coli. Lorsqu'on soumet 3000 clones recombinants à une hybridation sur colonies avec l'insert d'EMAa-4 marqué comme sonde, on identifie 12 clones positifs portant un insert de Pst I à 3, 1 kb. L'un d'entre eux est choisi de façon aléatoire. L'analyse de la carte de restriction de l'insert Pst I de 3,1 kb d'A. aegerita par 10 endonucléases de restriction (Ava I, BamH I, EcoR I, Hind III, Kpn I, Sal I, Sma I, Sph I, Xba I et
Sma I), ces sites de restriction étant situés dans le lieur multisite (linker) pUC18, ne permet pas de trouver une combinaison d'un site sensible et d'un site résistant à la digestion par l'exonucléase III, c'est-à-dire deux types de sites situés du même côté de l'insert. Par conséquent, on a décidé de sous-cloner le fragment interne EcoR I de 2,4 kb. De fait, on a préalablement établi par analyse de buvardage Southern de l'ADN total d'A.aegerita avec l'insert EMAa-4 comme sonde, que ce fragment porte la séquence homologue à l'ADNc. De plus, ceci permet l'utilisation des sites Xba I et Sph I pour le clonage. On libère le fragment à 2,4 kb par digestion avec EcoR I du fragment Pst I de 3, 1 kb, on le sépare par électrophorèse sur gel d'agarose puis on le purifie et on l'introduit dans le vecteur pUC18 en suivant le procédé décrit pour le fragment Pst I de 3,1 kb. On sous-clone le fragment EcoR I dans les deux orientations comme on le montre d'après l'analyse des schémas de digestion par BamH I des plasmides recombinants obtenus ( deux fragments BamH I de 2,9 et 2,2 kb pour une orientation et deux fragments BamH I de 0,2 et 4,9 kb pour l'autre). On utilise les plasmides recombinants représentant chaque orientation du fragment EcoR I comme bases pour le séquençage de l'ADN après construction par traitement à l'exonucléase III des sous-clones délétés qui se chevauchent. Analyse de la séquence nucléotidiquePst I and are hybridized with the plasmid probe pEMAa-4 according to Southern (1975) under highly stringent hybridization conditions. The plasmid pEMAa-4 carries a cDNA corresponding to an mRNA preferentially transcribed during the differentiation of the basidiocarp primordia (Salvado and Labarère, 1991). In all cases, a single hybridization band is detected having an estimated size of 2.4, 2.7 and 3.1 kb respectively (results not shown). To clone the genomic fragment carrying the corresponding gene, the total DNA of A. is digested. aegerita with the endonuclease Pst I and it is separated by electrophoresis. The DNA fragments ranging from 2.9 to 3.1 kb are purified from the agarose gel and ligated to the vector pUC18 linearized with Pst I. The recombinant plasmids are used to transform the dΕ cells. .coli. When 3000 recombinant clones were subjected to hybridization in colonies with the EMAa-4 insert labeled as probe, 12 positive clones were identified carrying a Pst I insert at 3.1 kb. One of them is chosen randomly. Analysis of the restriction map of the Pst I insert of 3.1 kb from A. aegerita by 10 restriction endonucleases (Ava I, BamH I, EcoR I, Hind III, Kpn I, Sal I, Sma I, Sph I, Xba I and Sma I), these restriction sites being located in the multisite linker (linker) pUC18, does not make it possible to find a combination of a sensitive site and a site resistant to digestion by exonuclease III, that is to say that is, two types of sites located on the same side of the insert. Therefore, it was decided to subclone the 2.4 kb internal EcoR I fragment. In fact, it was previously established by Southern blot analysis of the total DNA of A. agerita with the insert EMAa-4 as probe, that this fragment carries the sequence homologous to the cDNA. In addition, this allows the use of the Xba I and Sph I sites for cloning. The 2.4 kb fragment is released by digestion with EcoR I of the 3.1 kb Pst I fragment, it is separated by agarose gel electrophoresis then it is purified and it is introduced into the vector pUC18 following the method described for the 3.1 kb Pst I fragment. The EcoR I fragment is subcloned in the two orientations as shown from the analysis of the BamH I digestion schemes of the recombinant plasmids obtained (two BamH I fragments of 2.9 and 2.2 kb for orientation and two BamH I fragments of 0.2 and 4.9 kb for the other). The recombinant plasmids representing each orientation of the EcoR I fragment are used as bases for DNA sequencing after construction by treatment with exonuclease III of the deleted overlapping subclones. Nucleotide sequence analysis
On détermine la séquence nucléotidique complète du fragment EcoR I de 2,4 kb et de l'ADNc hybridant (insert ΕMAa-4a) sur les deux brins. L'analyse de la séquence EcoR I de 2,4 kb (1,2 programme DNA Strider) révèle un cadre ouvert de lecture de 492 nt, homologue à la séquence d'ADNc, commençant par le codon méthionine ATG (+1) et se terminant par le codon d'arrêt de traduction TAA (+492) (figure 1A). Les séquences nucléotidiques de tout le gène, du cadre ouvert de lecture (ORF) appelé gène Aa-Pril (492 pb) et d'une partie de ses régions voisines en 5' (400 pb) et 3' (186 pb) sont reportées dans la figure 1B.The complete nucleotide sequence of the 2.4 kb EcoR I fragment and of the hybridizing cDNA (insert ΕMAa-4a) is determined on the two strands. Analysis of the 2.4 kb EcoR I sequence (1.2 DNA Strider program) reveals an open reading frame of 492 nt, homologous to the cDNA sequence, starting with the methionine codon ATG (+1) and ending with the TAA translation stop codon (+492) (Figure 1A). The nucleotide sequences of the entire gene, of the open reading frame (ORF) called the Aa-Pril gene (492 bp) and of a part of its neighboring regions in 5 '(400 bp) and 3' (186 bp) are reported in Figure 1B.
La séquence ATACCATGGG autour du site de début de tracuction (ATG) de 4 nucléotides sur 7 (A en position -3, C en positions -1 et -2 et G en position +1) correspond à la séquence consensus CC(A/G)CCATGGC de Kozac (1984) dans laquelle le nucléotide -3 est toujours une purine, et généralement un A. On
suppose que cette séquence intervient dans la reconnaissance du codon AUG correct par le ribosome (Ballance, 1991).The ATACCATGGG sequence around the start of tracuction site (ATG) of 4 nucleotides out of 7 (A in position -3, C in positions -1 and -2 and G in position +1) corresponds to the consensus sequence CC (A / G ) CCATGGC de Kozac (1984) in which the nucleotide -3 is always a purine, and generally an A. On supposes that this sequence is involved in the recognition of the correct AUG codon by the ribosome (Ballance, 1991).
