EP0966667A1 - Carbon isotope analyser - Google Patents

Carbon isotope analyser

Info

Publication number
EP0966667A1
EP0966667A1 EP97908211A EP97908211A EP0966667A1 EP 0966667 A1 EP0966667 A1 EP 0966667A1 EP 97908211 A EP97908211 A EP 97908211A EP 97908211 A EP97908211 A EP 97908211A EP 0966667 A1 EP0966667 A1 EP 0966667A1
Authority
EP
European Patent Office
Prior art keywords
unit
sample
carbon isotope
gas
isotope analyzer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP97908211A
Other languages
German (de)
French (fr)
Inventor
Heinz Fischer
Bernd Kuhlmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fischer Analysen Instrumente GmbH
Original Assignee
Fischer Analysen Instrumente GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fischer Analysen Instrumente GmbH filed Critical Fischer Analysen Instrumente GmbH
Publication of EP0966667A1 publication Critical patent/EP0966667A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/497Physical analysis of biological material of gaseous biological material, e.g. breath
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • G01N21/3518Devices using gas filter correlation techniques; Devices using gas pressure modulation techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/37Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using pneumatic detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/02Mechanical
    • G01N2201/024Modular construction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036Specially adapted to detect a particular component
    • G01N33/004Specially adapted to detect a particular component for CO, CO2

Definitions

  • the invention relates to a carbon isotope analyzer with the features of the preamble of claim 1.
  • Breathing gas analyzers are known which are based on the principle of non-dispersive infrared spectroscopy. This
  • Analytical devices are equipped with a spectrometer developed for industrial applications to determine the concentrations of individual components in gases and vapors. This
  • the invention is therefore based on the object of providing a breathing gas analyzer which is particularly suitable for practical routine operation and which ensures safe operation, high measurement accuracy and an inexpensive, compact design.
  • the carbon isotope analyzer according to claim 1 ensures by the arrangement of all functional elements in one device compact and robust design. All control elements such as the sample inlet connection are clearly arranged on the operating side of the device.
  • the integration of the sample inlet system coupled with the sample control system into the gas management system not only ensures simple and safe handling of the device, it also reduced the sample volume to 700 ml due to the special sample gas flow and achieved the high sample throughput of 40 sample / h.
  • the task for the individual modules is clearly divided uniform control of the analyzer is guaranteed.
  • the clear, modular structure of the device proves to be very advantageous, particularly when it comes to detecting and rectifying errors. It allows constant internal diagnosis of the device status and thus helps to minimize maintenance.
  • the equipment of the non-dispersive infrared spectrometer according to claim 2 with a measuring module with its own microcontroller and with a thermostat optimized for the measuring process proves to be particularly advantageous, by means of which a considerably higher accuracy and stability of the measured data is achieved.
  • the gas-tight seal of the entire optical system against the disturbing CO2 contents of the ambient air is an essential basis for meeting the high requirements for the accuracy of measured value acquisition and measured value control when measuring breathing gas.
  • the compact design of the measuring module with its own microcontroller for control, measured value acquisition and communication also results in increased electromechanical stability.
  • the structure of the gas management system according to claim 3, in which the metering and circulation unit and the flushing and zero gas unit are integrated, enables the generation of zero gas from the Ambient air and the circulation of the sample gas.
  • the design of the sample inlet system integrated in the dosing and circulation unit ensures that the unavoidable volume of extraneous gas is minimized when measuring from breathing gas bags. This advantage is achieved by the structure of the sample inlet system according to claim 4, in that the connecting tubes of the breathing gas bags are arranged directly on the connecting pieces of the valves.
  • the coupling of the sample inlet system to the sample control system is also particularly advantageous.
  • the sample control system detects whether a sample is at one of the sample inlets and thus prevents incorrect operation by the user.
  • Concentration compensation in the measuring cuvettes is achieved by the circulation of the sample gas.
  • Another significant advantage of the carbon isotope analyzer is achieved by installing the standardized CAN bus according to claim 8.
  • This CAN bus system which is known from motor vehicle technology and has proven its immunity to interference, guarantees uniform control of the analyzer, with the internal control of the carbon isotope analyzer and the communication with the internal PC unit being realized via a two-wire line. Its system-wide error detection and error signaling is guaranteed because the CAN network works constantly with the same valid data.
  • the CAN bus is also characterized by its high flexibility. Since the data transmission is message-oriented, the analysis system can can be expanded at any time without changing the overall configuration. The expansion of the I / O unit according to claim 7 and the expansion of the number of sample inlet systems according to claim 4 is thus ensured at all times.
