EP0959525B1 - Agencement d' antenne et radiotéléphone - Google Patents
Agencement d' antenne et radiotéléphone Download PDFInfo
- Publication number
- EP0959525B1 EP0959525B1 EP19990102339 EP99102339A EP0959525B1 EP 0959525 B1 EP0959525 B1 EP 0959525B1 EP 19990102339 EP19990102339 EP 19990102339 EP 99102339 A EP99102339 A EP 99102339A EP 0959525 B1 EP0959525 B1 EP 0959525B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- radiator element
- radio telephone
- reference potential
- radiator
- impedance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
- H01Q3/24—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation by switching energy from one active radiating element to another, e.g. for beam switching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
- H01Q1/24—Supports; Mounting means by structural association with other equipment or articles with receiving set
- H01Q1/241—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
- H01Q1/242—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
- H01Q1/245—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with means for shaping the antenna pattern, e.g. in order to protect user against rf exposure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/29—Combinations of different interacting antenna units for giving a desired directional characteristic
Definitions
- the invention is based on a radio device according to the preamble of the independent claims 1 and 4.
- a radio with a housing is already known, wherein the housing comprises a hearing device on a first side and an antenna element on a second side opposite the first side.
- the antenna element is movably mounted on the second side of the housing and has in at least one first position a directed and in at least one second position an omnidirectional radiation characteristic.
- US3725938 For example, there is known a receiving system with an overlapping flap switching type radio bearing antenna arrangement in which a plurality of reflector / director pairs are provided.
- the antenna arrangement provides a centrally located antenna element around which the reflector / director pairs are arranged in a surrounding circle such that each reflector / director pair and the central antenna element form a diagonal. Switching of the tabs is accomplished by the voltage controlled semiconductor circuits associated with the respective reflectors and directors.
- a radio which comprises two antennas close together, a monopole antenna and a reversed-F antenna connected to an antenna selection switch.
- the antenna which has a higher electric field, is selected for the operation of the radio.
- the monopole antenna is connected via an impedance circuit to the antenna selection switch, wherein the impedance of the monopole antenna is set by the impedance circuit.
- the impedance of the monopole antenna is set to provide an infinite impedance between the monopole antenna and the open position of the circuit terminal of the antenna selection switches, so that the signal of the monopole antenna is prevented from undergoing the operation of the "reversed F". Antenna impaired.
- a termination circuit may be provided which enables the further impedance settings.
- the radio according to the invention with the features of the independent claims has the advantage that the radio according to the invention, in which at least a first radiator element and at least a second radiator element are arranged adjacent to each other via a reference potential surface, a feed of the first radiator element via an antenna network, the second Emitter element between a high-impedance and a low-impedance impedance switchable connected to the reference potential of the reference potential surface, the first radiator element is designed resonant at the operating wavelength and the resonance of the second radiator element is slightly out of tune with the resonance of the first radiator element, a directional radiation characteristic by the variation of the geometric Dimensions of the second radiator element compared to the geometrical dimensions of the first radiator element can achieve when the second radiator element n iederohmig connected to the reference potential. In this way, the radiation is prevented in the head of the user of the radio and this measure requires at the same time little effort and cost in the production of the radio.
- the second radiator element is particularly advantageous to connect the second radiator element to the reference potential via a semiconductor component, preferably a PIN diode.
- a semiconductor component preferably a PIN diode.
- the switching operation between a high-impedance and a low-resistance connection of the second radiator element to the reference potential can be controlled electronically.
- the electronically realized switching between directional emission characteristic and omnidirectional emission characteristic eliminates the user a relatively cumbersome positioning of an antenna element, so that the ease of use is increased for the user.
- a particularly simple, low-effort and cost-saving embodiment of the radio device results in a rod-shaped design of the first radiator element and the second radiator element.
- An advantage results in an F-shaped design of the first radiator element and the second radiator element of the radio. In this way, the resonance of the first radiating element and the second radiating element can be determined by the total geometric dimensions.
