EP0966050A2 - Organic light emitting diode - Google Patents
Organic light emitting diode Download PDFInfo
- Publication number
- EP0966050A2 EP0966050A2 EP99110877A EP99110877A EP0966050A2 EP 0966050 A2 EP0966050 A2 EP 0966050A2 EP 99110877 A EP99110877 A EP 99110877A EP 99110877 A EP99110877 A EP 99110877A EP 0966050 A2 EP0966050 A2 EP 0966050A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- emitting diode
- organic light
- light emitting
- bottom electrode
- displays
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 239000010410 layer Substances 0.000 claims abstract description 27
- 229910052751 metal Inorganic materials 0.000 claims abstract description 19
- 239000002184 metal Substances 0.000 claims abstract description 19
- 239000000758 substrate Substances 0.000 claims abstract description 8
- 239000002346 layers by function Substances 0.000 claims abstract description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 14
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 6
- 229910052749 magnesium Inorganic materials 0.000 claims description 6
- 239000011777 magnesium Substances 0.000 claims description 6
- 229910052709 silver Inorganic materials 0.000 claims description 6
- 239000004332 silver Substances 0.000 claims description 6
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 claims description 4
- 229910052697 platinum Inorganic materials 0.000 claims description 4
- 229910001316 Ag alloy Inorganic materials 0.000 claims description 3
- SJCKRGFTWFGHGZ-UHFFFAOYSA-N magnesium silver Chemical compound [Mg].[Ag] SJCKRGFTWFGHGZ-UHFFFAOYSA-N 0.000 claims description 3
- 229910000510 noble metal Inorganic materials 0.000 claims description 2
- CRHRWHRNQKPUPO-UHFFFAOYSA-N 4-n-naphthalen-1-yl-1-n,1-n-bis[4-(n-naphthalen-1-ylanilino)phenyl]-4-n-phenylbenzene-1,4-diamine Chemical compound C1=CC=CC=C1N(C=1C2=CC=CC=C2C=CC=1)C1=CC=C(N(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C3=CC=CC=C3C=CC=2)C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C3=CC=CC=C3C=CC=2)C=C1 CRHRWHRNQKPUPO-UHFFFAOYSA-N 0.000 claims 1
- 238000000034 method Methods 0.000 description 13
- 238000005516 engineering process Methods 0.000 description 8
- 238000002347 injection Methods 0.000 description 8
- 239000007924 injection Substances 0.000 description 8
- 239000011159 matrix material Substances 0.000 description 8
- 238000005566 electron beam evaporation Methods 0.000 description 6
- -1 poly (p-phenylene-vinylene) Polymers 0.000 description 6
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 5
- 239000010405 anode material Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000011368 organic material Substances 0.000 description 5
- 238000002207 thermal evaporation Methods 0.000 description 5
- 239000002800 charge carrier Substances 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- DIVZFUBWFAOMCW-UHFFFAOYSA-N 4-n-(3-methylphenyl)-1-n,1-n-bis[4-(n-(3-methylphenyl)anilino)phenyl]-4-n-phenylbenzene-1,4-diamine Chemical compound CC1=CC=CC(N(C=2C=CC=CC=2)C=2C=CC(=CC=2)N(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C(C)C=CC=2)C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C(C)C=CC=2)=C1 DIVZFUBWFAOMCW-UHFFFAOYSA-N 0.000 description 3
- 239000007983 Tris buffer Substances 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 239000010937 tungsten Substances 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- OGGKVJMNFFSDEV-UHFFFAOYSA-N 3-methyl-n-[4-[4-(n-(3-methylphenyl)anilino)phenyl]phenyl]-n-phenylaniline Chemical compound CC1=CC=CC(N(C=2C=CC=CC=2)C=2C=CC(=CC=2)C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C(C)C=CC=2)=C1 OGGKVJMNFFSDEV-UHFFFAOYSA-N 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 239000012044 organic layer Substances 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 229920000553 poly(phenylenevinylene) Polymers 0.000 description 2
- 229920000767 polyaniline Polymers 0.000 description 2
- 150000003384 small molecules Chemical class 0.000 description 2
- 230000036561 sun exposure Effects 0.000 description 2
- 125000001637 1-naphthyl group Chemical group [H]C1=C([H])C([H])=C2C(*)=C([H])C([H])=C([H])C2=C1[H] 0.000 description 1
- RKVIAZWOECXCCM-UHFFFAOYSA-N 2-carbazol-9-yl-n,n-diphenylaniline Chemical compound C1=CC=CC=C1N(C=1C(=CC=CC=1)N1C2=CC=CC=C2C2=CC=CC=C21)C1=CC=CC=C1 RKVIAZWOECXCCM-UHFFFAOYSA-N 0.000 description 1
- HONWGFNQCPRRFM-UHFFFAOYSA-N 2-n-(3-methylphenyl)-1-n,1-n,2-n-triphenylbenzene-1,2-diamine Chemical compound CC1=CC=CC(N(C=2C=CC=CC=2)C=2C(=CC=CC=2)N(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 HONWGFNQCPRRFM-UHFFFAOYSA-N 0.000 description 1
- AWXGSYPUMWKTBR-UHFFFAOYSA-N 4-carbazol-9-yl-n,n-bis(4-carbazol-9-ylphenyl)aniline Chemical compound C12=CC=CC=C2C2=CC=CC=C2N1C1=CC=C(N(C=2C=CC(=CC=2)N2C3=CC=CC=C3C3=CC=CC=C32)C=2C=CC(=CC=2)N2C3=CC=CC=C3C3=CC=CC=C32)C=C1 AWXGSYPUMWKTBR-UHFFFAOYSA-N 0.000 description 1
- ZKHISQHQYQCSJE-UHFFFAOYSA-N C1=CC=CC=C1N(C=1C=CC(=CC=1)N(C=1C=CC=CC=1)C=1C=C(C=C(C=1)N(C=1C=CC=CC=1)C=1C=CC(=CC=1)N(C=1C=CC=CC=1)C=1C=CC=CC=1)N(C=1C=CC=CC=1)C=1C=CC(=CC=1)N(C=1C=CC=CC=1)C=1C=CC=CC=1)C1=CC=CC=C1 Chemical compound C1=CC=CC=C1N(C=1C=CC(=CC=1)N(C=1C=CC=CC=1)C=1C=C(C=C(C=1)N(C=1C=CC=CC=1)C=1C=CC(=CC=1)N(C=1C=CC=CC=1)C=1C=CC=CC=1)N(C=1C=CC=CC=1)C=1C=CC(=CC=1)N(C=1C=CC=CC=1)C=1C=CC=CC=1)C1=CC=CC=C1 ZKHISQHQYQCSJE-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- NRCMAYZCPIVABH-UHFFFAOYSA-N Quinacridone Chemical class N1C2=CC=CC=C2C(=O)C2=C1C=C1C(=O)C3=CC=CC=C3NC1=C2 NRCMAYZCPIVABH-UHFFFAOYSA-N 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 239000004904 UV filter Substances 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000006117 anti-reflective coating Substances 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- RBTKNAXYKSUFRK-UHFFFAOYSA-N heliogen blue Chemical compound [Cu].[N-]1C2=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=NC([N-]1)=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=N2 RBTKNAXYKSUFRK-UHFFFAOYSA-N 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000010345 tape casting Methods 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000003631 wet chemical etching Methods 0.000 description 1
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/17—Carrier injection layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/805—Electrodes
- H10K50/82—Cathodes
Definitions
- the invention relates to an organic light emitting diode, i.e. a Polymer-based light-emitting diode.