L'alignement des séquences génomiques et de l'ADNc correspondant (insert EMAa-4) montre que la séquence génomique contient un intron à 54 pb localisé aux nucléotides + 125 à +179. Le site d'épissage intronique en 3' (CAG) porte les séquences consensus typiques pour l'épissage (YAG; Y=C ou T)(Gurr et al., 1987). Cependant, à la limite en 5', l'intron a la paire nucléotidique GC au lieu du classique GT. La séquence interne putative requise pour la formation d'un lasso (TACTTAC) ressemble à la séquence consensus NNCTRAY (N = A, C, G ou T; R = A ou G; Y = C ou T) décrite pour les champignons filamenteux (Unkless, 1992), et ce n'est que le T en position 5 de l'élément qui ne correspond pas à la séquence consensus.The alignment of the genomic sequences and of the corresponding cDNA (insert EMAa-4) shows that the genomic sequence contains a 54 bp intron located at nucleotides + 125 to +179. The 3 'intronic splicing site (CAG) carries the typical consensus sequences for splicing (YAG; Y = C or T) (Gurr et al., 1987). However, at the 5 'limit, the intron has the GC nucleotide pair instead of the classic GT. The putative internal sequence required for lasso formation (TACTTAC) resembles the consensus NNCTRAY sequence (N = A, C, G or T; R = A or G; Y = C or T) described for filamentous fungi ( Unkless, 1992), and it is only the T at position 5 of the element which does not correspond to the consensus sequence.
Dans la région voisine en 5' de la séquence génomique, on identifie une boîte TATA (TATAAAT) au nucléotide -83 et une boîte CAAT (CCAAT) au nucléotide -156. Dans la région voisine en 3', on localise deux séquences semblables à la séquence de polyadénylation consensus AATAAA dans les positions nucléotidiques +593 [T(A)5TA] et +608 [T(A)3T(A)4T(A)6].In the neighboring region 5 ′ of the genomic sequence, a TATA box (TATAAAT) at nucleotide -83 and a CAAT box (CCAAT) at nucleotide -156 is identified. In the neighboring region in 3 ′, two sequences similar to the consensus polyadenylation sequence AATAAA are located in the nucleotide positions +593 [T (A) 5 TA] and +608 [T (A) 3 T (A) 4 T ( A) 6 ].
L'extension de l'amorce révèle trois points de début de transcription (pdt) aux nucléotides -49, -85 et -91. L'un d'entre eux (pdt au nt -49) est entouré par une séquence CCA+^TTCC correspondant à la séquence d'induction consensus YYA+1NWYY (W = A ou T ; Y = C ou T)(Javahery et al., 1984). Séquence d'acides aminés déduite de la protéine Aa-PriExtension of the primer reveals three transcription start points (pdt) at nucleotides -49, -85 and -91. One of them (pdt at nt -49) is surrounded by a CCA + ^ TTCC sequence corresponding to the consensus induction sequence YYA +1 NWYY (W = A or T; Y = C or T) (Javahery et al., 1984). Amino acid sequence deduced from the protein Aa-Pri
La traduction du cadre ouvert de lecture débarrassé de son intron, en utilisant le code génétique universel, montre qu'il code pour une protéine acide (pi = 5,8 calculé avec le programme Isoelectric-GCG-WISCONSLN Package, v 9.0) de 145 acides aminés ayant un poids moléculaire calculé de 16093 Da (calculé d'après le logiciel DNA Srider 1.2). La protéine déduite est riche en acide aspartique (7,5%), en asparagine (8,9%), en glycine (1 1%), en lysine (7,5%) et en serine (9,6%). La courbe d'hydrophobicité de Kyte et Doolittle révèle que la protéine Aa-Pril est principalement hydrophile. Une région hydrophobe de 20 aaThe translation of the open reading frame stripped of its intron, using the universal genetic code, shows that it codes for an acidic protein (pi = 5.8 calculated with the Isoelectric-GCG-WISCONSLN Package program, v 9.0) of 145 amino acids with a calculated molecular weight of 16093 Da (calculated from DNA Srider 1.2 software). The protein deduced is rich in aspartic acid (7.5%), asparagine (8.9%), glycine (11-1%), lysine (7.5%) and serine (9.6%). The hydrophobicity curve of Kyte and Doolittle reveals that the Aa-Pril protein is mainly hydrophilic. A hydrophobic region of 20 aa
(de aal2 à aa32) est prédite dans la séquence NH2-terminale, déterminant une
hélice α putative (programme TopPredlI), ce qui suggère l'éventualité selon laquelle la protéine Aa-Pril pourrait être une protéine associée à une membrane.(from aal2 to aa32) is predicted in the NH2-terminal sequence, determining a putative α helix (TopPredlI program), suggesting the possibility that the Aa-Pril protein could be a membrane-associated protein.
On peut mettre en évidence des motifs potentiellement significatifs pour la glycosylation ou la phosphorylation dans la séquence d'acides aminés (figure 2). Deux sites putatifs de N-glycosylation (N-X-S/T-X, X'P) à savoir NASS et NKTI sont localisés en positions 73 et 91, respectivement. On met en évidence six sites putatifs de phosphorylation: (i) un pour une protéine kinase p dépendant de l'AMP cyclique (R/K-R K-X-S/T) commençant à la lysine ^^, (ii) deux pour une protéine de caséine kinase II (S/T-X-X-D/E) commençant à la
et (iii) trois pour une protéine kinase C (S/T-X-R K) commençant à la
la thréonine^ et la serine^One can highlight potentially significant motifs for glycosylation or phosphorylation in the amino acid sequence (Figure 2). Two putative N-glycosylation sites (NXS / TX, X'P) namely NASS and NKTI are located at positions 73 and 91, respectively. We highlight six putative phosphorylation sites: (i) one for a protein kinase p dependent on cyclic AMP (R / KR KXS / T) starting with lysine ^^, (ii) two for a casein kinase protein II (S / TXXD / E) starting at and (iii) three for a protein kinase C (S / TXR K) starting at the threonine ^ and serine ^
La comparaison de la séquence d'acides aminés Aa-Pril avec les bases de données GenBank et EMBL montre qu'elle présente des homologies avec l'Asp- hémolysine provenant de lΗyphomycète Aspergillus fumigatus (Numéro d'accès GenBank D 16501).Comparison of the amino acid sequence Aa-Pril with the GenBank and EMBL databases shows that it exhibits homologies with Asphemolysin originating from the amphomycete Aspergillus fumigatus (GenBank access number D 16501).