- Another advantage is that the semiconductor device is switched to a blocking state as soon as it is determined that the connection quality falls below a first predetermined value, and that the semiconductor device is switched to a conducting state as long as the connection quality exceeds a second predetermined value.
- the second radiator element can automatically be connected to the reference potential with high resistance and thus an omnidirectional radiation characteristic can be achieved.
- the second radiator element can be connected to the reference potential in a low-resistance manner, so that a directional radiation characteristic is achieved.
- the directional radiation characteristic which is intended to prevent, for example, in a radio mainly the irradiation in the head of the user
- the omnidirectional radiation characteristic which is mainly to ensure a good connection quality, and when exceeded given connection quality the prevention of irradiation in the head of the user has priority.
- Another advantage is that the impedance can be switched by means of a control element. In this way, the user can even comparatively simple, that is, without changing the position of the antenna assembly, for example, with respect to the housing of the radio, the emission adapted to his needs.
- FIG. 1 A first embodiment of a radio with antenna arrangement according to the invention
- FIG. 2 A second embodiment of a radio with antenna arrangement according to the invention
- FIG. 3 A third embodiment of a radio with antenna arrangement according to the invention
- FIG. 4 a flow chart for a control of the radio with inventive antenna arrangement
- FIG. 5 a directional radiation characteristic
- FIG. 6 an omnidirectional radiation characteristic.
- FIG. 1 1 denotes a radio device, which may be, for example, a mobile telephone, a cordless telephone, a handheld radio, a work radio, a base station or the like.
- a radio device 1 designed as a mobile telephone will be described.
- the radio 1 comprises a printed circuit board which has a reference potential surface 25.
- the reference potential area 25 may be over a part or over the entire circuit board as in FIG. 1 expand.
- the reference potential of the reference potential area 25 is designated by the reference numeral 80.
- a first radiator element 5 and a second radiator element 10 are arranged adjacent to one another on the radio 1.
- a hearing device 45 is arranged on a first side surface 50 of the radio device 1.
- a hearing device 45 is arranged on a first side surface 50 of the radio device 1.
- One of the first side surface 50 opposite the second side surface of the radio device 1 is identified by the reference numeral 55.
- the second radiator element 10 is arranged facing the hearing device 45 of the radio device 1 facing the first side surface 50 on a first side surface 50 and the second side surface 55 connecting third side surface 110.
- the first radiating element 5 is arranged facing away from the hearing device 45 second side surface 55 facing the third side surface 110.
- a height 95 of the first radiator element 5 is slightly smaller than a height 100 of the second radiator element 10.
- the first radiator element 5 and the second radiator element 10 form an antenna arrangement.
- the height 95 of the first radiator element 5 is chosen so that the radiator element is operated in its ⁇ / 4 resonance. It is fed by an antenna network 30. Signals received by the antenna arrangement 5, 10 are forwarded by the antenna network 30 to the hearing device 45 after appropriate conversion for reproduction.
- the antenna network 30 is also connected to a controller 85 of the radio 1, to which an input unit 90 with a control element 40 is connected.
- the controller 85 provides a control signal to the anode of a PIN diode 35 whose cathode is connected to the reference potential 80.
- the anode of the PIN diode 35 is also connected to the second radiator element 10.
- the reference potential surface 25 forms a counterweight to the antenna assembly 5, 10. If the controller 85 of the PIN diode 35 to a high-level drive signal, the PIN diode 35 is conductive and the second radiator element 10 is connected at its base 150 low impedance to the reference potential 80 , The fed first radiator element 5 is resonant at the operating wavelength ⁇ . Due to the greater height 100 of the non-powered second radiator element 10 whose resonant frequency with respect to the resonant frequency of the first radiating element 5 is slightly detuned. This results in a phase shift of the current on the second radiator element 10 with respect to the fed first radiator element 5 and there is a directivity.