  • the specially developed software program which is adapted to the technical structure and functionality of the analyzer, works as an application of the well-known WINDOWS interface.
  • the program is characterized by safe user guidance and a clear representation of the measurement results and the sizes obtained from them.
  • the common user interface makes it easy to access all control elements for routine actions when using the carbon isotope analyzer according to the invention, such as recording the sample data, triggering the measurements and displaying and documenting the results in measurement curves.
  • system variables such as pressure and temperature are constantly monitored and any malfunctions in the process are reported to the user.
  • the analyzer can be easily adapted to different tasks.
  • the constant monitoring of the analyzer for the failure of individual modules brings great advantages, particularly when used in the field of medical diagnostics.
  • Fig. 2 is a working window of the specially developed
  • Software program Fig. 3 shows a working window of the software program
  • FIG. 1 shows the essential components of the carbon isotope analyzer according to the invention.
  • the non-dispersive infrared spectrometer 1 is equipped with infrared receivers, whose high selectivity is achieved by filling them with the respective measuring component 1 3 CÜ2 or ⁇ 2 C ⁇ 2 and with a 2 CÜ2 filter in the 1 3 C ⁇ 2 channel, through which the cross sensitivity of the ⁇ 3 C ⁇ 2 compared to the 1 2 C ⁇ 2 is reduced and compensated.
  • the entire optical system is thermostatted in order to ensure the high demands on accuracy for breathing gas measurements, which is achieved by a thermostat 1 "optimized for the measuring process.
  • the gas management system 2 consists of an integrated dosing and circulation unit 2' and a flushing and zero gas unit 2 ", the dosing and circulation unit 2 'detecting the sample inlet system 7 and the sample control system 8 and the two systems being coupled to one another.
  • the sample inlet system is formed from the connecting piece 7 ', the valve 7 "and the sample detection module 7'".
  • valves 7 ", the gas paths and the cuvettes are flushed with CO2-free air generated in the flushing and zero gas unit 2".
  • the connecting hoses of the breathing gas bags filled with sample gas are plugged into the connecting pieces 7 ′′ arranged on the operating side of the analyzer.
  • the sample gas is metered to the zero gas by means of the sample inlet system 7
  • the CO2 concentration values are recorded, the CO2 concentration within the measuring range limits of the measuring module 1 'can be selected as desired by varying the dosing time and the concentration compensation in the cuvettes is ensured by the subsequent circulation of the measuring gas.
  • the data is exchanged via the digital I / O unit (3) and the CAN bus interface 4 to the external PC unit 5, which uses the special software program to record, process and display all the essential values using the special operating software 6.
  • a breath gas measurement is carried out according to the following steps.
  • the sample to be measured is entered into the special software program 6, the breathing gas bag with the sample gas is installed on a connecting piece 7 'of the sample inlet system 7, whereby the sample detection module 7' "is triggered via the valve 7".
  • FIG. 2 shows the working window through which the user is informed on the screen of the PC unit 5 of a sample that has not yet been measured.
  • the measurement can now be started via the software program 6 or the PC unit 5.
  • the sample inlet system 7 After the flushing of the units and gas paths with CO2-free air, the valve 7 "to which a breathing gas bag is connected is opened and the sample gas is let into the infrared spectrometer 1.
  • the sample detection module 7 '" is notified and the user is informed on the screen of a measurement at the corresponding sample inlet system 7. Then the dosing and circulation unit 2 'is switched over again in order to remove the zero gas still present from the unit 2' and the infrared spectrometer 1. If the CO2 concentration lies outside the measuring range limits of the infrared spectrometer 1, the valve 7 "and the dosing and circulation unit 2 'are switched on until the CO2 concentration is within the measuring range limits. Then the measuring gas located in the infrared spectrometer 1 is measured by means of the circuit.
  • the measured values determined are transmitted to the external PC unit 5 and the operating software 6 via an A / D converter and the CAN bus interface and evaluated by the software.
  • the sample recognition module 7 "'informs the user on the screen of a measured sample at the corresponding sample inlet system.
  • the purging and zero gas unit 2" and the metering and circulation unit 2' are then switched on again, so that zero gas is again introduced into the analysis system.
  • the next measurement is started automatically after querying the sample recognition module 7 ′′ on an installed sample at a further sample inlet system 7.
  • FIG. 3 shows the working window of the special operating software 6 on which the system sizes can be displayed, diagnosed and regulated.
  • the clear technical structure of the carbon isotope analyzer in analyzer 1, dosing and circulation unit 2 ', purging and zero gas unit 2 ", digital I / O unit 3, CAN bus interface 4, sample inlet system 7 and sample control system 8 facilitates the detection of errors and their correction.