Expression du gène Aa-Pril au cours du cycle vitalExpression of the Aa-Pril gene during the life cycle
Afin d'étudier l'expression du gène Aa-Pril, on a isolé les ARN cellulaires totaux à partir de quatre stades de développement: mycelia végétatifs, agrégats, primordia/corps fructifères immatures et corps fructifères matures. Pour chaque stade, on a soumis les ARN totaux à une analyse de buvardage Northern en utilisant comme sonde l'insert d'ADNc EMAa-4 marqué. On charge la même quantité d'ARN totaux (30 μg) dans chaque piste, ce qui est vérifié par coloration du gel au bromure d'éthidium avant transfert. L'analyse Northern avec la sonde d'ADNc EMAa-4 a révélé un fort signal correspondant à une bande d'ARN de 600 b dans l'extrait de primordium. Les mycélia végétatifs, les agrégats et les corps fructifères matures ne contiennent pas de quantités détectables du produit de transcription Aa-Pril (données non montrées).In order to study the expression of the Aa-Pril gene, the total cellular RNAs were isolated from four stages of development: vegetative mycelia, aggregates, primordia / immature fruit bodies and mature fruit bodies. For each stage, the total RNAs were subjected to Northern blot analysis using the labeled EMAa-4 cDNA insert as a probe. The same amount of total RNA (30 μg) is loaded into each lane, which is verified by staining the gel with ethidium bromide before transfer. Northern analysis with the EMAa-4 cDNA probe revealed a strong signal corresponding to a 600 b RNA band in the primordium extract. Vegetative mycelia, aggregates and mature fruiting bodies do not contain detectable amounts of the Aa-Pril transcript (data not shown).
Comme témoin, après hybridation du buvardage Northern avec la sonde, on examine le transfert stoechiométrique des quatre préparations d'ARN par lavage et nouvelle hybridation de la bande avec l'ADNr 18S de Pleurotus comucopiae (voir ci-dessus) qui ne présente pas d'expression différentielle au cours du cycle vital.
On a détecté des signaux d'ADNr 18S dans toutes les bandes d'ARN avec des intensités similaires (données non mentionnées). Etant donné que les concentrations d'ARN dans chaque échantillon sont similaires, il est évident que le gène Aa-Pril n'est activement transcrit qu'au stade des primordia/corps fructifères immatures.
As a control, after hybridization of the Northern blot with the probe, the stoichiometric transfer of the four RNA preparations is examined by washing and new hybridization of the band with the 18S rDNA of Pleurotus comucopiae (see above) differential expression during the life cycle. 18S rDNA signals were detected in all RNA bands with similar intensities (data not mentioned). Since the RNA concentrations in each sample are similar, it is evident that the Aa-Pril gene is only actively transcribed at the stage of primordia / immature fruiting bodies.
LISTE DE SEQUENCESLIST OF SEQUENCES
(1) INFORMATIONS GENERALES:(1) GENERAL INFORMATION:
(i) DEPOSANT:(i) DEPOSITOR:
(A) NOM: INSTITUT NATIONAL DE LA RECHERCHE AGRONOMIQUE(A) NAME: NATIONAL INSTITUTE OF AGRONOMIC RESEARCH
(INRA)(INRA)
(B) RUE: 147 AVENUE DE L'UNIVERSITE(B) STREET: 147 AVENUE DE L'UNIVERSITE
(C) VILLE: PARIS(C) CITY: PARIS
(E) PAYS: FRANCE(E) COUNTRY: FRANCE
(F) CODE POSTAL: 75007(F) POSTAL CODE: 75007
(i) DEPOSANT:(i) DEPOSITOR:
(A) NOM: UNIVERSITE VICTOR SEGALEN BORDEAUX 2(A) NAME: VICTOR SEGALEN BORDEAUX 2 UNIVERSITY
(B) RUE: 146 RUE LEO SAIGNAT(B) STREET: 146 RUE LEO SAIGNAT
(C) VILLE: BORDEAUX(C) CITY: BORDEAUX
(E) PAYS: FRANCE(E) COUNTRY: FRANCE
(F) CODE POSTAL: 33000(F) POSTAL CODE: 33000
(ii) TITRE DE L' INVENTION: GENE IMPLIQUE DANS LA FRUCTIFICATION DES CHAMPIGNONS BASIDIOMYCETES ET UTILISATIONS lui) NOMBRE DE SEQUENCES: 1(ii) TITLE OF THE INVENTION: GENE INVOLVED IN THE FRUCTIFICATION OF BASIDIOMYCET MUSHROOMS AND USES it) NUMBER OF SEQUENCES: 1
(iv) FORME DECHIFFRABLE PAR ORDINATEUR:(iv) COMPUTER-DETACHABLE FORM:
(A) TYPE DE SUPPORT: Floppy disk(A) TYPE OF SUPPORT: Floppy disk
(B) ORDINATEUR: IBM PC compatible(B) COMPUTER: IBM PC compatible
(C) SYSTEME D' EXPLOITATION: PC-DOS/MS-DOS(C) OPERATING SYSTEM: PC-DOS / MS-DOS
(D) LOGICIEL: Patentin Release #1.0, Version #1.30 (OEB)(D) SOFTWARE: Patentin Release # 1.0, Version # 1.30 (EPO)
(2) INFORMATIONS POUR LA SEQ ID NO: 1:(2) INFORMATION FOR SEQ ID NO: 1:
(i) CARACTERISTIQUES DE LA SEQUENCE:(i) CHARACTERISTICS OF THE SEQUENCE:
(A) LONGUEUR: 1079 paires de bases (3) TYPE: nucléotide(A) LENGTH: 1079 base pairs (3) TYPE: nucleotide
(C) NOMBRE DE BRINS: simple(C) NUMBER OF STRANDS: single
(D) CONFIGURATION: linéaire(D) CONFIGURATION: linear
(il) TYPE DE MOLECULE: ADNc(ii) TYPE OF MOLECULE: cDNA
(ix) CARACTERISTIQUE: (A) NOM/CLE: CDS (3) EMPLACEMENT: 401..523(ix) CHARACTERISTIC: (A) NAME / KEY: CDS (3) LOCATION: 401..523
