EP0950341B1 - Baking oven for the high-temperature treatment of materials with a low dielectric loss factor - Google Patents

Baking oven for the high-temperature treatment of materials with a low dielectric loss factor Download PDF

Info

Publication number
EP0950341B1
EP0950341B1 EP98904027A EP98904027A EP0950341B1 EP 0950341 B1 EP0950341 B1 EP 0950341B1 EP 98904027 A EP98904027 A EP 98904027A EP 98904027 A EP98904027 A EP 98904027A EP 0950341 B1 EP0950341 B1 EP 0950341B1
Authority
EP
European Patent Office
Prior art keywords
baking oven
resonator
oven according
microwave
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98904027A
Other languages
German (de)
French (fr)
Other versions
EP0950341A1 (en
Inventor
Wolfgang Bartusch
Günter Müller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carbolite Gero GmbH and Co KG
Original Assignee
Gero Hochtemperaturoefen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gero Hochtemperaturoefen GmbH filed Critical Gero Hochtemperaturoefen GmbH
Publication of EP0950341A1 publication Critical patent/EP0950341A1/en
Application granted granted Critical
Publication of EP0950341B1 publication Critical patent/EP0950341B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/70Feed lines
    • H05B6/707Feed lines using waveguides
    • H05B6/708Feed lines using waveguides in particular slotted waveguides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/6402Aspects relating to the microwave cavity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/70Feed lines
    • H05B6/705Feed lines using microwave tuning

