EP0964476B1 - Vorrichtung zur optischen Steuerung eines Breitbandradars zum Senden und Empfangen - Google Patents

Vorrichtung zur optischen Steuerung eines Breitbandradars zum Senden und Empfangen Download PDF

Info

Publication number
EP0964476B1
EP0964476B1 EP99401312A EP99401312A EP0964476B1 EP 0964476 B1 EP0964476 B1 EP 0964476B1 EP 99401312 A EP99401312 A EP 99401312A EP 99401312 A EP99401312 A EP 99401312A EP 0964476 B1 EP0964476 B1 EP 0964476B1
Authority
EP
European Patent Office
Prior art keywords
frequency
signal
light
mixer
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99401312A
Other languages
English (en)
French (fr)
Other versions
EP0964476A1 (de
Inventor
Thomas THOMSON-CSF P.I.D.B. Merlet
Olivier THOMSON-CSF P.I.D.B. Maas
Daniel THOMSON-CSF P.I.D.B. Dolfi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP0964476A1 publication Critical patent/EP0964476A1/de
Application granted granted Critical
Publication of EP0964476B1 publication Critical patent/EP0964476B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/2676Optically controlled phased array

Definitions

  • the present invention relates to an optical control device for transmitting and receiving a broadband radar. It applies to the control of broadband electronic scanning antennas, to ensure both the formation of a beam on transmission and the reception of a beam reflected by a target.
  • An electronic scanning antenna has a plurality of radiating elements that provide both the transmission and the reception of a microwave signal.
  • a transmission or reception beam is formed by all the signals transmitted or received by each element.
  • To orient a beam in a given direction ⁇ it is necessary to create time delays between signals transmitted or received by the different radiating elements. To obtain a similar effect, it was known to create a phase lag between these signals.
  • the phase shift ⁇ 1 - ⁇ 2 is equal to 2 ⁇ f (T 1 -T 2 ).
  • the preceding relation (1) shows a major disadvantage in that the phase shift depends on the frequency. As a result, if the frequency varies, the dotting angle also varies. This method of orientation of a beam is therefore not suitable for a broadband radar.
  • the microwave techniques do not allow to create a time delay between the signals other than by creating the previous phase shift, except to implement a prohibitive device from the point of view of size and cost. Indeed, a priori simpler solution would be to create a delay directly between the signals supplied to the different radiating elements, but this would require circuits microwave cumbersome and expensive, in particular due to the unavoidable dimensions imposed by the wavelengths involved.
  • optical control solutions of electronic scanning antennas have already been implemented.
  • optical control architectures have therefore already been proposed to control the radiation pattern on transmission.
  • An example of an optical architecture is for example presented in the patent French FR 2 659 754 .
  • a beam formation using time delays requires a very important dynamic of all the delays, still inaccessible to the optical components.
  • a direct architecture based on the reversible operation of the command developed for the issue does not seem to be possible in the short or medium term.
  • a correlation architecture has been defined in particular according to the description of the patent. FR 2,725,076 or EP 0 708 491 .
  • Such an architecture is restricted to low bandwidth radars, typically 10 MHz.
  • This disadvantage of a correlation architecture stems in particular from the fact that the use of complementary delays is incompatible with local oscillator and remote transmission signal frequencies, for example 500 MHz, which characterize a broadband radar. However this frequency shift is inevitable for the proper functioning of a radar, in particular to avoid problems related to the aliasing of the spectrum.
  • the two beams are modulated at the transmission frequency, and for each reception signal of a radiating element, the local oscillator frequency is output from a photomixer by mixing the frequency of the received signal carried by the optical wave and an intermediate frequency, then the frequency of the reception signal supplied to the radar processing means, an intermediate frequency increased by the Doppler frequency of the received signal is obtained at the output of a microwave mixer by mixing the local oscillator frequency with the transmission frequency.
  • the main advantages of the invention are that it avoids the transposition on an optical carrier of the reception signal, while benefiting from the broadband processing offered by a time delay architecture and that it is simple to implement.
