EP0960425B1 - Current transformer - Google Patents

Current transformer Download PDF

Info

Publication number
EP0960425B1
EP0960425B1 EP98912256A EP98912256A EP0960425B1 EP 0960425 B1 EP0960425 B1 EP 0960425B1 EP 98912256 A EP98912256 A EP 98912256A EP 98912256 A EP98912256 A EP 98912256A EP 0960425 B1 EP0960425 B1 EP 0960425B1
Authority
EP
European Patent Office
Prior art keywords
current
current transformer
core
secondary circuit
transformer according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98912256A
Other languages
German (de)
French (fr)
Other versions
EP0960425A1 (en
Inventor
Norbert Preusse
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vacuumschmelze GmbH and Co KG
Original Assignee
Vacuumschmelze GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vacuumschmelze GmbH and Co KG filed Critical Vacuumschmelze GmbH and Co KG
Publication of EP0960425A1 publication Critical patent/EP0960425A1/en
Application granted granted Critical
Publication of EP0960425B1 publication Critical patent/EP0960425B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/42Circuits specially adapted for the purpose of modifying, or compensating for, electric characteristics of transformers, reactors, or choke coils
    • H01F27/422Circuits specially adapted for the purpose of modifying, or compensating for, electric characteristics of transformers, reactors, or choke coils for instrument transformers
    • H01F27/427Circuits specially adapted for the purpose of modifying, or compensating for, electric characteristics of transformers, reactors, or choke coils for instrument transformers for current transformers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/20Instruments transformers
    • H01F38/22Instruments transformers for single phase ac
    • H01F38/28Current transformers
    • H01F38/32Circuit arrangements

Definitions

  • the invention relates to a current transformer for alternating current, Mains alternating current, with direct current components, consisting from at least one converter core with a primary winding and at least one secondary winding, to which a load resistor is connected in parallel and the secondary circuit low resistance closes.
  • Such current transformers have long been known. These current transformers translate a primary current in the ratio of the number of turns between the primary and secondary windings to a secondary current, which is then detected potential-free by a measuring device or a digital evaluation circuit as a voltage drop across the load resistor.
  • the current range may be 100A primarily secondary to 50mA and the secondary current range may be of a standard size. 1 shows the basic circuit of such a current transformer 1.
  • a converter core 4 which may be constructed of band cores similar to power transformers, there is the primary winding 2, which leads to the current i to be measured prim , and a secondary winding 3, the measuring current i sec leads.
  • the secondary winding is low-resistance via a load resistor R B 5 completed, that is, the load resistance R B 5 is much smaller than the impedance of the secondary winding, that R B ⁇ ⁇ L.
  • the magnetic fields generated by the two windings in the core are and are - and this is the special feature of the current transformer - at any moment almost the same size and oppositely directed.
  • the converter core 4 is therefore only very slightly controlled in relation to the intensity of the magnetic field emitted by the primary current.
  • the ideal case is not fully achieved because of the eddy current losses and the Ummagnethneshnee in the converter core, losses in the windings and the load resistance.
  • the quality factor of the current transformer means the ratio of the loss resistance R v and the impedance of the secondary coil ⁇ L.
  • Equation (2) means the ratio between the magnetic drive of the converter core to the drive field.
  • the secondary current i sec therefore has a small phase shift relative to the driving current i prim and the amplitude of the magnetic flux density in the converter core is substantially lower than in a pure modulation only by the primary current.
  • Typical values for the factor R v / ⁇ L are between 1/100 and 1/500.
  • the magnetic flux density B in the converter core has a phase shift of almost -90 ° relative to the driving to the magnetic field or to the primary current. It therefore has maximum values near the zero crossings of the primary and secondary currents. These maximum values must not reach the saturation flux density B sat of the core material. Equation (2) and the material constant B sat define the current range detectable by a current transformer. The explanations given above are illustrated by FIG.
  • the current transformer of the type mentioned work therefore only with almost purely symmetrical alternating current.
  • One DC component generated by rectifying components in the Primary circuit can bring the transformer core very much fast in the magnetic saturation.
  • the current transformer is then no longer functional.
  • transformer cores used in energy meters should, but just a high DC tolerance is required. This requirement has so far been taken into account, that the transformer cores used are very oversized and possibly also with a primary shunt which ensures that only a part of the primary current is passed through the transducer core.
  • Object of the present invention is therefore to provide a current transformer to provide the type mentioned, the DC-tolerant and without oversized transformer cores is precisely functional.
  • the object is achieved by a current transformer of solved at the beginning, which characterized is that between a terminal of the secondary winding and the load resistor at least one semiconductor device is provided which periodically the secondary circuit for set a time interval to idle.
  • the secondary circuit is within each period open for a certain period, so that Within this time interval, a reduction of the nuclear magnetization can take place.
  • the internal time constant of the transformer core is decisive.
  • This inner time constant of the converter core becomes mainly is determined by eddy current effects in the converter core and is especially for band cores made of a soft magnetic, highly permeable, amorphous or nanocrystalline alloy with high saturation induction exist, very low.
  • the nuclear magnetization can be at such nuclei during a very short Period be dismantled and after closing of the secondary circuit can then be the magnetization cycle Restart in the original output value.
  • Opening the secondary circuit for a short period of time So has the function of a magnetic "reset" for the Core. Will this "reset" at a suitable location during each Period performed so has an asymmetry in the driving Alternating current, i. the DC components, not a negative one Influence on the current transformer behavior.
  • the Current transformer two converter cores each with a secondary circuit on.
  • These secondary circuits contain Diodes connected in anti-parallel. This will be in the one Secondary circuit the positive half-wave train and in the other Secondary circuit detects the negative half-wave train.
  • the current transformer has a single transducer core, which is provided with two secondary circuits.
  • these secondary circuits In turn, there are diodes that are antiparallel are switched and different Abkommutier exhibit. Essential is the different Abkommutier , that is, the diodes have a different Have blocking and transmission behavior.
  • both secondary circuits for a short time interval idle at the same time which in turn reduces the nuclear magnetization leads.
  • the current transformer has a converter core connected to a secondary circuit is provided, in which a secondary circuit provided two antiparallel connected diodes are that have different Abkommutier .
  • the present invention is as Semiconductor device, a semiconductor switch provided, whose Load path between the terminal of the secondary winding and the load resistor is connected, wherein the semiconductor switch is provided with a control circuit which the semiconductor switch such controls that the secondary circuit periodically for a short idle time interval is.
  • the circuit technically a little more complex is as the solutions mentioned above with the nonlinear passive semiconductor devices, i. the diodes, again has the advantage that the time intervals are set exactly and also to different requirements, i.e. So converted to various primary circuits can be.
  • a semiconductor switch are various active Semiconductor devices available, each in different Voltage, current and frequency ranges are their main uses Find.
  • MOSFETs used for blocking voltages up to available at 1000V Preferably, MOSFETs used for blocking voltages up to available at 1000V. Usually all become active Semiconductor components used up to DC voltages, which correspond to about half the reverse voltage, in the case of MOSFETs, ie up to DC voltages of 500 V. The current is limited to a maximum of about 30 A in these components. If these limits are sufficient for the intended application, can realize switching frequencies up to 100 kHz with MOSFETs become, for most of the present applications certainly enough.
  • bipolar transistors and thyristors in particular IGBTs (Insulated Gate Bipolar Transistor), MCTs (MOS Controlled Thyristors) and gate turn-off thyristors (GTOs).
  • IGBTs Insulated Gate Bipolar Transistor
  • MCTs MOS Controlled Thyristors
  • GTOs gate turn-off thyristors
  • the Semiconductor switch controlled such that the secondary circuit near the zero crossings of the secondary current periodically is idle for a short time interval.
  • Optimal is one Control such that the secondary circuit periodically opened shortly before the zero crossing of the secondary current and is closed exactly at the zero crossing of the secondary current.
  • the or the transformer cores form the shape of a toroidal core, so that the current transformer is typically designed as a plug-through converter is.
  • Plug-through converter means that the primary conductor, whose current is to be detected, simply through the opening of the toroidal core is guided. But it is also conceivable that the Primary conductor with a few turns through the toroidal core is dragged.
  • the secondary winding in the current transformers in the aforementioned type typically consists of approx. 1000 to 5000 turns.
  • the current transformer 1 consists of a primary conductor 17 which is guided through the opening 6 of a first annular band core 5.
  • the primary conductor 17 is further guided through the opening 12 of a second annular band core 11.
  • the first ring band core 5 and the second ring band core 11 have a secondary winding 7 and a secondary winding 13, respectively.
  • a first load resistor 8 is connected in parallel, so that this first secondary circuit is completed low resistance.
  • a load resistor 14 is also connected in parallel, so that this second secondary circuit is completed low impedance.
  • the diode 10 opens the secondary circuit for a complete Half-wave.
  • the second secondary circuit is also a Diode 16, which in the opposite direction, d. H. so anti-parallel, to the first diode 10 in the first secondary circuit is switched.
  • This diode 16 opens the second secondary circuit also for a complete half wave. Since the diode 16 but in the opposite direction is like the diode 10, the one diode detects the positive half waves while the other diode detects the negative half-waves. Thereby the two secondary circuits are phase-shifted by 180 ° idle, so that the two annular band cores. 5 and 11 can degauss in the respective idle phases.
  • the toroidal cores 5 and 11 consist here of thin bands, made of a highly permeable, amorphous, soft magnetic alloy exist, which ensures that the eddy current effects are extremely low.
  • the nuclear magnetization can therefore during the idling phases are dismantled and in phases, in which the diodes 10 and 16 conduct the secondary current can the magnetization cycle is new in the original output value kick off.
  • FIG. 4 shows a symmetrical primary current i prim and the current signal translated in the first secondary circuit. As can be seen, only the negative half-waves are translated due to the rectifying function of the diode. In the second secondary circuit, the signal is completely analogous to the signal in the first secondary circuit, only here, instead of the negative half-waves, the positive half-waves are translated.
  • FIG. 5 shows the current signal in the secondary circuit at a half-wave rectified primary current
  • Figure 6 shows the Current signal in the secondary circuit at a primary current
  • the one carries average DC component
  • the figure 7 the Current signal in the secondary circuit shows, wherein the primary current a carries high DC component.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Transformers For Measuring Instruments (AREA)
  • Inverter Devices (AREA)
  • Dc-Dc Converters (AREA)