(ix) CARACTERISTIQUE:(ix) CHARACTERISTIC:
(A) NOM/CLE: intron(A) NAME / KEY: intron
(B) EMPLACEMENT: 525..578(B) LOCATION: 525..578
(ix) CARACTERISTIQUE: (A) NOM/CLE: CDS !3) EMPLACEMENT: 581..889(ix) CHARACTERISTIC: (A) NAME / KEY: CDS! 3) LOCATION: 581..889
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 1:(xi) DESCRIPTION OF THE SEQUENCE: SEQ ID NO: 1:
TGTTTAAAAA CTCGCGAGTT ATGCGTGGGT CCGCGCGAAG GATGCTTTCT CGATTGAATA 60TGTTTAAAAA CTCGCGAGTT ATGCGTGGGT CCGCGCGAAG GATGCTTTCT CGATTGAATA 60
GAGAATGGAG GAGAGGTTCG TTTGGCAAGT GATACTTTCA TCAACGCCGA GAATGGAAGT 120GAGAATGGAG GAGAGGTTCG TTTGGCAAGT GATACTTTCA TCAACGCCGA GAATGGAAGT 120
CGAGCTGCTG TCTCCGATTT CCGTAGCCTA CAAGTTGCTC TTTGAATGGA TCATCCATGG 180CGAGCTGCTG TCTCCGATTT CCGTAGCCTA CAAGTTGCTC TTTGAATGGA TCATCCATGG 180
GGCTCGTGGC GATGTGGCGT GGTCGGGTGG TACTGACCAA CCTTCTGGCA TATTCCTCAG 240
AGCTCCAATT AGACGTAAAG AGAACATCGT CCGGCTCGAC GAAGAAAAAA AGGGAAATTG 300GGCTCGTGGC GATGTGGCGT GGTCGGGTGG TACTGACCAA CCTTCTGGCA TATTCCTCAG 240 AGCTCCAATT AGACGTAAAG AGAACATCGT CCGGCTCGAC GAAGAAAAAA AGGGAAATTG 300
AGGGCCTGTA GAAATTGTAT AAATACTATA CCTGCTAAGA GCAGATTCCT CATTCCAAAG 360AGGGCCTGTA GAAATTGTAT AAATACTATA CCTGCTAAGA GCAGATTCCT CATTCCAAAG 360
CACCCACCGA GTACATCCAA CAGCCACCCG TTTGAATACC ATG GAT AGC AAC AAG 415CACCCACCGA GTACATCCAA CAGCCACCCG TTTGAATACC ATG GAT AGC AAC AAG 415
Met Asp Ser Asn Lys 1 5Met Asp Ser Asn Lys 1 5
GAT GAA AGG GCC TAT GCT CAA TGG GTG ATC ATC ATC CTC CAC AAC GTC 463 Asp Glu Arg Ala Tyr Ala Gin Trp Val Ile Ile Ile Leu His Asn Val 10 15 20GAT GAA AGG GCC TAT GCT CAA TGG GTG ATC ATC ATC CTC CAC AAC GTC 463 Asp Glu Arg Ala Tyr Ala Gin Trp Val Ile Ile Ile Leu His Asn Val 10 15 20
GGC TCG TCC CCT TTC AAG ATC GCG AAC CTC GGC CTC TCC TGG GGA AAG 511 Gly Ser Ser Pro Phe Lys Ile Ala Asn Leu Gly Leu Ser Trp Gly Lys 25 30 35GGC TCG TCC CCT TTC AAG ATC GCG AAC CTC GGC CTC TCC TGG GGA AAG 511 Gly Ser Ser Pro Phe Lys Ile Ala Asn Leu Gly Leu Ser Trp Gly Lys 25 30 35
CTC TAC GCT GAC G GCAAGCCGC TTCATCAGTC CAAACGCATA TGGTACTTAC 563CTC TAC GCT GAC G GCAAGCCGC TTCATCAGTC CAAACGCATA TGGTACTTAC 563
Leu Tyr Ala Asp Gly 40Leu Tyr Ala Asp Gly 40
CATTGTCTTT AACAG GT AAC AAG GAC AAA GAA GTC TAT CCC AGT GAC TAC 613CATTGTCTTT AACAG GT AAC AAG GAC AAA GAA GTC TAT CCC AGT GAC TAC 613
Asn Lys Asp Lys Glu Val Tyr Pro Ser Asp Tyr 45 50Asn Lys Asp Lys Glu Val Tyr Pro Ser Asp Tyr 45 50
AAT GGA AAG ACG GTT GGG CCC GAC GAG AAG ATA CAA ATC AAT TCG TGC 661 Asn Gly Lys Thr Val Gly Pro Asp Glu Lys Ile Gin Ile Asn Ser Cys 55 60 65AAT GGA AAG ACG GTT GGG CCC GAC GAG AAG ATA CAA ATC AAT TCG TGC 661 Asn Gly Lys Thr Val Gly Pro Asp Glu Lys Ile Gin Ile Asn Ser Cys 55 60 65
GGC CGG GAG AAC GCC TCC TCT GGC ACC GAG GGG TCC TTC GAT ATC GTC 709 Gly Arg Glu Asn Ala Ser Ser Gly Thr Glu Gly Ser Phe Asp Ile Val 70 75 80 85GGC CGG GAG AAC GCC TCC TCT GGC ACC GAG GGG TCC TTC GAT ATC GTC 709 Gly Arg Glu Asn Ala Ser Ser Gly Thr Glu Gly Ser Phe Asp Ile Val 70 75 80 85
GAC CCC AAT GAT GGC AAT AAG ACC ATC CGT CAC TTC TAC TGG GAA TGC 757 Asp Pro Asn Asp Gly Asn Lys Thr Ile Arg His Phe Tyr Trp Glu Cys 90 95 100GAC CCC AAT GAT GGC AAT AAG ACC ATC CGT CAC TTC TAC TGG GAA TGC 757 Asp Pro Asn Asp Gly Asn Lys Thr Ile Arg His Phe Tyr Trp Glu Cys 90 95 100
CCC TGG GGG AGC AAA AGA AAC ACC TGG ACT CCT AGC GGC TCG AAT ACC 805 Pro Trp Gly Ser Lys Arg Asn Thr Trp Thr Pro Ser Gly Ser Asn Thr 105 110 115CCC TGG GGG AGC AAA AGA AAC ACC TGG ACT CCT AGC GGC TCG AAT ACC 805 Pro Trp Gly Ser Lys Arg Asn Thr Trp Thr Pro Ser Gly Ser Asn Thr 105 110 115
AAG TGG ATG GTC GAG TGG AGC GGC CAG AAC TTG GAC AGC GGA GCA CTC 853 Lys Trp Met Val Glu Trp Ser Gly Gin Asn Leu Asp Ser Gly Ala Leu 120 125 130AAG TGG ATG GTC GAG TGG AGC GGC CAG AAC TTG GAC AGC GGA GCA CTC 853 Lys Trp Met Val Glu Trp Ser Gly Gin Asn Leu Asp Ser Gly Ala Leu 120 125 130
GGC ACC ATC ACC GTC GAT GTC CTG CGC AAG GGC AAC TAAATACGTG 899GGC ACC ATC ACC GTC GAT GTC CTG CGC AAG GGC AAC TAAATACGTG 899
Gly Thr Ile Thr Val Asp Val Leu Arg Lys Gly Asn 135 140 145Gly Thr Ile Thr Val Asp Val Leu Arg Lys Gly Asn 135 140 145
AGT TACATA CGTACCTTAT CCAGTTCTCG CGAATGGTTA CTGAACCAGA AACCAAAGGT 959AGT TACATA CGTACCTTAT CCAGTTCTCG CGAATGGTTA CTGAACCAGA AACCAAAGGT 959
GGCATCTGCT GCCAATTTCG TGAGGAAAAT CAGTAAAAAT AAGGATGGTA AATAAAATAA 1019GGCATCTGCT GCCAATTTCG TGAGGAAAAT CAGTAAAAAT AAGGATGGTA AATAAAATAA 1019
AAAATGATGA ACTTGTCTTG CTGTAGTTGT CGCCGAGGTC GTAGGGTTGA TTTGATGTAC 1079
REFERENCESAAAATGATGA ACTTGTCTTG CTGTAGTTGT CGCCGAGGTC GTAGGGTTGA TTTGATGTAC 1079 REFERENCES
Altschul, S.F., Gish, W., Miller, W., Myers, EN. and Lipmant, D.J. (1990) Basic local alignment search tool. J. Mol. Biol. 215: 403-410.Altschul, S.F., Gish, W., Miller, W., Myers, EN. and Lipmant, D.J. (1990) Basic local alignment search tool. J. Mol. Biol. 215: 403-410.