Abstract

A carbon isotope analyser for determining the proportion of the stable isotopes <12>C and <13>C of CO2 in respiratory gas is useful in particular for practical routine operations in the clinical field, can be reliably operated, has a high measurement accuracy and an economic, compact design. It is characterised by a compact, modular construction, in which all modules, including a non-dispersive infrared spectrometer (1) with an integrated measurement module and its own microcontroller (9), a gas management system (2) with an integrated sample admission system (7) and sample control system (8), a digital I/O unit (3) and a bus interface (4) are arranged in a housing connected by a cable to an external PC unit (5). A special user software ensures a continuous, user-friendly communication with the carbon isotope analyser, as well as its maintenance and control.

Description

Kohlenstoffisotopenanalysator Carbon isotope analyzer
Die Erfindung betrifft einen Kohlenstoffisotopenanalysator mit den Merkmalen des Oberbegriffs von Anspruch 1 .The invention relates to a carbon isotope analyzer with the features of the preamble of claim 1.
Es sind Atemgasanalysatoren bekannt, die auf dem Prinzip der nichtdispersiven Infrarotspektroskopie basieren. DieseBreathing gas analyzers are known which are based on the principle of non-dispersive infrared spectroscopy. This
Analysengeräte sind mit einem für industrielle Anwendungen entwickelten Spektrometer zur Bestimmung von Konzentrationen einzelner Komponenten in Gasen und Dämpfen ausgestattet. DieseAnalytical devices are equipped with a spectrometer developed for industrial applications to determine the concentrations of individual components in gases and vapors. This
Geräte müssen jedoch für die Anwendung zur 1 ^' 1 ^Cθ2- Bestimmung in Atemgasen modifiziert werden. Die damit verbundenen Umbauten (Thermostatierung, Probeneinlaß etc.) können die Betriebssicherheit dieser Geräte negativ beeinflussen, was für den routinemäßigen Einsatz im praktischenHowever, devices must be modified for use in 1 ^ ' 1 ^ CO 2 determination in breathing gases. The associated conversions (thermostatting, sample inlet etc.) can have a negative impact on the operational safety of these devices, which is for routine use in practice
Alltag beispielsweise im klinischen Bereich, von großem Nachteil ist. Diese Analysengeräte sind außerdem dadurch gekennzeichnet, daß die Steuerung des Probeneinlasses und der Probendosierung getrennt von der Datenerfassung erfolgen muß.Everyday life, for example in the clinical field, is a great disadvantage. These analyzers are also characterized in that the control of the sample inlet and the sample dosing must be done separately from the data acquisition.
Der Erfindung liegt deshalb die Aufgabe zugrunde, ein für den praktischen Routinebetrieb besonders im klinischen Bereich geeignetes Atemgas- Analysengerät zu schaffen, das eine sichere Bedienung, hohe Meßgenauigkeit und eine kostengünstige kompakte Bauweise gewährleistet.The invention is therefore based on the object of providing a breathing gas analyzer which is particularly suitable for practical routine operation and which ensures safe operation, high measurement accuracy and an inexpensive, compact design.
Erfindungsgemäß wird die Aufgabe durch die im Anspruch 1 kennzeichnenden Merkmale gelöst.According to the invention the object is achieved by the features characterizing in claim 1.
Der Kohlenstoffisotopenanalysator gemäß Anspruch 1 gewährleistet durch die Anordnung aller Funktionselemente in einem Gerät eine kompakte und robuste Bauform. Dabei sind alle Bedienelemente wie beispielsweise die Probeneinlaßstutzen übersichtlich an der Bedienseite des Gerätes angeordnet. Durch die Integration des mit dem Probenkontrollsystem gekoppelten Probeneinlaßsystems in das Gasmanagementsystem wird nicht nur eine einfache und sichere Handhabung des Gerätes gewährleistet, auch konnte das Probenvolumen durch die besondere Meßgasführung auf 700 ml gesenkt und der hohe Probendurchsatz von 40 Probe/h erreicht werden. Durch die ständige Auswertung und Kontrolle der Probendosierung und Überprüfung des Probenstatus über die digitale E/A- Einheit, die Meßwerterfassung und die Meßwertkontrolle im Spektrometer sowie die Steuerung und Kommunikation aller Informationen über die Bus- Schnittstelle ist bei klarer Teilung der Aufgabenstellung für die einzelnen Module eine einheitliche Ansteuerung des Analysengerätes garantiert. Die klare modulartige Gliederung des Gerätes erweist sich besonders bei der Fehlererkennung und deren Behebung als sehr vorteilhaft. Sie gestattet eine ständige interne Diagnose des Gerätestatus und trägt so zur Minimierung des Wartungsaufwands bei.The carbon isotope analyzer according to claim 1 ensures by the arrangement of all functional elements in one device compact and robust design. All control elements such as the sample inlet connection are clearly arranged on the operating side of the device. The integration of the sample inlet system coupled with the sample control system into the gas management system not only ensures simple and safe handling of the device, it also reduced the sample volume to 700 ml due to the special sample gas flow and achieved the high sample throughput of 40 sample / h. Through constant evaluation and control of the sample dosing and checking of the sample status via the digital I / O unit, the measured value acquisition and the measured value control in the spectrometer as well as the control and communication of all information via the bus interface, the task for the individual modules is clearly divided uniform control of the analyzer is guaranteed. The clear, modular structure of the device proves to be very advantageous, particularly when it comes to detecting and rectifying errors. It allows constant internal diagnosis of the device status and thus helps to minimize maintenance.