Definitions

  • the invention relates to a kiln for high temperature treatment of materials with relatively low dielectric Loss factor when the material is heated by absorption of microwave energy in a cavity and with the further generic in the preamble of claim 1 Features.
  • Such a kiln is known from WO95 / 05058 PCT / GB94 / 01730 known.
  • the well-known kiln has a design in which it is used for Sintering ceramic materials in one during sintering resting stack is suitable, a cuboid cavity, within that by a cuboid Thermal insulation device of the roughly cuboid stacking space is delimited to that area within the Corresponds to that of a sufficiently homogeneous Distribution of the electric field strength is assumed.
  • the Uniformity of the electric field strength or the square the same is a prerequisite for the sintered material to be sufficient "evenly" can be thermally treated.
  • a heating device which allows the edge areas the sintered stack conventionally, e.g. by means of a resistance heater in addition to heat in this way balanced temperature profile within the sintered stack achieve.
  • the known kiln is indeed suitable, in a relative sense small treatment area about the same thermal conditions can be achieved in the entire treatment volume with the Disadvantageous is that it is exposed to microwave radiation Thermal insulation device the majority of the irradiated Absorbs microwave energy, which inevitably leads to a leads to high consumption of microwave energy, which is not for the Desired thermal treatment of the sintered goods available stands. This results from the fact that in practical cases Total volume of insulation material is significantly larger than that Volume of the sintered good.
  • the well-known kiln is therefore as industrially usable furnace not suitable because it is efficient Utilization of microwave energy is not given, its generation but is much more expensive than the "conventional" Heating by means of an electrical resistance heater.
  • WO95 / 05058 also means that it is designed as a continuous furnace Kiln known as the tunnel kiln with heating zones different temperature is formed by which Sintered material is moved over transport rollers, the additional heating is arranged outside the treatment room is and the thermal insulation that the environment against the high temperature area insulated, enclosing the furnace on the outside.
  • this oven is a system with inevitable insufficient field homogeneity, i.e. an oven design, which is possible when relatively small opposites are serial be sintered, and it due to the moving through due to inhomogeneous areas not to a homogeneous field distribution arrives.
  • the well-known tunnel kiln is for materials with high dielectric Losses suitable, the microwave energy strong absorb, but not for the treatment of sintered goods relatively weak dielectric losses, which is practically only in significant quantities in a cavity resonator with high Field homogeneity can be treated.
  • the known tube furnace would be for low dielectric materials Loss factor, which is technically of great interest are not suitable.
  • the object of the invention is therefore a furnace of the beginning Specify the type of high temperature treatment of sintered material with a low dielectric loss factor allowed in a large volume of treatment due to its dimensions can be used as an industrial furnace and thereby nevertheless operable with a high degree of energy utilization is. Furthermore, the kiln is intended for applications within a wide temperature range up to 1800 ° C.
  • Such a magnetron can e.g. a center frequency of 2.45 GHz, which has a tuning range of between 2.438 GHz up to 2.462 GHz.
  • the radiation source is designed so that the time for a frequency swing between the cut-off frequencies is in the tenths of a second range, e.g. between 0.05 and 1 second, i.e. within a period of time that is small against the thermal relaxation time of the sintered material.
  • a quasi-continuous "gap-free" tuning range of the frequency results if the frequency spacings in the frequency scale of adjacent center frequencies of the magnetron satisfy the relationship ( ⁇ f i + ⁇ f i + 1 ) / 2.
  • its cavity resonator is cuboid, preferably such that the edge lengths l z , l y and l z of the cavity boundary correspond to at least 10 times the wavelength ⁇ of the microwave radiation.
  • the cavity resonator can be as claimed 7 provided, seen in the direction in which flat boundary walls of the cavity resonator along parallel Adjoin corner edges, has a polygonal shape, i.e. the shape of a prismatic hollow profile.
  • the resonator made of plate-shaped in a simple manner
  • Elements can be assembled, in particular also as per Claim 8 provided, made of plate-shaped graphite material.
  • This design of the cavity resonator has the advantage that the Kiln can be operated at very high temperatures, so that Sintering processes in temperature ranges up to 1800 ° C possible become.
  • the design of the cavity resonator is also the Limit case of the cylindrical-tubular resonator in good approximation reachable.
  • This design has the constructive point of view Advantage that the design of the resonator better than usual cylindrical outer vessel can be approximated, which can be evacuated is and / or can be flushed with protective gas.
  • an antenna arrangement according to claim 9 has an omnidirectional characteristic, i.e. a directivity largely avoided.
  • Such an antenna is according to the Features of claim 10 as a multiple single radiator comprising Group emitter trained, the individual emitters in a statistically distributed phase position can be fed.
  • Such a group radiator is designed in a preferred embodiment of the oven according to claim 11 as a slot radiator, which comprises a plurality of radiation slots with a slot length between ⁇ / 4 and ⁇ / 2 and a compared to this small slot width w, which, in the direction of propagation of the microwave field in the feeding waveguide seen, distributed over its length such that the same or approximately the same amounts of microwave energy can be coupled into the cavity resonator per slot, the extent of the individual slots being between w and ⁇ / 2, viewed in the direction of propagation of the microwave field in the waveguide, furthermore, the distance of successive slots of the slot antenna measured in the direction of propagation of the microwave field in the waveguide is between ⁇ / 2 and 3 ⁇ / 4 and, based on the longitudinal center plane of the waveguide running in the direction of propagation, the lateral distance of the slots from this center live, increases gradually over the length of the waveguide, and that a statistical distribution of the longitudinal slots, which form the individual radiation elements, is provided with respect to the longitudinal median