  • FIG. 1 illustrates an optical control device operating in transmission and reception, of the type for example of that described by the patent.
  • French n ° 94 11498 The signals derived therefrom serve, on transmission, to supply active modules or radiating elements and, on reception, to generate a local oscillator adapted in frequency and direction.
  • the beam light F1, F2 is frequency modulated.
  • a first source L1 emits a single-frequency light beam F1 of wavelength ⁇ 1 (pulsation ⁇ 1).
  • a frequency translator T1 receives this light and transmits light to ⁇ 1 and light to ⁇ 1 + 2 ⁇ f e modulated using a frequency signal f e .
  • the frequency translator T1 is for example an acousto-optical Bragg cell for frequencies substantially lower than or equal to 5 GHz or an integrated optical device for higher frequencies.
  • a second light source emits another single frequency light beam F2 of wavelength ⁇ 2 (pulsation ⁇ 2).
  • a frequency translator T2 receives this light and transmits light at ⁇ 2 and light at ⁇ 2 + 2 ⁇ (f e + f o ) modulated by a frequency signal f e + f o .
  • the frequency f e is located in the microwave range and corresponds to the antenna transmission frequency.
  • the frequency f o takes place of local oscillator frequency for the mode of reception of the antenna in the following description.
  • the light emitted by the translator T1 is polarized in a determined direction. That emitted by the translator T2 is polarized in a direction perpendicular to that emitted by T1.
  • An optical mixer system ME superimposes the light from the translator T1 to that from the translator T2.
  • the resulting beam therefore comprises light polarized along two orthogonal directions, as is symbolized in FIG. 1, and at the different frequencies originating from the translators T1 and T2.
  • the resulting beam is extended by a beam splitter SE so as to be distributed over the different inputs of a set of DCR delay circuits.
  • This set of DCR delay circuits can for example be produced as described in the patent application. French No. 92 34 467 .
  • Each delay circuit delays differently the light from the source L1 and the light from the source L2. More specifically, according to an exemplary embodiment, if T is the maximum delay induced by a delay circuit, the light from the source L1 is delayed by a time ti and the light from the source L2 is delayed by a time T-ti complementary to the time T.
  • the times T of the different delay circuits are for example equal.
  • DCR delay circuits comprise a set of spatial light modulators comprising pxp pixels (same number of pixels as antenna radiators) and for controlling the phase shift and delay assigned to each of the pxp channels thus cut.
  • DCR delay circuits provide geometrically progressive delays so that only N spatial modulators are required to obtain 2 N distinct delay values on each of the pxp channels of the architecture.
  • the delay switching is based on the controlled rotation, thanks to the spatial light modulators, of the polarization of the beams.
  • the property of the DCR which is to generate, on each channel complementary delays for input crossed polarization states is exploited. Indeed, if the beam from L 1 is delayed on the channel i, then the beam from L 2 undergoes a delay Tt i , T being the crossing time of the DCR.
  • Each output Sd of a delay circuit provides light at the wavelength ⁇ 1 modulated at the frequency f e and light at the wavelength ⁇ 2 modulated at the frequency f e + f o .
  • Detection circuits PDRi and PDRn are connected to the outputs Sd for example by optical fibers. These circuits are for example made as shown in the lower right of Figure 1. Each circuit has a chromatic separator MD separating the light at the wavelength ⁇ 1 of the light at the wavelength ⁇ 2.
  • the light at the wavelength ⁇ 1 is transmitted to a photodetector PDRi, 1 which emits a photocurrent of frequency f e to a radiating element ED1.
  • This photocurrent results from the beat between the light at ⁇ 1 and the light at ⁇ 1 + 2 ⁇ f e .
  • the transmitted photocurrent is amplified by an amplifier so as to be compatible with the radiated power necessary for the emission of the radiating element of the radar.
  • the antenna radiation pattern is monitored.
  • the transmission direction of the antenna is thus controlled optically.
  • the light at the wavelength ⁇ 2 is transmitted to another photodetector PDRi, 2 by the chromatic separator. This emits a photocurrent resulting from the beating between the light at ⁇ 2 and ⁇ 2 + 2 ⁇ (f e + f o ).
  • This photocurrent is applied to a microwave mixer Mk which also receives a signal received by an antenna element.