- the second radiator element 10 acts as a reflector and the antenna assembly 5, 10 as a directional reflector with the hearing device 45 and the head of a user pioneering directivity.
- the controller 85 checks connection data received from the antenna network 30, which determines the field strength of a currently established radio link and / or error measurement of the data stream transmitted in the radio link and / or the like may include whether the connection quality exceeds a second predetermined value. This can be checked, for example, by checking in the controller 85 whether the field strength of the connection above and / or the error rate of the data stream transmitted during the connection are below a respectively predetermined value.
- the PIN diode 35 is driven high by the controller 85, so that the antenna arrangement 5, 10 acts as a directional emitter and by their radiation characteristic from the user's head away the irradiation of electromagnetic energy in the user's head and reduced at the same time the efficiency of the antenna arrangement 5, 10 is increased. If the quality of the connection falls below a first correspondingly predetermined value, for example because the radio 1 with the antenna arrangement 5, 10 is so awkwardly positioned that the antenna arrangement 5, 10 radiates in the wrong direction for the current connection, then the controller 85 controls the PIN diode 35 low level, so that the PIN diode 35 goes into a blocking state and the second radiator element 10 is connected at its base 150 high impedance to the reference potential 80. In this case, the antenna arrangement 5, 10 acts as omnidirectional antenna with omnidirectional radiation characteristic, so that the emission power in accordance with FIG. 6 is about the same size for all directions and according to FIG. 6 a directional diagram with omnidirectional radiation pattern 20 results.
- the antenna arrangement 5, 10 has the advantage of automatically exploiting the positive characteristics of a directional antenna in favorable reception situations with particularly high directivity in a preferred direction. Should the Directional but awkwardly positioned, for example, if the radio 1 is on a table and radiating into this, the radio 1 is carried around the wrong way in the pocket and radiates into the body of the user, or the like, so is automatically falls below the for the Connection quality predetermined value, the antenna array 5, 10 switched to omnidirectional.
- a switching of the impedance of the PIN diode 35 between conductive and blocking state or a switching of the radiation of the antenna array 5, 10 between directional and omnidiretationaler radiation pattern can also be done by means of the control element 40 on the part of the user, so that this the current radiation pattern of the antenna array. 5 , 10 can adapt to his needs.
- the effect of the second radiating element 10 in the antenna arrangement 5, 10 depends on the impedance between the base point 150 of the second radiator element 10 and the reference potential 80, the geometric dimensions of the second radiator element 10 compared to the geometrical dimensions of the first radiator element 5 and of the used operating frequency. If one uses the operating frequency range provided for the GSM (Global System for Mobile Communications) standard at approximately 0.9 to 1.0 GHz and selects a height 105 of the second radiator element 10 which is slightly smaller than the height 95 of the first radiator element 5 also results for the GSM operating frequency range, an effect of the second radiating element 10 as a reflector when the impedance between the base 150 of the second radiator element 10 and the reference potential 80 is low, that is, the PIN diode 35 conducts. In this case works the antenna arrangement 5, 10 also as directional radiator with directional radiation characteristic of the hearing device 45 away.
- GSM Global System for Mobile Communications
- FIG. 2 shows a further embodiment of a radio 1 with an antenna arrangement 5, 10 according to the invention
- FIG. 2 is the same structure as the radio 1 according to FIG. 1 and only has the difference that the fed first radiator element 5 now faces the first side surface 50 and the non-powered second radiator element 10 faces the second side surface 55.
- the required height 105 of the second radiator element 10 is slightly greater than the height 95 of the operating wavelength corresponding to one fourth to choose first radiator element 5, so that in this case the second radiator element 10 acts as a director and a directed away from the hearing device 45 radiating characteristic is realized.
- the first radiator element 5 and the second radiator element 10 are rod-shaped.
