EP0971058B1 - Suction system of a textile machine - Google Patents

Suction system of a textile machine Download PDF

Info

Publication number
EP0971058B1
EP0971058B1 EP99107226A EP99107226A EP0971058B1 EP 0971058 B1 EP0971058 B1 EP 0971058B1 EP 99107226 A EP99107226 A EP 99107226A EP 99107226 A EP99107226 A EP 99107226A EP 0971058 B1 EP0971058 B1 EP 0971058B1
Authority
EP
European Patent Office
Prior art keywords
suction unit
unit according
source
control
spark sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP99107226A
Other languages
German (de)
French (fr)
Other versions
EP0971058A1 (en
Inventor
Stphan Weuthan
Karl Kamps
Gerd Jansen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oerlikon Textile GmbH and Co KG
Original Assignee
W Schlafhorst AG and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7873266&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0971058(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by W Schlafhorst AG and Co filed Critical W Schlafhorst AG and Co
Publication of EP0971058A1 publication Critical patent/EP0971058A1/en
Application granted granted Critical
Publication of EP0971058B1 publication Critical patent/EP0971058B1/en
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01HSPINNING OR TWISTING
    • D01H13/00Other common constructional features, details or accessories
    • D01H13/14Warning or safety devices, e.g. automatic fault detectors, stop motions ; Monitoring the entanglement of slivers in drafting arrangements
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01HSPINNING OR TWISTING
    • D01H4/00Open-end spinning machines or arrangements for imparting twist to independently moving fibres separated from slivers; Piecing arrangements therefor; Covering endless core threads with fibres by open-end spinning techniques
    • D01H4/30Arrangements for separating slivers into fibres; Orienting or straightening fibres, e.g. using guide-rolls
    • D01H4/36Arrangements for separating slivers into fibres; Orienting or straightening fibres, e.g. using guide-rolls with means for taking away impurities