Als besonders vorteilhaft erweist sich die Ausstattung des nichtdispersiven Infrarotspektrometers nach Anspruch 2 mit einem Meßmodul mit eigenem Microcontroller und mit einem auf den Meßprozeß optimierten Thermostaten, durch die eine erheblich höhere Genauigkeit und Stabilität der Meßdaten erreicht wird. Neben der Thermostatierung ist der gasdichte Abschluß des gesamten optischen Systems gegen die störenden CO2 - Gehalte der Umgebungsluft eine wesentliche Basis für die Erreichung der hohen Anforderungen an die Genauigkeit der Meßwerterfassung und Meßwertkontrolle bei der Atemgasmessung. Durch die Kompaktbauform des Meßmoduls mit eigenem Microcontroller zur Steuerung, Meßwerterfassung und Kommunikation wird außerdem eine erhöhte elektromechanische Stabilität erreicht.The equipment of the non-dispersive infrared spectrometer according to claim 2 with a measuring module with its own microcontroller and with a thermostat optimized for the measuring process proves to be particularly advantageous, by means of which a considerably higher accuracy and stability of the measured data is achieved. In addition to thermostatting, the gas-tight seal of the entire optical system against the disturbing CO2 contents of the ambient air is an essential basis for meeting the high requirements for the accuracy of measured value acquisition and measured value control when measuring breathing gas. The compact design of the measuring module with its own microcontroller for control, measured value acquisition and communication also results in increased electromechanical stability.
Der Aufbau des Gasmanagementsystems gemäß Anspruch 3, in dem die Dosier- und Kreislaufeinheit und die Spül- und Nullgaseinheit integriert sind, ermöglicht die Erzeugung von Nullgas aus der Umgebungsluft und die Kreislaufführung des Probengases. Dabei sichert der konstruktive Aufbau des in die Dosier- und Kreislaufeinheit integrierten Probeneinlaßsystems, daß bei der Messung aus Atemgasbeuteln das unvermeidbare Fremdgasvolumen minimiert ist. Dieser Vorteil wird durch den Aufbau des Probeneinlaßsystems gemäß Anspruch 4 erreicht, indem die Anschlußschläuche der Atemgasbeutel direkt an den Anschlußstutzen der Ventile angeordnet werden.The structure of the gas management system according to claim 3, in which the metering and circulation unit and the flushing and zero gas unit are integrated, enables the generation of zero gas from the Ambient air and the circulation of the sample gas. The design of the sample inlet system integrated in the dosing and circulation unit ensures that the unavoidable volume of extraneous gas is minimized when measuring from breathing gas bags. This advantage is achieved by the structure of the sample inlet system according to claim 4, in that the connecting tubes of the breathing gas bags are arranged directly on the connecting pieces of the valves.
Von besonderem Vorteil ist auch die Kopplung des Probeneinlaßsystems mit dem Probenkontrollsystem. Das Probenkontrollsystem erkennt, ob eine Probe an einem der Probeneingänge anliegt und verhindert so Fehlbedienungen durch den Anwender.The coupling of the sample inlet system to the sample control system is also particularly advantageous. The sample control system detects whether a sample is at one of the sample inlets and thus prevents incorrect operation by the user.
Die Konstruktion des Probeneinlasses nach den Ansprüchen 4, 5 und 6 und die Integration der Dosier- und Kreislaufeinheit und der Spül- und Nullgaseinheit in das Gasmanangementsystem gewährleisten auch die freie Wählbarkeit der CO2- Konzentration innerhalb der Meßbereichsgrenzen des Meßmoduls. Dies wird durch variable Meßgasdosierung erreicht, wobei derThe design of the sample inlet according to claims 4, 5 and 6 and the integration of the metering and circulation unit and the flushing and zero gas unit in the gas management system also ensure the free selectability of the CO2 concentration within the measuring range limits of the measuring module. This is achieved by variable sample gas metering, the
Konzentrationsausgleich in den Meßküvetten durch die Kreislaufführung des Meßgases erzielt wird.Concentration compensation in the measuring cuvettes is achieved by the circulation of the sample gas.
Ein weiterer erheblicher Vorteil des Kohlenstoffisotopenanalysators wird durch die Installation des standardisierten CAN - Bus nach Anspruch 8 erreicht. Dieses aus der KFZ- Technik bekannte und durch seine Störfestigkeit bewährte CAN- Bussystem garantiert eine einheitliche Ansteuerung des Analysengerätes, wobei die interne Steuerung des Kohlenstoffisotopenanalysators und die Kommunikation mit der internen PC- Einheit gemäß Anspruch 9 über eine Zweidrahtleitung realisiert wird. Seine systemweite Fehlererkennung und Fehlersignalisierung ist gewährleistet, da das CAN - Netzwerk ständig mit denselben gültigen Daten arbeitet. Außerdem zeichnet sich der CAN- Bus durch seine hohe Flexibilität aus. Da die Datenübermittlung meldungsorientiert erfolgt, kann das Analysensystem jederzeit erweitert werden, ohne die Gesamtkonfiguration zu ändern. Auch die Erweiterung der E/A- Einheit nach Anspruch 7 und die Erweiterung der Anzahl der Probeneinlaßsysteme nach Anspruch 4 ist damit jederzeit gesichert.Another significant advantage of the carbon isotope analyzer is achieved by installing the standardized CAN bus according to claim 8. This CAN bus system, which is known from motor vehicle technology and has proven its immunity to interference, guarantees uniform control of the analyzer, with the internal control of the carbon isotope analyzer and the communication with the internal PC unit being realized via a two-wire line. Its system-wide error detection and error signaling is guaranteed because the CAN network works constantly with the same valid data. The CAN bus is also characterized by its high flexibility. Since the data transmission is message-oriented, the analysis system can can be expanded at any time without changing the overall configuration. The expansion of the I / O unit according to claim 7 and the expansion of the number of sample inlet systems according to claim 4 is thus ensured at all times.