  • a directional coupler CD makes it possible to couple, on the one hand, the photocurrent of PDRi, 1 to an antenna element in the transmission direction and to couple, on the other hand, a detection current of an antenna element (in the receiving direction) to the frequency mixer Mk.
  • the set of signals from photodetectors PDRI, 2 is in fact a local oscillator (homodyne or heterodyne) adapted to the direction of transmission of the antenna.
  • the signal received by an antenna element EDk is amplified and is applied together with the signal from PDR k2 , on a microwave mixer Mk.
  • the signal transmitted by the antenna element EDk is of the form S (t- ⁇ k )
  • the same element receives a signal R (t '+ ⁇ k ) which must therefore be mixed with a local oscillator S' (t '+ T + ⁇ k ).
  • FIG. 2 presents a network consisting of two radiating elements S 1 , S 2 separated by a distance d and fed by variable delays I 1 , I 2 .
  • An angle ⁇ represents the angle of aim or pointing of the beam.
  • a plane 21, perpendicular to the pointing direction 22 noted ⁇ , represents an equiphase plane, that is to say a plane where all the signals have the same phase.
  • the reception signals are transposed on an optical carrier.
  • the system being reciprocal, the condition on the delays to be introduced to capture a wave in the direction ⁇ is, in this case, strictly identical.
  • mixers are introduced behind each radiating element as shown in FIG. 3.
  • the mixers M1, M2 located behind each radiating element receive the signal in reception and the signal OL of FIG. oscillator local having suffered a delay I 1 ', I 2 '.
  • the intermediate frequency signals Fi1, Fi2 result from the mixing of the received signal at the RF transmission frequency and the OL signal of the local oscillator. This mixing results in subtraction of the frequencies and phases of the signals.
  • ⁇ RF and ⁇ OL respectively represent the pulses of the reception signals and the local oscillator, c representing the speed of light.
  • the phases ⁇ r1 and ⁇ r2 represent the phases received on the dipoles.
  • the frequency of the local oscillator OL is chosen outside the band of agility of the radar, in particular to avoid problems related to the aliasing spectrum. Therefore, the use in reception mode of such an architecture is restricted to low bandwidth radars, for example of the order of 10 MHz. It therefore appears necessary to make modifications to the operation of an architecture of the type of that of FIG. 1, so as to maintain the broadband property of the optically controlled architectures using time delays.
  • the local oscillator OL of frequency f OL is formed by mixing the frequency of transmission with an intermediate frequency f i made for example by a frequency generator common to all channels.
  • the two beams F1, F2 are both modulated at the same frequency f e , which is the transmission frequency.
  • FIG. 4 This figure shows the circuits associated with a radiating element EDk of order k.
  • the polarized light 41 at the output of the optical mixer ME undergoes a delay 42 by passing for example in the beam splitter SE and the delay circuit DCR as shown in FIG. 1.
  • the direct and complementary delays are printed on the same frequency e .
  • a chromatic separator MD is located in output of the delay elements 42, more particularly on each of the outputs of the DCR delay circuit. This separator MD separates the light at the wavelength ⁇ 1 from the light at the wavelength ⁇ 2 .
  • the light at the wavelength ⁇ 1 is transmitted to a first photodetector PD1 which emits a photocurrent of emission frequency f e to the radiating element EDk.
  • a directional coupler CD is interposed between this first photodetector PD1 and the radiating element EDk.
  • the light at the wavelength ⁇ 2 is transmitted to a second photodetector PD2 which emits a photocurrent of emission frequency f e to an input of a first microwave mixer Mk1.
  • the other input of this mixer receives the aforementioned intermediate frequency f i .
  • the output of the first mixer Mk1 gives a signal of frequency f e + f i , this signal acting as a local oscillator signal, the aforementioned frequency f OL being equal to f e + f i .
  • the output of the first mixer Mk1 is connected to the input of a second mixer Mk2 which therefore receives the frequency signal f e + f i .
  • the other input of the second mixer Mk2 is connected to an output of the directional coupler CD, knowing that one of its inputs is connected to the output of the first photodetector PD1 and the other input / output is connected to the radiating element ED1 .
  • This directional coupler therefore makes it possible, on the one hand, to couple in the direction of emission the photocurrent created by the first photodetector PD1 to the radiating element EDk, and secondly to couple in the sense of reception the radiating element.