- Simple, monochrome, passive matrix-driven LC displays offer the advantage of inexpensive manufacturability in addition to low electrical power consumption, low weight and a small footprint. However, with the use such displays also have serious disadvantages. Because of the technological-physical principle, they are Ads are not self-emitting, i.e. They are only reliable under particularly favorable ambient light conditions read and recognize. Another essential The limitation is the very narrow viewing angle the ad.
- the problem of the lack of contrast in less than optimal ambient lighting conditions can be improved by additional backlighting, but this improvement has several disadvantages.
- the backlighting multiplies the thickness of the LC flat screen. While LC displays can be manufactured without backlighting with a thickness of ⁇ 1 mm, the total thickness of backlit LC displays is typically a few millimeters.
- the light-conducting plastic necessary for homogeneous illumination of the display surface Diffuser " to increase the thickness.
- a major disadvantage of backlighting is also that the major part of the electrical power consumption is required for lighting.
- a higher voltage is required to operate the light sources (lamps and fluorescent tubes), which is usually the case with the help of Voltage-up converters "is produced from batteries or accumulators.
- TFT thin film transistor
- the switching time of a single liquid crystal pixel is - due to the physical principle of re-orientation of a molecule in the electric field - typically some Milliseconds and is also strongly temperature-dependent. So makes slow and slow at low temperatures Image structure, for example in means of transport (navigation systems in motor vehicles), disturbingly noticeable. For Applications in which rapidly changing information or Images are displayed, for example in video applications, LC technology can therefore only be used to a limited extent.
- the substrate for example glass
- an entire surface transparent electrode for example made of indium tin oxide (ITO), coated.
- ITO indium tin oxide
- Both electrodes are usually in Structured in the form of parallel conductor tracks, the Conductor tracks from bottom electrode and top electrode vertical to each other.
- the structuring of the bottom electrode takes place with a photolithographic process including wet chemical etching process, the details of which are known to the person skilled in the art are known. The resolution that can be achieved with these procedures is essentially through the photolithographic Steps and the nature of the bottom electrode limited.
- the strip-shaped conductor tracks of the bottom electrode can up to many centimeters.
- the used Lithography mask can also emit areas up to a size of several square centimeters are generated.
- the sequence of the individual emitting areas can be regular (Pixel matrix display) or variable (symbol representations).
- One or more organic layers are applied to the substrate with the structured transparent bottom electrode.
- These organic layers can consist of polymers, oligomers, low molecular weight compounds or mixtures thereof.
- polymers for example polyaniline, poly (p-phenylene-vinylene) and poly (2-methoxy-5- (2'-ethyl) -hexyloxy-p-phenylene-vinylene
- processes from the liquid phase are usually used (application a solution by means of spin coating or knife coating), while vapor deposition or vapor deposition is preferred for low molecular weight and oligomeric compounds Physical Vapor Deposition "(PVD).
- PVD Physical Vapor Deposition
- low molecular weight, preferably positive charge transporting compounds are: N, N'-bis (3-methylphenyl) -N, N'-bis (phenyl) benzidine (m-TPD), 4,4 ', 4'tris (N-3-methylphenyl-N-phenylamino) triphenylamine (m-MTDATA) and 4,4', 4 '' tris (carbazol-9-yl) -triphenylamine (TCTA)
- the emitter used is, for example, hydroxyquinoline aluminum III salt (Alq), which may be doped with suitable chromophores (quinacridone derivatives, aromatic hydrocarbons, etc.)
- Alq hydroxyquinoline aluminum III salt
- suitable chromophores quinacridone derivatives, aromatic hydrocarbons, etc.
- the total thickness of the layer sequence can be between 10 nm and 10 ⁇ m, typically it is in the range between 50 and 200 nm.
- the top electrode is usually made of a metal that is generally applied by vapor deposition (thermal evaporation, sputtering or electron beam evaporation). Base and therefore in particular are preferred metals reactive towards water and oxygen, such as lithium, magnesium, aluminum and calcium as well as alloys of these metals with each other or with other metals.
- the one required to make a pixel matrix array Structuring of the metal electrode is generally achieved in that the metal through a shadow mask is applied through, the correspondingly shaped Has openings.
- An OLED display produced in this way can contain additional devices that influence the electro-optical properties, such as UV filters, polarization filters, anti-reflective coatings Micro-Cavities "known devices as well as color conversion and color correction filters. Furthermore, a hermetic packaging ( Packaging "), which protects the organic electroluminescent displays from environmental influences such as moisture and mechanical loads. In addition, thin-film transistors can be used to control the individual picture elements ( Pixels ").
- Displays with the lowest possible operating voltage are particularly desirable for mobile applications such as cell phones, pagers and personal digital assistants (PDA) with battery operation.
- PDA personal digital assistants
- U h ⁇ c / e ⁇ ⁇
- h Planck constant
- c speed of light
- e electron charge
- ⁇ wavelength of the generated light
- anode and cathode material can in principle be an efficient injection of the charge carriers reached in the component and thus a small operating voltage become.
- the work function of the anode in the range from 5 to 5.5 eV are.
- ITO with a work function 4.9 eV is used as anode material, was attempted, either by post-oxidizing ITO or through the use of other transparent oxidic substances, like vanadium oxide, the work function of the anode too increase and thus the trained energy barrier at the Reduce anode / organic material interface.
- the object of the invention is organic light-emitting diodes to design that they have the lowest possible operating voltage have and therefore particularly in the field of mobile Communication, i.e. used in devices with battery operation can be.
- the other system parameters are allowed are not adversely affected, i.e. for example the power requirement must not be too high and the long-term stability must be guaranteed.
- the essential feature of a light-emitting diode according to the invention is thus the thin, semitransparent metal layer arranged on the transparent bottom electrode (anode), ie between the anode and the organic functional layer.
- semitransparent here means that about 10 to 95% of the light in the visible spectral range passes through the layer.
- the metal layer preferably consists of a noble metal, in particular from palladium, silver, iridium, platinum or Gold.
- a noble metal in particular from palladium, silver, iridium, platinum or Gold.
- suitable metals are, for example, chrome, Iron, cobalt, nickel, molybdenum and tungsten. That special preferred platinum, for example, has a work function of 5.7 eV.
- organic functional layer (s) serve connections known per se. These are, for example Polymers such as polyaniline, poly (p-phenylene-vinylene) and Poly (2-methoxy-5- (2'-ethyl) -hexyloxy-p-phenylene-vinylene), or low molecular weight compounds such as 4,4 ', 4' 'tris (N-3-methylphenyl-N-phenylamino) triphenylamine (m-MTDATA) and 4,4 ', 4' 'tris (carbazol-9-yl) triphenylamine (TCTA).
- Polymers such as polyaniline, poly (p-phenylene-vinylene) and Poly (2-methoxy-5- (2'-ethyl) -hexyloxy-p-phenylene-vinylene), or low molecular weight compounds such as 4,4 ', 4' 'tris (N-3-methylphenyl-N-phenylamino) triphenylamine (m-MTDATA
- a cathode which consists of a 100 nm thick layer of a magnesium-silver alloy, is applied to a component produced in accordance with Example 1. This layer is deposited by simultaneous thermal evaporation of magnesium and silver (from two tungsten boats) in an atomic mass ratio of 10: 1 at a process pressure of 10 -6 mbar. A 100 nm thick silver layer is used to stabilize the contact.