Definitions

  • the invention relates to a suction air system of a textile machine, especially a rotor spinning machine, with at least one suction air duct and with at least a spark sensor for the detection of a spark flight within a measuring section of the suction air system, the includes a measuring device, the sensing area at least partially overlaps the measuring section, and the at least one electromagnetic receiver Has waves that when a spark occurs in the sensing area generates an output signal, and a control and evaluation circuit for the Measuring device.
  • Suction air systems of the generic type are known.
  • a fire sensor described the one in a suction air system Rotor spinning machine is arranged.
  • the task such a fire sensor is inside of a suction air duct transported fiber flight the rotor spinning machine for possible sparking to monitor.
  • sparking can for example, arise from the fact that a rotor of Rotor spinning machine is overheating and this causes it to inflammation of fibers can occur.
  • Inflamed fibers can pass through the suction air duct relatively large distances, for example in a Air conditioning, to be transported, making it too substantial Fire damage can occur.
  • spark sensors with an optical receiver for to equip electromagnetic waves, in particular infrared signals emitted by a spark sensed.
  • a photo element for example a photodiode
  • electromagnetic waves in an electrical signal convert.
  • This electrical signal is controlled by a and evaluation circuit can be evaluated.
  • the photo elements with a quiescent current energized, which after incidence of an electromagnetic Wave changes into a switching current, the Switching current triggers an event-dependent action. This action can, for example, alert you Operator of the rotor spinning machine or an automatic Switch off the rotor spinning machine, the Activation of an extinguishing device or the like his.
  • the invention is therefore based on the object To create suction air system of the generic type, which in a simple way increases operational reliability given is.
  • this object is achieved by a suction air system with the features mentioned in claim 1 solved.
  • the optical receiver at least a source for generating electromagnetic Waves is assigned, and the at least one source can be controlled in such a way that targeted triggering of the spark sensor can be advantageous check the optical components of the spark sensor, so that in addition to checking the electrical or electronic components of the Spark sensor, the optical components can be checked are, so that a spark detection of the spark sensor becomes much safer.
  • the at least one source of electromagnetic Waves can be switched on periodically, whereby preferably during the periodically repeating Self test of the optical components of the Spark sensor the triggering function of the control and Evaluation circuit is hidden. This leaves in a simple manner at determinable intervals a check of the optical components of the spark sensor perform, triggering the Switching current (alarm current) of the spark sensor as a result checking the optical components of the measuring device not to trigger an alarm signal (False alarm) leads.
  • the source be electromagnetic Waves is a luminescent diode, which is preferred via the control and evaluation circuit of the measuring device is controllable. This makes it easier Way the periodic activation of the source combine with hiding the alarm function, without a large amount of circuitry necessary is.
  • the source for generating electromagnetic Waves and the spark sensor in one Housing are arranged. This will make it possible to have a compact design of the spark sensor create, preferably a common electrical Interface with the control and evaluation circuit the spark sensor can be used. hereby this results in a simplified assembly effort because the Arrangement and electrical connection additional Components is therefore not necessary.
  • Figure 1 is a section of a suction air system 10 for at least one rotor spinning machine.
  • the suction air system 10 can have several rotor spinning machines each with a large number of spinning units be connected. Structure and mode of operation of Suction air system and the rotor spinning machines are known so that within the scope of the present description this should not be discussed in more detail.
  • through the suction air system 10 become the rotor spinning machines applied with a vacuum by means of the fiber waste, Dirt or the like from the rotor spinning machines be sucked off.
  • the suction air system 10 has a so-called End unit 12, in the one with a not shown Suction air source connected suction air duct 14 empties. Furthermore, the end unit 12 leads to the suction air ducts leading individual rotor spinning machines 16. A section 18 of the suction air duct 14 forms a measuring section 20 for a spark sensor 22, the Structure and operation with reference to Figure 2 in more detail is explained.
  • the spark sensor 22 is via a electrical connecting line 24 with a control unit 26 connected, which is a control and evaluation circuit for the spark sensor 22 includes.
  • the fiber waste accumulating on the rotor spinning machines is guided with the suction air flow to a filter or separating device.
  • a sliver of the rotor spinning machine is not switched off, the rotor of the rotor spinning machine can be over-fed so that it overheats.
  • the resulting frictional heat can be sufficient to ignite the fiber waste carried away by the suction air flow. This would then lead as glowing fiber waste via the suction channels 16 and 14 to the filter or separating device and can lead to ignition of the collected fiber waste there.
  • the fiber flight is monitored in the area of the measuring section 20 by means of the spark sensor 22, wherein electromagnetic waves emitted by glowing fibers are detected in the infrared area by an optical receiver.
  • This makes it possible to detect flying sparks within the suction air system 10 and to initiate appropriate countermeasures via the control unit 26.
  • These can consist, for example, of an optical and / or acoustic alarm so that operating personnel of the rotor spinning machines can initiate targeted countermeasures.
  • the rotor spinning machines can be switched off automatically.
  • the air duct direction of the suction air system 10 can be switched such that when glowing fiber fly occurs, it is not transported in the direction of the filter and separating device, but can be brought into a separate storage room, which may be equipped with extinguishing agents.
  • the spark sensor 22 is shown in a block diagram in FIG. This comprises an optical receiver 28, the sensing area of which is directed into the measuring section 20.
  • the sensing area includes, for example, a detection angle of 110 °, within which glowing fiber waste transported in the measuring section 20 is recognized.
  • the spark sensor 22 is connected via the electrical connecting line 24 to a control and evaluation circuit 30, which is only shown in part here.
  • the connecting line 24 is designed as a four-wire line, a first wire 32 being used to provide a supply voltage U V of, for example, 24 V DC voltage.
  • a second wire 34 and a third wire 36 serve to tap an electrical signal from the optical receiver 28.
  • the optical receiver 28 is, for example, a photodiode, which drives a quiescent current, for example 20 mA, via a current interface. If a spark occurs in the measurement section 20, the optical receiver 28 receives infrared, electromagnetic waves emitted by the spark and converts it into an electrical signal. This electrical signal switches the quiescent current into an alarm current (switching current), for example 4 mA, which can be evaluated by the control unit 26.
  • An amplifier circuit 38 can be provided to amplify the electrical signals generated by the optical receiver 28.
  • the spark sensor 22 also includes a source 40 for Generation of electromagnetic waves, the Source 40 operates in a wavelength range that the receivable wavelengths of the optical receiver 28, in the example in the infrared range.
  • the source 40 is a luminescent diode (LED diode), educated.
  • the Connection line 24 is the source 40 with a Control pulse controllable.
  • an amplifier circuit 44 may be provided his.
  • the Control and evaluation circuit 30 comprises a timer 48, on the one hand a defined pulse length and on the other hand a pulse interval adjustable is. The.
  • Pulse length determines the on time of the Source 40 and is at least 1.1 times, in particular at least 1.5 times a response time of the optical receiver 28. This ensures that the generated infrared flash 46 from the optical receiver 28 is actually recognized.
  • the Distance between successive pulses can be specified selectively and is, for example, in Seconds, minutes, hours or the like.
  • Simultaneously with the pulse signal is from the timing element 48 generates a control signal 50.
  • the control signal 50 gives the control unit 26 information, that an infrared detected by the spark sensor 22 Signal is not caused by flying sparks within the Suction air system was caused, but this through targeted and defined switching on of the Source 40 was generated. This can trigger an alarm by the control unit 26 for the pulse duration hidden, that is, suppressed.
  • targeted control of the source 40 can thus a self-test of the spark sensor 22, in particular of its optical components, i.e. the optical receiver 28, take place.
  • a periodic check of the test impulses the function of the spark sensor 22 possible, without this, for example, from the suction air system 10 must be removed.
  • the optical function of the spark sensor 22 can Checking the electrical function in a known manner Way by monitoring the quiescent current becomes. If the quiescent current exceeds a set one A value, for example 20 mA, can be set to one Short circuit within the connecting line 24 or be closed within the spark sensor 22. the quiescent current is interrupted, for example, can be due to an open circuit of an electrical line be recognized.
  • the control unit 26 comprises, for example, an optical one Indicator indicating a failure of the spark sensor 22 displays. A corresponding one can then be made by the operating personnel Replacement of the defective spark sensor 22 be prompted. Furthermore, an automatic error signal to a central processing unit, which the Control of the rotor spinning machines is used to be given so that in addition to documentation of the error signal at the same time on the defective spark sensor 22 can be pointed out.
  • the source 40 instead of providing the test impulses via the Timing element 48 or additionally can be activated the source 40 also via a separate switching means done by an operator. This will always a manual check, in addition respectively regardless of the set repetition frequency of the test impulses possible. For example during an inspection tour by pressing of the switching means the function of the spark sensor 22 can be tested.
  • the control unit 26 can corresponding acknowledgment signals, for example optically, provide for the operator so that this detects whether the spark sensor 22 is OK or is defective.
  • the optical receiver 28 as well as the source 40 and the Amplifier circuits 38 and 44 are in common Housing 52, for example by a cylindrical plastic tube is formed, arranged. This is a very compact design possible.
  • the connection of the spark sensor 22 with the Control unit 26 takes place via only one, here four-wire connection line 24, so that a simple Connecting the spark sensor 22 via a Interface is possible.
  • the source 40 to be arranged independently of the spark sensor 22, for example the spark sensor 22 in the measuring section 20 diametrically opposite. This is also a self-test of the spark sensor 22 possible, the mode of operation the same remains.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Spinning Or Twisting Of Yarns (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Treatment Of Fiber Materials (AREA)

Description

Die Erfindung betrifft eine Saugluftanlage einer Textilmaschine, insbesondere einer Rotorspinnmaschine, mit wenigstens einem Saugluftkanal und mit wenigstens einem Funkensensor zur Detektion eines Funkenfluges innerhalb einer Meßstrecke der Saugluftanlage, der eine Meßeinrichtung umfaßt, deren Sensierbereich zumindest teilweise die Meßstrecke überschneidet, und die wenigstens einen Empfänger elektromagnetischer Wellen aufweist, der bei Eintritt eines Funkens in den Sensierbereich ein Ausgangssignal generiert, und einer Ansteuer- und Auswerteschaltung für die Meßeinrichtung.The invention relates to a suction air system of a textile machine, especially a rotor spinning machine, with at least one suction air duct and with at least a spark sensor for the detection of a spark flight within a measuring section of the suction air system, the includes a measuring device, the sensing area at least partially overlaps the measuring section, and the at least one electromagnetic receiver Has waves that when a spark occurs in the sensing area generates an output signal, and a control and evaluation circuit for the Measuring device.