Description

Die Erfindung betrifft einen Stromwandler für Wechselstrom, insbesondere Netz-Wechselstrom, mit Gleichstromanteilen, bestehend aus zumindest einem Wandlerkern mit einer Primärwicklung und zumindest einer Sekundärwicklung, zu der ein Bürdenwiderstand parallel geschaltet ist und den Sekundärstromkreis niederohmig abschließt.The invention relates to a current transformer for alternating current, Mains alternating current, with direct current components, consisting from at least one converter core with a primary winding and at least one secondary winding, to which a load resistor is connected in parallel and the secondary circuit low resistance closes.

Solche Stromwandler sind seit langem bekannt. Diese Stromwandler übersetzen einen Primärstrom im Verhältnis der Windungszahlen zwischen Primär- und Sekundärwicklung auf einen Sekundärstrom, der dann als Spannungsabfall am Bürdenwiderstand potentialfrei von einem Meßgerät oder einer digitalen Auswerteschaltung erfaßt wird. Der Strombereich kann zum Beispiel 100 A primär auf 50mA sekundär sein und der Sekundärstrombereich kann von genormter Größe sein. Figur 1 zeigt die prinzipielle Schaltung eines solchen Stromwandlers 1. Auf einem Wandlerkern 4, der ähnlich wie bei Leistungstransformatoren aus Bandkernen aufgebaut sein kann, befindet sich die Primärwicklung 2, die den zu messenden Strom iprim führt, und eine Sekundärwicklung 3, die den Meßstrom isec führt. Der Sekundärstrom isec stellt sich automatisch so ein, daß die Amperewindungen primär und sekundär im Idealfall gleich groß und entgegengesetzt gerichtet sind, zum Beispiel primär iprim = 600 A und Windungen nprim = 2, sekundär isec = 5 A und Windungen nsec = 240. Mit einer Phasenverschiebung zwischen Primärstrom und Sekundärstrom von 180°. Dies ergibt sich aus der Lenzschen Regel, nach der sicher der Induktionsstrom immer so einstellt, daß er die treibende Ursache zu hindern versucht.Such current transformers have long been known. These current transformers translate a primary current in the ratio of the number of turns between the primary and secondary windings to a secondary current, which is then detected potential-free by a measuring device or a digital evaluation circuit as a voltage drop across the load resistor. For example, the current range may be 100A primarily secondary to 50mA and the secondary current range may be of a standard size. 1 shows the basic circuit of such a current transformer 1. On a converter core 4, which may be constructed of band cores similar to power transformers, there is the primary winding 2, which leads to the current i to be measured prim , and a secondary winding 3, the measuring current i sec leads. The secondary current i sec is automatically set so that the ampere-turns are primarily and secondarily ideally equally large and oppositely directed, for example primary i prime = 600 A and turns n prim = 2, secondary i sec = 5 A and turns n sec = 240. With a phase shift between primary current and secondary current of 180 °. This follows from Lenz's rule, according to which certainly the induction current always sets so that he tries to prevent the driving cause.