  • This design of the slot antenna is a very good one Omnidirectional characteristics already achieved when at least 20 Single slots are provided, with increasing numbers of the slots an increasingly effective approximation of the antenna characteristics to the omnidirectional characteristic.
  • the slot radiator can at least some of its slots also obliquely to the spread of the microwave field in the waveguide run.
  • the antenna (s) are strip-shaped Edge areas of flat parts of the resonator walls arranged is / are in the immediate vicinity of edges of the resonator wall run along the flat inner surfaces of the resonator bump into each other.
  • the resonator and the waveguide (s) via which the Antenna (s) is / are fed, surrounding auxiliary heating is designed as an electrically controllable resistance heater, which, according to a temperature curve specified by a program is controlled that the temperature curve in Sintered material, which in turn by means of a temperature sensor, preferably a pyrometer is monitored and for the target-actual value comparison for heating the resonator wall whose temperature is used in the sense of a run-on control adjusted to the temperature of the sintered material is essentially due to the radiated microwave power is determined.
  • each of the resonator walls has its own Assign heating element and its own temperature sensor.
  • the insulation itself made of graphite or of a Graphite based material formed, e.g. Graphite felt and then mediates an arrangement on the inside of the resonator surrounding housing provided, due to the conductivity effective suppression of any of the graphite material Microwave leakage radiation to the outside.
  • Typical workpieces 11 which are produced on the basis of nitride-ceramic material, in particular Si 3 N 4 , for example ball bearings, valve body and housing, nozzles, or can be produced on the basis of oxide-ceramic material, for example sealing disks and rings, and require a sintering treatment, should be exposed to this thermal treatment in the furnace 10.
  • dielectric loss factor (tan ⁇ ⁇ 0.01), which in one a total of 12 stacks are arranged.
  • the treatment room within which the sintered material is held in a stack as a dielectric loading of the cavity resonator 16 in a manner not specifically shown, is schematically represented in FIG. 1a as a central subspace 17 geometrically similar to the interior of the cavity resonator 16, the one for the thermal treatment of the sintered material 11 usable volume can be approximately 1/3 of the resonator volume V res .
  • the types of vibrations that can be resonantly excited in such a cavity result in a periodically varying field course in the three coordinate directions x, y and z within the cavity, the square (E 2 ) of the electric field strength (E) of the electric field generated in the cavity between 0 and one Maximum amount varies, ie a field distribution that is extremely inhomogeneous in space.
  • a magnetron with a fundamental frequency of 2.45 GHz is provided as the microwave radiation source 13.
  • the resonator volume V res is 1.4 m 3 , so that the ratio V res / ⁇ 3 has a value of about 770.
  • a value of 7.6 m 3 is assumed for the value A res of the total area of the resonator walls 16 1 to 16 6 .
  • the resonator walls 16 1 to 16 6 consist of plate-shaped graphite material, so that at the specified frequency of the microwave source there is a penetration depth e of 32 ⁇ m, which corresponds to a quality of the resonator wall of approximately 8600.
  • a value A ant of 60 cm 2 is assumed for the "radiating" antenna area, which corresponds to a quality factor Q ant of the antenna arrangement of approximately 48,000.
  • the value of the quality Q diel of the sintered good is 2100 if a value of 8 and a loss factor of 0.008 are used for the dielectric constant.
  • the bandwidth B of the microwave radiation generated by the magnetron is less than 10 -6 , which corresponds to a source quality Q source of more than 10 6 .
  • the total quality Q ges approximately corresponds to the quality Q diel of the dielectric material and the number of excitable vibration types ⁇ N approximately a value of 9. This results in a sufficient number of vibration types that are sufficient for a sufficiently uniform Distribution of the electrical field in the cavity are necessary, can only be achieved by a broadband microwave source.
  • the furnace 10 is designed to have the following relationship: V res ⁇ B / ⁇ 3 ⁇ 20
  • the antenna arrangement 14, by means of which microwave energy generated by the magnetron 13 can be coupled into the cavity resonator 16, is designed as a slot radiator which comprises a plurality of radiation slots 18, each of which forms an antenna element, the radiating antenna area of which corresponds to the clear slot area.
  • These radiation slots 18 are arranged in a longitudinal wall 19 of a rectangular waveguide 21 (FIG.
  • the microwave energy generated by the magnetron 13 and fed into it at one end of the waveguide 21 only in the TE 10 mode (basic vibration type) in the arrangement example shown is capable of spreading in the z direction, such that the electric field vector is perpendicular to the longitudinal waveguide wall 19 provided with the slots 18 and the field distribution of the electric field in the interior of the rectangular waveguide runs essentially symmetrically to its longitudinal center plane 23, which in turn extends in the direction of propagation of the microwave field in the waveguide 21.
  • These radiation slots 18 are distributed over the length l z of the rectangular waveguide 21 such that the same or approximately the same amounts of microwave energy can be coupled into the cavity resonator 16 per radiation slot 18, and that the phase positions of the radiation slots through the radiation slots into the cavity resonator 16 coupled electromagnetic fields are different in a statistical sequence.
  • the distance d (Fig. 2a) is consecutive Slots of slot antenna 14 between ⁇ / 2 and 3 ⁇ / 4, where deviating from the illustration chosen for explanation, in the longer slot edges parallel to the longitudinal median plane 23 of the waveguide 21, also slot configurations with diagonally to this or even perpendicular to this Longitudinal edges are possible.