- the height 95, 100, 105 of the respective radiator element 5, 10 is the height of the above the reference potential surface 25 respectively arranged rod.
- FIG. 3 is in a respect to the representation of FIG. 1 respectively.
- FIG. 2 rotated by 90 ° side view of an embodiment shown in which the first radiator element 5 and the second radiator element 10 are formed F-shaped.
- a first transverse bar 60 of the first radiator element 5 and a first transverse bar 65 of the second radiator element 10 are in each case connected to the reference potential 80.
- the second crossbar 70 of the first radiator element 5 is connected via the antenna network 30 to the controller 85, to which the input unit 90 is connected to the control element 40.
- a second crossbar 75 of the second radiator element 10 is connected at its base 150 to the anode of the PIN diode 35, which is also controlled by the controller 85.
- the cathode of the PIN diode 35 is connected to the reference potential 80.
- a longitudinal beam 115 of the first radiating element 5 extends perpendicular to the two transverse beams 60, 70, starting at the first transverse bar 60, the ends of these two transverse bars 60, 70 facing away from the reference potential surface 25 with each other.
- a longitudinal beam 120 connects the two crossbars 65, 75 of the second radiator element 10.
- the longitudinal beams 115, 120 can be used according to areal longitudinal elements. In the same way as in the embodiments according to FIG. 1 and FIG.
- the second crossbar 75 of the second radiator element 10 may be at its base 150 via the PIN diode 35 high impedance or low impedance to the reference potential 80 are connected.
- the resonance of the first radiator element 5 and the second radiator element 10 is no longer due solely to the height 95, 100, 105 of the respective radiator element 5, 10, but also by the distance of the first crossbar 60 of the first radiator element 5 from the second crossbar 70 of the first Emitter element 5 or by the distance of the first crossbar 65 of the second radiator element 10 from the second crossbar 75 of the second radiator element 10 and by the length of the longitudinal beam 115, 120 of the respective radiator element 5, 10 determined, ie by the entire geometric dimensions of the first radiator element fifth and the second radiating element 10.
- the geometrical dimensions of the first radiating element 5 are selected so that sets a resonance at the operating frequency used.
- the geometric dimensions of the second radiator element 10 are compared to the geometric dimensions of the first radiator element 5 changed so that there is a slight deviation from the resonance of the first radiator element 5 for the resonance of the second radiator element 10 and the second radiator element 10 thus depending on the selected operating frequency can act as a reflector or director at each low-impedance connection of the foot point 150 of its second crossbar 75 to the reference potential 80 in the antenna assembly 5, 10.
- the height 100 of the second radiator element 10 is selected to be slightly smaller than the height 95 of the first radiator element 5 for the operating frequency range of approximately 1.8 to 1.9 GHz, the height of the respective radiator element 5, 10 corresponding to the height its crossbars 60, 70, 65, 75 corresponds and the two crossbars of a radiator element each have the same height, so does the second Radiator element 10 as a director, so that there is a directional radiation characteristic at the first radiator element 5 in the direction of the second radiator element 10, provided that the PIN diode is in the conductive state.
- the second radiator element 10 acts as a reflector and it results in the first radiator element 5 is a directional radiation in the direction opposite to the second radiating element 10 direction.
- the hearing device 45 should in this case be arranged at the location of the radio device 1, which has the least directivity when the radiation characteristic of the antenna arrangement 5, 10 is directed, in order to keep the irradiation in the head of the user as low as possible.
- the antenna arrangement 5, 10 acts as omnidirectional antenna with omnidirectional emission characteristic.
- FIG. 4 a flow chart for the operation of the controller 85 of the radio 1 with the antenna arrangement 5, 10 according to the invention is shown.
- the controller 85 controls the PIN diode 35 with a high-level signal, so that the PIN diode 35 conducts and the second radiator element 10 is connected at its base 150 low impedance to the reference potential 80 and the antenna assembly 5, 10 a has directed radiation characteristic.