Saugluftanlagen der gattungsgemäßen Art sind bekannt. So ist beispielsweise in der DE 24 26 961 B2 ein Feuerfühler beschrieben, der in einer Saugluftanlage einer Rotorspinnmaschine angeordnet ist. Die Aufgabe eines derartigen Feuerfühlers besteht darin, innerhalb eines Saugluftkanals transportierten Faserflug der Rotorspinnmaschine auf eine eventuelle Funkenbildung zu überwachen. Eine derartige Funkenbildung kann beispielsweise dadurch entstehen, daß ein Rotor der Rotorspinnmaschine heißläuft und es hierdurch zu einer Entzündung von Fasern kommen kann. Derartige entzündete Fasern können über den Saugluftkanal über relativ große Entfernungen, beispielsweise in eine Klimaanlage, transportiert werden, so daß es zu erheblichen Brandschäden kommen kann.Suction air systems of the generic type are known. For example, in DE 24 26 961 B2 there is a fire sensor described the one in a suction air system Rotor spinning machine is arranged. The task such a fire sensor is inside of a suction air duct transported fiber flight the rotor spinning machine for possible sparking to monitor. Such sparking can for example, arise from the fact that a rotor of Rotor spinning machine is overheating and this causes it to inflammation of fibers can occur. such Inflamed fibers can pass through the suction air duct relatively large distances, for example in a Air conditioning, to be transported, making it too substantial Fire damage can occur.

Bekannt ist, derartige Feuerfühler (nachfolgend Funkensensor genannt) mit einem optischen Empfänger für elektromagnetische Wellen auszustatten, der insbesondere von einem Funken abgestrahlte Infrarotsignale sensiert. Mittels eines Photoelementes, beispielsweise einer Photodiode, lassen sich derartige elektromagnetische Wellen in ein elektrisches Signal wandeln. Dieses elektrische Signal ist mit einer Ansteuer- und Auswerteschaltung auswertbar. Üblicherweise werden die Photoelemente mit einem Ruhestrom bestromt, der nach Einfall einer elektromagnetischen Welle in einen Schaltstrom übergeht, wobei der Schaltstrom eine ereignisabhängige Aktion auslöst. Diese Aktion kann beispielsweise eine Alarmierung von Bedienpersonal der Rotorspinnmaschine oder ein automatisches Abschalten der Rotorspinnmaschine, die Aktivierung einer Löschvorrichtung oder dergleichen sein.It is known that such fire sensors (hereinafter spark sensors called) with an optical receiver for to equip electromagnetic waves, in particular infrared signals emitted by a spark sensed. Using a photo element, for example a photodiode, such electromagnetic waves in an electrical signal convert. This electrical signal is controlled by a and evaluation circuit can be evaluated. Usually the photo elements with a quiescent current energized, which after incidence of an electromagnetic Wave changes into a switching current, the Switching current triggers an event-dependent action. This action can, for example, alert you Operator of the rotor spinning machine or an automatic Switch off the rotor spinning machine, the Activation of an extinguishing device or the like his.

Während ihres bestimmungsgemäßen Einsatzes sind die Funkensensoren einer erheblichen Beanspruchung ausgesetzt, so daß für eine sichere Betriebsweise eine Funktionsüberprüfung der Funkensensoren notwendig ist. Durch die definierten Schaltzustände der Funkensensoren, einerseits der Ruhestrom, andererseits der Schaltstrom, läßt sich eine elektrische Überprüfung mittels eines Prüfalgorithmus über die Ansteuer- und Auswerteschaltung realisieren. Bei einem eventuellen Kurzschluß der Zuleitungen zu der Meßeinrichtung fließt ein Strom, der größer als der Ruhestrom ist, während bei einer Unterbrechung der Zuleitung der Meßeinrichtung kein Strom fließt. Bei beiden Fehlerfällen kann ein Alarmsignal generiert werden, das auf einen Ausfall des Funkensensors hinweist.During their intended use, they are Spark sensors exposed to considerable stress, so that for safe operation Functional check of the spark sensors necessary is. Due to the defined switching states of the spark sensors, on the one hand the quiescent current, on the other hand the Switching current, an electrical check can be made by means of a test algorithm via the control and Realize evaluation circuit. With a possible Short circuit of the leads to the measuring device a current flows that is greater than the quiescent current, while if the supply line is interrupted Measuring device no current flows. With both errors an alarm signal can be generated that points to indicates a failure of the spark sensor.

Es ist jedoch nachteilig, daß eine Überprüfung der optischen Bauelemente des Funkensensors nicht möglich ist, so daß eine hundertprozentige Betriebssicherheit durch den elektrischen Test nicht sichergestellt werden kann.However, it is disadvantageous that a review of the optical components of the spark sensor not possible is, so that a hundred percent operational reliability not ensured by the electrical test can be.

Der Erfindung liegt daher die Aufgabe zugrunde, eine Saugluftanlage der gattungsgemäßen Art zu schaffen, bei der in einfacher weise eine erhöhte Betriebssicherheit gegeben ist.The invention is therefore based on the object To create suction air system of the generic type, which in a simple way increases operational reliability given is.

Erfindungsgemäß wird diese Aufgabe durch eine Saugluftanlage mit den im Anspruch 1 genannten Merkmalen gelöst. Dadurch, daß dem optischen Empfänger wenigstens eine Quelle zum Generieren elektromagnetischer Wellen zugeordnet ist, und die wenigstens eine Quelle derart ansteuerbar ist, daß ein gezieltes Auslösen des Funkensensors erfolgt, lassen sich vorteilhaft die optischen Komponenten des Funkensensors überprüfen, so daß zusätzlich zur Überprüfung der elektrischen beziehungsweise elektronischen Komponenten des Funkensensors die optischen Komponenten überprüfbar sind, so daß eine Funkenerkennung des Funkensensors wesentlich sicherer wird. According to the invention, this object is achieved by a suction air system with the features mentioned in claim 1 solved. In that the optical receiver at least a source for generating electromagnetic Waves is assigned, and the at least one source can be controlled in such a way that targeted triggering of the spark sensor can be advantageous check the optical components of the spark sensor, so that in addition to checking the electrical or electronic components of the Spark sensor, the optical components can be checked are, so that a spark detection of the spark sensor becomes much safer.