- the contact areas of the LEDs defined in this way are round and have a diameter of 1.5 mm; the distance between adjacent components is 4.5 mm.
- the emission color is greenish-yellow and clearly visible, even in bright daylight under the sun's rays.
- Example 1 light-emitting diodes are produced the Pt injection layer - instead of electron beam evaporation - by means of a thermal evaporation process is applied.
- the contact areas of the LEDs are round and have a diameter of 1.5 mm; the distance between neighboring Components is 4.5 mm.
- the emission color is greenish yellow and clearly visible, even in bright daylight below Sun exposure.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Electroluminescent Light Sources (AREA)
- Led Devices (AREA)
Abstract
Description
Die Erfindung betrifft eine organische Leuchtdiode, d.h. eine Licht-emittierende Diode auf Polymerbasis.The invention relates to an organic light emitting diode, i.e. a Polymer-based light-emitting diode.
Mit dem zunehmenden Austausch von Daten und Information gewinnt
deren Visualisierung, vorzugsweise in Endgeräten der
Kommunikationstechnik, immer mehr an Bedeutung. Diese Informationsdarstellung
findet üblicherweise mittels Pixel-Matrix-Anzeigevorrichtungen
statt, die gegebenenfalls zusätzliche,
fest vorgegebene Symboldarstellungen (Icons") aufweisen.
Bekannte Technologien von Pixel-Matrix-Vorrichtungen sind
beispielsweise Kathodenstrahlbildröhren, die allerdings wegen
des Platzbedarfs, der elektrischen Leistungsaufnahme und des
Gewichts nicht für den Einsatz in mobilen und tragbaren elektronischen
Geräten in Frage kommen. Wesentlich besser geeignet
sind für diesen Zweck Flachbildschirme (
Einfache, monochrome, passiv-matrix-getriebene LC-Displays bieten den Vorteil einer kostengünstigen Herstellbarkeit neben geringer elektrischer Leistungsaufnahme, kleinem Gewicht und geringem Platzbedarf. Jedoch sind mit dem Einsatz derartiger Displays auch gravierende Nachteile verbunden. Aufgrund des technologisch-physikalischen Prinzips sind die Anzeigen nämlich nicht selbst-emittierend, d.h. sie sind nur unter besonders günstigen Umgebungslichtverhältnissen zuverlässig abzulesen und zu erkennen. Eine weitere wesentliche Beschränkung besteht in dem stark eingeschränkten Betrachtungswinkel der Anzeige.Simple, monochrome, passive matrix-driven LC displays offer the advantage of inexpensive manufacturability in addition to low electrical power consumption, low weight and a small footprint. However, with the use such displays also have serious disadvantages. Because of the technological-physical principle, they are Ads are not self-emitting, i.e. They are only reliable under particularly favorable ambient light conditions read and recognize. Another essential The limitation is the very narrow viewing angle the ad.
Das Problem des mangelnden Kontrastes bei nicht optimalen
Umgebungslichtverhältnissen läßt sich zwar durch eine zusätzlich
angebrachte Hinterleuchtung verbessern, allerdings ist
diese Verbesserung mit mehreren Nachteilen verbunden. So wird
durch die Hinterleuchtung die Dicke des LC-Flachbildschirms
vervielfacht. Während nämlich LC-Displays ohne Hinterleuchtung
mit einer Dicke < 1 mm gefertigt werden können, beträgt
die Gesamtdicke von hinterleuchteten LC-Displays typischerweise
einige Millimeter. Neben den Lampen bzw. Leuchtstoffröhren
trägt vor allem die zur homogenen Ausleuchtung der
Displayfläche notwendige Lichtleitplastik (
Eine bessere Performance als mit im Passiv-Modus angesteuerten LC-Displays kann mit Aktiv-Matrix-LC-Displays erreicht werden. Dabei ist jedem Bildpunkt mit seinen drei Grundfarben jeweils ein Dünnfilmtransistor (Thin Film Transistor, TFT) zugeordnet. Die TFT-Technologie ist jedoch sehr aufwendig, und aufgrund der hohen auftretenden Prozeßtemperaturen werden hohe Anforderungen an die verwendeten Substrate gestellt; dementsprechend hoch ist der Preis für Aktiv-Matrix-LC-Displays.Better performance than with those controlled in passive mode LC displays can be achieved with active matrix LC displays become. Each pixel is with its three primary colors one thin film transistor (TFT) each assigned. However, the TFT technology is very complex, and due to the high process temperatures that occur high demands are placed on the substrates used; the price for active matrix LC displays is correspondingly high.
Die Schaltzeit eines einzelnen Flüssigkristall-Pixels beträgt - bedingt durch das physikalische Prinzip der Re-Orientierung eines Moleküls im elektrischen Feld - typischerweise einige Millisekunden und ist zudem noch stark temperaturabhängig. So macht sich bei tiefen Temperaturen der langsame und verzögerte Bildaufbau, beispielsweise in Verkehrsmitteln (Navigationssysteme in Kraftfahrzeugen), störend bemerkbar. Für Applikationen, in denen rasch wechselnde Informationen bzw. Bilder zur Anzeige kommen, beispielsweise bei Videoapplikationen, ist die LC-Technologie deshalb nur bedingt einsetzbar. The switching time of a single liquid crystal pixel is - due to the physical principle of re-orientation of a molecule in the electric field - typically some Milliseconds and is also strongly temperature-dependent. So makes slow and slow at low temperatures Image structure, for example in means of transport (navigation systems in motor vehicles), disturbingly noticeable. For Applications in which rapidly changing information or Images are displayed, for example in video applications, LC technology can therefore only be used to a limited extent.
Andere Display-Technologien haben entweder noch nicht den Reifegrad einer technischen Anwendbarkeit erreicht, beispielsweise Flat-Panel-CRTs (CRT = Cathode Ray Tube), oder ihrem Einsatz, vor allem in tragbaren elektronischen Geräten, stehen gravierende Nachteile aufgrund spezifischer Kenngrößen gegenüber: hohe Betriebsspannung bei Vakuum-Fluoreszenz-Anzeigen und anorganischen Dünnfilm-Elektrolumineszenz-Anzeigen bzw. hohe Kosten bei Displays auf der Basis anorganischer Leuchtdioden.Other display technologies either don't have that yet Maturity level of a technical applicability reached, for example Flat panel CRTs (CRT = Cathode Ray Tube), or their use, especially in portable electronic devices, there are serious disadvantages due to specific parameters opposite: high operating voltage with vacuum fluorescent displays and inorganic thin film electroluminescent displays or high costs for displays based on inorganic LEDs.
Die genannten Nachteile lassen sich mit Anzeigen auf der Basis von organischen Leuchtdioden (Organic Light Emitting Diodes, OLEDs), d.h. elektrolumineszierenden Dioden, umgehen (siehe dazu beispielsweise US-PS 4 356 429 und US-PS 5 247 190). Diese neue Technologie weist gegenüber LC-Displays vielfältige Vorteile auf, von denen die wesentlichen folgende sind:
- Aufgrund des Prinzips der Selbstemissivität entfällt die Notwendigkeit einer Hinterleuchtung, was Platzbedarf, Leistungsaufnahme und Gewicht deutlich reduziert.
- Die typischen Schaltzeiten von Bildelementen liegen in der Größenordnung von 1 µs und erlauben damit problemlos die Darstellung schneller Bildfolgen.
- Die Schaltzeiten weisen keine störende Trägheit bei niedrigen Temperaturen auf.