  • the slot antenna 14, in which the radiation slots parallel to of this longitudinal center plane 23, the length is 1 individual slots 18 between ⁇ / 4 and ⁇ / 2 and is significant larger than that perpendicular to the longitudinal median plane 23 or the direction of propagation of the microwave energy in the rectangular waveguide measured width w of the slots.
  • Over the length of the Rectangular waveguide 21 seen away at one end the microwave energy generated by the magnetron 13 is fed in is the lateral distance a of the radiation slots from the longitudinal median plane 23 of the rectangular waveguide 21 gradually.
  • the order of the arrangement on each side of the median longitudinal plane arranged radiation slots 18 'and 18' '(Fig. 2a) corresponds to the slot spacing d, seen in Direction of propagation of the microwave field in the rectangular waveguide 21, a "binary" random sequence of slot pairings (1,0) and (0,1), where (1,0) means that a slot 18 'on one, "left" side of the longitudinal median plane 23 of the rectangular waveguide 21 is present, but not a symmetrical to this arranged slot 18 '' and the combination (0.1), that on the other "right” side of the median longitudinal plane 23 Beam slot 18 '' is available, but not on the opposite, "left" side.
  • the combination (1,1) that a phase difference of exactly opposite one another arranged radiation slots 18 'and 18' 'emitted Field of ⁇ / 2, and the combination (0.0) are in the exemplary embodiment chosen for explanation, without restriction of generality, excluded.
  • the so far slot antenna explained in its basic structure acts as a group radiator, whose through the slots 18 or 18 'and 18 "formed single radiators with statistically distributed Phases can be fed, which reduces the radiation characteristics the antenna arrangement 14 in a very good approximation Omnidirectional characteristic is.
  • the rectangular waveguide 21 provided for feeding the radiation slots 18 of the antenna arrangement 14 is integrated into a prismatic graphite body 24, corresponding to the schematic illustration in FIG 1 represents a resonator cavity boundary surface which mediates in a corner region of the cavity resonator 16 between the resonator walls 16 2 and 16 4 which adjoin one another at right angles in the region of the antenna arrangement 14, the waveguide surfaces delimiting the waveguide interior 22 in pairs in parallel or run perpendicular to the inclined inner longitudinal boundary surface 26 of the cavity resonator 16, which is formed by the "hypotenuses" surface of the graphite body 24.
  • a design of the magnetron 13 is provided in which its oscillation frequency within one Bandwidth of 1/100 of the fundamental frequency f of 2.45 GHz is variable.
  • the cycle times of the frequency variation which can be controlled by means of an electronic control unit 27, are matched to the thermal relaxation behavior of the sintered good 11 in that they are small compared to the thermal relaxation time of the sintered good to be treated. Accordingly, the electronic control unit 27 is designed so that the cycle times can be between 0.05 and 1 second.
  • two or more antenna arrangements 14 are provided are, it is expedient if they are approximately equidistant azimuthally around a parallel to the polygon edges of the resonator cavity running "central" axis are grouped around a uniform radiation of microwave energy into the treatment room 17 to achieve the cavity resonator.
  • the furnace 10 is provided with a heating device, designated overall by 28, which in turn comprises six electrical resistance heating elements 28 1 to 28 6 according to the number of large wall elements 16 1 to 16 6 of the cavity resonator 16 (the resistance heating elements 28 5 and 28 6 are not shown because Figure 1 shows a cross section), the heating powers of which can be controlled individually, so that the temperature of the wall elements 16 1 to 16 6 can be influenced individually.
  • the wall elements 16 1 to 16 6 are each equipped with at least one temperature sensor 29 1 to 29 6 (the temperature sensors 29 5 and 29 6 are not shown because FIG. 1 shows a cross section), which generate characteristic electrical output signals for the actual values of the wall temperatures.
  • a pyrometer designated as a whole by 32, is provided, by means of which the temperature of the sintered material 11 can be detected.
  • This pyrometer 32 comprises a specimen 33 arranged at a suitable location in the stack 12 and an electronic-optical sensor 34, by means of which the radiation temperature of the specimen 33 can be detected, so that a characteristic electrical output signal of the sensor 34 is a precise measure of the temperature of the sintered material 11 is.
  • the electronic control unit 31 of the heating device 28 mediates comparative processing of the actual value output signals of the pyrometer arrangement 32 and the temperature sensors 29 1 to 29 6 and also mediates a control of the heating elements 28 1 to 28 6 and the power control of the microwave source 13 in the Meaning that the wall temperature of the cavity resonator 16 corresponds as exactly as possible to the temperature of the sintered material 11.
  • the course of the furnace temperature over time, ie both the temperature of the sintered material and the resonator wall temperature (s) is controlled according to a program which, taking into account the material properties and the geometric dimensions of the workpieces 11, gives a qualitatively good treatment result.
  • the cavity resonator 16 and the heating elements 28 1 to 28 6 of the heating device 28 provided for heating its walls 16 1 to 16 6 are arranged within a stable steel housing 36 which, for the purpose of the possibility of a protective gas purging of its interior 17 including the resonator cavity or evacuation of the same is carried out gastight.
  • the steel housing 36 is lined on the inside with a heat insulation layer 38, which consists of a high-temperature-resistant insulation material, for example graphite felt, for the purpose of heat insulation of its interior from the surrounding space of the furnace 10.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Constitution Of High-Frequency Heating (AREA)
  • Furnace Details (AREA)
  • Inorganic Insulating Materials (AREA)
  • Muffle Furnaces And Rotary Kilns (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Control Of High-Frequency Heating Circuits (AREA)