In bevorzugter Ausgestaltung der Erfindung ist vorgesehen, daß die wenigstens eine Quelle elektromagnetischer Wellen periodisch einschaltbar ist, wobei vorzugsweise während des sich periodisch wiederholenden Selbsttestes der optischen Komponenten des Funkensensors die Auslösefunktion der Ansteuer- und Auswerteschaltung ausgeblendet wird. Hierdurch läßt sich in einfacher Weise in bestimmbaren Intervallen eine Überprüfung der optischen Komponenten des Funkensensors durchführen, wobei die Auslösung des Schaltstromes (Alarmstrom) des Funkensensors infolge der Überprüfung der optischen Komponenten der Meßeinrichtung nicht zur Auslösung eines Alarmsignales (Fehlalarm) führt.In a preferred embodiment of the invention, that the at least one source of electromagnetic Waves can be switched on periodically, whereby preferably during the periodically repeating Self test of the optical components of the Spark sensor the triggering function of the control and Evaluation circuit is hidden. This leaves in a simple manner at determinable intervals a check of the optical components of the spark sensor perform, triggering the Switching current (alarm current) of the spark sensor as a result checking the optical components of the measuring device not to trigger an alarm signal (False alarm) leads.

In weiterer bevorzugter Ausgestaltung der Erfindung ist vorgesehen, daß die Quelle elektromagnetischer Wellen eine Lumineszenzdiode ist, die vorzugsweise über die Ansteuer- und Auswerteschaltung der Meßeinrichtung ansteuerbar ist. Hierdurch läßt sich in einfacher Weise die periodische Ansteuerung der Quelle mit dem Ausblenden der Alarmfunktion kombinieren, ohne daß ein großer schaltungstechnischer Aufwand notwendig ist.In a further preferred embodiment of the invention it is intended that the source be electromagnetic Waves is a luminescent diode, which is preferred via the control and evaluation circuit of the measuring device is controllable. This makes it easier Way the periodic activation of the source combine with hiding the alarm function, without a large amount of circuitry necessary is.

Ferner ist in bevorzugter Ausgestaltung der Erfindung vorgesehen, daß die Quelle zum Generieren elektromagnetischer Wellen und der Funkensensor in einem gemeinsamen Gehäuse angeordnet sind. Hierdurch wird es möglich, eine kompakte Bauform des Funkensensors zu schaffen, wobei vorzugsweise eine gemeinsame elektrische Schnittstelle mit der Ansteuer- und Auswerteschaltung des Funkensensors nutzbar ist. Hierdurch ergibt sich ein vereinfachter Montageaufwand, da die Anordnung und das elektrische Anschließen zusätzlicher Komponenten somit nicht notwendig ist.Furthermore, in a preferred embodiment of the invention provided that the source for generating electromagnetic Waves and the spark sensor in one Housing are arranged. This will make it possible to have a compact design of the spark sensor create, preferably a common electrical Interface with the control and evaluation circuit the spark sensor can be used. hereby this results in a simplified assembly effort because the Arrangement and electrical connection additional Components is therefore not necessary.

Weitere bevorzugte Ausgestaltungen der Erfindung ergeben sich aus den übrigen, in den Unteransprüchen genannten Merkmalen.Further preferred configurations of the invention result from the rest, in the subclaims mentioned features.

Die Erfindung wird nachfolgend in einem Ausführungsbeispiel anhand der zugehörigen Zeichnungen näher erläutert. Es zeigen:

Figur 1
eine schematische Ansicht der Anordnung eines Funkensensors an der Saugluftanlage einer Rotorspinnmaschine und
Figur 2
ein Ersatzschaltbild eines Funkensensors.
The invention is explained in more detail in an exemplary embodiment with reference to the accompanying drawings. Show it:
Figure 1
a schematic view of the arrangement of a spark sensor on the suction air system of a rotor spinning machine and
Figure 2
an equivalent circuit diagram of a spark sensor.

In Figur 1 ist ausschnittsweise eine Saugluftanlage 10 für wenigstens eine Rotorspinnmaschine gezeigt. An die Saugluftanlage 10 können mehrere Rotorspinnmaschinen mit jeweils einer Vielzahl von Spinneinheiten angeschlossen sein. Aufbau und Wirkungsweise der Saugluftanlage und der Rotorspinnmaschinen sind bekannt, so daß im Rahmen der vorliegenden Beschreibung hierauf nicht näher eingegangen werden soll. Mittels der Saugluftanlage 10 werden die Rotorspinnmaschinen mit einem Unterdruck beaufschlagt, mittels dem Faserabfall, Verschmutzungen oder dergleichen von den Rotorspinnmaschinen abgesaugt werden. In Figure 1 is a section of a suction air system 10 for at least one rotor spinning machine. On the suction air system 10 can have several rotor spinning machines each with a large number of spinning units be connected. Structure and mode of operation of Suction air system and the rotor spinning machines are known so that within the scope of the present description this should not be discussed in more detail. through the suction air system 10 become the rotor spinning machines applied with a vacuum by means of the fiber waste, Dirt or the like from the rotor spinning machines be sucked off.

Die Saugluftanlage 10 besitzt hierzu eine sogenannte Endeinheit 12, in die ein mit einer nicht dargestellten Saugluftquelle verbundener Saugluftkanal 14 mündet. Ferner münden in die Endeinheit 12 zu den einzelnen Rotorspinnmaschinen führende Saugluftkanäle 16. Ein Abschnitt 18 des Saugluftkanals 14 bildet eine Meßstrecke 20 für einen Funkensensor 22, dessen Aufbau und Funktionsweise anhand von Figur 2 noch näher erläutert wird. Der Funkensensor 22 ist über eine elektrische Verbindungsleitung 24 mit einem Steuergerät 26 verbunden, das eine Ansteuer- und Auswerteschaltung für den Funkensensor 22 umfaßt.The suction air system 10 has a so-called End unit 12, in the one with a not shown Suction air source connected suction air duct 14 empties. Furthermore, the end unit 12 leads to the suction air ducts leading individual rotor spinning machines 16. A section 18 of the suction air duct 14 forms a measuring section 20 for a spark sensor 22, the Structure and operation with reference to Figure 2 in more detail is explained. The spark sensor 22 is via a electrical connecting line 24 with a control unit 26 connected, which is a control and evaluation circuit for the spark sensor 22 includes.