Hervorzuheben ist die speziell für die Atemgasanalyse und die Auswertung und Darstellung der Daten sowie zur Überwachung von Geräteteilen auf Funktionsausfall entwickelte Bediensoftware. Das speziell entwickelte und an den technischen Aufbau und die Funktionsweise des Analysengerätes angepaßte Softwareprogramm arbeitet als Anwendung der bekannten WINDOWS - Oberfläche. Das Programm zeichnet sich durch eine sichere Benutzerführung sowie eine übersichtliche Darstellung der Meßergebnisse und der daraus gewonnenen Größen aus. Durch die gemeinsame Benutzeroberfläche sind sämtliche Bedienelemente für die routinemäßigen Handlungen bei der Benutzung des erfindungsgemäßen Kohlenstoffisotopenanalysators, wie die Aufnahme der Probendaten, die Auslösung der Messungen sowie die Darstellung und Dokumentation der Resultate in Meßkurven, leicht erreichbar. Außerdem werden Systemgrößen wie Druck und Temperatur ständig überwacht und etwaige Störungen im Ablauf dem Anwender gemeldet. Durch die Einstellung weniger Systemparameter in der Bedienungssoftware kann das Analysengerät leicht an unterschiedliche Aufgabenstellungen angepaßt werden. Die ständige Überwachung des Analysengerätes auf Funktionsausfall einzelner Module bringt besonders bei der Anwendung im Bereich der medizinischen Diagnostik große Vorteile.Of particular note is the operating software specially developed for breathing gas analysis and the evaluation and display of data as well as for monitoring device parts for functional failure. The specially developed software program, which is adapted to the technical structure and functionality of the analyzer, works as an application of the well-known WINDOWS interface. The program is characterized by safe user guidance and a clear representation of the measurement results and the sizes obtained from them. The common user interface makes it easy to access all control elements for routine actions when using the carbon isotope analyzer according to the invention, such as recording the sample data, triggering the measurements and displaying and documenting the results in measurement curves. In addition, system variables such as pressure and temperature are constantly monitored and any malfunctions in the process are reported to the user. By setting a few system parameters in the operating software, the analyzer can be easily adapted to different tasks. The constant monitoring of the analyzer for the failure of individual modules brings great advantages, particularly when used in the field of medical diagnostics.
Die Erfindung soll nachstehend an Hand eines Ausführungsbeispiels näher beschrieben werden. In den Zeichnungen zeigen:The invention will be described in more detail below using an exemplary embodiment. The drawings show:
Fig. 1 ein Funktionsschema des Kohlenstoffisotopenanaly sators mit symbolischer Darstellung aller funktionswesentlichen Baugruppen und Teile,1 is a functional diagram of the carbon isotope analyzer with a symbolic representation of all functionally essential assemblies and parts,
Fig. 2 ein Arbeitsfenster des speziell entwickeltenFig. 2 is a working window of the specially developed
Softwareprogramms Fig. 3 ein Arbeitsfenster des Softwareprogramms zurSoftware program Fig. 3 shows a working window of the software program
Diagnose und Darstellung von SystemgrößenDiagnosis and display of system sizes
Das in Fig. 1 dargestellte Funktionsschema zeigt die wesentlichen Baugruppen des erfindungsgemäßen Kohlenstoffisotopenanalysators.The functional diagram shown in FIG. 1 shows the essential components of the carbon isotope analyzer according to the invention.
Dabei ist das nichtdispersive Infrarotspektrometer 1 mit Infrarotempfängern, deren hohe Selektivität durch Füllung mit der jeweiligen Meßkomponente 1 3CÜ2 bzw. ^ 2Cθ2 erreicht wird und mit einem 2CÜ2 - Filter im 1 3Cθ2 - Kanal ausgestattet, durch welchen die Querempfindlichkeit des ^ 3Cθ2 gegenüber dem 1 2Cθ2 reduziert und kompensiert wird. Um die für die Atemgasmessungen hohen Anforderungen an die Genauigkeit zu gewährleisten, ist das gesamte optische System thermostatiert, was durch einen auf den Meßprozeß optimierten Thermostaten 1 " erreicht wird. Außerdem ist das optische System gegen störende CO2 - Gehalte der Umgebeungsluft gasdicht abgeschlossen. Das im nichtdispersiven Infrarotspektrometer 1 integrierte und mit einem eigenen in der Zeichnung nicht näher dargestellten Microcontroller 9 ausgestattete Meßmodul 1 ' gewährleistet dabei die Steuerung, Meßwerterfassung und Kommunikation mit der externen PC- Einheit 5. Das Gasmanagementsystem 2 ist aus einer integrierten Dosier- und Kreislaufeinheit 2' und einer Spül- und Nullgaseinheit 2" zusammengesetzt, wobei die Dosier- und Kreislaufeinheit 2' das Probeneinlaßsystem 7 und das Probenkontrollsystem 8 erfaßt und beide Systeme miteinander gekoppelt sind. Das Probeneinlaßsystem ist aus den Anschlußstutzen 7', dem Ventil 7" und dem Probenerkennungsmodul 7' " gebildet.The non-dispersive infrared spectrometer 1 is equipped with infrared receivers, whose high selectivity is achieved by filling them with the respective measuring component 1 3 CÜ2 or ^ 2 Cθ2 and with a 2 CÜ2 filter in the 1 3 Cθ2 channel, through which the cross sensitivity of the ^ 3 Cθ2 compared to the 1 2 Cθ2 is reduced and compensated. The entire optical system is thermostatted in order to ensure the high demands on accuracy for breathing gas measurements, which is achieved by a thermostat 1 "optimized for the measuring process. In addition, the optical system is sealed gas-tight against disturbing CO2 contents in the ambient air Non-dispersive infrared spectrometer 1 integrated and equipped with its own measuring module 1 ', not shown in the drawing 9, ensures control, measured value acquisition and communication with the external PC unit 5. The gas management system 2 consists of an integrated dosing and circulation unit 2' and a flushing and zero gas unit 2 ", the dosing and circulation unit 2 'detecting the sample inlet system 7 and the sample control system 8 and the two systems being coupled to one another. The sample inlet system is formed from the connecting piece 7 ', the valve 7 "and the sample detection module 7'".
Vor einer Atemgasmessung aus Atemgasbeuteln werden die Ventile 7" , die Gaswege und die Küvetten mit in der Spül- und Nullgaseinheit 2" erzeugter CO2 - freier Luft gespült. Die Anschlußschläuche der mit Probengas gefüllten Atemgasbeutel werden auf die an der Bedienseite des Analysators angeordneten Anschlußstutzen 7" gesteckt. Das Probengas wird mittels des Probeneinlaßsystems 7 zum Nullgas dosiert. Über eineBefore a breathing gas measurement from breathing gas bags, the valves 7 ", the gas paths and the cuvettes are flushed with CO2-free air generated in the flushing and zero gas unit 2". The connecting hoses of the breathing gas bags filled with sample gas are plugged into the connecting pieces 7 ″ arranged on the operating side of the analyzer. The sample gas is metered to the zero gas by means of the sample inlet system 7