- Der Ablesewinkel ist wesentlich größer als bei LC-Displays und beträgt nahezu 180°.
- Die bei LC-Displays notwendigen Polarisatoren entfallen, so daß eine größere Helligkeit auch bei gemultiplexter Anzeige erreichbar ist.
- Organische Leuchtdioden lassen sich im Gegensatz zu anderen Display-Technologien auch auf flexiblen Substraten und in nicht-planaren Geometrien herstellen.
- Due to the principle of self-emissivity, there is no need for backlighting, which significantly reduces space, power consumption and weight.
- The typical switching times of picture elements are in the order of 1 µs and thus allow the display of fast picture sequences without any problems.
- The switching times have no disturbing inertia at low temperatures.
- The reading angle is much larger than that of LC displays and is almost 180 °.
- The polarizers necessary for LC displays are omitted, so that greater brightness can be achieved even with multiplexed display.
- In contrast to other display technologies, organic light-emitting diodes can also be produced on flexible substrates and in non-planar geometries.
Die Herstellung und der Aufbau von Displays auf der Basis organischer Leuchtdioden ist im Vergleich zu LC-Displays einfacher und damit kostengünstiger realisierbar. Typischerweise erfolgen Aufbau und Herstellung folgendermaßen.The manufacture and construction of displays based organic light emitting diodes is easier compared to LC displays and therefore less expensive to implement. Typically are constructed and manufactured as follows.
Das Substrat, beispielsweise Glas, ist ganzflächig mit einer transparenten Elektrode (Bottom-Elektrode, Anode), beispielsweise aus Indium-Zinn-Oxid (ITO), beschichtet. Zur Herstellung von Pixel-Matrix-Anzeigen muß sowohl die transparente Bottom-Elektrode als auch die Top-Elektrode (Kathode) strukturiert werden. Beide Elektroden sind dabei üblicherweise in Form von parallelen Leiterbahnen strukturiert, wobei die Leiterbahnen von Bottom-Elektrode und Top-Elektrode senkrecht zueinander verlaufen. Die Strukturierung der Bottom-Elektrode erfolgt mit einem photolithographischen Prozeß unter Einschluß naßchemischer Ätzverfahren, deren Details dem Fachmann bekannt sind. Die Auflösung, die mit diesen Verfahren erreichbar ist, wird im wesentlichen durch die photolithographischen Schritte und die Beschaffenheit der Bottom-Elektrode begrenzt. Nach dem Stand der Technik sind dabei sowohl Pixelgrößen wie auch nicht emittierende Zwischenräume zwischen den Pixeln von wenigen Mikrometern Größe realisierbar. Die Länge der streifenförmigen Leiterbahnen der Bottom-Elektrode kann bis zu vielen Zentimetern betragen. Je nach verwendeter Lithographiemaske können auch emittierende Flächen bis zu einer Größe von mehreren Quadratzentimetern erzeugt werden. Die Abfolge der einzelnen emittierenden Flächen kann regelmäßig (Pixel-Matrix-Display) oder variabel sein (Symboldarstellungen).The substrate, for example glass, is covered with an entire surface transparent electrode (bottom electrode, anode), for example made of indium tin oxide (ITO), coated. For the production Pixel matrix displays must be both transparent Structured bottom electrode as well as the top electrode (cathode) become. Both electrodes are usually in Structured in the form of parallel conductor tracks, the Conductor tracks from bottom electrode and top electrode vertical to each other. The structuring of the bottom electrode takes place with a photolithographic process including wet chemical etching process, the details of which are known to the person skilled in the art are known. The resolution that can be achieved with these procedures is essentially through the photolithographic Steps and the nature of the bottom electrode limited. According to the prior art, there are both pixel sizes as well as non-emissive gaps between the Pixels of a few micrometers in size can be realized. The length the strip-shaped conductor tracks of the bottom electrode can up to many centimeters. Depending on the used Lithography mask can also emit areas up to a size of several square centimeters are generated. The sequence of the individual emitting areas can be regular (Pixel matrix display) or variable (symbol representations).
Auf das Substrat mit der strukturierten transparenten Bottom-Elektrode
werden eine oder mehrere organische Schichten aufgebracht.
Diese organischen Schichten können aus Polymeren,
Oligomeren, niedermolekularen Verbindungen oder Mischungen
hiervon bestehen. Zum Aufbringen von Polymeren, beispielsweise
Polyanilin, Poly(p-phenylen-vinylen) und Poly(2-methoxy-5-(2'-ethyl)-hexyloxy-p-phenylen-vinylen),
finden üblicherweise
Prozesse aus flüssiger Phase Anwendung (Auftragen
einer Lösung mittels Spin-Coating oder Rakeln), während für
niedermolekulare und oligomere Verbindungen eine Gasphasenabscheidung
bevorzugt wird (Aufdampfen oder
Die Top-Elektrode besteht üblicherweise aus einem Metall, das im allgemeinen durch Gasphasenabscheidung aufgebracht wird (thermisches Verdampfen, Sputtern oder Elektronenstrahlverdampfung). Bevorzugt werden unedle und damit insbesondere gegenüber Wasser und Sauerstoff reaktive Metalle eingesetzt, wie Lithium, Magnesium, Aluminium und Calcium sowie Legierungen dieser Metalle untereinander oder mit anderen Metallen. Die zur Herstellung einer Pixel-Matrix-Anordnung erforderliche Strukturierung der Metallelektrode wird im allgemeinen dadurch erreicht, daß das Metall durch eine Schattenmaske hindurch aufgebracht wird, die entsprechend geformte Öffnungen aufweist.The top electrode is usually made of a metal that is generally applied by vapor deposition (thermal evaporation, sputtering or electron beam evaporation). Base and therefore in particular are preferred metals reactive towards water and oxygen, such as lithium, magnesium, aluminum and calcium as well as alloys of these metals with each other or with other metals. The one required to make a pixel matrix array Structuring of the metal electrode is generally achieved in that the metal through a shadow mask is applied through, the correspondingly shaped Has openings.
Ein in dieser Weise hergestelltes OLED-Display kann zusätzliche,
die elektrooptischen Eigenschaften beeinflussende
Einrichtungen enthalten, wie UV-Filter, Polarisationsfilter,
Anti-Reflex-Beschichtungen, als
Speziell für mobile Anwendungen, wie bei Handys, Pager und
Personal Digital Assistants (PDA), mit Batteriebetrieb sind
Displays mit möglichst niedriger Betriebsspannung wünschenswert.
Hierbei ist neben der für die Erzeugung des Lichts
erforderlichen Mindestspannung (
Durch eine geeignete Auswahl von Anoden- und Kathodenmaterial kann im Prinzip eine effiziente Injektion der Ladungsträger ins Bauelement und damit eine kleine Betriebsspannung erreicht werden. Abhängig von den verwendeten organischen Materialien sollte dabei - zur Realisierung von ohmschen Kontakten - die Austrittsarbeit der Anode im Bereich von 5 bis 5,5 eV liegen. Da, wie bereits ausgeführt, zur Auskoppelung des Lichts aus dem Bauelement eine Elektrode transparent gewählt wird, wobei typischerweise ITO mit einer Austrittsarbeit von ca. 4,9 eV als Anodenmaterial zum Einsatz gelangt, wurde versucht, entweder durch Nachoxidieren von ITO oder durch den Einsatz anderer transparenter oxidischer Substanzen, wie Vanadiumoxid, die Austrittsarbeit der Anode zu erhöhen und damit die ausgebildete Energiebarriere an der Grenzfläche Anode/organisches Material zu reduzieren. Dies führt zwar zu einer niedrigeren Betriebsspannung der Leuchtdioden, allerdings sind die verwendeten Anodenmaterialien nicht langzeitstabil oder weisen andere Nachteile auf, wie höhere Herstellungskosten. Through a suitable selection of anode and cathode material can in principle be an efficient injection of the charge carriers reached in the component and thus a small operating voltage become. Depending on the organic materials used should be there - to realize ohmic contacts - The work function of the anode in the range from 5 to 5.5 eV are. There, as already explained, for decoupling an electrode of the light from the component is transparent is chosen, typically ITO with a work function 4.9 eV is used as anode material, was attempted, either by post-oxidizing ITO or through the use of other transparent oxidic substances, like vanadium oxide, the work function of the anode too increase and thus the trained energy barrier at the Reduce anode / organic material interface. This leads to a lower operating voltage of the LEDs, however, the anode materials used are not long-term stable or have other disadvantages, such as higher manufacturing costs.