Während des bestimmungsgemäßen Betriebes der Saugluftanlage 10 werden die an den Rotorspinnmaschinen anfallenden Faserabfälle mit der Saugluftströmung zu einer Filter- beziehungsweise Abscheideeinrichtung geführt. Infolge einer Betriebsstörung an den Rotorspinnmaschinen, beispielsweise bei einem Fadenbruch wird ein Faserbandeinzug der Rotorspinnmaschine nicht abgeschaltet, kann der Rotor der Rotorspinnmaschine überspeist werden, so daß dieser heißläuft. Die hierbei entstehende Reibungswärme kann ausreichen, um die mittels der Saugluftströmung abtransportierten Faserabfälle zu entzünden. Diese würden dann als glimmende Faserabfälle über die Saugkanäle 16 und 14 zur Filter- beziehungsweise Abscheideeinrichtung geführt und können dort zum Entzünden der gesammelten Faserabfälle führen.
Mittels des Funkensensors 22 wird im Bereich der Meßstrecke 20 der Faserflug überwacht, wobei von glimmenden Fasern abgestrahlte elektromagnetische Wellen im Infrarotbereich durch einen optischen Empfänger erfaßt werden. Hierdurch wird es möglich, einen Funkenflug innerhalb der Saugluftanlage 10 zu erkennen und über das Steuergerät 26 entsprechende Gegenmaßnahmen einzuleiten. Diese können beispielsweise in einer optischen und/oder akustischen Alarmgebung bestehen, so daß Bedienpersonal der Rotorspinnmaschinen gezielte Gegenmaßnahmen einleiten kann. Ferner kann eine automatische Abschaltung der Rotorspinnmaschinen erfolgen. Darüber hinaus kann eine Umschaltung der Luftführungsrichtung der Saugluftanlage 10 derart erfolgen, daß bei Auftritt von glimmendem Faserflug diese nicht in Richtung der Filter- und Abscheideeinrichtung transportiert werden, sondern in einen separaten, gegebenenfalls mit Löschmitteln ausgerüsteten Vorratsraum bringbar sind.
During the intended operation of the suction air system 10, the fiber waste accumulating on the rotor spinning machines is guided with the suction air flow to a filter or separating device. As a result of a malfunction in the rotor spinning machines, for example in the event of a thread break, a sliver of the rotor spinning machine is not switched off, the rotor of the rotor spinning machine can be over-fed so that it overheats. The resulting frictional heat can be sufficient to ignite the fiber waste carried away by the suction air flow. This would then lead as glowing fiber waste via the suction channels 16 and 14 to the filter or separating device and can lead to ignition of the collected fiber waste there.
The fiber flight is monitored in the area of the measuring section 20 by means of the spark sensor 22, wherein electromagnetic waves emitted by glowing fibers are detected in the infrared area by an optical receiver. This makes it possible to detect flying sparks within the suction air system 10 and to initiate appropriate countermeasures via the control unit 26. These can consist, for example, of an optical and / or acoustic alarm so that operating personnel of the rotor spinning machines can initiate targeted countermeasures. Furthermore, the rotor spinning machines can be switched off automatically. In addition, the air duct direction of the suction air system 10 can be switched such that when glowing fiber fly occurs, it is not transported in the direction of the filter and separating device, but can be brought into a separate storage room, which may be equipped with extinguishing agents.

In Figur 2 ist in einem Blockschaltbild der Funkensensor 22 gezeigt. Dieser umfaßt einen optischen Empfänger 28, dessen Sensierbereich in die Meßstrecke 20 gerichtet ist. Der Sensierbereich umfaßt beispielsweise einen Detektionswinkel von 110°, innerhalb dem in der Meßstrecke 20 transportierte glimmende Faserabfälle erkannt werden. Durch Anordnung des Funkensensors 22 an einer Ecke des vorzugsweise eckig ausgebildeten Saugluftkanals 14 kann durch den Detektionswinkel von 110° der gesamte Querschnitt der Meßstrecke 20 erfaßt werden. Der Funkensensor 22 ist über die elektrische Verbindungsleitung 24 mit einer hier nur ausschnittsweise dargestellten Ansteuer- und Auswerteschaltung 30 verbunden. Die Verbindungsleitung 24 ist als vieradrige Leitung ausgebildet, wobei eine erste Ader 32 der Bereitstellung einer Versorgungsspannung UV von beispielsweise 24 V Gleichspannung dient. Eine zweite Ader 34 und eine dritte Ader 36 dienen zum Abgreifen eines elektrischen Signals des optischen Empfängers 28. Der optische Empfänger 28 ist beispielsweise eine Photodiode, die über eine Stromschnittstelle einen Ruhestrom, von beispielsweise 20 mA treibt. Bei Auftreten eines Funkens in der Meßstrecke 20 werden vom optischen Empfänger 28 vom Funken emittierte infrarote, elektromagnetische Wellen empfangen und in ein elektrisches Signal umgewandelt. Dieses elektrische Signal bewirkt eine Umschaltung des Ruhestroms in einen Alarmstrom (Schaltstrom), von beispielsweise 4 mA, der durch das Steuergerät 26 auswertbar ist. Zur Verstärkung der von dem optischen Empfänger 28 generierten elektrischen Signale kann eine Verstärkerschaltung 38 vorgesehen sein.The spark sensor 22 is shown in a block diagram in FIG. This comprises an optical receiver 28, the sensing area of which is directed into the measuring section 20. The sensing area includes, for example, a detection angle of 110 °, within which glowing fiber waste transported in the measuring section 20 is recognized. By arranging the spark sensor 22 at a corner of the suction air duct 14, which is preferably angular, the entire cross section of the measuring section 20 can be detected by the detection angle of 110 °. The spark sensor 22 is connected via the electrical connecting line 24 to a control and evaluation circuit 30, which is only shown in part here. The connecting line 24 is designed as a four-wire line, a first wire 32 being used to provide a supply voltage U V of, for example, 24 V DC voltage. A second wire 34 and a third wire 36 serve to tap an electrical signal from the optical receiver 28. The optical receiver 28 is, for example, a photodiode, which drives a quiescent current, for example 20 mA, via a current interface. If a spark occurs in the measurement section 20, the optical receiver 28 receives infrared, electromagnetic waves emitted by the spark and converts it into an electrical signal. This electrical signal switches the quiescent current into an alarm current (switching current), for example 4 mA, which can be evaluated by the control unit 26. An amplifier circuit 38 can be provided to amplify the electrical signals generated by the optical receiver 28.