Die Sekundärwicklung ist niederohmig über einen Bürdenwiderstend RB 5 abgeschlossen, das heißt der Bürdenwiderstand RB 5 ist sehr viel kleiner als die Impedanz der Sekundärwicklung, das heißt RB << ω L. Die magnetischen Felder, die durch die beiden Wicklungen im Kern erzeugt werden, sind - und das ist das besondere Merkmal des Stromwandlers - in jedem Augenblick fast gleich groß und einander entgegengesetzt gerichtet. Im Wandlerkern wird also nur ein sehr kleiner magnetischer Fluß erzeugt, der eine Sekundärspannung induziert, die gerade den Meßstrom durch den Bürdenwiderstand RB 5 aufrecht erhält. Der Wandlerkern 4 wird also im Verhältnis zur Stärke des vom Primärstrom ausgehenden Magnetfeldes nur sehr gering ausgesteuert.The secondary winding is low-resistance via a load resistor R B 5 completed, that is, the load resistance R B 5 is much smaller than the impedance of the secondary winding, that R B << ω L. The magnetic fields generated by the two windings in the core are and are - and this is the special feature of the current transformer - at any moment almost the same size and oppositely directed. In the converter core so only a very small magnetic flux is generated, which induces a secondary voltage, which just maintains the measuring current through the load resistor R B 5. The converter core 4 is therefore only very slightly controlled in relation to the intensity of the magnetic field emitted by the primary current.

Der Idealfall wird wegen der Wirbelstromverluste und der Ummagnetisierungsverluste im Wandlerkern, Verlusten in den Wicklungen und dem Bürdenwiderstand nicht vollständig erreicht. Unter dem Gütefaktor des Stromwandlers versteht man das Verhältnis aus dem Verlustwiderstand Rv und der Impedanz der Sekundärspule ωL. Für den Gütefaktor des Stromwandlers, der möglichst klein sein soll, gelten folgende Beziehungen: RV ωL = tan δ RV ωL B µµ0 H wobei tan δ die Phasenverschiebung zwischen iprim und isec, H and Amplitude der magnetischen Feldstärke, B and Amplitude der magnetischen Felddichte B, Rv der Verlustwiderstand des Stromwandlers bedeutet, in dem alle Verlustmechanismen zusammengefaßt sind, und unter dem Term auf der rechten Seite der Gleichung (2) das Verhältnis zwischen der magnetischen Aussteuerung des Wandlerkerns zum Ansteuerfeld bedeutet.The ideal case is not fully achieved because of the eddy current losses and the Ummagnetisierungsverluste in the converter core, losses in the windings and the load resistance. The quality factor of the current transformer means the ratio of the loss resistance R v and the impedance of the secondary coil ωL. For the quality factor of the current transformer, which should be as small as possible, the following relationships apply: R V ω L = tan δ R V ω L B μμ 0 H where tan δ the phase shift between i prim and i sec , H and amplitude of the magnetic field strength, B and amplitude of the magnetic field density B, R v means the loss resistance of the current transformer, in which all loss mechanisms are summarized, and under the term on the right side Equation (2) means the ratio between the magnetic drive of the converter core to the drive field.

Der Sekundärstrom isec weist demnach eine kleine Phasenverschiebung gegenüber dem ansteuernden Strom iprim auf und die Amplitude der magnetischen Flußdichte im Wandlerkern ist wesentlich geringer als bei einer reinen Aussteuerung nur durch den Primärstrom. Typische Werte für den Faktor Rv/ωL liegen zwischen 1/100 und 1/500. The secondary current i sec therefore has a small phase shift relative to the driving current i prim and the amplitude of the magnetic flux density in the converter core is substantially lower than in a pure modulation only by the primary current. Typical values for the factor R v / ωL are between 1/100 and 1/500.

Die magnetische Flußdichte B im Wandlerkern weist eine Phasenverschiebung von nahezu -90° relativ zum Ansteuern zum Magnetfeld bzw. zum Primärstrom auf. Sie hat Maximalwerte also jeweils nahe der Nulldurchgänge von Primärstrom und Sekundärstrom. Diese Maximalwerte dürfen die Sättigungsflußdichte Bsat des Kernmaterials nicht erreichen. Durch die Gleichung (2) und die Materialkonstante Bsat wird der von einem Stromwandler erfaßbare Strombereich festgelegt. Die oben gegebenen Erläuterungen werden durch die Figur 2 veranschaulicht.The magnetic flux density B in the converter core has a phase shift of almost -90 ° relative to the driving to the magnetic field or to the primary current. It therefore has maximum values near the zero crossings of the primary and secondary currents. These maximum values must not reach the saturation flux density B sat of the core material. Equation (2) and the material constant B sat define the current range detectable by a current transformer. The explanations given above are illustrated by FIG.