Aufgabe der Erfindung ist es, organische Leuchtdioden derart auszugestalten, daß sie eine möglichst niedrige Betriebsspannung aufweisen und deshalb insbesondere im Bereich der mobilen Kommunikation, d.h. in Geräten mit Batteriebetrieb, eingesetzt werden können. Dabei dürfen aber die übrigen Systemparameter nicht nachteilig beeinflußt werden, d.h. beispielsweise darf der Strombedarf nicht zu hoch sein und die Langzeitstabilität muß gewährleistet sein.The object of the invention is organic light-emitting diodes to design that they have the lowest possible operating voltage have and therefore particularly in the field of mobile Communication, i.e. used in devices with battery operation can be. The other system parameters are allowed are not adversely affected, i.e. for example the power requirement must not be too high and the long-term stability must be guaranteed.
Dies wird erfindungsgemäß dadurch erreicht, daß die Leuchtdioden folgende Bestandteile aufweisen:
- eine auf einem Substrat befindliche transparente Bottom-Elektrode,
- eine Top-Elektrode,
- wenigstens eine zwischen Bottom-Elektrode und Top-Elektrode angeordnete organische Funktionsschicht und
- eine auf der Bottom-Elektrode befindliche semitransparente Schicht aus einem Metall mit einer Austrittsarbeit zwischen 4 und 7 eV.
- a transparent bottom electrode located on a substrate,
- a top electrode,
- at least one organic functional layer and arranged between the bottom electrode and top electrode
- a semitransparent layer of a metal located on the bottom electrode with a work function between 4 and 7 eV.
Das wesentliche Merkmal einer Leuchtdiode nach der Erfindung
ist somit die auf der transparenten Bottom-Elektrode (Anode),
d.h. zwischen Anode und organischer Funktionsschicht angeordnete
dünne, semitransparente Metallschicht. Der Begriff
Die Metallschicht, die vorzugsweise eine Dicke von 1 bis 100 nm besitzt, dient als Injektionsschicht für die Ladungsträger in das organische Material, im vorliegenden Fall somit als Löcher-injizierende Schicht. Das Metall ist inert und somit langzeitstabil, und die Metallschicht weist eine ausreichende Transparenz auf. Da das Metall eine Austrittsarbeit im Bereich von 4 bis 7 eV besitzt, wird die Ausbildung einer Energiebarriere an der Grenzfläche Anode/organisches Material verhindert und damit die Betriebsspannung der Leuchtdioden drastisch gesenkt.The metal layer, which preferably has a thickness of 1 to 100 nm, serves as an injection layer for the charge carriers in the organic material, in this case as a hole-injecting layer. The metal is inert and thus long-term stable, and the metal layer has an adequate Transparency. Because the metal is a work function in the range of 4 to 7 eV, the training becomes a Energy barrier at the anode / organic material interface prevents and thus the operating voltage of the LEDs drastically lowered.
Die Metallschicht besteht vorzugsweise aus einem Edelmetall, insbesondere aus Palladium, Silber, Iridium, Platin oder Gold. Weitere geeignete Metalle sind beispielsweise Chrom, Eisen, Cobalt, Nickel, Molybdän und Wolfram. Das besonders bevorzugte Platin beispielsweise hat eine Austrittsarbeit von 5,7 eV.The metal layer preferably consists of a noble metal, in particular from palladium, silver, iridium, platinum or Gold. Other suitable metals are, for example, chrome, Iron, cobalt, nickel, molybdenum and tungsten. That special preferred platinum, for example, has a work function of 5.7 eV.
Als Material für die organische(n) Funktionsschicht(en) dienen an sich bekannte Verbindungen. Dies sind beispielsweise Polymere, wie Polyanilin, Poly(p-phenylen-vinylen) und Poly(2-methoxy-5-(2'-ethyl)-hexyloxy-p-phenylen-vinylen), oder niedermolekulare Verbindungen, wie 4,4',4''-Tris-(N-3-methylphenyl-N-phenyl-amino)-triphenylamin (m-MTDATA) und 4,4',4''-Tris(carbazol-9-yl)-triphenylamin (TCTA). Vorzugsweise werden folgende Verbindungen verwendet: N,N'-Bis-(3-methylphenyl)-N,N'-bis(phenyl)-benzidin(m-TPD) und 1,3,5-Tris[N-(4-diphenylamino-phenyl)-phenylamino]-benzol (p-DPATDAB). In Kombination mit einem organischen Material kann auch Kupferphthalocyanin Verwendung finden. Besonders vorteilhaft wird für den Transport der positiven Ladungsträger 4,4',4''-Tris[N-(1-naphthyl)-N-phenyl-amino]-triphenylamin zusammen mit Hydroxychinolin-Aluminium-III-Salz als Emissions- und Elektronentransportmaterial eingesetzt.As material for the organic functional layer (s) serve connections known per se. These are, for example Polymers such as polyaniline, poly (p-phenylene-vinylene) and Poly (2-methoxy-5- (2'-ethyl) -hexyloxy-p-phenylene-vinylene), or low molecular weight compounds such as 4,4 ', 4' 'tris (N-3-methylphenyl-N-phenylamino) triphenylamine (m-MTDATA) and 4,4 ', 4' 'tris (carbazol-9-yl) triphenylamine (TCTA). The following compounds are preferably used: N, N'-bis (3-methylphenyl) -N, N'-bis (phenyl) benzidine (m-TPD) and 1,3,5-tris [N- (4-diphenylaminophenyl) phenylamino] benzene (p-DPATDAB). In combination with an organic material copper phthalocyanine can also be used. Especially is advantageous for the transport of the positive charge carriers 4,4 ', 4' '- tris [N- (1-naphthyl) -N-phenylamino] triphenylamine together with hydroxyquinoline aluminum III salt used as emission and electron transport material.
Die Bottom-Elektrode (Anode) und die Top-Elektrode (Kathode) können aus an sich bekannten Materialien bestehen. Die Bottom-Elektrode besteht dabei vorzugsweise aus Indium-Zinn-Oxid (ITO) und die Top-Elektrode vorzugsweise aus Magnesium, Aluminium, Calcium, Barium, Samarium oder Ytterbium, insbesondere aus Magnesium und Silber bzw. aus einer Magnesium-Silber-Legierung.The bottom electrode (anode) and the top electrode (cathode) can consist of materials known per se. The Bottom electrode is preferably made of indium tin oxide (ITO) and the top electrode preferably made of magnesium, Aluminum, calcium, barium, samarium or ytterbium, in particular Made of magnesium and silver or a magnesium-silver alloy.