Der Funkensensor 22 umfaßt ferner eine Quelle 40 zur Generierung elektromagnetischer Wellen, wobei die Quelle 40 in einem Wellenlängenbereich arbeitet, der den empfangbaren Wellenlängen des optischen Empfängers 28, im Beispiel also im Infrarotbereich, entspricht. Die Quelle 40 ist als Lumineszenzdiode (LED-Diode), ausgebildet. Über eine vierte Ader 42 der Verbindungsleitung 24 ist die Quelle 40 mit einem Steuerimpuls ansteuerbar. Zur Verstärkung des Steuerimpulses kann eine Verstärkerschaltung 44 vorgesehen sein. Entsprechend der Funktion der Quelle 40 wird durch das Anlegen eines Steuerimpulses ein Infrarotblitz 46 innerhalb der Meßstrecke 20 erzeugt, der von dem optischen Empfänger 28 erkannt wird. Die Ansteuer- und Auswerteschaltung 30 umfaßt ein Zeitglied 48, über das einerseits eine definierte Impulslänge und andererseits ein Impulsabstand einstellbar ist. Die. Impulslänge bestimmt die Einschaltzeit der Quelle 40 und beträgt mindestens das 1,1fache, insbesondere mindestens das 1,5fache einer Ansprechzeit des optischen Empfängers 28. Hierdurch wird sichergestellt, daß der generierte Infrarotblitz 46 von dem optischen Empfänger 28 tatsächlich erkannt wird. Der Abstand zwischen aufeinanderfolgenden Impulsen kann wählbar vorgegeben werden und liegt beispielsweise im Sekunden-, Minuten-, Stundenbereich oder dergleichen. Zeitgleich mit dem Impulssignal wird von dem Zeitglied 48 ein Steuersignal 50 generiert. Das Steuersignal 50 gibt dem Steuergerät 26 eine Information, daß ein durch den Funkensensor 22 erfaßtes infrarotes Signal nicht durch einen Funkenflug innerhalb der Saugluftanlage hervorgerufen wurde, sondern dieses durch gezieltes und definiertes Einschalten der Quelle 40 generiert wurde. Hierdurch kann eine Alarmauslösung durch das Steuergerät 26 für die Impulsdauer ausgeblendet, das heißt unterdrückt werden.The spark sensor 22 also includes a source 40 for Generation of electromagnetic waves, the Source 40 operates in a wavelength range that the receivable wavelengths of the optical receiver 28, in the example in the infrared range. The source 40 is a luminescent diode (LED diode), educated. Via a fourth wire 42 the Connection line 24 is the source 40 with a Control pulse controllable. To reinforce the Control pulse an amplifier circuit 44 may be provided his. According to the function of the source 40 is activated by the application of a control pulse Infrared flash 46 generated within the measuring section 20, which is recognized by the optical receiver 28. The Control and evaluation circuit 30 comprises a timer 48, on the one hand a defined pulse length and on the other hand a pulse interval adjustable is. The. Pulse length determines the on time of the Source 40 and is at least 1.1 times, in particular at least 1.5 times a response time of the optical receiver 28. This ensures that the generated infrared flash 46 from the optical receiver 28 is actually recognized. The Distance between successive pulses can can be specified selectively and is, for example, in Seconds, minutes, hours or the like. Simultaneously with the pulse signal is from the timing element 48 generates a control signal 50. The control signal 50 gives the control unit 26 information, that an infrared detected by the spark sensor 22 Signal is not caused by flying sparks within the Suction air system was caused, but this through targeted and defined switching on of the Source 40 was generated. This can trigger an alarm by the control unit 26 for the pulse duration hidden, that is, suppressed.

Durch gezielte Ansteuerung der Quelle 40 kann somit ein Selbsttest des Funkensensors 22, insbesondere von dessen optischen Komponenten, also dem optischen Empfänger 28, erfolgen. Somit wird entsprechend der Wiederholfrequenz der Testimpulse eine periodische Überprüfung der Funktion des Funkensensors 22 möglich, ohne daß dieser beispielsweise aus der Saugluftanlage 10 ausgebaut werden muß. Neben dieser Überprüfung der optischen Funktion des Funkensensors 22 kann eine Überprüfung der elektrischen Funktion in an sich bekannter Weise erfolgen, indem der Ruhestrom überwacht wird. Übersteigt der Ruhestrom einen eingestellten Wert, der beispielsweise 20 mA beträgt, kann auf einen Kurzschluß innerhalb der Ver-bindungsleitung 24 oder innerhalb des Funkensensors 22 geschlossen werden. wird der Ruhestrom beispielsweise unterbrochen, kann auf eine Unterbrechung einer elektrischen Leitung erkannt werden.By targeted control of the source 40 can thus a self-test of the spark sensor 22, in particular of its optical components, i.e. the optical receiver 28, take place. Thus, according to the repetition frequency a periodic check of the test impulses the function of the spark sensor 22 possible, without this, for example, from the suction air system 10 must be removed. In addition to this review of the optical function of the spark sensor 22 can Checking the electrical function in a known manner Way by monitoring the quiescent current becomes. If the quiescent current exceeds a set one A value, for example 20 mA, can be set to one Short circuit within the connecting line 24 or be closed within the spark sensor 22. the quiescent current is interrupted, for example, can be due to an open circuit of an electrical line be recognized.

Das Steuergerät 26 umfaßt beispielsweise eine optische Anzeige, die einen Ausfall des Funkensensors 22 anzeigt. Durch das Bedienpersonal kann dann ein entsprechender Austausch des defekten Funkensensors 22 veranlaßt werden. Ferner kann ein automatisches Fehlersignal an eine zentrale Recheneinheit, die der Steuerung der Rotorspinnmaschinen dient, gegeben werden, so daß neben einer Dokumentation des Fehlersignals gleichzeitig auf den defekten Funkensensor 22 hingewiesen werden kann.The control unit 26 comprises, for example, an optical one Indicator indicating a failure of the spark sensor 22 displays. A corresponding one can then be made by the operating personnel Replacement of the defective spark sensor 22 be prompted. Furthermore, an automatic error signal to a central processing unit, which the Control of the rotor spinning machines is used to be given so that in addition to documentation of the error signal at the same time on the defective spark sensor 22 can be pointed out.