Die Stromwandler der eingangs genannten Art funktionieren demnach nur bei nahezu rein symmetrischem Wechselstrom. Ein Gleichstromanteil, der durch gleichrichtende Bauelemente im Primärstromkreis auftreten kann, bringt den Wandlerkern sehr schnell in die magnetische Sättigung. Der Stromwandler ist dann nicht mehr funktionsfähig.The current transformer of the type mentioned work therefore only with almost purely symmetrical alternating current. One DC component generated by rectifying components in the Primary circuit can bring the transformer core very much fast in the magnetic saturation. The current transformer is then no longer functional.

Dies soll im folgendem anhand eines Beispiels erläutert werden:This will be explained in the following with an example:

Befindet sich im Primärstromkreis eine Diode, so findet dort eine reine Halbwellengleichrichtung statt. Der Gleichstromanteil dieser Stromform beträgt i==1/πí. Ein Stromwandler, der für eine Wechselstromamplitude von 100 A ausgelegt ist, kann demnach bei einem Halbwellenstrom mit einer Amplitude von 1 A schon nicht mehr sauber arbeiten.If there is a diode in the primary circuit, then pure half-wave rectification takes place there. The DC component of this current form is i = = 1 / π í . A current transformer designed for an AC amplitude of 100 A can therefore no longer work properly in a half-wave current with an amplitude of 1 A.

Von Stromwandlern, die in Energiezählern eingesetzt werden sollen, wird aber gerade eine hohe Gleichstromtoleranz gefordert. Dieser Forderung wurde bisher dadurch Rechnung getragen, daß die verwendeten Wandlerkerne sehr stark überdimensioniert und eventuell darüber hinaus noch mit einem Primärshunt verbunden wurden, der dafür sorgt, daß nur ein Teil des Primärstroms durch den Wandlerkern geleitet wird. From current transformers used in energy meters should, but just a high DC tolerance is required. This requirement has so far been taken into account, that the transformer cores used are very oversized and possibly also with a primary shunt which ensures that only a part of the primary current is passed through the transducer core.

Aufgabe der vorliegenden Erfindung ist es daher, einen Stromwandler der eingangs genannten Art bereitzustellen, der gleichstromtolerant ist und ohne überdimensionierte Wandlerkerne präzise funktionstüchtig ist.Object of the present invention is therefore to provide a current transformer to provide the type mentioned, the DC-tolerant and without oversized transformer cores is precisely functional.

Erfindungsgemäß wird die Aufgabe durch einen Stromwandler der eingangs genannten Art gelöst, der dadurch gekennzeichnet ist, daß zwischen einer Anschlußklemme der Sekundärwicklung und dem Bürdenwiderstand zumindest ein Halbleiterbauelement vorgesehen ist, welches den Sekundärstromkreis periodisch für ein Zeitintervall in den Leerlauf versetzt.According to the invention the object is achieved by a current transformer of solved at the beginning, which characterized is that between a terminal of the secondary winding and the load resistor at least one semiconductor device is provided which periodically the secondary circuit for set a time interval to idle.

Durch diese Maßnahme wird der Sekundärstromkreis innerhalb jeder Periode für einen bestimmten Zeitraum geöffnet, so daß innerhalb dieses Zeitintervalls ein Abbau der Kernmagnetisierung stattfinden kann. Für den Abbau der Kernmagnetisierung ist dann die innere Zeitkonstante des wandlerkerns maßgebend. Diese innere Zeitkonstante des Wandlerkerns wird hauptsächlich durch Wirbelstromeffekte im Wandlerkern bestimmt und ist insbesondere bei Bandkernen, die aus einer weichmagnetischen, hochpermeablen, amorphen oder nanokristallinen Legierung mit hoher Sättigungsinduktion bestehen, sehr gering. Die Kernmagnetisierung kann bei solchen Kernen während eines sehr kurzen Zeitraumes wieder abgebaut werden und nach dem Schließen des Sekundärstromkreises kann dann der Magnetisierungszyklus im ursprünglichen Ausgangswert neu starten.By this measure, the secondary circuit is within each period open for a certain period, so that Within this time interval, a reduction of the nuclear magnetization can take place. For the removal of nuclear magnetization then the internal time constant of the transformer core is decisive. This inner time constant of the converter core becomes mainly is determined by eddy current effects in the converter core and is especially for band cores made of a soft magnetic, highly permeable, amorphous or nanocrystalline alloy with high saturation induction exist, very low. The nuclear magnetization can be at such nuclei during a very short Period be dismantled and after closing of the secondary circuit can then be the magnetization cycle Restart in the original output value.

Das Öffnen des Sekundärstromkreises für einen kurzen Zeitraum hat also die Funktion eines magnetischen "Reset" für den Kern. Wird dieses "Reset" an geeigneter Stelle während jeder Periode durchgeführt, so hat eine Asymmetrie im ansteuernden Wechselstrom, d.h. die Gleichstromanteile, keinen negativen Einfluß auf das Stromwandlerverhalten.Opening the secondary circuit for a short period of time So has the function of a magnetic "reset" for the Core. Will this "reset" at a suitable location during each Period performed so has an asymmetry in the driving Alternating current, i. the DC components, not a negative one Influence on the current transformer behavior.

In einer Ausführung der vorliegenden Erfindung weist der Stromwandler zwei Wandlerkerne mit jeweils einem Sekundärstromkreis auf. In diesen Sekundärstromkreisen befinden sich Dioden, die antiparallel geschaltet sind. Dadurch wird im einen Sekundärstromkreis der positive Halbwellenzug und im anderen Sekundärstromkreis der negative Halbwellenzug erfaßt.In one embodiment of the present invention, the Current transformer two converter cores each with a secondary circuit on. These secondary circuits contain Diodes connected in anti-parallel. This will be in the one Secondary circuit the positive half-wave train and in the other Secondary circuit detects the negative half-wave train.