Anhand von Ausführungsbeispielen soll die Erfindung noch näher erläutert werden. The invention is intended to be based on exemplary embodiments are explained in more detail.
Ein Glassubstrat wird ganzflächig mit Indium-Zinn-Oxid (ITO) als leitfähige, transparente Elektrode (Anode) beschichtet, die anschließend in an sich bekannter Weise photolithographisch strukturiert wird. Auf die ITO-Schicht wird dann mittels Elektronenstrahlverdampfen eine 5nm dicke semitransparente Metall-Injektionsschicht aus Platin (Pt) aufgebracht; der Prozeßdruck beträgt hierbei 10-6 mbar. Die Pt-Injektionsschicht wird anschließend - je nach Anwendung - in an sich bekannter Weise photolithographisch strukturiert. Mittels organischer Molekularstrahldeposition (Organic Molecular Beam Deposition, OMBD) werden nachfolgend bei einem Prozeßvakuum von 10-8 mbar nacheinander die niedermolekulare Verbindung 4,4',4''-Tris[N-(1-naphthyl)-N-phenyl-amino]-triphenylamin (TNATA) für den Transport positiver Ladungsträger und Hydroxychinolin-Aluminium-III-Salz als Emissions- und Elektronentransportmaterial abgeschieden. Die Schichtdicken der Materialien betragen hierbei jeweils 60 nm; die Wachstumsraten liegen bei 2 nm/min.The entire surface of a glass substrate is coated with indium tin oxide (ITO) as a conductive, transparent electrode (anode), which is then photolithographically structured in a manner known per se. A 5 nm thick semi-transparent metal injection layer made of platinum (Pt) is then applied to the ITO layer by means of electron beam evaporation; the process pressure is 10 -6 mbar. Depending on the application, the Pt injection layer is then photolithographically structured in a manner known per se. Using organic molecular beam deposition (OMBD), the low-molecular compound 4,4 ', 4''- tris [N- (1-naphthyl) -N-phenylamino] are subsequently removed in succession at a process vacuum of 10 -8 mbar. -triphenylamine (TNATA) for the transport of positive charge carriers and hydroxyquinoline aluminum III salt as emission and electron transport material. The layer thicknesses of the materials are 60 nm each; the growth rates are 2 nm / min.
Auf das auf diese Weise erhaltene Bauteil wird mittels einer Schattenmaske eine Kathode aufgebracht. Sie besteht aus einer 120 nm dicken Magnesiumschicht und einer 120 nm dicken Silberschicht, die nacheinander durch thermisches Verdampfen (aus Wolfram-Schiffchen) bei einem Prozeßdruck von 10-6 mbar abgeschieden werden. Die so definierten Kontaktflächen der LEDs sind rund und haben einen Durchmesser von 1,5 mm; der Abstand benachbarter Bauelemente beträgt 4,5 mm. Die Emissionfarbe ist grünlich-gelb und deutlich sichtbar, auch bei hellem Tageslicht unter Sonneneinstrahlung.A cathode is applied to the component obtained in this way using a shadow mask. It consists of a 120 nm thick magnesium layer and a 120 nm thick silver layer, which are deposited successively by thermal evaporation (from tungsten boats) at a process pressure of 10 -6 mbar. The contact areas of the LEDs defined in this way are round and have a diameter of 1.5 mm; the distance between adjacent components is 4.5 mm. The emission color is greenish-yellow and clearly visible, even in bright daylight under the sun's rays.
Auf ein entsprechend Beispiel 1 hergestelltes Bauteil wird eine Kathode aufgebracht, die aus einer 100 nm dicken Schicht aus einer Magnesium-Silber-Legierung besteht. Diese Schicht wird durch gleichzeitiges thermisches Verdampfen von Magnesium und Silber (aus zwei Wolfram-Schiffchen) in einem Atommassenverhältnis von 10:1 bei einem Prozeßdruck von 10-6 mbar abgeschieden. Zur Stabilisierung des Kontaktes dient eine 100 nm dicke Silberschicht. Die so definierten Kontaktflächen der LEDs sind rund und haben einen Durchmesser von 1,5 mm; der Abstand benachbarter Bauelemente beträgt 4,5 mm. Die Emissionfarbe ist grünlich-gelb und deutlich sichtbar, auch bei hellem Tageslicht unter Sonneneinstrahlung.A cathode, which consists of a 100 nm thick layer of a magnesium-silver alloy, is applied to a component produced in accordance with Example 1. This layer is deposited by simultaneous thermal evaporation of magnesium and silver (from two tungsten boats) in an atomic mass ratio of 10: 1 at a process pressure of 10 -6 mbar. A 100 nm thick silver layer is used to stabilize the contact. The contact areas of the LEDs defined in this way are round and have a diameter of 1.5 mm; the distance between adjacent components is 4.5 mm. The emission color is greenish-yellow and clearly visible, even in bright daylight under the sun's rays.
Entsprechend Beispiel 1 werden Leuchtdioden hergestellt, wobei die Pt-Injektionsschicht - anstatt Elektronenstrahlverdampfens - mittels eines thermischen Verdampfungsprozesses aufgebracht wird. Die Kontaktflächen der LEDs sind rund und haben einen Durchmesser von 1,5 mm; der Abstand benachbarter Bauelemente beträgt 4,5 mm. Die Emissionfarbe ist grünlichgelb und deutlich sichtbar, auch bei hellem Tageslicht unter Sonneneinstrahlung.According to Example 1, light-emitting diodes are produced the Pt injection layer - instead of electron beam evaporation - by means of a thermal evaporation process is applied. The contact areas of the LEDs are round and have a diameter of 1.5 mm; the distance between neighboring Components is 4.5 mm. The emission color is greenish yellow and clearly visible, even in bright daylight below Sun exposure.
Entsprechend Beispiel 2 werden Leuchtdioden hergestellt, wobei die Pt-Injektionsschicht - anstatt Elektronenstrahlverdampfens - mittels eines thermischen Verdampfungsprozesses aufgebracht wird. Die Kontaktflächen der LEDs sind rund und haben einen Durchmesser von 1,5 mm; der Abstand benachbarter Bauelemente beträgt 4,5 mm. Die Emissionfarbe ist grünlichgelb und deutlich sichtbar, auch bei hellem Tageslicht unter Sonneneinstrahlung.According to Example 2, light-emitting diodes are produced the Pt injection layer - instead of electron beam evaporation - by means of a thermal evaporation process is applied. The contact areas of the LEDs are round and have a diameter of 1.5 mm; the distance between neighboring Components is 4.5 mm. The emission color is greenish yellow and clearly visible, even in bright daylight below Sun exposure.
Entsprechend Beispiel 1 werden Leuchtdioden hergestellt, wobei die Pt-Injektionsschicht - anstatt Elektronenstrahlverdampfens - mittels eines Sputterprozesses aufgebracht wird. Die Kontaktflächen der LEDs sind rund und haben einen Durchmesser von 1,5 mm; der Abstand benachbarter Bauelemente beträgt 4,5 mm. Die Emissionfarbe ist grünlich-gelb und deutlich sichtbar, auch bei hellem Tageslicht unter Sonneneinstrahlung.According to Example 1, light-emitting diodes are produced the Pt injection layer - instead of electron beam evaporation - Applied using a sputtering process becomes. The contact areas of the LEDs are round and have one Diameter of 1.5 mm; the distance between adjacent components is 4.5 mm. The emission color is greenish-yellow and clearly visible, even in bright daylight under sunlight.