Anstelle der Bereitstellung der Testimpulse über das Zeitglied 48 oder zusätzlich kann eine Ansteuerung der Quelle 40 auch über ein separates Schaltmittel durch eine Bedienperson erfolgen. Hierdurch wird jederzeit eine manuelle Überprüfung, zusätzlich beziehungsweise unabhängig von der eingestellten Wiederholfrequenz der Testimpulse möglich. So kann beispielsweise bei einem Überprüfungsrundgang durch Betätigen des Schaltmittels die Funktion des Funkensensors 22 getestet werden. Das Steuergerät 26 kann entsprechende Quittiersignale, beispielsweise optisch, für die Bedienperson bereitstellen, so daß diese erkennt, ob der Funkensensor 22 in Ordnung ist oder defekt ist.Instead of providing the test impulses via the Timing element 48 or additionally can be activated the source 40 also via a separate switching means done by an operator. This will always a manual check, in addition respectively regardless of the set repetition frequency of the test impulses possible. For example during an inspection tour by pressing of the switching means the function of the spark sensor 22 can be tested. The control unit 26 can corresponding acknowledgment signals, for example optically, provide for the operator so that this detects whether the spark sensor 22 is OK or is defective.

Der optische Empfänger 28 sowie die Quelle 40 und die Verstärkerschaltungen 38 und 44 sind in einem gemeinsamen Gehäuse 52, das beispielsweise von einer zylinderförmigen Kunststoffröhre gebildet wird, angeordnet. Hierdurch ist eine sehr kompakte Bauweise möglich. Die Verbindung des Funkensensors 22 mit dem Steuergerät 26 erfolgt über lediglich eine, hier vieradrige Verbindungsleitung 24, so daß ein einfaches Anschließen des Funkensensors 22 über eine Schnittstelle möglich ist.The optical receiver 28 as well as the source 40 and the Amplifier circuits 38 and 44 are in common Housing 52, for example by a cylindrical plastic tube is formed, arranged. This is a very compact design possible. The connection of the spark sensor 22 with the Control unit 26 takes place via only one, here four-wire connection line 24, so that a simple Connecting the spark sensor 22 via a Interface is possible.

Nach weiteren, nicht dargestellten Ausführungsbeispielen ist selbstverständlich möglich, die Quelle 40 unabhängig von dem Funkensensor 22 anzuordnen, beispielsweise in der Meßstrecke 20 dem Funkensensor 22 diametral gegenüberliegend. Auch so wird ein Selbsttest des Funkensensors 22 möglich, wobei die Wirkungsweise die gleiche bleibt.According to further embodiments, not shown is of course possible, the source 40 to be arranged independently of the spark sensor 22, for example the spark sensor 22 in the measuring section 20 diametrically opposite. This is also a self-test of the spark sensor 22 possible, the mode of operation the same remains.

Claims (16)

  1. Suction unit of a textile machine, in particular a rotor spinning machine, with at least one suction duct and at least one spark sensor for detecting flying sparks within a measuring section of the suction unit which spark sensor comprises a measuring device, of which the detection region at least partially overlaps the measuring section, and comprising at least one receiver of electromagnetic waves, which generates an output signal upon entry of a spark into the detection region, and a control and evaluation circuit for the spark sensor, characterised in that at least one source (40) for generating electromagnetic waves is associated with the optical receiver (28) and the at least one source (40) can be controlled in such a way that the spark sensor (22) is purposefully triggered.
  2. Suction unit according to claim 1, characterised in that the at least one source (40) can be switched on periodically.
  3. Suction unit according to claim 2, characterised in that an on-time of the source (40) corresponds to at least 1.1 times, in particular at least 1.5 times, the response time of the optical receiver (28).
  4. Suction unit according to any of the preceding claims, characterised in that the at least one source (40) and the spark sensor (22) are integrated in a common housing (52).
  5. Suction unit according to any of the preceding claims, characterised in that the receiver (28) is a photoelement, in particular a photodiode.
  6. Suction unit according to any of the preceding claims, characterised in that the source (40) is an emitting diode (LED diode).
  7. Suction unit according to any of the preceding claims, characterised in that the source (40) and the receiver (28) operate in an infrared range.
  8. Suction unit according to any of the preceding claims, characterised in that the source (40) can be controlled via a separate control line (42).
  9. Suction unit according to any of the preceding claims, characterised in that the source (40) can be controlled by the control and evaluation circuit (30).
  10. Suction unit according to any of the preceding claims, characterised in that the source (40) and the spark sensor (22) can be connected by a common connecting line (24) to the control and evaluation circuit (30).
  11. Suction unit according to any of the preceding claims, characterised in that the source (40) can be controlled manually.
  12. Suction unit according to any of the preceding claims, characterised in that at least one safety device of the textile machine can be activated by the spark sensor (22).
  13. Suction unit according to any of the preceding claims, characterised in that at least one or more of the following actions
    an acoustic alarm signal,
    an optical alarm signal,
    a changeover of the suction duct (14) of the suction unit (10),
    automatic switching off of at least one textile machine,
    automatic documentation,
    display of an error in a central control device of the textile machines,
    can be triggered by a control apparatus (26) comprising the control and evaluation circuit.
  14. Suction unit according to any of the preceding claims, characterised in that owing to the control and evaluation circuit (30) the spark sensor (22) can also be electrically tested, a zero signal current of the receiver (28) being monitored.
  15. Suction unit according to any of the preceding claims, characterised in that the control and evaluation circuit (30) comprises a timer (48) by means of which a control pulse (test pulse) for controlling the source (40) can be influenced.
  16. Suction unit according to any of the preceding claims, characterised in that the timer (48) generates a control signal (50) simultaneously with each control pulse, by means of which control signal an alarm trigger can be blanked for the pulse duration of the control pulse.
EP99107226A 1998-07-08 1999-04-14 Suction system of a textile machine Revoked EP0971058B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19830394A DE19830394A1 (en) 1998-07-08 1998-07-08 Suction air system of a textile machine
DE19830394 1998-07-08

Publications (2)

Publication Number Publication Date
EP0971058A1 EP0971058A1 (en) 2000-01-12
EP0971058B1 true EP0971058B1 (en) 2003-02-05