- a Program point 205 branches.
- it is checked whether the connection quality is below the first correspondingly predetermined value and an omnidirectional characteristic is permitted by corresponding presetting or input of the user on the input unit 90.
- a branch is made to a program point 210, otherwise a branch is made to a program point 220.
- program point 220 it is checked whether an input has been made to the input unit 90 by means of the operating element 40. If this is the case, the program branches to a program point 225, otherwise it branches back to program point 200.
- program point 225 it is checked whether by the operation of the control element 40, a directional radiation pattern has been selected by the user. If this is the case, it is branched back to program point 200, otherwise a branch is made to program point 230.
- program point 230 it is checked whether the radio 1 has been switched off. If this is the case, the program part is left.
- an omnidirectional radiation characteristic was selected by the user by means of the control element 40 and branched to program point 210.
- the controller 85 drives the PIN diode 35 to a low level signal so that the PIN diode 35 transitions to the off state and the antenna array 5, 10 has an omnidirectional radiation characteristic.
- a branch is made to a program point 215.
- program point 215 it is checked whether the connection quality is above a second predetermined value, which is preferably above the first predetermined value in order to avoid frequent and unnecessary switching of the PIN diode 35. If this is the case, it is branched back to program point 200 and switched to directional radiation characteristic. Otherwise, branch back to program point 210 and the Antenna arrangement 5, 10 further operated with omnidirectional radiation characteristic.
- each switchable very high impedance or very low impedance at its base to the reference potential 80 are connectable.
- an antenna arrangement with correspondingly improved directivity can be realized.
- PIN diode 35 instead of a PIN diode 35, it is also possible to provide a conventional pn diode, a transistor, or an otherwise very low-impedance or very high-impedance switchable impedance.
- radiator elements no high altitude at the operating frequencies used is required, so that they can be accommodated very easily and space-saving in, for example, in mobile phones widespread antenna stubs.
- the required for the detuning of the resonance of the second radiating element 10 relative to the resonance of the first radiator element 5 height difference of the two radiator elements 5, 10 is in the order of one eighth of the operating wavelength.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Aerials With Secondary Devices (AREA)
- Waveguide Aerials (AREA)
Claims (12)
- Radiotéléphone (1) avec un dispositif d'écoute (45) et un agencement d'antenne (5, 10) présentant au choix une caractéristique d'émission directionnelle (15) ou une caractéristique d'émission omnidirectionnelle (20), au moins un premier élément rayonnant (5) et au moins un deuxième élément rayonnant (10) étant disposés au voisinage l'un de l'autre sur une surface au potentiel de référence (25), une alimentation du premier élément rayonnant (5) étant assurée par l'intermédiaire d'un réseau d'antenne (30), le deuxième élément rayonnant (10) étant relié au potentiel de référence (80) de la surface au potentiel de référence (25) de manière commutable entre une impédance de valeur ohmique élevée et une impédance de valeur ohmique faible (35), le premier élément rayonnant (5) étant réalisé de manière à résonner à la longueur d'onde de fonctionnement et la résonnance du deuxième élément rayonnant (10) étant légèrement désaccordée vis-à-vis de la résonnance du premier élément rayonnant (5), caractérisé en ce que le deuxième élément rayonnant (10) est disposé de manière à être orienté vers une surface latérale (50) du radiotéléphone (1) orientée vers le dispositif d'écoute (45) du radiotéléphone (1), en ce que le premier élément rayonnant (5) est disposé de manière à être orienté vers une surface latérale (55) du radiotéléphone (1) orientée à l'opposé du dispositif d'écoute (45) du radiotéléphone (1), et en ce que les dimensions géométriques du deuxième élément rayonnant (10) par rapport aux dimensions géométriques du premier élément rayonnant (5) sont choisies de telle sorte que le deuxième élément rayonnant (10) agisse comme réflecteur dans une plage de fréquences de fonctionnement lorsque le deuxième élément rayonnant (10) est relié au potentiel de référence (80) par une valeur ohmique faible.