Abstract

PCT No. PCT/EP98/00003 Sec. 371 Date Aug. 12, 1999 Sec. 102(e) Date Aug. 12, 1999 PCT Filed Jan. 2, 1998 PCT Pub. No. WO98/30068 PCT Pub. Date Jul. 9, 1998In the furnace (10) for the high-temperature processing of materials with a relatively low dielectric loss factor (tan delta ) by heating the material by absorption of microwave energy in a resonant cavity (16), a uniform energy intensity of the microwave field is to be achieved for example by irradiating the microwave energy over a broad band and/or by varying in time the frequency of the irradiated microwave energy. The resonant cavity (16) and the radiation source (13) are tuned to each other such that the relation: (V/ lambda 3). B>/=20 is satisfied. V stands for the volume of the resonant cavity (16), lambda for the wavelength of the microwave radiation and B its band width. V/ lambda 3 equals at least 300 and the clear dimensions 1x, ly and lz of the resonant cavity (16) in the direction of the co-ordinates x, y and z are approximately equal to the cubic root of V. The wall (161 to 166) of the resonant cavity is made of graphite and can be heated by a heating device (28) up to the temperature of the material to be treated. The heating device is arranged outside the resonant cavity, and a heat insulting envelope (38) encloses the unit of resonant cavity (16) and heating device.

Description

Die Erfindung betrifft einen Brennofen für die Hochtemperaturbehandlung von Materialien mit relativ niedrigem dielektrischem Verlustfaktor unter Erwärmung des Materials durch Absorption von Mikrowellenenergie in einem Hohlraumresonator und mit den weiteren, im Oberbegriff des Patentanspruchs 1 genannten gattungsbestimmenden Merkmalen.The invention relates to a kiln for high temperature treatment of materials with relatively low dielectric Loss factor when the material is heated by absorption of microwave energy in a cavity and with the further generic in the preamble of claim 1 Features.

Ein derartiger Brennofen ist durch die WO95/05058 PCT/GB94/01730 bekannt.Such a kiln is known from WO95 / 05058 PCT / GB94 / 01730 known.