  • the reception signal supplied to this second mixer Mk2, via the directional coupler CD has a frequency equal to that of the transmission signal f e increased by a Doppler frequency f D.
  • the reception signal entering the second mixer therefore has a frequency equal to f e + f D.
  • the output signal of the second mixer consequently has a frequency equal to f i + f D , that is to say a frequency equal to the sum of the intermediate frequency and the Doppler frequency. In other words, thus recovering at the output of the second mixer a signal at the intermediate frequency offset from the Doppler frequency. This signal is then processed by conventional processing means for radar operations.
  • FIG. 5 illustrates an equiphase plane 51 of a wave emitted from radiating elements EDk pointing towards a target 52.
  • Each radiating element is affected by a delay ⁇ k , produced in accordance with FIGS. 1 and 4.
  • the magnitude T represents the time of going and returning of a signal transmitted to the target 52, more particularly for a signal transmitted from a first group of radiating elements ED1, as illustrated in particular in FIG.
  • the second term 2 ⁇ f e ( ⁇ - ⁇ k ) of the relation (11) represents a phase ramp at the transmission frequency, which makes this phase follow an inclination law as a function of the transmission frequency. e .
  • f D is of the order of 10 3 Hz and where ⁇ and ⁇ k are of the order of 10 -8 s, the term f D ( ⁇ - ⁇ k ) is negligible.
  • the signals on the different channels associated with the different radiating elements EDk can therefore be summed in phase since there are no more terms dependent on the delays ⁇ k .
  • the first term of the relation (13) 2 ⁇ (f i + f D ) t gives the information on the speed of the target and the second term 2 ⁇ (f e + f D ) T, which is constant with respect to the time t , gives the information on the distance of the target, more precisely by the calculation of the magnitude T from which the distance is deduced.
  • the relationship (13) therefore shows that the signals from the different radiating elements EDk can be summed in phase, and this without bandwidth limitation. The property of very wide band allowed by an optical control is thus preserved for the reception.
  • an optical control device having a correlation architecture the dynamic stress on the optical links is replaced by a stability constraint on the stability signal of the local oscillator.
  • a double mixing architecture according to the invention makes it possible to avoid the transposition on an optical carrier of the reception signal, while benefiting from the broadband treatment offered by a time delay optical architecture.
  • FIG. 6 shows an alternative embodiment of a device according to the invention.
  • the first mixture is for example made by the second photodetector PD2.
  • the latter is therefore in this case both office of photodetection and microwave mixing. In this way, the number of mixers is halved for the entire antenna.
  • the generation of the additional delays necessary for the inclined local oscillator can also be obtained by doubling the number of pixels of the delay circuit DCR.
  • pxp pixels are for example assigned to the generation of the signals to be transmitted and pxp other pixels are each used for the generation of the local oscillator assigned to each radiating element.
  • This variant embodiment has the advantage of greater flexibility of use. In particular, it makes it possible to obtain different transmission and reception diagrams. The delay law applied to the local oscillator is totally independent of that applied to the transmitted signal.
  • ⁇ k e, ⁇ e j represent the delays applied to the issue with the channel k and channel j firstly respectively
  • ⁇ k OL, OL ⁇ j represent the delays applied respectively to the channel k and to the path j of the local oscillator on the other hand
  • FIG. 7 illustrates a third variant embodiment of a device according to the invention.
  • the functions of the two mixers Mk1, Mk2 are inverted.
  • the intermediate frequency signal f i is mixed with the frequency receiving signal f e + f D by the second mixer Mk2 to form a local oscillator signal at the output of this second mixer.
  • This local oscillator signal in reception is then mixed with the local oscillator signal in transmission, the frequency of which is in fact the transmission frequency f e , by the first mixer Mk1.
  • This second mixture gives a frequency signal f i + f D , that is to say an intermediate frequency increased by the Doppler frequency of the received signal.
  • This second mixture can also be carried out directly by the second photodetector PD2 according to the first variant presented with reference to FIG.