Ballance, D.J. (1986) Séquences important for gène expression in filamentous fungi. Yeast 2: 229-236.Ballance, D.J. (1986) Important sequences for gene expression in filamentous fungi. Yeast 2: 229-236.
Ballance, D.J. (1991) Transformation Systems for filamentous fungi and an overview of fungal gène structure. In Molecular Industrial Mycology-Systems and Applications for Filamentous Fungi (Leong, S.A. and Berka, RM., eds) Marcel Dekker, pp. 1-29.Ballance, D.J. (1991) Transformation Systems for filamentous fungi and an overview of fungal gene structure. In Molecular Industrial Mycology-Systems and Applications for Filamentous Fungi (Leong, S.A. and Berka, RM., Eds) Marcel Dekker, pp. 1-29.
Bemheimer, A.W. and Avigad, L.S. (1979) A cytolytic protein from the edible mushroom, Pleurotus ostreatus. Biochim Biophys Acta 585: 451-461.Bemheimer, A.W. and Avigad, L.S. (1979) A cytolytic protein from the edible mushroom, Pleurotus ostreatus. Biochim Biophys Acta 585: 451-461.
Breathnach, R., Chambon, P. (1981) Organization and expression of eukaryotic split gènes coding for proteins. Annu. Rev. Biochem. 50: 349-383.Breathnach, R., Chambon, P. (1981) Organization and expression of eukaryotic split genes coding for proteins. Annu. Rev. Biochem. 50: 349-383.
De Groot, P.W., Schaap, P.J., Sonnenberg, A. S., Visser, J. and Van Griensven, L.J.L.D. (1996) The Agaricus bisporus hypA gène encodes a hydrophobin and specifically accumulâtes in peel tissue of mushroom caps during fruit body development. J. Mol. Biol. 257: 1008-1018.De Groot, P.W., Schaap, P.J., Sonnenberg, A. S., Visser, J. and Van Griensven, L.J.L.D. (1996) The Agaricus bisporus hypA gene encodes a hydrophobin and specifically accumulâtes in peel tissue of mushroom caps during fruit body development. J. Mol. Biol. 257: 1008-1018.
De Vries, O.M.H., Hoge, J.H.C., Wessels, J.G.H. (1980) Régulation of the pattern of protein synthesis in Schizophyllum commune. Dev. Biol. 74: 22-36;De Vries, O.M.H., Hoge, J.H.C., Wessels, J.G.H. (1980) Regulation of the pattern of protein synthesis in Schizophyllum commune. Dev. Biol. 74: 22-36;
Dons, J.J.M., Springer, J., De Vries, O.M.H. and Wessels, J.G.H. (1984) Molecular cloning of a gène abundantly expressed during fruiting body initiation in Schizophyllum commune. J. Bacteriol. 157: 802-808.Donations, J.J.M., Springer, J., De Vries, O.M.H. and Wessels, J.G.H. (1984) Molecular cloning of a gene abundantly expressed during fruiting body initiation in Schizophyllum commune. J. Bacteriol. 157: 802-808.
Ebina, K., Sakagami, H., Yokota, K., Kondo, H. (1994) Cloning and nucléotide séquence of cDΝA encoding Asp-hemolysin from Aspergillus fumigatus. Biochim. Biophys. Acta 1219: 148-150.
Endo, H., Kajiwara, S., Tsunoka, O. and Shishido, K. (1994) A novel cDNA, priBc, encoding a protein with a Zn(II)2Cys6 zinc cluster DNA-binding motif, derived from the basidiomycète Lentinus edodes. Gène 139: 117-121.Ebina, K., Sakagami, H., Yokota, K., Kondo, H. (1994) Cloning and nucleotide sequence of cDΝA encoding Asp-hemolysin from Aspergillus fumigatus. Biochim. Biophys. Acta 1219: 148-150. Endo, H., Kajiwara, S., Tsunoka, O. and Shishido, K. (1994) A novel cDNA, priBc, encoding a protein with a Zn (II) 2Cys6 zinc cluster DNA-binding motif, derived from the basidiomycète Lentinus edodes. Gene 139: 117-121.
Gray, W.D. (1973) Mushroom poisoning and poisonous mushrooms. In: The Use of Fungi as Food and in Food Processing. Part JJ. (Furia, T.E., eds). CRC Press, pp. 159-179.Gray, W.D. (1973) Mushroom poisoning and poisonous mushrooms. In: The Use of Fungi as Food and in Food Processing. Part JJ. (Furia, T.E., eds). CRC Press, pp. 159-179.
Gurr, S.J., Unkless, S.E. and Kinghorn, J.R. (1987) The structure and organization of nuclear gènes in filamentous fungi. In: Gène Structure in Eukaryotic Microbes (Kinghorn, J.L., eds) LRL Press, pp. 93-139.Gurr, S.J., Unkless, S.E. and Kinghorn, J.R. (1987) The structure and organization of nuclear genes in filamentous fungi. In: Gene Structure in Eukaryotic Microbes (Kinghorn, J.L., eds) LRL Press, pp. 93-139.
Hanks, S.K., Quinn, A.M. and Hunter, T. (1988) The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241: 42-52.Hanks, S.K., Quinn, A.M. and Hunter, T. (1988) The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241: 42-52.
Henikoff, S. (1984) Unidirectional digestion with exonuclease IH créâtes targeted breakpoints for DNA sequencing. Gène 28: 351-359.Henikoff, S. (1984) Unidirectional digestion with exonuclease IH Créâtes targeted breakpoints for DNA sequencing. Gene 28: 351-359.
Horton, J.S. and Râper, C.A. (1995) The mushroom-inducing gène FRTl of Schizophyllum commune encodes a putative nucleotide-binding protein. Mol. Gen. Genêt. 247: 358-366.Horton, J.S. and Râper, C.A. (1995) The mushroom-inducing FRTl gene of Schizophyllum commune encodes a putative nucleotide-binding protein. Mol. Gen. Broom. 247: 358-366.