In einer alternativen Ausführungsform der vorliegenden Erfindung weist der Stromwandler einen einzelnen Wandlerkern auf, der mit zwei Sekundärstromkreisen versehen ist. In diesen Sekundärstromkreisen befinden sich wiederum Dioden, die antiparallel geschaltet sind und verschiedenes Abkommutierverhalten aufweisen. Wesentlich dabei ist das verschiedene Abkommutierverhalten, d.h., daß die Dioden ein unterschiedliches Sperr- und Durchlaßverhalten aufweisen. Dadurch befinden sich beide Sekundärstromkreise für ein kurzes Zeitintervall gleichzeitig im Leerlauf, was wiederum zum Abbau der Kernmagnetisierung führt.In an alternative embodiment of the present invention the current transformer has a single transducer core, which is provided with two secondary circuits. In these secondary circuits In turn, there are diodes that are antiparallel are switched and different Abkommutierverhalten exhibit. Essential is the different Abkommutierverhalten, that is, the diodes have a different Have blocking and transmission behavior. Thereby are both secondary circuits for a short time interval idle at the same time, which in turn reduces the nuclear magnetization leads.

In einer Weiterentwicklung der vorliegenden Erfindung weist der Stromwandler einen Wandlerkern auf, der mit einem Sekundärstromkreis versehen ist, wobei in diesem einen Sekundärstromkreis zwei antiparallel geschaltete Dioden vorgesehen sind, die verschiedenes Abkommutierverhalten aufweisen. Diese Ausführungsform arbeitet wie die zuletzt genannte Ausführungsform, hat aber den Vorteil, daß nur ein einzelner Sekundärstromkreis, d.h. eine einzelne Sekundärwicklung und ein einzelner Bürdenwiderstand benötigt werden.In a further development of the present invention the current transformer has a converter core connected to a secondary circuit is provided, in which a secondary circuit provided two antiparallel connected diodes are that have different Abkommutierverhalten. These Embodiment works like the latter embodiment, but has the advantage that only a single secondary circuit, i.e. a single secondary winding and a single burden resistor needed.

In einer Weiterentwicklung der vorliegenden Erfindung ist als Halbleiterbauelement ein Halbleiterschalter vorgesehen, dessen Laststrecke zwischen der Anschlußklemme der Sekundärwicklung und dem Bürdenwiderstand geschaltet ist, wobei der Halbleiterschalter mit einer Steuerschaltung versehen ist, welche den Halbleiterschalter derart ansteuert, daß der Sekundärstromkreis periodisch für ein kurzes Zeitintervall im Leerlauf ist. Diese Lösung, die schaltungstechnisch etwas aufwendiger ist als die eingangs genannten Lösungen mit den nichtlinearen passiven Halbleiterbauelementen, d.h. den Dioden, hat wiederum den Vorteil, daß die Zeitintervalle exakt eingestellt werden können und auch auf verschiedene Anforderungen, d.h. also auf verschiedenartige Primärstromkreise umgestellt werden können. Als Halbleiterschalter stehen verschiedene aktive Halbleiterbauelemente zur Verfügung, die jeweils in verschiedenen Spannungs-, Strom- und Frequenzbereichen ihre Einsatzschwerpunkte finden. Im untersten Leistungsbereich werden vorzugsweise MOSFETs eingesetzt, die für Sperrspannungen bis zu 1000 V erhältlich sind. Üblicherweise werden alle aktiven Halbleiterbaulelemente bis zu Gleichspannungen eingesetzt, die etwa der halben Sperrspannung entsprechen, im Falle der MOSFETs, also bis zu Gleichspannungen von 500 V. Der Strom ist bei diesen Bauelementen maximal auf ca. 30 A beschränkt. Sofern diese Grenzwerte für die vorgesehene Anwendung ausreichen, können mit MOSFETs Schaltfrequenzen bis zu 100 kHz realisiert werden, was für die meisten vorliegenden Anwendungen sicherlich ausreichend ist. Es ist jedoch auch denkbar, Bipolartransistoren und Thyristoren, insbesondere IGBTs (Insulated Gate Bipolar Transistor), MCTs (MOS Controlled Thyristors) sowie GTOs (Gate Turn Off Thyristors), zu verwenden.In a further development of the present invention is as Semiconductor device, a semiconductor switch provided, whose Load path between the terminal of the secondary winding and the load resistor is connected, wherein the semiconductor switch is provided with a control circuit which the semiconductor switch such controls that the secondary circuit periodically for a short idle time interval is. This solution, the circuit technically a little more complex is as the solutions mentioned above with the nonlinear passive semiconductor devices, i. the diodes, again has the advantage that the time intervals are set exactly and also to different requirements, i.e. So converted to various primary circuits can be. As a semiconductor switch are various active Semiconductor devices available, each in different Voltage, current and frequency ranges are their main uses Find. Be in the lowest performance range Preferably, MOSFETs used for blocking voltages up to available at 1000V. Usually all become active Semiconductor components used up to DC voltages, which correspond to about half the reverse voltage, in the case of MOSFETs, ie up to DC voltages of 500 V. The current is limited to a maximum of about 30 A in these components. If these limits are sufficient for the intended application, can realize switching frequencies up to 100 kHz with MOSFETs become, for most of the present applications certainly enough. However, it is also conceivable bipolar transistors and thyristors, in particular IGBTs (Insulated Gate Bipolar Transistor), MCTs (MOS Controlled Thyristors) and gate turn-off thyristors (GTOs).

In einer Weiterentwicklung dieser Ausführungsform wird der Halbleiterschalter derart angesteuert, daß der Sekundärstromkreis nahe der Nulldurchgänge des Sekundärstroms periodisch für ein kurzes Zeitintervall im Leerlauf ist. Optimal ist eine Ansteuerung derart, daß der Sekundärstromkreis periodisch kurz vor dem Nulldurchgang des Sekundärstroms geöffnet und exakt im Nulldurchgang des Sekundärstroms geschlossen wird.In a further development of this embodiment, the Semiconductor switch controlled such that the secondary circuit near the zero crossings of the secondary current periodically is idle for a short time interval. Optimal is one Control such that the secondary circuit periodically opened shortly before the zero crossing of the secondary current and is closed exactly at the zero crossing of the secondary current.