Family

ID=7873266

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99107226A Revoked EP0971058B1 (en) 1998-07-08 1999-04-14 Suction system of a textile machine

Country Status (5)

Country Link
US (1) US6317645B1 (en)
EP (1) EP0971058B1 (en)
JP (1) JP2000064134A (en)
CN (1) CN1210450C (en)
DE (2) DE19830394A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102853907A (en) * 2012-08-29 2013-01-02 昆山市万丰制衣有限责任公司 Spark detecting device for textile machinery
JP2017530262A (en) * 2014-07-31 2017-10-12 カモッツィ・デジタル・エス.アール.エル.CAMOZZI DIGITAL S.r.l. System for monitoring physical parameters of textile machinery and method of predictive maintenance
DE102018126149A1 (en) * 2018-10-22 2020-04-23 Maschinenfabrik Rieter Ag Method for operating a spinning machine and spinning machine
CN109295569B (en) * 2018-11-26 2021-09-28 江南大学 Negative pressure bellows with self-cleaning function
CN112127026A (en) * 2020-10-10 2020-12-25 安徽华茂纺织股份有限公司 Automatic fault alarm device for blowing-carding unit

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3926665A (en) * 1973-06-04 1975-12-16 Parks Cramer Ltd Method and apparatus for collecting fiber waste from open-end spinning machines
CH619991A5 (en) * 1977-06-09 1980-10-31 Rieter Ag Maschf
CH676475A5 (en) * 1988-10-28 1991-01-31 Jossi Hans Praezisionsmechanik
DE3930450A1 (en) * 1989-09-12 1991-03-21 Zinser Textilmaschinen Gmbh METHOD AND DEVICE FOR CHECKING THE FUNCTIONALITY OF INDIVIDUAL, WORKING ELEMENTS OF CONTROLLING SENSORS OF AN ALONG A TEXTILE MACHINE, IN PARTICULAR SPANNER MACHINE MOVABLE OPERATOR
DD292076A5 (en) * 1990-02-08 1991-07-18 Textilmaschinenbau Grossenhain Bfsr,De METHOD FOR OPTO ELECTRONIC MONITORING OF THREADED FIBER MATERIALS
DE29604552U1 (en) * 1995-05-05 1996-05-23 Trützschler GmbH & Co KG, 41199 Mönchengladbach Device in a spinning preparation facility (blow room) for the detection and removal of foreign substances, e.g. Pieces of fabric, ribbons, cords, pieces of film, in or out of fiber material
DE29719245U1 (en) * 1997-10-29 1998-03-12 Jossi Holding Ag, Islikon Device for recognizing and eliminating foreign substances in fiber material
US5936531A (en) * 1998-03-06 1999-08-10 Powers; Frank A. Electrical fire sensing and prevention/extinguishing system

Also Published As

Publication number Publication date
DE59904205D1 (en) 2003-03-13
EP0971058A1 (en) 2000-01-12
JP2000064134A (en) 2000-02-29
US6317645B1 (en) 2001-11-13
DE19830394A1 (en) 2000-01-13
CN1210450C (en) 2005-07-13
CN1240843A (en) 2000-01-12

Similar Documents

Publication Publication Date Title
DE4129126C2 (en)
EP1857989B1 (en) Fire alarm device and test method for testing its functional capability
DE102006012537B4 (en) light Curtain
EP2407949B1 (en) Ring shaped auxiliary light source
CH676174A5 (en) Detection and quenching relay for switchgear arcs
WO1993013407A1 (en) Detection of foreign fibres in yarns
EP2481152B1 (en) Optical sensor, in particular proximity switch
EP0971058B1 (en) Suction system of a textile machine
DE4242792A1 (en) Safety switch arrangement for switching the power supply of actuators on and off depending on a sensor switching signal
DE19951403A1 (en) Device for detecting smoke
EP1039426A2 (en) Smoke sensing device
DE3836792C2 (en)
EP0463339A2 (en) Device for fail-safe testing of an infrared detector unit
DE102006032113C5 (en) Optical triangulation sensor and method for testing an optical triangulation sensor
DE4440281C2 (en) Device for the optical detection of arcing
DE19531917C1 (en) Electromagnetic radiation detector e.g. for fire detection esp. in paint workshops
DE4333911C2 (en) Optical smoke detector
DE102009054141A1 (en) Method for verifying proper function of smoke detector in inner room of building, involves comparing output signal with reference output signal, and outputting error signal, when output signal falls below reference output signal
CH681158A5 (en)
DE19510333C1 (en) Circuit for testing opto-coupler having input, output, and control terminals
DE2937686A1 (en) COMBINATION DETECTOR
EP1286320B1 (en) Detector, method for operating a detector and test device for a detector
EP1973014A1 (en) Device and method for automatic recognition and differentiation of one or two channel electronic sensors connected to a two channel safety combination
EP3596814B1 (en) Inverter with fire alarm
DE19653421A1 (en) Open end spinning station yarn monitor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR IT LI

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20000712

AKX Designation fees paid

Free format text: CH DE FR IT LI

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 20020611

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): CH DE FR IT LI

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59904205

Country of ref document: DE

Date of ref document: 20030313

Kind code of ref document: P

RIN2 Information on inventor provided after grant (corrected)

Inventor name: JANSEN, GERD

Inventor name: KAMPS, KARL

Inventor name: WEUTHAN, STEPHAN

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SAURER GMBH & CO. KG

ET Fr: translation filed
PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: ARGUS FIRE CONTROL, INC.

Effective date: 20031105

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20040421

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20040429

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040511

Year of fee payment: 6

PLAY Examination report in opposition despatched + time limit

Free format text: ORIGINAL CODE: EPIDOSNORE2

PLBC Reply to examination report in opposition received

Free format text: ORIGINAL CODE: EPIDOSNORE3

PLAQ Examination of admissibility of opposition: information related to despatch of communication + time limit deleted

Free format text: ORIGINAL CODE: EPIDOSDOPE2

PLAR Examination of admissibility of opposition: information related to receipt of reply deleted

Free format text: ORIGINAL CODE: EPIDOSDOPE4

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050414

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

R26 Opposition filed (corrected)

Opponent name: ARGUS FIRE CONTROL, INC.

Effective date: 20031105

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

27W Patent revoked

Effective date: 20050429