Probengaskontrolle werden die CO2 - Konzentrationswerte erfaßt, wobei durch Variation der Dosierzeit die CO2 - Konzentration innerhalb der Meßbereichsgrenzen des Meßmoduls 1 ' beliebig wählbar ist und der Konzentrationsausgleich in den Küvetten durch die sich anschließende Kreislaufführung des Meßgases gewährleistet ist.Sample gas control, the CO2 concentration values are recorded, the CO2 concentration within the measuring range limits of the measuring module 1 'can be selected as desired by varying the dosing time and the concentration compensation in the cuvettes is ensured by the subsequent circulation of the measuring gas.
Der Datenaustausch erfolgt über die digitale E/A-Einheit (3) und die CAN- Busschnittstelle 4 zur externen PC- Einheit 5, die mittels des speziellen Softwareprogramms alle wesentlichen Werte erfaßt, verarbeitet und über die spezielle Bediensoftware 6 anzeigt.The data is exchanged via the digital I / O unit (3) and the CAN bus interface 4 to the external PC unit 5, which uses the special software program to record, process and display all the essential values using the special operating software 6.
Eine Atemgasmessung läuft dabei nach folgenden Schritten ab. Die zu messende Probe wird in das spezielle Softwareprogramm 6 eingegeben, der Atemgasbeutel mit dem Probengas an einem Anschlußstutzen 7' des Probeneinlaßsystems 7 installiert, wodurch über das Ventil 7" das Probenerkennungsmodul 7' " ausgelöst wird.A breath gas measurement is carried out according to the following steps. The sample to be measured is entered into the special software program 6, the breathing gas bag with the sample gas is installed on a connecting piece 7 'of the sample inlet system 7, whereby the sample detection module 7' "is triggered via the valve 7".
Fig. 2 zeigt das Arbeitsfenster über das der Anwender am Bildschirm der PC- Einheit 5 auf eine noch nicht gemessene Probe hingewiesen wird. Die Messung kann nun über das Softwareprogramm 6 bzw. die PC- Einheit 5 gestartet werden. Dazu werden zunächst die Spül- und Nullgaseinheit 2" und danach die Dosier- und Kreislaufeinheit 2' auf Nullgas geschalten, um die jeweilige Einheit und die Gaswege mit CO2- freier Luft zu spülen. Desgleichen erfolgt mit dem Probeneinlaß- System 7. Nach der Spülung der Einheiten und Gaswege mit CO2- freier Luft wird das Ventil 7", an dem ein Atemgasbeutel angeschlossen ist, geöffnet und das Probengas in das Infrarotspektrometer 1 eingelassen. Mit der Öffnung des Ventils 7" wird das Probenerkennungsmodul 7' " benachrichtigt und der Anwender am Bildschirm auf eine Messung am entsprechenden Probeneinlaß- System 7 hingewiesen. Danach wird die Dosier- und Kreislaufeinheit 2' nochmals umgeschalten, um das noch vorhandene Nullgas aus der Einheit 2' und dem Infrarotspektrometer 1 zu entfernen. Liegt die CO2- Konzentration außerhalb der Meßbereichsgrenzen des Infrarotspektrometers 1 , wird das Ventil 7" und die Dosier- und Kreislaufeinheit 2' solange zugeschalten bis sich die CO2- Konzentration innerhalb der Meßbereichsgrenzen befindet. Danach wird das im Infrarotspektrometer 1 befindliche Meßgas mittels der Kreislaufführung gemessen. Nach Ablauf der Meßzeit werden die ermittelten Meßwerte über einen A/D - Wandler und die CAN- Busschnittstelle auf die externe PC- Einheit 5 und die Bediensoftware 6 übertragen und von der Software ausgewertet. Das Probenerkennungsmodul 7" ' weist den Anwender am Bildschirm auf eine gemessene Probe am entsprechenden Probeneinlaßsystem hin. Danach wird die Spül- und Nullgaseinheit 2" und die Dosier- und Kreislaufeinheit 2' wieder zugeschalten, so daß wieder Nullgas in das Analysensystem eingelassen wird. Bei schon vorhandenen Meßeinträgen wird nach Abfragen des Probenerkennungsmoduls 7' " auf eine installierte Probe an einem weiteren Probeneinlaß- System 7 die nächste Messung automatisch gestartet.FIG. 2 shows the working window through which the user is informed on the screen of the PC unit 5 of a sample that has not yet been measured. The measurement can now be started via the software program 6 or the PC unit 5. For this purpose, the flushing and zero gas unit 2 "and then the metering and circulation unit 2 'are switched to zero gas in order to flush the respective unit and the gas paths with CO2-free air. The same is done with the sample inlet system 7. After the flushing of the units and gas paths with CO2-free air, the valve 7 "to which a breathing gas bag is connected is opened and the sample gas is let into the infrared spectrometer 1. When the valve 7 "is opened, the sample detection module 7 '" is notified and the user is informed on the screen of a measurement at the corresponding sample inlet system 7. Then the dosing and circulation unit 2 'is switched over again in order to remove the zero gas still present from the unit 2' and the infrared spectrometer 1. If the CO2 concentration lies outside the measuring range limits of the infrared spectrometer 1, the valve 7 "and the dosing and circulation unit 2 'are switched on until the CO2 concentration is within the measuring range limits. Then the measuring gas located in the infrared spectrometer 1 is measured by means of the circuit. After the measurement time has elapsed, the measured values determined are transmitted to the external PC unit 5 and the operating software 6 via an A / D converter and the CAN bus interface and evaluated by the software. The sample recognition module 7 "'informs the user on the screen of a measured sample at the corresponding sample inlet system. The purging and zero gas unit 2" and the metering and circulation unit 2' are then switched on again, so that zero gas is again introduced into the analysis system. In the case of existing measurement entries, the next measurement is started automatically after querying the sample recognition module 7 ″ on an installed sample at a further sample inlet system 7.
Fig. 3 zeigt das Arbeitsfenster der speziellen Bediensoftware 6 an dem die Systemgrößen dargestellt, diagnostiziert und reguliert werden können. Dabei erleichtert die klare technische Gliederung des Kohlenstoffisotopenanalysators in Analysator 1 , Dosier- und Kreislaufeinheit 2', Spül- und Nullgaseinheit 2", digitale E/A- Einheit 3, CAN- Busschnittstelle 4, Probeneinlaß- System 7 und Probenkontroll- System 8 die Erkennung von Fehlern und deren Behebung. 3 shows the working window of the special operating software 6 on which the system sizes can be displayed, diagnosed and regulated. The clear technical structure of the carbon isotope analyzer in analyzer 1, dosing and circulation unit 2 ', purging and zero gas unit 2 ", digital I / O unit 3, CAN bus interface 4, sample inlet system 7 and sample control system 8 facilitates the detection of errors and their correction.