Bei kleinen Primärströmen, d.h. bei Primärströmen, die den Wandlerkern nicht sättigen, ist es auch denkbar, den Halbleiterschalter während des gesamten Stromdurchgangs zu öffnen und an der offenen Sekundärspule die Spannung abzugreifen und für die Leistungsberechnung heranzuziehen. Durch diese Maßnahme wird eine wesentlich höhere Genauigkeit im Bereich kleiner Primärströme bei einer über etwaig angeschlossene Meßgeräte erfolgenden Leistungsberechnung erzielt. For small primary currents, i. at primary currents that the Do not saturate converter core, it is also possible to use the semiconductor switch to open during the entire current passage and to tap the voltage at the open secondary coil and for the performance calculation. By this measure will have a much higher accuracy in the field small primary currents at one connected over any Achieved metering performance calculation.

Um ein sehr kleines Bauvolumen zu erzielen, weist der oder die Wandlerkerne die Gestalt eines Ringbandkerns auf, so daß der Stromwandler typischerweise als Durchsteckwandler ausgeführt ist. Durchsteckwandler heißt, daß der Primärleiter, dessen Strom erfaßt werden soll, einfach durch die Öffnung des Ringkerns geführt wird. Es ist aber auch denkbar, daß der Primärleiter mit einigen wenigen Windungen durch den Ringkern geschleift wird. Die Sekundärwicklung bei den Stromwandlern bei der eingangs genannten Art besteht typischerweise aus ca. 1000 bis 5000 Windungen.To achieve a very small volume, the or the transformer cores form the shape of a toroidal core, so that the current transformer is typically designed as a plug-through converter is. Plug-through converter means that the primary conductor, whose current is to be detected, simply through the opening of the toroidal core is guided. But it is also conceivable that the Primary conductor with a few turns through the toroidal core is dragged. The secondary winding in the current transformers in the aforementioned type typically consists of approx. 1000 to 5000 turns.

Die Erfindung ist in der Zeichnung beispielsweise veranschaulicht und im Nachstehenden im einzelnen anhand der Zeichnung beschrieben. Es zeigen:

Figur 3
in schematischer Darstellung eine perspektivische Ansicht eines Stromwandlers gemäß der vorliegenden Erfindung und die
Figuren 4 bis 7
die Gegenüberstellung verschiedener Primärströme gegenüber verschiedenen Sekundärströmen.
The invention is illustrated in the drawing, for example, and described in detail below with reference to the drawing. Show it:
FIG. 3
a schematic view of a perspective view of a current transformer according to the present invention and the
FIGS. 4 to 7
the comparison of different primary currents against different secondary currents.

Nach der Zeichnung besteht der Stromwandler 1 gemäß der vorliegenden Erfindung aus einem Primärleiter 17 der durch die Öffnung 6 eines ersten Ringbandkerns 5 geführt ist. Dieser Primärleiter 4 kann als Primärwicklung 2 mit der Windung Nprim = 1 aufgefaßt werden. Der Primärleiter 17 ist ferner durch die Öffnung 12 eines zweiten Ringbandkerns 11 geführt. Der erste Ringbandkern 5 und der zweite Ringbandkern 11 weisen eine Sekundärwicklung 7 beziehungsweise eine Sekundärwicklung 13 auf. Zu der ersten Sekundärwicklung 7 ist eine erster Bürdenwiderstand 8 parallel geschaltet, so daß dieser erste Sekundärstromkreis niederohmig abgeschlossen ist. Zu der zweiten Sekundärwicklung 13 ist ebenfalls ein Bürdenwiderstand 14 parallel geschaltet, so daß auch dieser zweite Sekundärstromkreis niederohmig abgeschlossen ist. According to the drawing, the current transformer 1 according to the present invention consists of a primary conductor 17 which is guided through the opening 6 of a first annular band core 5. This primary conductor 4 can be regarded as a primary winding 2 with the winding N prim = 1. The primary conductor 17 is further guided through the opening 12 of a second annular band core 11. The first ring band core 5 and the second ring band core 11 have a secondary winding 7 and a secondary winding 13, respectively. To the first secondary winding 7, a first load resistor 8 is connected in parallel, so that this first secondary circuit is completed low resistance. To the second secondary winding 13, a load resistor 14 is also connected in parallel, so that this second secondary circuit is completed low impedance.

Im ersten Sekundärstromkreis befindet sich eine Diode 10. Die Diode 10 öffnet den Sekundärkreis für eine komplette Halbwelle.In the first secondary circuit is a diode 10th The diode 10 opens the secondary circuit for a complete Half-wave.

Im zweiten Sekundärstromkreis befindet sich ebenfalls eine Diode 16, die in entgegengesetzter Richtung, d. h. also antiparallel, zur ersten Diode 10 im ersten Sekundärstromkreis geschaltet ist. Diese Diode 16 öffnet den zweiten Sekundärkreis ebenfalls für eine komplette Halbwelle. Da die Diode 16 aber in entgegengesetzter Richtung geschaltet ist wie die Diode 10, erfaßt die eine Diode die positiven Halbwellen, während die andere Diode die negativen Halbwellen erfaßt. Dadurch sind die beiden Sekundärstromkreise um 180° phasenverschoben im Leerlauf, so daß sich die beiden Ringbandkerne 5 und 11 in den jeweiligen Leerlaufphasen entmagnetisieren können.In the second secondary circuit is also a Diode 16, which in the opposite direction, d. H. so anti-parallel, to the first diode 10 in the first secondary circuit is switched. This diode 16 opens the second secondary circuit also for a complete half wave. Since the diode 16 but in the opposite direction is like the diode 10, the one diode detects the positive half waves while the other diode detects the negative half-waves. Thereby the two secondary circuits are phase-shifted by 180 ° idle, so that the two annular band cores. 5 and 11 can degauss in the respective idle phases.

Maßgeblich für den Abbau der Kernmagnetisierung ist dabei die innere Zeitkonstante der Ringbandkerne. Diese wird hauptsächlich durch Wirbelstromeffekte in den Ringbandkernen bestimmt. Die Ringbandkerne 5 und 11 bestehen hier aus dünnen Bändern, die aus einer hochpermeablen, amorphen, weichmagnetischen Legierung bestehen, was gewährleistet, daß die Wirbelstromeffekte extrem gering sind. Die Kernmagnetisierung kann also während der Leerlaufphasen abgebaut werden und in den Phasen, in denen die Dioden 10 und 16 den Sekundärstrom leiten, kann der Magnetisierungszyklus im ursprünglichen Ausgangswert neu beginnen.Decisive for the reduction of nuclear magnetization is the internal time constant of the toroidal cores. This is mainly determined by eddy current effects in the toroidal cores. The toroidal cores 5 and 11 consist here of thin bands, made of a highly permeable, amorphous, soft magnetic alloy exist, which ensures that the eddy current effects are extremely low. The nuclear magnetization can therefore during the idling phases are dismantled and in phases, in which the diodes 10 and 16 conduct the secondary current can the magnetization cycle is new in the original output value kick off.