- Radiotéléphone (1) selon la revendication 1, caractérisé en ce que par rapport à la surface au potentiel de référence (25), le deuxième élément rayonnant (10) se trouve à un niveau plus élevé que le premier élément rayonnant (5), et en ce que la plage de fréquences de fonctionnement est prévue de 1,8 à 1,9 GHz environ.
- Radiotéléphone (1) selon la revendication 1, caractérisé en ce que par rapport à la surface au potentiel de référence (25), le premier élément rayonnant (5) se trouve à un niveau plus élevé que le deuxième élément rayonnant (10), et en ce que la plage de fréquences de fonctionnement est prévue de 0,9 à 1,0 GHz environ.
- Radiotéléphone (1) avec un dispositif d'écoute (45) et un agencement d'antenne (5, 10) présentant au choix une caractéristique d'émission directionnelle (15) ou une caractéristique d'émission omnidirectionnelle (20), au moins un premier élément rayonnant (5) et au moins un deuxième élément rayonnant (10) étant disposés au voisinage l'un de l'autre sur une surface au potentiel de référence (25), une alimentation du premier élément rayonnant (5) étant assurée par l'intermédiaire d'un réseau d'antenne (30), le deuxième élément rayonnant (10) étant relié au potentiel de référence (80) de la surface au potentiel de référence (25) de manière commutable entre une impédance de valeur ohmique élevée et une impédance de valeur ohmique faible (35), le premier élément rayonnant (5) étant réalisé de manière à résonner à la longueur d'onde de fonctionnement et la résonnance du deuxième élément rayonnant (10) étant légèrement désaccordée vis-à-vis de la résonnance du premier élément rayonnant (5), caractérisé en ce que le premier élément rayonnant (5) est disposé de manière à être orienté vers une surface latérale (50) du radiotéléphone (1) orientée vers le dispositif d'écoute (45) du radiotéléphone (1), en ce que le deuxième élément rayonnant (10) est disposé de manière à être orienté vers une surface latérale (55) du radiotéléphone (1) orientée à l'opposé du dispositif d'écoute (45) du radiotéléphone (1), et en ce que les dimensions géométriques du deuxième élément rayonnant (10) par rapport aux dimensions géométriques du premier élément rayonnant (5) sont choisies de telle sorte que le deuxième élément rayonnant (10) agisse comme directeur dans une plage de fréquences de fonctionnement lorsque le deuxième élément rayonnant (10) est relié au potentiel de référence (80) par une valeur ohmique faible.
- Radiotéléphone (1) selon la revendication 4, caractérisé en ce que par rapport à la surface au potentiel de référence (25), le premier élément rayonnant (5) se trouve à un niveau plus élevé que le deuxième élément rayonnant (10), et en ce que la plage de fréquences de fonctionnement est prévue de 1,8 à 1,9 GHz environ.
- Radiotéléphone (1) selon la revendication 4, caractérisé en ce que par rapport à la surface au potentiel de référence (25), le deuxième élément rayonnant (10) se trouve à un niveau plus élevé que le premier élément rayonnant (5), et en ce que la plage de fréquences de fonctionnement est prévue de 0,9 à 1,0 GHz environ.
- Radiotéléphone (1) selon la revendication 1 ou 4, caractérisé en ce que le deuxième élément rayonnant (10) est relié au potentiel de référence (80) par l'intermédiaire d'un composant semi-conducteur (35), de préférence une diode PIN.
- Radiotéléphone (1) selon la revendication 1 ou 4, caractérisé en ce que le premier élément rayonnant (5) et le deuxième élément rayonnant (10) sont réalisés sous forme de barres.