Claims

S c h u t z a n s p r ü c h e Protection claims
1 . Kohlenstoffisotopenanalysator zur Bestimmung des Verhältnisses der stabilen Isotope ' 2C und ' ^C im CO2 des Atemgases, bestehend aus einem nichtdispersiven Infrarotspektrometer ( 1 ), einem Gasmanagementsystem (2), einer digitalen E/A- Einheit (3), einer Bus- Schnittstelle (4) und einer externen PC- Einheit (5) mit einer Bediensoftware (6) dadurch gekennzeichnet, daß das nichtdispersive Infrarotspektrometer (1 ) und die digitale E/A- Einheit (3) ein im Gasmanangementsystem (2) integriertes Probeneinlaßsystem (7) und ein Probenkontrollsystem (8) ansteuern, daß das nichtdispersive Infrarotspektrometer ( 1 ), das Gasmanagementsystem (2), die digitale E/A- Einheit (3) und die Bus- Schnittstelle (4) modulartig in einem Gehäuse angeordnet und über ein Kabel mit der externen PC- Einheit (5) verbunden sind, daß jedes Modul mit einem eigenen Microcontroller (9) ausgestattet ist und daß die Microcontroller (9) über die Bus- Schnittstelle (4) mit der externen PC- Einheit (5) kommunizieren.1 . Carbon isotope analyzer for determining the ratio of the stable isotopes ' 2 C and' ^ C in the CO2 of the breathing gas, consisting of a non-dispersive infrared spectrometer (1), a gas management system (2), a digital I / O unit (3), a bus interface (4) and an external PC unit (5) with operating software (6), characterized in that the non-dispersive infrared spectrometer (1) and the digital I / O unit (3) have a sample inlet system (7) integrated in the gas management system (2). and control a sample control system (8) that the non-dispersive infrared spectrometer (1), the gas management system (2), the digital I / O unit (3) and the bus interface (4) are arranged in a modular manner in a housing and via a cable the external PC unit (5) are connected so that each module is equipped with its own microcontroller (9) and that the microcontroller (9) communicates with the external PC unit (5) via the bus interface (4) ren.
2. Kohlenstoffisotopenanalysator nach Anspruch 1 , dadurch gekennzeichnet, daß das nichtdispersive Infrarotspektrometer ( 1 ) mit einem Meßmodul (V) ausgestattet ist, in dem der Microcontroller (9) integriert ist und daß das nichtdispersive Infrarotspektrometer ( 1 ) mit einem auf den Meßprozeß optimierten Thermostaten ( 1 ") ausgestattet und gasdicht abgeschlossen ist.2. Carbon isotope analyzer according to claim 1, characterized in that the non-dispersive infrared spectrometer (1) is equipped with a measuring module (V) in which the microcontroller (9) is integrated and that the non-dispersive infrared spectrometer (1) with a thermostat optimized for the measuring process (1 ") and gas-tight.
3. Kohlenstoffisotopenanalysator nach Anspruch 1 , dadurch gekennzeichnet, daß in das Gasmanagementsystem (2) eine Dosier- und Kreislaufeinheit (2') und eine Spül- und Nullgaseinheit (2") integriert sind, wobei die Dosier- und Kreislaufeinheit (2') aus dem Probeneinlaß- System (7) und dem Probenkontrollsystem (8) gebildet ist. 3. Carbon isotope analyzer according to claim 1, characterized in that in the gas management system (2) a dosing and circulation unit (2 ') and a flushing and zero gas unit (2 ") are integrated, the dosing and circulation unit (2') from the sample inlet system (7) and the sample control system (8) is formed.
4. Kohlenstoffisotopenanalysator nach Anspruch 3, dadurch gekennzeichnet, daß das Probeneinlaß- System (7), aus einem Anschlußstutzen (7'), einem Ventil (7") und einem Probenerkennungsmodul (7' ") besteht, daß acht Probeneinlaß- Systeme (7) installiert sind, daß die Anzahl der Probeneinlaß-4. Carbon isotope analyzer according to claim 3, characterized in that the sample inlet system (7) consists of a connecting piece (7 '), a valve (7 ") and a sample detection module (7'") that eight sample inlet systems (7 ) are installed so that the number of sample inlet
Systeme (7) erweiterbar ist und daß die integrierte Dosier- und Kreislaufeinheit (2') und die Spül- und Nullgaseinheit (2") durch Variation der Dosierzeit die freie Wählbarkeit der CO2- Konzentration innerhalb der Meßbereichsgrenzen des Meßmoduls ( ) realisieren und der Konzentrationsausgleich in den Meßküvetten durch die Kreislaufführung des Meßgases erreichbar ist.Systems (7) can be expanded and that the integrated metering and circulation unit (2 ') and the flushing and zero gas unit (2 ") realize the free selectability of the CO2 concentration within the measuring range limits of the measuring module () and the concentration compensation by varying the metering time can be reached in the measuring cuvettes through the circulation of the sample gas.
5. Kohlenstoffisotopenanalysator nach Anspruch 3, dadurch gekennzeichnet, daß das Probeneinlaß- System (7) mit dem5. Carbon isotope analyzer according to claim 3, characterized in that the sample inlet system (7) with the
Probenkontrollsystem (8) gekoppelt ist und die Informationen der Probenerkennungsmodule (7' ") zwischen demSample control system (8) is coupled and the information of the sample detection modules (7 '") between the
Probenkontrollsystem (8) und der digitalen E/A- Einheit (3) austauscht.Sample control system (8) and the digital I / O unit (3).
6. Kohlenstoffisotopenanalysator nach Anspruch 3, dadurch gekennzeichnet, daß die integrierte Dosier- und Kreislaufeinheit (2') und die Spül- und Nullgaseinheit (2") die freie Wählbarkeit der CO2- Konzentration innerhalb der Meßbereichsgrenzen des Meßmoduls ( 1 ") realisieren.6. Carbon isotope analyzer according to claim 3, characterized in that the integrated metering and circulation unit (2 ') and the flushing and zero gas unit (2 ") realize the free selectability of the CO2 concentration within the measuring range limits of the measuring module (1").
7. Kohlenstoffisotopenanalysator nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die digitale E/A- Einheit (3) den Probeneinlaß digital steuert und kontrolliert und erweiterbar ist.7. Carbon isotope analyzer according to one of the preceding claims, characterized in that the digital I / O unit (3) controls the sample inlet digitally and is controlled and expandable.
8. Kohlenstoffisotopenanalysator nach Anspruch 1 , dadurch gekennzeichnet, daß die Bus- Schnittstelle (4) eine standardisierte CAN- Schnittstelle ist. 8. Carbon isotope analyzer according to claim 1, characterized in that the bus interface (4) is a standardized CAN interface.
9. Kohlenstoffisotopenanalysator nach Anspruch 8, dadurch gekennzeichnet, daß die Bus- Schnittstelle (4) die interne Steuerung des Kohlenstoffisotopenanalysators und die Kommunikation zur externen PC- Einheit (5) realisiert.9. Carbon isotope analyzer according to claim 8, characterized in that the bus interface (4) realizes the internal control of the carbon isotope analyzer and the communication to the external PC unit (5).
1 0. Kohlenstoffisotopenanalysator nach Anspruch 1 , dadurch gekennzeichnet, daß die externe PC- Einheit (5) mit einer CAN- Steckkarte ( 10) und der Bediensoftware (6) ausgestattet ist.1 0. carbon isotope analyzer according to claim 1, characterized in that the external PC unit (5) with a CAN plug-in card (10) and the operating software (6) is equipped.
1 1 . Kohlenstoffisotopenanalysator nach Anspruch 10, dadurch gekennzeichnet, daß die Bediensoftware (6) ein speziell entwickeltes Programm zur Steuerung des Analysators, zur Meßwerterfassung, zur vollständigen Auswertung und Darstellung der Daten sowie zur Überwachung von Geräteteilen auf Funktionsausfall ist und als eine Anwendung unter der bekannten Microsoft- WINDOWS- Oberfläche arbeitet. 1 1. Carbon isotope analyzer according to claim 10, characterized in that the operating software (6) is a specially developed program for controlling the analyzer, for measuring value acquisition, for complete evaluation and display of the data and for monitoring device parts for functional failure and as an application under the known Microsoft WINDOWS interface works.
EP97908211A 1997-03-11 1997-03-11 Carbon isotope analyser Withdrawn EP0966667A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP1997/001220 WO1998040722A1 (en) 1997-03-11 1997-03-11 Carbon isotope analyser