Der bekannte Brennofen hat in einer Gestaltung, in der er zum Sintern von keramischen Materialien in einem während des Sinterns ruhenden Stapel geeignet ist, einen quaderförmigen Hohlraumresonator, innerhalb dessen durch eine quaderförmig gestaltete Wärmedämm-Einrichtung der wiederum etwa quaderförmige Stapelraum abgegrenzt ist, der demjenigen Bereich innerhalb des Resonators entspricht, in dem von einer hinreichend homogenen Verteilung der elektrischen Feldstärke ausgegangen wird. Die Gleichmäßigkeit der elektrischen Feldstärke bzw. des Quadrats derselben ist Voraussetzung dafür, daß das Sintergut hinreichend "gleichmäßig" thermisch behandelbar ist. Um hierbei dem Effekt entgegenzuwirken, daß mit zunehmender Erwärmung des Sintergutes die Wärmeabstrahlung aus den randnahen Bereichen des Sinterstapels dazu führt, daß im Inneren desselben eine höhere Temperatur herrscht als in den genannten Randbereichen, ein Effekt, der für Mikrowellen-Brennöfen charakteristisch ist, ist eine Heizeinrichtung vorgesehen, die es erlaubt, die Randbereiche des Sinterstapels konventionell, z.B. mittels einer Widerstandsheizung zusätzlich zu erwärmen, um auf diese Weise ein ausgeglichenes Temperaturprofil innerhalb des Sinterstapels zu erzielen. The well-known kiln has a design in which it is used for Sintering ceramic materials in one during sintering resting stack is suitable, a cuboid cavity, within that by a cuboid Thermal insulation device of the roughly cuboid stacking space is delimited to that area within the Corresponds to that of a sufficiently homogeneous Distribution of the electric field strength is assumed. The Uniformity of the electric field strength or the square the same is a prerequisite for the sintered material to be sufficient "evenly" can be thermally treated. To do this To counteract the effect that with increasing warming of the sintered goods the heat radiation from the areas of the Sintered stack causes a higher inside Temperature prevails than in the marginal areas mentioned Effect that is characteristic of microwave ovens a heating device is provided which allows the edge areas the sintered stack conventionally, e.g. by means of a resistance heater in addition to heat in this way balanced temperature profile within the sintered stack achieve.

Der bekannte Brennofen ist zwar geeignet, in einem relativ kleinen Behandlungsbereich etwa gleiche thermische Verhältnisse im gesamten Behandlungsvolumen zu erreichen, ist jedoch mit dem Nachteil behaftet, daß die der Mikrowellenstrahlung ausgesetzte Wärmedämm-Einrichtung den überwiegenden Anteil der eingestrahlten Mikrowellenenergie absorbiert, was zwangsläufig zu einem hohen Verbrauch an Mikrowellenenergie führt, die nicht für die erwünschte thermische Behandlung des Sintergutes zur Verfügung steht. Dies ergibt sich daraus, daß in praktischen Fällen das Gesamtvolumen an Isolationsmaterial deutlich größer ist als das Volumen des Sintergutes. Der bekannte Brennofen ist daher als industriell nutzbarer Ofen nicht geeignet, da eine effiziente Ausnutzung der Mikrowellenenergie nicht gegeben ist, deren Erzeugung jedoch sehr viel kostenaufwendiger ist als die "konventionelle" Erwärmung mittels einer elektrischen Widerstandsheizung.The known kiln is indeed suitable, in a relative sense small treatment area about the same thermal conditions can be achieved in the entire treatment volume with the Disadvantageous is that it is exposed to microwave radiation Thermal insulation device the majority of the irradiated Absorbs microwave energy, which inevitably leads to a leads to high consumption of microwave energy, which is not for the Desired thermal treatment of the sintered goods available stands. This results from the fact that in practical cases Total volume of insulation material is significantly larger than that Volume of the sintered good. The well-known kiln is therefore as industrially usable furnace not suitable because it is efficient Utilization of microwave energy is not given, its generation but is much more expensive than the "conventional" Heating by means of an electrical resistance heater.

Zwar ist durch die WO95/05058 auch ein als Durchlaufofen ausgebildeter Brennofen bekannt, der als Tunnelofen mit Heizzonen unterschiedlicher Temperatur ausgebildet ist, durch den das Sintergut über Transportrollen hindurchbewegt wird, wobei die zusätzliche Heizung außerhalb des Behandlunsraumes angeordnet ist und die Wärmedämmung, die die Umgebung gegen den Hochtemperatur-Bereich isoliert, den Ofen außenseitig umschließt. Bei diesem Ofen handelt es sich jedoch um eine Anlage mit zwangsläufig ungenügender Feld-Homogenität, d.h. einer Ofengestaltung, die dann möglich ist, wenn relativ kleine Gegensände seriell gesintert werden, und es aufgrund des Hindurchbewegens durch inhomogene Bereiche nicht auf eine homogene Feldverteilung ankommt.WO95 / 05058 also means that it is designed as a continuous furnace Kiln known as the tunnel kiln with heating zones different temperature is formed by which Sintered material is moved over transport rollers, the additional heating is arranged outside the treatment room is and the thermal insulation that the environment against the high temperature area insulated, enclosing the furnace on the outside. at However, this oven is a system with inevitable insufficient field homogeneity, i.e. an oven design, which is possible when relatively small opposites are serial be sintered, and it due to the moving through due to inhomogeneous areas not to a homogeneous field distribution arrives.