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)
  • Radar Systems Or Details Thereof (AREA)

Claims (7)

  1. Optische Steuervorrichtung für eine Antenne mit elektronischem Abtasten, die zu steuernde Strahlungselemente (ED1, EDk) aufweist, wobei diese Vorrichtung eine Einheit (DCR) optischer Schaltungen mit Verzögerungen (42) aufweist, die jeweils Folgendes empfangen:
    - ein erstes Lichtbündel (F1), das entlang einer ersten Richtung polarisiert ist und eine erste Wellenlänge (λ1) aufweist, wobei diesem ersten Bündel eine entsprechende Verzögerung zugewiesen ist, und
    - ein zweites Lichtbündel (F2), das entlang einer zweiten Richtung polarisiert ist und eine zweite Wellenlänge (λ2) aufweist;
    wobei die zwei Lichtbündel (F1, F2) mit Sendefrequenz (fe) moduliert sind,
    wobei jede optische Schaltung mit Verzögerungen (42) ergänzende Verzögerungen (ti, T-ti) im Vergleich zu einem bestimmten Zeitwert (T) auf dem Licht jeweils des ersten und des zweiten Bündels, das sie empfängt, induziert, wobei sich ein Farbaufteiler (CD) am Ausgang jeder optischen Schaltung mit Verzögerungen (42) befindet und das Licht mit der ersten Wellenlänge (λ1) von dem Licht mit der zweiten Wellenlänge (λ2) trennt, wobei jedes Strahlungselement der Antenne (EDk) mit dem Ausgang einer optischen Schaltung mit Verzögerungen (42) durch einen ersten Lichtsensor (PD1) gekoppelt ist,
    dadurch gekennzeichnet, dass für jedes Empfangssignal eines Strahlungselements (EDk) die Lokaloszillatorfrequenz (fOL) am Ausgang eines ersten Hyperfrequenzmischers (MK1) durch Mischen der Sendefrequenz (fe) und einer Zwischenfrequenz (fi) geliefert wird, dass dann die Frequenz des Signals, die an die Radarverarbeitungsmittel geliefert wird, mit Zwischenfrequenz erhöht um die Dopplerfrequenz (fD) des empfangenen Signals, am Ausgang eines zweiten Hyperfrequenzmischers (MK2) durch Mischen der Lokaloszillatorfrequenz mit der Frequenz des empfangenen Signals (fe + fD) erzielt wird.
  2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass:
    - das Licht mit der ersten Wellenlänge (λ1) an den ersten Lichtsensor (PD1) übertragen wird, der einen Fotostrom mit Sendefrequenz (fe) zu dem Strahlungselement (EDk) sendet, wobei ein Richtkoppler (CD) zwischen diesem ersten Lichtsensor (PD1) und dem Strahlungselement (EDk) eingefügt ist;
    - das Licht mit der zweiten Wellenlänge (λ2) an einen zweiten Lichtsensor (PD2) übertragen wird, der einen Fotostrom mit Sendefrequenz (fe) zu einem Eingang des ersten Hyperfrequenzmischers (Mk1) sendet, wobei der andere Eingang dieses Mischers eine Zwischenfrequenz (fi) empfängt, wobei das Ausgangssignal dieses Mischers als Lokaloszillatorsignal dient, wobei der Ausgang des ersten Mischers (Mk1) mit dem Eingang des zweiten Mischers (Mk2), der das Lokaloszillatorsignal empfängt, verbunden ist, wobei der andere Eingang des zweiten Mischers (Mk2) von dem Richtkoppler (CD) das von dem Strahlungselement (EDk) empfangene Signal empfängt, um auf seinen Ausgang ein Signal zu liefern, dessen Frequenz die Summe der Zwischenfrequenz (fi) und der Dopplerfrequenz (fD) des empfangenen Signals ist.
  3. Optische Steuervorrichtung für eine Antenne mit elektronischem Abtasten, die zu steuernde Strahlungselemente (ED1, EDk) aufweist, wobei diese Vorrichtung eine Einheit (DCR) optischer Schaltungen mit Verzögerungen (42) aufweist, die jeweils Folgendes empfangen:
    - ein erstes Lichtbündel (F1), das entlang einer ersten Richtung polarisiert ist und eine erste Wellenlänge (λ1) aufweist, wobei diesem ersten Bündel eine entsprechende Verzögerung zugewiesen ist, und