- Radiotéléphone (1) selon la revendication 1 ou 4, caractérisé en ce que le premier élément rayonnant (5) et le deuxième élément rayonnant (10) sont réalisés en forme F, en ce qu'une première traverse (60) du premier élément rayonnant (5) et une première traverse (65) du deuxième élément rayonnant (10) sont respectivement reliées au potentiel de référence (80), en ce que l'alimentation du premier élément rayonnant (5) est assurée par l'intermédiaire d'une deuxième traverse (70) du premier élément rayonnant (5), en ce qu'une deuxième traverse (75) du deuxième élément rayonnant (10) est reliée au potentiel de référence (80) de manière commutable entre l'impédance de valeur ohmique élevée et l'impédance de valeur ohmique faible (35).
- Radiotéléphone (1) selon la revendication 1 ou 4, caractérisé en ce que le deuxième élément rayonnant (10) est relié par une valeur ohmique élevée au potentiel de référence (80) lorsque la qualité de liaison du radiotéléphone passe au-dessous d'une valeur définie.
- Radiotéléphone (1) selon la revendication 10, caractérisé en ce que le deuxième élément rayonnant (10) est relié par un valeur ohmique faible au potentiel de référence (80) lorsque la qualité de liaison du radiotéléphone passe au-dessus d'une valeur définie.
- Radiotéléphone (1) selon la revendication 10 ou 11, caractérisé en ce que l'impédance (35) est commutable au moyen d'un élément de commande (40).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE1998123126 DE19823126B4 (de) | 1998-05-23 | 1998-05-23 | Funkgerät |
DE19823126 | 1998-05-23 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0959525A2 EP0959525A2 (fr) | 1999-11-24 |
EP0959525A3 EP0959525A3 (fr) | 2001-04-04 |
EP0959525B1 true EP0959525B1 (fr) | 2009-05-13 |
Family
ID=7868738
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19990102339 Expired - Lifetime EP0959525B1 (fr) | 1998-05-23 | 1999-02-06 | Agencement d' antenne et radiotéléphone |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0959525B1 (fr) |
DE (2) | DE19823126B4 (fr) |
ES (1) | ES2324747T3 (fr) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6314277B1 (en) * | 1999-07-02 | 2001-11-06 | Yuan-Fang Hsu | Electromagnetic radiation protection device of a mobile phone |
EP1109247B1 (fr) * | 1999-12-17 | 2004-05-06 | Siemens Aktiengesellschaft | Téléphone mobile et procédé de commande de rayons émis vers le corps d'un utilisateur |
US6437746B1 (en) | 2000-11-14 | 2002-08-20 | Northrop Grumman Corp | Cellular telephone antenna array |
WO2004013935A1 (fr) * | 2002-08-01 | 2004-02-12 | Koninklijke Philips Electronics N.V. | Agencement d'antennes directionnelles a double frequence |
US7024232B2 (en) * | 2003-04-25 | 2006-04-04 | Motorola, Inc. | Wireless communication device with variable antenna radiation pattern and corresponding method |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3725938A (en) * | 1970-10-05 | 1973-04-03 | Sperry Rand Corp | Direction finder system |
CA1239223A (fr) * | 1984-07-02 | 1988-07-12 | Robert Milne | Antenne reseau adaptative |
AT393054B (de) * | 1989-07-27 | 1991-08-12 | Siemens Ag Oesterreich | Sende- und/oder empfangsanordnung fuer tragbare geraete |
EP0954050A1 (fr) * | 1993-05-27 | 1999-11-03 | Griffith University | Antennes destinées à des dispositifs de communications portables |
DE4334439A1 (de) * | 1993-10-09 | 1995-04-13 | Philips Patentverwaltung | Funkgerät mit einer Antenne |
JPH1075192A (ja) * | 1996-08-30 | 1998-03-17 | Matsushita Electric Ind Co Ltd | アンテナ装置 |
DE19723331B4 (de) * | 1997-06-04 | 2010-11-11 | Ipcom Gmbh & Co. Kg | Funkgerät |
-
1998
- 1998-05-23 DE DE1998123126 patent/DE19823126B4/de not_active Expired - Lifetime
-
1999
- 1999-02-06 ES ES99102339T patent/ES2324747T3/es not_active Expired - Lifetime