Iraçabal, B. and Labarère, J. (1994) Restriction site and length polymorphism of the rDNA unit in the cultivated basidiomycète Pleurotus comucopiae. Theor. Appl. Genêt. 88: 824-830.Iraçabal, B. and Labarère, J. (1994) Restriction site and length polymorphism of the rDNA unit in the cultivated basidiomycete Pleurotus comucopiae. Theor. Appl. Broom. 88: 824-830.
Ishikawa, T., Uno, I. (1977) A mechanism of fruiting body formation in basidiomycètes. In: Growth an Différentiation in Microorganisms (Ishikawa, T., Maruyama, Y. and Matsumiya, H., eds). University Park Press, Bal , pp. 283-301.Ishikawa, T., Uno, I. (1977) A mechanism of fruiting body formation in basidiomycetes. In: Growth an Differentiation in Microorganisms (Ishikawa, T., Maruyama, Y. and Matsumiya, H., eds). University Park Press, Bal, pp. 283-301.
Javhery, R., Khachi, A., Lo, K., Zenzie-Gregory, B. and Smale, ST. (1994) DNA séquence requirements for transcriptional initiator activity in mammalian cells. Mol. Cell. Biol. 14: 116-127.
Kajiwara, S., Yamaoka, k., Hori, K., Miyazawa, H., Saito, T., Kanno, T. and Shishido K. (1992) Isolation and séquence of a developmentally regulated putative novel gène, pri A, from the basidiomycète Lentinus edodes. Gène 114 173-178.Javhery, R., Khachi, A., Lo, K., Zenzie-Gregory, B. and Smale, ST. (1994) DNA sequence requirements for transcriptional initiator activity in mammalian cells. Mol. Cell. Biol. 14: 116-127. Kajiwara, S., Yamaoka, k., Hori, K., Miyazawa, H., Saito, T., Kanno, T. and Shishido K. (1992) Isolation and sequence of a developmentally regulated putative novel gene, pri A, from the basidiomycète Lentinus edodes. Gene 114 173-178.
Konska, G., Guillot, J., Dusser, M., Damez, M. and Botton, B. (1994) Isolation and characterization of an N-acetyllactosamine-binding lectin from the mushroom Laetψorus sulfureus. J. Biochem. 116 519-523Konska, G., Guillot, J., Dusser, M., Damez, M. and Botton, B. (1994) Isolation and characterization of an N-acetyllactosamine-binding lectin from the mushroom Laetψorus sulfureus. J. Biochem. 116 519-523
Kondoh, O , Muto, A , Kajiwara, S , Takagi, J , Saito, Y and Shishido, K (1995) A fruiting body-specific cDNA, mfbAc, from the mushroom Lentinus edodes encodes a high-molecularweigth cell-adhesion protein contaimng an Arg-Gly-Asp motif. Gène 154 31-37Kondoh, O, Muto, A, Kajiwara, S, Takagi, J, Saito, Y and Shishido, K (1995) A fruiting body-specific cDNA, mfbAc, from the mushroom Lentinus edodes encodes a high-molecularweigth cell-adhesion protein contaimng an Arg-Gly-Asp motif. Gene 154 31-37
Kozak, M (1984) Point mutations close to the AUG initiator codon affect the efficiency of translation of rat preproinsulin in vivo Nature 308- 241-247Kozak, M (1984) Point mutations close to the AUG initiator codon affect the efficiency of translation of rat preproinsulin in vivo Nature 308- 241-247
Lindequist, U , Teuscher, E , Eggers, H , Heese, C and Jauch C (1989) Immunosuppressive and cytostatic effectiveness of the poplar mushroom Tncholoma popuhmim LANGE Allerg Immunol 35 265-269Lindequist, U, Teuscher, E, Eggers, H, Heese, C and Jauch C (1989) Immunosuppressive and cytostatic effectiveness of the poplar mushroom Tncholoma popuhmim LANGE Allerg Immunol 35 265-269
Lugones, L G , Bosscher, J S , Scholtmeyer, K , de Vries, O M H and Wessels, G.H. (1996) An abundant hydrophobin (ABH1) forms hydrophobic rodlet layers in Agaricus bisporus fruiting bodies Microbiology 142 1321- 1329Lugones, L G, Bosscher, J S, Scholtmeyer, K, de Vries, O M H and Wessels, G.H. (1996) An abundant hydrophobin (ABH1) forms hydrophobic rodlet layers in Agaricus bisporus fruiting bodies Microbiology 142 1321- 1329
Maniatis, T , Fritsch, E F , and Sambrook, J (1982) Molecular cloning-a laboratory manual Cold Spring Harbor Laboratory Press, Cold Spring Harbor,Maniatis, T, Fritsch, E F, and Sambrook, J (1982) Molecular cloning-a laboratory manual Cold Spring Harbor Laboratory Press, Cold Spring Harbor,
N YN Y
Mcknight, S L and Kingsbury, R (1982) Transcriptional control signais of a eukaryotic protein-coding gène Science 217 316-324
Michel, F., Umesono, K. and Ozeki, H. (1989) Comparative and functional anatomy of group LE catalytic introns-a review. Gène 82: 5-30.Mcknight, SL and Kingsbury, R (1982) Transcriptional control signais of a eukaryotic protein-coding gene Science 217 316-324 Michel, F., Umesono, K. and Ozeki, H. (1989) Comparative and functional anatomy of group LE catalytic introns-a review. Gene 82: 5-30.
Noël, T. and Labarère, J. (1989) Isolation of DNA from Agrocybe aegerita for the construction of a genomic library in Escherichia coli. Mushroom Sci 12: 187-201.Noël, T. and Labarère, J. (1989) Isolation of DNA from Agrocybe aegerita for the construction of a genomic library in Escherichia coli. Mushroom Sci 12: 187-201.
Noël, T and Labarère, J. (1994) Homologous transformation of the edible basidiomycète Agrocybe aegerita with the URA1 gène: characterization of integrative events ane of rearranged free plasmids in transformants. Curr. Genêt. 25: 432-437.Noël, T and Labarère, J. (1994) Homologous transformation of the edible basidiomycète Agrocybe aegerita with the URA1 gene: characterization of integrative events ane of rearranged free plasmids in transformants. Curr. Broom. 25: 432-437.
Râper, C.A, Râper, J.R.,and Miller R.E. (1972) Genetic analysis of the life cycle oîAgaricus bisporus. Mycologia 64: 108 - 117.Râper, C.A, Râper, J.R., and Miller R.E. (1972) Genetic analysis of the life cycle oî Agaricus bisporus. Mycologia 64: 108-117.
Raudaskoski, M. and Viitanen, H. (1982) Effects of aération and light on fruit- body induction in Schizophyllum commune. Trans. Br. Mycol. Soc. 78: 89-96.Raudaskoski, M. and Viitanen, H. (1982) Effects of aeration and light on fruit- body induction in Schizophyllum commune. Trans. Br. Mycol. Soc. 78: 89-96.