Entsprechend Beispiel 2 werden Leuchtdioden hergestellt, wobei die Pt-Injektionsschicht - anstatt Elektronenstrahlverdampfens - mittels eines Sputterprozesses aufgebracht wird. Die Kontaktflächen der LEDs sind rund und haben einen Durchmesser von 1,5 mm; der Abstand benachbarter Bauelemente beträgt 4,5 mm. Die Emissionfarbe ist grünlich-gelb und deutlich sichtbar, auch bei hellem Tageslicht unter Sonneneinstrahlung.According to Example 2, light-emitting diodes are produced the Pt injection layer - instead of electron beam evaporation - Applied using a sputtering process becomes. The contact areas of the LEDs are round and have one Diameter of 1.5 mm; the distance between adjacent components is 4.5 mm. The emission color is greenish-yellow and clear visible, even in bright daylight under sunlight.
Claims (6)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19827222 | 1998-06-18 | ||
DE19827222 | 1998-06-18 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0966050A2 true EP0966050A2 (en) | 1999-12-22 |
EP0966050A3 EP0966050A3 (en) | 2004-11-17 |
Family
ID=7871317
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP99110877A Ceased EP0966050A3 (en) | 1998-06-18 | 1999-06-07 | Organic light emitting diode |
Country Status (4)
Country | Link |
---|---|
US (2) | US6262441B1 (en) |
EP (1) | EP0966050A3 (en) |
JP (1) | JP2000030873A (en) |
TW (1) | TW439301B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10359156A1 (en) * | 2003-12-16 | 2005-07-28 | Schott Ag | display device |
Families Citing this family (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7576496B2 (en) * | 1999-12-22 | 2009-08-18 | General Electric Company | AC powered OLED device |
US20020190661A1 (en) * | 2000-01-27 | 2002-12-19 | General Electric Company | AC powered oled device |
US6515310B2 (en) | 2000-05-06 | 2003-02-04 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting device and electric apparatus |
US6787989B2 (en) * | 2000-06-21 | 2004-09-07 | Nippon Sheet Glass Co., Ltd. | Substrate with transparent conductive film and organic electroluminescence device using the same |
US6956324B2 (en) * | 2000-08-04 | 2005-10-18 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method therefor |
JP4554047B2 (en) * | 2000-08-29 | 2010-09-29 | 株式会社半導体エネルギー研究所 | Light emitting device |
US7153592B2 (en) * | 2000-08-31 | 2006-12-26 | Fujitsu Limited | Organic EL element and method of manufacturing the same, organic EL display device using the element, organic EL material, and surface emission device and liquid crystal display device using the material |
JP2005501273A (en) * | 2001-08-23 | 2005-01-13 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Method and driving means for color correction in organic electroluminescent devices |
JP3804858B2 (en) | 2001-08-31 | 2006-08-02 | ソニー株式会社 | Organic electroluminescent device and manufacturing method thereof |
US7362046B2 (en) * | 2001-11-10 | 2008-04-22 | Image Portal Limited | Partial overlapping display tiles of organic light emitting device |
US6731064B2 (en) * | 2001-11-20 | 2004-05-04 | International Business Machines Corporation | Yield enchancement pixel structure for active matrix organic light-emitting diode displays |
EP1312926A1 (en) * | 2001-11-20 | 2003-05-21 | Abb Research Ltd. | Binary voltage indicator |
US6734457B2 (en) | 2001-11-27 | 2004-05-11 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device |
DE60335351D1 (en) * | 2002-02-27 | 2011-01-27 | Innovative Solutions And Support Inc | IMPROVED FLAT DISPLAY WITH LOW REFLECTION CAPACITY |
JP2003303682A (en) * | 2002-04-09 | 2003-10-24 | Pioneer Electronic Corp | Electroluminescent display device |
TW564657B (en) * | 2002-06-12 | 2003-12-01 | Ritdisplay Corp | Organic light-emitting diode display device |
US6642092B1 (en) * | 2002-07-11 | 2003-11-04 | Sharp Laboratories Of America, Inc. | Thin-film transistors formed on a metal foil substrate |
US7049757B2 (en) * | 2002-08-05 | 2006-05-23 | General Electric Company | Series connected OLED structure and fabrication method |
FR2844136B1 (en) * | 2002-09-03 | 2006-07-28 | Corning Inc | MATERIAL USEFUL IN THE MANUFACTURE OF LUMINOUS DISPLAY DEVICES, PARTICULARLY ORGANIC ELECTROLUMINESCENT DIODES |
US6608333B1 (en) * | 2002-12-19 | 2003-08-19 | Ritdisplay Corporation | Organic light emitting diode device |
US20040140758A1 (en) * | 2003-01-17 | 2004-07-22 | Eastman Kodak Company | Organic light emitting device (OLED) display with improved light emission using a metallic anode |
CN100403556C (en) * | 2003-04-01 | 2008-07-16 | 友达光电股份有限公司 | Making method of organic luminous diode panel |
JP2004327634A (en) * | 2003-04-23 | 2004-11-18 | Semiconductor Energy Lab Co Ltd | Laser oscillator |
US6853134B2 (en) | 2003-05-20 | 2005-02-08 | Canon Kabushiki Kaisha | Anode structure for organic light emitting device |
WO2005002010A1 (en) * | 2003-06-27 | 2005-01-06 | Semiconductor Energy Laboratory Co., Ltd. | Organic laser device |
US7307940B2 (en) * | 2003-06-30 | 2007-12-11 | Semiconductor Energy Laboratory Co., Ltd. | Optical pick-up device |
US20050008052A1 (en) * | 2003-07-01 | 2005-01-13 | Ryoji Nomura | Light-emitting device |
JP2005108644A (en) * | 2003-09-30 | 2005-04-21 | Sanyo Electric Co Ltd | Organic el element |
US20060103299A1 (en) * | 2004-11-15 | 2006-05-18 | The Hong Kong University Of Science And Technology | Polycrystalline silicon as an electrode for a light emitting diode & method of making the same |
WO2006057420A1 (en) * | 2004-11-26 | 2006-06-01 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting element, light-emitting device, and electronic device |
JP2006156837A (en) * | 2004-11-30 | 2006-06-15 | Matsushita Electric Ind Co Ltd | Semiconductor light emitting device, luminescent module and lighting device |
KR100659579B1 (en) * | 2004-12-08 | 2006-12-20 | 한국전자통신연구원 | Light Emitting Diode and Method for Preparing Light Emitting Diode |
US7854513B2 (en) * | 2006-03-03 | 2010-12-21 | Quach Cang V | One-way transparent display systems |
US20080047602A1 (en) * | 2006-08-22 | 2008-02-28 | Guardian Industries Corp. | Front contact with high-function TCO for use in photovoltaic device and method of making same |
US7982214B2 (en) * | 2006-12-12 | 2011-07-19 | Koninklijke Philips Electronics N.V. | Voltage-operated layered arrangement |
US20080174735A1 (en) * | 2007-01-23 | 2008-07-24 | Emiscape, Inc. | Projection Display with Holographic Screen |
DE102008039184A1 (en) * | 2008-08-20 | 2010-03-04 | Takata-Petri Ag | Method for manufacturing operating element for vehicle part, involves manufacturing operating element with lighting device |
JP2012504847A (en) * | 2008-10-01 | 2012-02-23 | エルジー・ケム・リミテッド | ORGANIC LIGHT EMITTING ELEMENT AND MANUFACTURING METHOD THEREOF |