Publications (1)

Publication Number Publication Date
EP0966667A1 true EP0966667A1 (en) 1999-12-29

Family

ID=8166547

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97908211A Withdrawn EP0966667A1 (en) 1997-03-11 1997-03-11 Carbon isotope analyser

Country Status (4)

Country Link
EP (1) EP0966667A1 (en)
JP (1) JP2001514747A (en)
DE (2) DE29780440U1 (en)
WO (1) WO1998040722A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL121793A (en) 1997-09-17 2008-06-05 Lewis Coleman Isotopic gas analyzer
DE19752508A1 (en) * 1997-08-18 1999-03-11 Hartmann & Braun Gmbh & Co Kg NDIR photometer for multi-component measurement
DE102006015535A1 (en) 2006-03-31 2007-10-04 Thermo Electron (Bremen) Gmbh Sample isotope ratio analysis, involves supplying sample gas and reference gas to analyzer over coupling, and regulating concentration of sample gas and/or reference gas through electronic flow regulation of carrier gas
DE102012101313A1 (en) * 2012-02-17 2013-08-22 Contros Systems & Solutions Gmbh Apparatus for detecting a partial pressure and method for operating the same
DE102015000626A1 (en) * 2015-01-22 2016-07-28 Kibion Gmbh Method for the detection of Helicobacter pylori

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4907166A (en) * 1986-10-17 1990-03-06 Nellcor, Inc. Multichannel gas analyzer and method of use
US5060505A (en) * 1989-09-12 1991-10-29 Sensors, Inc. Non-dispersive infrared gas analyzer system
US5357113A (en) * 1992-11-18 1994-10-18 Liston Scientific Corp. Infrared gas mixture analyzer
EP0634644A1 (en) * 1993-07-13 1995-01-18 Mic Medical Instrument Corporation Device for determining the 13CO2/12CO2 concentration ratio in a gas sample

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9840722A1 *

Also Published As

Publication number Publication date
DE29706668U1 (en) 1997-06-05
DE29780440U1 (en) 2000-04-27
JP2001514747A (en) 2001-09-11
WO1998040722A1 (en) 1998-09-17

Similar Documents

Publication Publication Date Title
EP1342070B1 (en) Method for detecting a gas using an infrared gas analyzer and gas analyzer suitable for carrying out said method
EP0584897B1 (en) Non-dispersive infrared spectrometer
US5423228A (en) Dilution stack sampling apparatus
EP2240760B1 (en) Non-dispersive infrared gas analyzer
DE102015103484A1 (en) In-line measuring device
DE19547787C1 (en) Calibrating twin-jet laboratory gas analysis cuvette
EP2142909A1 (en) Detector arrangement for a nondispersive infrared gas analyser and method for the detection of a measuring gas component in a gas mixture by means of such a gas analyser
EP0966667A1 (en) Carbon isotope analyser
CN1249036A (en) Carbon isotope analyser
EP3775799B1 (en) Method for calibrating a mass flow meter in a constant volume sampling (cvs) exhaust gas analysis system
DE102007020596A1 (en) Detector arrangement for non-dispersive infrared gas analyzer, has N-dimensional calibration matrix received signal values of sensors in presence from different well-known transverse gas concentrations
DE19632847C2 (en) Gas analyzer
DE102004006677A1 (en) Infrared gas sensor and method for gas concentration measurement with this sensor
DE2923627C2 (en) Device for automatic process analysis
US20190391123A1 (en) System and method for real time measurement of chlorine containing compounds in combustion or process gas
DE2900624C3 (en) Two-jet gas analyzer
DE2713623B2 (en) Method and device for determining the concentration-time product of at least one component of a gas mixture
DE3144769A1 (en) Method of automatically correcting continuously measuring process analysers
DE102015015150B4 (en) Gas measuring system with a gas measuring device and a control device and method for operating a gas measuring device using a control device
DE102012212982A1 (en) Process measuring device for use in e.g. process automation, has comparison part for comparing actual spectrum with reference-frequency spectrum when actual spectrum differs from reference spectrum around predetermined measure
JPH0137692B2 (en)
EP1627219B1 (en) Process absorption spectrometer
DE4322923C2 (en) Equipment for the preparation and analysis of sample gases
JPS6336265Y2 (en)
DE102015015151A1 (en) Gas measuring system with a Gasmessvorichtung and a pump device and method for operating a gas measuring device by means of a pumping device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990731

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20021001

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1026265

Country of ref document: HK