Salvado, J.C. and Labarère, J. (1991) Isolation of transcripts preferentially expressed during fruit body primordia différentiation in the basidiomycète Agrocybe aegerita. Curr. Genêt. 20: 205-210.Salvado, J.C. and Labarère, J. (1991) Isolation of transcripts preferentially expressed during fruit body primordia differentiation in the basidiomycète Agrocybe aegerita. Curr. Broom. 20: 205-210.
Sanger, F., Nicklen, S. and Coulson, A.R. (1977) DNA sequencing with chain- terminatin *» inhibitors. Proc. Natl. Acad. Sci. USA 74: 5463-5467.Sanger, F., Nicklen, S. and Coulson, A.R. (1977) DNA sequencing with chain- terminatin * ”inhibitors. Proc. Natl. Acad. Sci. USA 74: 5463-5467.
Seeger, R. and Wachter, B. (1981) Rubescenslysin and phallolysin release marker molécules from phospholipid cholestérol liposomes. Biochim. Biophys. Acta 645: 59-62.Seeger, R. and Wachter, B. (1981) Rubescenslysin and phallolysin release marker molecules from phospholipid cholesterol liposomes. Biochim. Biophys. Acta 645: 59-62.
Shuren, F.H.J., Asgeirsdottir, S.A., Kothe, E.M., Scheer, J.M.J. and Wessels, J.G.H. (1993) The Sc7 /Se 14 gène family of Schizophyllum commune codes for extracellular proteins specifically expressed during fruit-body formation. J. Gen. Microbiol. 139: 2083-2090.
Shuren, F.H.J. and Wessels, J.G.H. (1990) Two gènes specifically expressed in fruiting dikarions of Schizophyllum commune: homologies with a gène not regulated by mating-type gènes. Gène 90: 199-205.Shuren, FHJ, Asgeirsdottir, SA, Kothe, EM, Scheer, JMJ and Wessels, JGH (1993) The Sc7 / Se 14 gene family of Schizophyllum commune codes for extracellular proteins specifically expressed during fruit-body formation. J. Gen. Microbiol. 139: 2083-2090. Shuren, FHJ and Wessels, JGH (1990) Two genes specifically expressed in fruiting dikarions of Schizophyllum commune: homologies with a gene not regulated by mating-type genes. Gene 90: 199-205.
Sietsma, J.H., Rast, D. and Wessels, J.G.H. (1977) The effect of carbon dioxide on fruiting and on the dégradation of a cell wall glucan in Schizophyllum commune. J. Gen. Microbiol. 192: 385-389.Sietsma, J.H., Rast, D. and Wessels, J.G.H. (1977) The effect of carbon dioxide on fruiting and on the degradation of a cell wall glucan in Schizophyllum commune. J. Gen. Microbiol. 192: 385-389.
Takayi, Y., Katayose, Y. and Shishido, K. (1988) Intracellular levels of cyclic AMP and adenylate cyclase activity during mycelial development in fruiting body formation
Lentinus edodes. FEMS Microbiology Lett. 55: 275-278.Takayi, Y., Katayose, Y. and Shishido, K. (1988) Intracellular levels of cyclic AMP and adenylate cyclase activity during mycelial development in fruiting body formation Lentinus edodes. FEMS Microbiology Lett. 55: 275-278.
Thelestam, M., Mόllby, R. (1979) Classification of microbial, plant and animal cytolysins based on their membrane-damaging effects of human fibroblasts. Biochim. Biophys. Acta 557: 156-169.Thelestam, M., Mόllby, R. (1979) Classification of microbial, plant and animal cytolysins based on their membrane-damaging effects of human fibroblasts. Biochim. Biophys. Acta 557: 156-169.
Unkles, S.E. (1992). Gène organization in industrial filamentous fungi. In Applied Molecular Genetics of Filamentous Fungi (Kinghorn, J.R. and Turner, G., eds) pp. 28-53, Chapman and Hall, London.Unkles, S.E. (1992). Gene organization in industrial filamentous fungi. In Applied Molecular Genetics of Filamentous Fungi (Kinghorn, J.R. and Turner, G., eds) pp. 28-53, Chapman and Hall, London.
Yanish-Perron, C, Vieira, J. and Messing, J. (1985) Lmproved M13 phage cloning vectors and host strains: nucléotide séquences of the M13mpl8 and pUC19 vectors. Gène 33: 103-119.Yanish-Perron, C, Vieira, J. and Messing, J. (1985) Lmproved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mpl8 and pUC19 vectors. Gene 33: 103-119.
Wessels, J.G.H., de Vries, O.M.H., Asgeirsdottir, S.A. and Shuren, F.H.J. (1991) Hydrophobin gènes involved in formation of aerial hyphae and fruit bodies in Schizophyllum. Plant Cell 3: 793-799.
Wessels, J.G.H., de Vries, O.M.H., Asgeirsdottir, S.A. and Shuren, F.H.J. (1991) Hydrophobin genes involved in formation of aerial hyphae and fruit bodies in Schizophyllum. Plant Cell 3: 793-799.
Claims
REVENDICATIONS
1- Séquence nucléotidique correspondant à : a) une séquence selon SEQ LD N° 1 en tout ou en partie ; b) une séquence s'hybridant avec a) ; ou c) une séquence présentant au moins 80 % d'homologie avec a) ou b).1- Nucleotide sequence corresponding to: a) a sequence according to SEQ LD N ° 1 in whole or in part; b) a sequence hybridizing with a); or c) a sequence having at least 80% homology with a) or b).
2- Séquence nucléotidique selon la revendication 1 correspondant à un gène ou un fragment de gène comportant : a) une partie de la séquence selon SEQ LD N° 1 ; b) une séquence s'hybridant avec a) ; c) une séquence présentant au moins 80 % d'homologie avec a) ou b); d) une séquence codant pour une protéine codée par un gène ou un fragment de gène selon a), b) ou c), ou pour une protéine équivalente.2- Nucleotide sequence according to claim 1 corresponding to a gene or a gene fragment comprising: a) part of the sequence according to SEQ LD N ° 1; b) a sequence hybridizing with a); c) a sequence having at least 80% homology with a) or b); d) a sequence coding for a protein coded by a gene or a gene fragment according to a), b) or c), or for an equivalent protein.
3- Utilisation d'une séquence selon la revendication 1 ou 2 pour induire la fructification chez un champignon basidiomycète.3- Use of a sequence according to claim 1 or 2 to induce fruiting in a basidiomycete fungus.
4- Utilisation selon la revendication 3 caractérisée en ce que le champignon basiodiomycète est Agrocybe aegerita.4- Use according to claim 3 characterized in that the basiodiomycete fungus is Agrocybe aegerita.
5- Utilisation selon la revendication 3 ou 4 caractérisée en ce qu'elle comprend l'insertion par transformation d'une séquence selon la revendication 1 ou 2 dans une cellule, une hyphe ou une spore sexuée ou asexuée de champignon basidiomycète.5- Use according to claim 3 or 4 characterized in that it comprises the insertion by transformation of a sequence according to claim 1 or 2 in a cell, a hypha or a sexual or asexual spore of basidiomycete fungus.