KR101001552B1 (en) * | 2009-01-20 | 2010-12-17 | 삼성모바일디스플레이주식회사 | Organic light emitting display apparatus |
JP5624784B2 (en) * | 2009-03-31 | 2014-11-12 | 株式会社半導体エネルギー研究所 | Derivatives having heteroaromatic rings, light-emitting elements, light-emitting devices, lighting devices, and electronic devices using derivatives having heteroaromatic rings |
JP5453952B2 (en) * | 2009-06-23 | 2014-03-26 | ソニー株式会社 | ORGANIC ELECTROLUMINESCENCE ELEMENT AND ITS MANUFACTURING METHOD, DISPLAY DEVICE AND ITS MANUFACTURING METHOD |
JP5423325B2 (en) * | 2009-11-10 | 2014-02-19 | ソニー株式会社 | Light emitting device and manufacturing method thereof |
US8766245B2 (en) * | 2012-08-14 | 2014-07-01 | Guardian Industries Corp. | Organic light emitting diode with transparent electrode and method of making same |
KR20140101506A (en) * | 2013-02-08 | 2014-08-20 | 삼성디스플레이 주식회사 | Organic light emitting diode device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4539507A (en) * | 1983-03-25 | 1985-09-03 | Eastman Kodak Company | Organic electroluminescent devices having improved power conversion efficiencies |
JPH065369A (en) * | 1992-06-17 | 1994-01-14 | Pioneer Electron Corp | Organic electroluminescence element |
DE19541113A1 (en) * | 1995-10-25 | 1997-04-30 | Syntec Ges Fuer Chemie Und Tec | Electroluminescent device, e.g. for TV screen |
WO1998010473A1 (en) * | 1996-09-04 | 1998-03-12 | Cambridge Display Technology Limited | Electrode deposition for organic light-emitting devices |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4356429A (en) | 1980-07-17 | 1982-10-26 | Eastman Kodak Company | Organic electroluminescent cell |
GB8909011D0 (en) | 1989-04-20 | 1989-06-07 | Friend Richard H | Electroluminescent devices |
US5707745A (en) * | 1994-12-13 | 1998-01-13 | The Trustees Of Princeton University | Multicolor organic light emitting devices |
US5776622A (en) * | 1996-07-29 | 1998-07-07 | Eastman Kodak Company | Bilayer eletron-injeting electrode for use in an electroluminescent device |
US5747183A (en) * | 1996-11-04 | 1998-05-05 | Motorola, Inc. | Organic electroluminescent light emitting material and device using same |
JPH10162960A (en) * | 1996-11-27 | 1998-06-19 | Tdk Corp | Organic el luminous element |
US6002206A (en) * | 1996-11-28 | 1999-12-14 | Cambridge Display Technology Limited | Organic EL devices and operation thereof |
DE69723538T2 (en) * | 1996-11-29 | 2004-06-09 | Idemitsu Kosan Co. Ltd. | Organic electroluminescent device |
JP2000082588A (en) * | 1997-09-22 | 2000-03-21 | Fuji Electric Co Ltd | Organic light emitting element and manufacture therefor |
US6885147B2 (en) * | 1998-05-18 | 2005-04-26 | Emagin Corporation | Organic light emitting diode devices with improved anode stability |
US6172459B1 (en) * | 1998-07-28 | 2001-01-09 | Eastman Kodak Company | Electron-injecting layer providing a modified interface between an organic light-emitting structure and a cathode buffer layer |
-
1999
- 1999-06-07 EP EP99110877A patent/EP0966050A3/en not_active Ceased
- 1999-06-15 JP JP11167998A patent/JP2000030873A/en active Pending
- 1999-06-16 TW TW088110081A patent/TW439301B/en not_active IP Right Cessation
- 1999-06-18 US US09/335,565 patent/US6262441B1/en not_active Expired - Lifetime
-
2001
- 2001-06-01 US US09/873,092 patent/US6617184B2/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4539507A (en) * | 1983-03-25 | 1985-09-03 | Eastman Kodak Company | Organic electroluminescent devices having improved power conversion efficiencies |
JPH065369A (en) * | 1992-06-17 | 1994-01-14 | Pioneer Electron Corp | Organic electroluminescence element |
DE19541113A1 (en) * | 1995-10-25 | 1997-04-30 | Syntec Ges Fuer Chemie Und Tec | Electroluminescent device, e.g. for TV screen |
WO1998010473A1 (en) * | 1996-09-04 | 1998-03-12 | Cambridge Display Technology Limited | Electrode deposition for organic light-emitting devices |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10359156A1 (en) * | 2003-12-16 | 2005-07-28 | Schott Ag | display device |
DE10359156B4 (en) * | 2003-12-16 | 2007-08-30 | Schott Ag | display device |
Also Published As
Publication number | Publication date |
---|---|
US6262441B1 (en) | 2001-07-17 |
TW439301B (en) | 2001-06-07 |
US6617184B2 (en) | 2003-09-09 |
JP2000030873A (en) | 2000-01-28 |
EP0966050A3 (en) | 2004-11-17 |
US20010025956A1 (en) | 2001-10-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0966050A2 (en) | Organic light emitting diode | |
EP0910128B1 (en) | Fabrication process for organic electroluminescent devices | |
DE69737733T2 (en) | Light emitting diode | |
DE60036436T2 (en) | Electro-optical component and electronic device | |
DE69724129T2 (en) | LIGHT-EMITTING ORGANIC DEVICES WITH IMPROVED CATHODE | |
DE60223443T2 (en) | Organic light-emitting diode with high contrast ratio | |
DE69529660T2 (en) | Process for producing a TFT-EL pixel | |
DE102004002587B4 (en) | Image element for an active matrix display | |
DE69815349T2 (en) | THIN-LAYER ELECTRODE FOR FLAT ORGANIC LIGHT-EMISSIONING DEVICES | |
US6627332B2 (en) | Organic electroluminescent device | |
DE112009001283T5 (en) | Organic electroluminescent element | |
DE102011054604A1 (en) | Organic light emitting diode | |
WO2007082674A2 (en) | Electroluminescent light emitting unit comprising an arrangement of organic layers and method for producing said unit | |
KR20020025918A (en) | Organic semiconducting devices and organic electroluminescent devices produced by using wet process | |
EP1739765A1 (en) | Organic light-emitting diode and stack of organic light emitting diodes | |
WO2005106987A1 (en) | Layer arrangement for an organic light-emitting diode | |
DE10393383T5 (en) | Organic EL display | |
US7586245B2 (en) | Using prismatic microstructured films for image blending in OLEDS | |
EP1276155A2 (en) | Organic electroluminescent display with optical filter | |
WO2000057499A1 (en) | Organic electroluminescent component | |
DE69911303T2 (en) | Organic electroluminescent device | |
KR100796601B1 (en) | Organic electroluminescence display device | |
DE4428450A1 (en) | Optical electroluminescent component used as LED's | |
DE10258712B4 (en) | Component for an active matrix OLED display with integrated power generation | |
DE69906187T2 (en) | Organic electroluminescent device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: OSRAM OPTO SEMICONDUCTORS GMBH & CO. OHG |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
17P | Request for examination filed |
Effective date: 20050301 |
|
AKX | Designation fees paid |
Designated state(s): DE |
|
17Q | First examination report despatched |
Effective date: 20061117 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: OSRAM OPTO SEMICONDUCTORS GMBH |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED |
|
18R | Application refused |
Effective date: 20110704 |