Die Figur 4 zeigt einen symmetrischen Primärstrom iprim und das im ersten Sekundärkreis übersetzte Stromsignal. Wie zu ersehen ist, werden lediglich die negativen Halbwellen aufgrund der gleichrichtenden Funktion der Diode übersetzt. Im zweiten Sekundärstromkreis ist das Signal völlig analog zum Signal im ersten Sekundärstromkreis, lediglich werden hier anstatt der negativen Halbwellen die positiven Halbwellen übersetzt. FIG. 4 shows a symmetrical primary current i prim and the current signal translated in the first secondary circuit. As can be seen, only the negative half-waves are translated due to the rectifying function of the diode. In the second secondary circuit, the signal is completely analogous to the signal in the first secondary circuit, only here, instead of the negative half-waves, the positive half-waves are translated.

Figur 5 zeigt das Stromsignal im Sekundärkreis bei einem halbwellengleichgerichteten Primärstrom, Figur 6 zeigt das Stromsignal im Sekundärkreis bei einem Primärstrom, der einen mittleren Gleichstromanteil trägt, sowie die Figur 7 das Stromsignal im Sekundärkreis zeigt, wobei der Primärstrom einen hohen Gleichstromanteil trägt. Durch die gleichrichtende Funktion der Diode im ersten Sekundärstromkreis und die entgegengesetzt gleichrichtende Funktion der Diode im zweiten Sekundärstromkreis werden die Asymmetrien vollkommen übertragen, ohne daß dabei die asymmetrischen Anteile den Kern in die Sättigung treiben, da die Ringbandkerne in den Leerlaufphasen genügend Zeit haben, ihre aufgebaute Magnetisierung wieder abzubauen.FIG. 5 shows the current signal in the secondary circuit at a half-wave rectified primary current, Figure 6 shows the Current signal in the secondary circuit at a primary current, the one carries average DC component, as well as the figure 7 the Current signal in the secondary circuit shows, wherein the primary current a carries high DC component. By the rectifying Function of the diode in the first secondary circuit and the opposite rectifying function of the diode in the second Secondary circuit, the asymmetries are completely transmitted, without causing the asymmetric portions of the core in drive the saturation, since the toroidal cores in the idle phases have enough time, their built-up magnetization to dismantle again.

Claims (11)

  1. Current transformer (1) for alternating current with direct-current components, consisting of at least one transformer core (4) with a primary winding (2) and at least one secondary winding (3) to which a load resistor (5) which closes the secondary circuit with low resistance is connected in parallel, characterised in that at least one semiconductor component which periodically sets the secondary circuit at no-load for a short time interval is provided between a terminal of the secondary winding (3) and the load resistor (5).
  2. Current transformer according to claim 1, characterised in that the current transformer (1) has two transformer cores (5, 11) each having a secondary circuit and that the semiconductor components situated in the secondary circuits are diodes (10, 16) connected antiparallel.
  3. Current transformer according to claim 1, characterised in that the current transformer has a transformer core with two secondary circuits and that the semiconductor components situated in the secondary circuits are diodes connected antiparallel and exhibiting different decommutation behaviour.
  4. Current transformer according to claim 1, characterised in that the current transformer has a transformer core with a secondary circuit and that two diodes connected antiparallel and exhibiting different decommutation behaviour are arranged in the secondary circuit.
  5. Current transformer according to claim 1, characterised in that a semiconductor switch the load section of which is connected between the terminal of the secondary winding and the load resistor is provided as the semiconductor component, the semiconductor switch being provided with a control circuit which controls the semiconductor switch in such a manner that the secondary circuit is periodically at no-load for a short time interval.
  6. Current transformer according to claim 5, characterised in that the semiconductor switch is controlled in such a manner that the secondary circuit is periodically at no-load for a short time interval close to the secondary current zero.
  7. Current transformer according to claim 6, characterised in that the semiconductor switch is controlled in such a manner that the secondary circuit is periodically opened shortly before the secondary current zero and is closed at the secondary current zero.
  8. Current transformer according to one of claims 1 to 7, characterised in that a strip-wound core with high saturation induction consisting of a soft-magnetic, highly permeable material is provided as the transformer core.
  9. Current transformer according to claim 8, characterised in that an amorphous or nanocrystalline alloy is provided as the material.
  10. Current transformer according to one of claims 1 to 9, characterised in that the transformer core is in the form of a toroidal core.
  11. Current transformer according to claim 10, characterised in that the current transformer is designed as a straight-through transformer.
EP98912256A 1997-02-17 1998-02-17 Current transformer Expired - Lifetime EP0960425B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19706127 1997-02-17
DE19706127A DE19706127C2 (en) 1997-02-17 1997-02-17 Power converter
PCT/DE1998/000466 WO1998036432A1 (en) 1997-02-17 1998-02-17 Current transformer

Publications (2)

Publication Number Publication Date
EP0960425A1 EP0960425A1 (en) 1999-12-01
EP0960425B1 true EP0960425B1 (en) 2005-02-09

Family

ID=7820556

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98912256A Expired - Lifetime EP0960425B1 (en) 1997-02-17 1998-02-17 Current transformer

Country Status (4)

Country Link
US (1) US6028422A (en)
EP (1) EP0960425B1 (en)
DE (2) DE19706127C2 (en)
WO (1) WO1998036432A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023076396A1 (en) * 2021-10-26 2023-05-04 Vertiv Corporation Single package, dual current transformer for load and residual current measurement