    - ein zweites Lichtbündel (F2), das entlang einer zweiten Richtung polarisiert ist und eine zweite Wellenlänge (λ2) aufweist,
    wobei die zwei Bündel (F1, F2) mit der Sendefrequenz fe moduliert sind,
    wobei jede optische Schaltung mit Verzögerungen (42) ergänzende Verzögerungen (ti, T-ti) im Vergleich zu einem bestimmten Zeitwert (T) an dem Licht des ersten und des zweiten Bündels, das sie empfängt, induziert, wobei sich am Ausgang jeder optischen Schaltung mit Verzögerungen (42) ein Farbaufteiler (CD) befindet und das Licht mit der ersten Wellenlänge (λ1) von dem Licht mit der zweiten Wellenlänge (λ2) trennt, wobei jedes Strahlungselement der Antenne (EDk) mit dem Ausgang einer optischen Schaltung mit Verzögerungen (42) durch einen ersten Lichtsensor (PD1) gekoppelt ist,
    dadurch gekennzeichnet, dass für jedes Empfangssignal eines Strahlungselements (EDk) die Lokaloszillatorfrequenz (fOL) am Ausgang eines ersten Hyperfrequenzmischers (Mk2) durch Mischen des empfangenen Signals (fe + fD) mit einer Zwischenfrequenz (fi) geliefert wird, dass dann die Frequenz des an die Radarverarbeitungsmittel gelieferten Signals, mit Zwischenfrequenz erhöht um die Dopplerfrequenz (fD) des empfangenen Signals, am Ausgang eines zweiten Hyperfrequenzmischers (Mk1) durch Mischen der Lokaloszillatorfrequenz mit der Sendefrequenz (fe) erzielt wird.
  4. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass:
    - das Licht mit der ersten Wellenlänge (λ1) an den ersten Lichtsensor (PD1) übertragen wird, der einen ersten Fotostrom mit Sendefrequenz (fe) zu dem Strahlungselement (EDk) sendet, wobei ein Richtkoppler (CD) zwischen diesen ersten Lichtsensor (PD1) und das Strahlungselement (EDk) eingefügt ist;
    - ein Eingang des ersten Hyperfrequenzmischers (Mk2) auf einem ersten Eingang das von dem Strahlungselement (EDk) über den Richtkoppler (CD) empfangene Signal empfängt, wobei der andere Eingang des ersten Mischers eine Zwischenfrequenz (fi) empfängt,
    - das Licht mit der zweiten Wellenlänge (λ2) an einen zweiten Lichtsensor (PD2) übertragen wird, der einen Fotostrom mit Sendefrequenz (fe) zu einem Eingang des zweiten Hyperfrequenzmischers (Mk1) sendet, wobei der andere Eingang dieses Mischers mit dem Ausgang des ersten Mischers (Mk2) verbunden ist, um ein Signal zu ergeben, dessen Frequenz die Summe der Zwischenfrequenz (fi) und der Dopplerfrequenz (fD) des empfangenen Signals ist.
  5. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der zweite Lichtsensor (PD2) auch ein Hyperfrequenzmischer (Mk1) ist.
  6. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Antenne pxp Strahlungselemente aufweist, wobei die Einheit der Schaltungen mit Verzögerungen (DCR) eine Einheit Licht-Raummodulatoren aufweist, die pxp Pixel aufweisen, die dem Erzeugen der zu sendenden Signale zugewiesen sind, wobei diese Einheit ferner pxp weitere Pixel aufweist, die jeweils zum Erzeugen des Lokaloszillators, der jedem Strahlungselement zugewiesen ist, verwendet werden.
  7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass die Größen τk e, τj e, die Verzögerungen darstellen, die auf das Senden jeweils an den Kanal k, der dem Strahlungselement mit Rang k zugewiesen ist, und an den Kanal j, der dem Strahlungselement mit Rang j zugewiesen ist, angewandt werden, und τk OL, τj OL die Verzögerungen darstellen, die jeweils an den Kanal k und an den Kanal j des Lokaloszillators andererseits angewandt werden, während die Frequenz fOL des Lokaloszillators der folgenden Gleichung entspricht: τ k OL - τ j OL f OL = τ k e - τ j e f e ,
    Figure imgb0018