- 1999-02-06 DE DE59915023T patent/DE59915023D1/de not_active Expired - Lifetime
- 1999-02-06 EP EP19990102339 patent/EP0959525B1/fr not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
ES2324747T3 (es) | 2009-08-13 |
DE19823126B4 (de) | 2012-08-23 |
EP0959525A2 (fr) | 1999-11-24 |
DE59915023D1 (de) | 2009-06-25 |
DE19823126A1 (de) | 1999-11-25 |
EP0959525A3 (fr) | 2001-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69835246T2 (de) | Doppelresonanzantennenstruktur für mehrere Frequenzbereiche | |
DE69433150T2 (de) | Antennenvorrichtung | |
DE60001709T2 (de) | Möglichkeit zur Korrektur des Strahlungsdiagramms einer linearen Antenne | |
DE69006104T2 (de) | Ebene Plattenantenne für die mobile Kommunikation. | |
DE69714420T2 (de) | Gefaltete bowtie-antenne | |
EP1204160B1 (fr) | Antenne hyperfréquence multibandes | |
DE60133703T2 (de) | Eingebaute Zweibandantenne und Verfahren zum Betrieb dieser Antenne in einem mobilen Terminal | |
DE60306513T2 (de) | Antennenanordnung | |
DE60121470T2 (de) | Antennenanordnung | |
DE60209686T2 (de) | Interne Mehrbandantenne | |
EP0841715B1 (fr) | Antenne plate | |
EP1829158B1 (fr) | Structure d'antenne disque unipolaire | |
EP1168495A2 (fr) | Dispositif d'antenne pour téléphones mobiles | |
DE202021106120U1 (de) | Strahlerelemente mit abgewinkelten Einspeiseschäften und Basisstationsantennen einschließlich derselben | |
DE69600797T2 (de) | Tragbares Funkgerät | |
EP0795926A2 (fr) | Antenne plane tridimensionnelle | |
EP1154518B1 (fr) | Antenne intégrée pour téléphones portables | |
WO2002015333A1 (fr) | Systeme d'antenne pour terminal de telecommunication mobile, notamment pour telephone portable | |
DE69914579T2 (de) | Antennenanordnung und Kommunikationsgerät mit einer derartigen Antennenanordnung | |
EP1086509B1 (fr) | Ensemble antenne et appareil radio | |
EP0986835A1 (fr) | Appareil radio a antenne mobile | |
EP0218843A2 (fr) | Antenne-diversité pour appareils de radio mobiles | |
EP0959525B1 (fr) | Agencement d' antenne et radiotéléphone | |
DE3339278C2 (fr) | ||
EP1297590A1 (fr) | Antenne fendue |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): CH DE ES FR GB IT LI SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 20011004 |
|
AKX | Designation fees paid |
Free format text: CH DE ES FR GB IT LI SE |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: IPCOM GMBH & CO. KG |
|
17Q | First examination report despatched |
Effective date: 20080507 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE ES FR GB IT LI SE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: HEPP WENGER RYFFEL AG |
|
REF | Corresponds to: |
Ref document number: 59915023 Country of ref document: DE Date of ref document: 20090625 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2324747 Country of ref document: ES Kind code of ref document: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20100216 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 18 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 19 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20180322 Year of fee payment: 20 Ref country code: GB Payment date: 20180221 Year of fee payment: 20 Ref country code: CH Payment date: 20180221 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20180226 Year of fee payment: 20 Ref country code: SE Payment date: 20180222 Year of fee payment: 20 Ref country code: IT Payment date: 20180221 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20180430 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 59915023 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20190205 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20190205 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20200902 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20190207 |