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6160697A (en) * 1999-02-25 2000-12-12 Edel; Thomas G. Method and apparatus for magnetizing and demagnetizing current transformers and magnetic bodies
US6522517B1 (en) 1999-02-25 2003-02-18 Thomas G. Edel Method and apparatus for controlling the magnetization of current transformers and other magnetic bodies
DE10110475A1 (en) * 2001-03-05 2002-09-26 Vacuumschmelze Gmbh & Co Kg Current sensor transformer
US6479976B1 (en) 2001-06-28 2002-11-12 Thomas G. Edel Method and apparatus for accurate measurement of pulsed electric currents utilizing ordinary current transformers
US20040036461A1 (en) * 2002-08-22 2004-02-26 Sutherland Peter Edward Switchgear and relaying configuration
US7048809B2 (en) * 2003-01-21 2006-05-23 Metglas, Inc. Magnetic implement having a linear BH loop
US6954060B1 (en) 2003-03-28 2005-10-11 Edel Thomas G a-c current transformer functional with a d-c current component present
DE102005007971B4 (en) * 2004-02-27 2008-01-31 Magnetec Gmbh Current transformer with compensation winding
US7242157B1 (en) * 2005-02-11 2007-07-10 Edel Thomas G Switched-voltage control of the magnetization of current transforms and other magnetic bodies
US20070109088A1 (en) * 2005-11-11 2007-05-17 Realtronics/Edgecom Snap-On Parasitic Power Line Transformer
DE202007019127U1 (en) 2007-03-19 2010-11-04 Balfour Beatty Plc Device for measuring a direct current component of a current flowing in conductors of alternating current paths superimposed by an alternating current component
DE102008051561B4 (en) * 2008-10-14 2013-06-20 Vacuumschmelze Gmbh & Co. Kg Method for producing a current detection device
US8542469B2 (en) 2010-08-30 2013-09-24 Honeywell International, Inc. Methodology for protection of current transformers from open circuit burden
US8929053B2 (en) * 2010-09-13 2015-01-06 William Henry Morong Direct-current current transformer
US20140160820A1 (en) * 2012-12-10 2014-06-12 Grid Sentry LLC Electrical Current Transformer for Power Distribution Line Sensors
CN104064343A (en) * 2014-07-02 2014-09-24 北京德威特继保自动化科技股份有限公司 Current mutual inductance device and current transformer
US9753469B2 (en) * 2016-01-11 2017-09-05 Electric Power Research Institute, Inc. Energy harvesting device
US10644536B2 (en) 2017-11-28 2020-05-05 Cummins Power Generation Ip, Inc. Cooling systems and methods for automatic transfer switch

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2095175B1 (en) * 1970-06-15 1975-07-04 Electricite De France
US3701003A (en) * 1970-12-14 1972-10-24 Gen Electric Current transformers with improved coaxial feed
US3777217A (en) * 1972-01-10 1973-12-04 L Groce Fault indicator apparatus for fault location in an electrical power distribution system
DE3218823C2 (en) * 1982-04-22 1984-06-20 LGZ Landis & Gyr Zug AG, Zug Measuring transducer arrangement with two magnetic cores
US4591962A (en) * 1983-12-16 1986-05-27 International Telephone And Telegraph Corporation Regulated power supply for rapid no-load to full-load transitions
FR2566169B1 (en) * 1984-06-15 1987-04-17 Omera Segid DEVICE FOR PROVIDING GALVANIC ISOLATION BETWEEN A PULSE GENERATOR AND A LOAD
US4876624A (en) * 1988-07-13 1989-10-24 Westinghouse Electric Corp. Apparatus for detecting unsymmetrical bipolar waveforms
DE19532197C2 (en) * 1995-08-31 2000-05-18 Siemens Ag Power converter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023076396A1 (en) * 2021-10-26 2023-05-04 Vertiv Corporation Single package, dual current transformer for load and residual current measurement

Also Published As

Publication number Publication date
US6028422A (en) 2000-02-22
DE19706127A1 (en) 1998-08-20
WO1998036432A1 (en) 1998-08-20
DE19706127C2 (en) 1999-09-09
EP0960425A1 (en) 1999-12-01
DE59812560D1 (en) 2005-03-17

Similar Documents

Publication Publication Date Title
EP0960425B1 (en) Current transformer
DE2841885C2 (en) Flyback transformer for use in a horizontal deflection circuit
EP0307345B1 (en) Circuit arrangement for the transmission of pulses between two galvanically separated circuits
DE2853358C2 (en)
DE3805733C2 (en)
DE3732064C2 (en)
DE3941420C1 (en)
DE916433C (en) Switching device
DE2201781A1 (en) Magnetic arrangement
DE3804807C1 (en) Electronic voltage transformer
DE2647417C3 (en) Device for stabilizing and regulating an electrical voltage
DE102004035248B4 (en) resonant converter
DE102009049599A1 (en) Power factor correction circuit for use in power supply unit, has secondary winding connected with measuring resistor at which voltage signal proportional to transmitted current is tappable
DE2652940A1 (en) X-RAY DIAGNOSTIC GENERATOR WITH DIRECTLY HEATED ROUND TUBE
DE645406C (en) Method for generating a beat current of low frequency
DE1538176C (en) Corrective transformer
DE1011065B (en) Device for measuring non-sinusoidal alternating currents, in particular short-term currents from welding machines that are power-controlled by means of discharge vessels
DE3518913A1 (en) CLOCKED DC CONVERTER
DE3903763A1 (en) CLOCKED POWER SUPPLY
CH280013A (en) Arrangement for frequency doubling by means of direct current biased chokes.
DE29822425U1 (en) Filter device
DE931541C (en) Arrangement for frequency doubling by means of pre-magnetized chokes
DE3705061C1 (en) Signalling circuit arrangement for comparing two alternating voltages
DE10122104C1 (en) Arc welding device with HF blocking choke and additional secondary winding
DE2034142A1 (en) Circuit arrangement for converting a direct voltage into an alternating voltage of constant amplitude

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990805

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050216

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050221

Year of fee payment: 8

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050209

REF Corresponds to:

Ref document number: 59812560

Country of ref document: DE

Date of ref document: 20050317

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20051110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060217

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060228

Year of fee payment: 9

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060217

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20061031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070217

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130326

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59812560

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59812560

Country of ref document: DE

Effective date: 20140902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140902