    wobei fe die Frequenz des Sendesignals darstellt.
EP99401312A 1998-06-09 1999-06-01 Vorrichtung zur optischen Steuerung eines Breitbandradars zum Senden und Empfangen Expired - Lifetime EP0964476B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9807240 1998-06-09
FR9807240A FR2779579B1 (fr) 1998-06-09 1998-06-09 Dispositif de commande optique pour l'emission et la reception d'un radar large bande
US09/457,376 US6313792B1 (en) 1998-06-09 1999-12-09 Optical control device for electronic scanning antenna

Publications (2)

Publication Number Publication Date
EP0964476A1 EP0964476A1 (de) 1999-12-15
EP0964476B1 true EP0964476B1 (de) 2008-01-16

Family

ID=26234369

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99401312A Expired - Lifetime EP0964476B1 (de) 1998-06-09 1999-06-01 Vorrichtung zur optischen Steuerung eines Breitbandradars zum Senden und Empfangen

Country Status (3)

Country Link
US (1) US6313792B1 (de)
EP (1) EP0964476B1 (de)
FR (1) FR2779579B1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7609971B1 (en) 2004-12-06 2009-10-27 The United States Of America As Represented By The Secretary Of The Army Electro optical scanning multi-function antenna
FR2880204B1 (fr) * 2004-12-23 2007-02-09 Thales Sa Source laser a recombinaison coherente de faisceaux
FR2887082B1 (fr) * 2005-06-10 2009-04-17 Thales Sa Laser a semi-conducteur a tres faible bruit
US7645750B2 (en) * 2006-12-13 2010-01-12 Yung Shin Pharmaceutical Ind. Co., Ltd. Method of treating symptoms of hormonal variations
US7884777B2 (en) * 2007-12-31 2011-02-08 Tialinx, Inc. Free-space-optically-synchronized wafer scale antenna module osillators
FR2945348B1 (fr) 2009-05-07 2011-05-13 Thales Sa Procede d'identification d'une scene a partir d'images polarisees multi longueurs d'onde
WO2013112214A2 (en) 2011-10-18 2013-08-01 California Institute Of Technology Efficient active multi-drive radiator
US9921255B2 (en) 2012-02-13 2018-03-20 California Institute Of Technology Sensing radiation metrics through mode-pickup sensors
WO2013172896A2 (en) 2012-02-17 2013-11-21 California Institute Of Technology Dynamic polarization modulation and control
WO2014018927A1 (en) * 2012-07-26 2014-01-30 California Institute Of Technology Optically driven active radiator

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2659754B1 (fr) 1990-03-16 1994-03-25 Thomson Csf Dispositif de creation de retards optiques et application a un systeme de commande optique d'une antenne a balayage.
FR2670021B1 (fr) 1990-12-04 1994-03-04 Thomson Csf Procede de realisation de microlentilles pour applications optiques.
FR2674391B1 (fr) 1991-03-19 1993-06-04 Thomson Csf Dispositif d'intercorrelation large bande et dispositif mettant en óoeuvre ce procede.
FR2674708B1 (fr) 1991-03-29 1997-01-24 Thomson Csf Filtre transverse electrique a fonctionnement optique.
FR2681953B1 (fr) 1991-10-01 1993-11-05 Thomson Csf Correlateur de frequences.
US5231405A (en) * 1992-01-27 1993-07-27 General Electric Company Time-multiplexed phased-array antenna beam switching system
US5307073A (en) * 1992-11-13 1994-04-26 General Electric Co. Optically controlled phased array radar
FR2699295B1 (fr) 1992-12-15 1995-01-06 Thomson Csf Dispositif de traitement optique de signaux électriques.
WO1994029069A1 (fr) * 1993-06-04 1994-12-22 Seiko Epson Corporation Appareil et procede d'usinage au laser, et panneau a cristaux liquides
FR2725076B1 (fr) * 1994-09-27 1996-12-13 Thomson Csf Systeme de commande optique d'antenne a balayage electronique
US5936484A (en) 1995-02-24 1999-08-10 Thomson-Csf UHF phase shifter and application to an array antenna