6- Utilisation selon la revendication 5 caractérisée en ce que la transformation est réalisée par un vecteur.6- Use according to claim 5 characterized in that the transformation is carried out by a vector.
7- Cellule, hyphe, spore sexuée ou asexuée de champignon basidiomycète transformée par une séquence selon la revendication 1 ou 2.
8- Utilisation d'une séquence selon la revendication 2 pour produire une protéine ou un fragment protéique caracatérisée en ce qu'elle comprend l'insertion d'une séquence selon la revendication 2 dans un vecteur d'expression apte à transformer des cellules procaryotes ou eucaryotes et la transformation desdites cellules avec ledit vecteur d'expression.7- Cell, hypha, sexual or asexual spore of basidiomycete fungus transformed by a sequence according to claim 1 or 2. 8- Use of a sequence according to claim 2 for producing a protein or a protein fragment characterized in that it comprises the insertion of a sequence according to claim 2 in an expression vector capable of transforming prokaryotic cells or eukaryotes and the transformation of said cells with said expression vector.
9- Vecteur d'expression d'une séquence selon la revendication 2.9- Vector for expression of a sequence according to claim 2.
10- Cellule procaryote ou eucaryote transformée par un vecteur selon la revendication 9.10- Prokaryotic or eukaryotic cell transformed by a vector according to claim 9.
11 - Protéine ou fragment protéique susceptible d'être obtenu par mise en culture d'une cellule selon la revendication 10.
11 - Protein or protein fragment capable of being obtained by culturing a cell according to claim 10.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9704555 | 1997-04-14 | ||
FR9704555A FR2762010B1 (en) | 1997-04-14 | 1997-04-14 | GENE INVOLVED IN THE FRUCTIFICATION OF BASIDIOMYCET MUSHROOMS AND USES |
PCT/FR1998/000732 WO1998046773A1 (en) | 1997-04-14 | 1998-04-10 | Gene involved in basidiomycete fungi fruit body development and uses |
Publications (1)
Publication Number | Publication Date |
---|---|
EP0975776A1 true EP0975776A1 (en) | 2000-02-02 |
Family
ID=9505866
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP98920609A Withdrawn EP0975776A1 (en) | 1997-04-14 | 1998-04-10 | Gene involved in basidiomycete fungi fruit body development and uses |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0975776A1 (en) |
AU (1) | AU7340998A (en) |
FR (1) | FR2762010B1 (en) |
WO (1) | WO1998046773A1 (en) |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0701613A1 (en) * | 1993-05-25 | 1996-03-20 | HORTON, Stephen J. | Isolation of mushroom-inducing genes and their use in dna-mediated transformation of edible basidiomycetes |
-
1997
- 1997-04-14 FR FR9704555A patent/FR2762010B1/en not_active Expired - Fee Related
-
1998
- 1998-04-10 AU AU73409/98A patent/AU7340998A/en not_active Abandoned
- 1998-04-10 WO PCT/FR1998/000732 patent/WO1998046773A1/en not_active Application Discontinuation
- 1998-04-10 EP EP98920609A patent/EP0975776A1/en not_active Withdrawn
Non-Patent Citations (1)
Title |
---|
See references of WO9846773A1 * |
Also Published As
Publication number | Publication date |
---|---|
FR2762010A1 (en) | 1998-10-16 |
FR2762010B1 (en) | 1999-06-25 |
WO1998046773A1 (en) | 1998-10-22 |
AU7340998A (en) | 1998-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
De Groot et al. | TheAgaricus bisporus hypAgene encodes a hydrophobin and specifically accumulates in peel tissue of mushroom caps during fruit body development | |
Wessels et al. | Hydrophobin genes involved in formation of aerial hyphae and fruit bodies in Schizophyllum. | |
US7442769B2 (en) | Antifreeze proteins from basidiomy cetes | |
AU2002236300B2 (en) | Novel protein, gene encoding the same and method of using the same | |
EP0938568A1 (en) | Plant phytases and biotechnological applications | |
Fernandez Espinar et al. | Cloning and sequencing of the Aa-Pri1 gene specifically expressed during fruiting initiation in the edible mushroom Agrocybe aegerita, and analysis of the predicted amino-acid sequence | |
Peschek et al. | Correlation between immuno-gold labels and activities of the cytochrome-c oxidase (aa3-type) in membranes of salt stressed cyanobactria | |
CN109825482B (en) | Herbicide-resistant gene and application thereof in plant breeding | |
Yamada et al. | Cloning and characterization of a gene coding for a hydrophobin, Fv-hyd1, specifically expressed during fruiting body development in the basidiomycete Flammulina velutipes | |
US7666678B2 (en) | Proteins imparting boron-tolerance and genes thereof | |
FR2679253A1 (en) | CYCLOHEXIMIDE RESISTANCE PROTEINS. USE AS A SELECTION MARKER FOR EXAMPLE TO CONTROL THE TRANSFER OF NUCLEIC ACIDS. | |
EP0802977B1 (en) | HARD AND SOFT WHEAT THIOREDOXINS h, HOMOLOGOUS PROTEINS, DNA FRAGMENTS CODING FOR SAID PROTEINS AND METHODS FOR PREPARING SAME | |
EP0975776A1 (en) | Gene involved in basidiomycete fungi fruit body development and uses | |
Balconi et al. | The accumulation of zein polypeptides and zein mRNA in cultured endosperms of maize is modulated by nitrogen supply | |
Hernández‐Saavedra et al. | Cloning and sequencing of a cDNA encoding a copper‐zinc superoxide dismutase enzyme from the marine yeast Debaryomyces hansenii | |
CA2351894C (en) | Novel protein, gene encoding the same and method of utilization thereof | |
WO2024115600A1 (en) | New bacillus subtilis strains producing new mycosubtilin isoforms | |
EP1293562B1 (en) | Fungal glyoxal oxidases | |
CA2416203C (en) | Dna sequences coding for a polyol carrier and use thereof, in particular for preparing transgenic plants | |
FR2810338A1 (en) | A peroxisome-combined ascorbate peroxidase gene is induced by thermal stress, and a transformed plant to which heat resistance is given | |
JP2005253430A (en) | Boron transporter and its gene | |
WO2002000706A2 (en) | Antimicrobial peptides of the family of defensins, polynucleotides encoding said peptides, transformed vectors and organisms containing them | |
JP3036777B2 (en) | DNA for expression and secretion | |
JP2000083675A (en) | New protein, gene coding for the protein and their use | |
JP2002065282A (en) | Shiitake mushroom laccase gene |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19991115 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): NL |
|
17Q | First examination report despatched |
Effective date: 20041203 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20050414 |