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
FR2779579A1 (fr) 1999-12-10
EP0964476A1 (de) 1999-12-15
FR2779579B1 (fr) 2000-08-25
US6313792B1 (en) 2001-11-06

Similar Documents

Publication Publication Date Title
US7724179B2 (en) Miniaturized microwave-photonic receiver
EP0964476B1 (de) Vorrichtung zur optischen Steuerung eines Breitbandradars zum Senden und Empfangen
EP0315512A1 (de) Optische, dynamische Verbindungsvorrichtung für integrierte Schaltungen
EP3315994A1 (de) Mehrstrahliger fmcw-radar, insbesondere für kraftfahrzeug
EP3665744B1 (de) Vorrichtung zur optischen aufnahme eines von einer phasengesteuerten antennenanordnung kommenden signals und zugehöriges antennensystem
JP2022504680A (ja) Lidarシステムにおける光スイッチング
FR2622754A1 (fr) Systeme de transmission radiofrequence-optique, notamment dans le domaine des telecommunications spatiales
EP3577720B1 (de) Elementare antenne mit einer planaren strahlungsvorrichtung
FR2641657A1 (fr) Dispositif de communication a alimentation multiples, voies multiples
Burla et al. Integrated Photonic ${\rm K} _ {\rm u} $-Band Beamformer Chip With Continuous Amplitude and Delay Control
FR2663469A1 (fr) Dispositif d'alimentation a des elements rayonnants d'une antenne reseau, et son application a une antenne d'un systeme d'aide a l'atterrissage du type mls.
FR3062524A1 (fr) Antenne elementaire a dispositif rayonnant planaire
FR2548467A1 (fr) Radar a antenne reseau commandee en phase a reglage optique
WO2006123163A1 (en) Method to generate and detect terahertz radiation
EP0288988B1 (de) Adaptives Antennensystem für Hochfrequenz, insbesondere für den UHF-Bereich
Wang et al. Dual-band coherent microwave photonic radar using linear frequency modulated signals with arbitrary chirp rates
EP2260540B1 (de) Optische vorrichtung zur anwendung einer echtzeitverzögerung auf ein elektrisches funksignal und ihre verwendung bei der formung von sende- und empfangsstrahlen mit einer aktivantenne
EP2363729A1 (de) Erzeuger von rekonfigurierbaren Kanälen für Netzantenne
EP1096603B1 (de) Steuervorrichtung zur simultanen Mehrstrahlformung in einer Antenne mit elektronisch gesteuerter Ablenkung für Radarempfang
EP0708491B1 (de) Optisches Steuerungssystem für eine Antenne mit elektronischer Ablenkung
EP0083534B1 (de) MLS(Mikrowellenlandesystem) mit Entstörungsmittel
EP1233282B1 (de) Vorrichtung mit verteilten Sende- und Empfangsantennen, insbesondere für Radar mit synthetischer Emission und Strahlbildung
FR2688963A1 (fr) Emetteur-recepteur a detection coherente.
EP2575311B1 (de) System zur Demodulation
FR3138216A1 (fr) Dispositif radar millimétrique à modulation en fréquence composite

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20000529

AKX Designation fees paid

Free format text: DE FR GB IT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THALES

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 69937980

Country of ref document: DE

Date of ref document: 20080306

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20080421

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20081017

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120530

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120530

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120615

Year of fee payment: 14

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130601

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69937980

Country of ref document: DE

Effective date: 20140101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140101

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130601

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20150608

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630