Der bekannte Tunnelofen ist zwar für Materialien mit hohen dielektrischen Verlusten geeignet, die Mikrowellenenergie stark absorbieren, nicht jedoch für eine Behandlung von Sintergut mit relativ schwachen dielektrischen Verlusten, die praktisch nur in nennenswerten Stückzahlen in einem Hohlraumresonator mit hoher Feldhomogenität behandelt werden können.The well-known tunnel kiln is for materials with high dielectric Losses suitable, the microwave energy strong absorb, but not for the treatment of sintered goods relatively weak dielectric losses, which is practically only in significant quantities in a cavity resonator with high Field homogeneity can be treated.

Der bekannte Röhrenofen wäre für Materialien mit niedrigem dielektrischem Verlustfaktor, die technisch jedoch von hohem Interesse sind, nicht geeignet.The known tube furnace would be for low dielectric materials Loss factor, which is technically of great interest are not suitable.

Aufgabe der Erfindung ist es daher, einen Brennofen der eingangs genannten Art anzugeben, der eine Hochtemperaturbehandlung von Sintermaterial mit niedrigem dielektrischem Verlustfaktor in einem großen Behandlungsvolumen erlaubt, der aufgrund seiner Abmessungen als Industrieofen einsetzbar ist und dabei gleichwohl mit einem hohen Nutzungsgrad der Energie betreibbar ist. Des weiteren soll der Brennofen für Anwendungen innerhalb eines weiten Temperaturbereiches bis 1800°C geeignet sein.The object of the invention is therefore a furnace of the beginning Specify the type of high temperature treatment of sintered material with a low dielectric loss factor allowed in a large volume of treatment due to its dimensions can be used as an industrial furnace and thereby nevertheless operable with a high degree of energy utilization is. Furthermore, the kiln is intended for applications within a wide temperature range up to 1800 ° C.

Diese Aufgabe wird erfindungsgemäß durch die kennzeichnenden Merkmale des Patentanspruchs 1 gelöst.This object is achieved by the characterizing Features of claim 1 solved.

Hierdurch erzielte funktionelle Eigenschaften und Vorteile des erfindungsgemäßen Brennofens sind zumindest die folgenden:

  • Durch die Einhaltung der Dimensionierungsrelationen gemäß Merkmal a) ergibt sich bezogen auf die äußeren Abmessungen des Resonators eine für ein großes Behandlungsvolumen, in dem bei gleichmäßiger Beladung mit dem Sintergut eine hohe Anzahl von Sinter-Objekten behandelt werden kann, geeignete Homogenität der Feldverteilung.
  • Durch die Verlagerung des Isoliermantels nach außen wird sichergestellt, daß der überwiegende Anteil der erzeugten Mikrowellenstrahlung auch zum jeweils gegebenen Behandlungszweck genutzt werden kann. Hierdurch ist ein wirtschaftlicher Betrieb des erfindungsgemäßen Brennofens als Industrieofen erst möglich.
  • Durch die Verwendung von Graphit oder Material auf Graphit basis als Wandungsmaterial für den Hohlraumresonator wird nicht nur der Temperaturbereich, innerhalb dessen eine Hochtemperaturbehandlung von Sintergut möglich ist, drastisch erhöht, sondern es wird auch, verglichen mit einem koventionell in Stahl-Bauweise erstellten Hohlraumresonator auch dessen Gewicht und damit die elektrische Heizleistung der Zusatzheizeinrichtung verringert, die für die Erzielung des erwünschten Temperaturprofils erforderlich ist. Auch dadurch wird die Wirtschaftlichkeit des Betriebs eines als Industrieofen ausgebildeten erfindungsgemäßen Brennofens erhöht.
  • The functional properties and advantages of the kiln according to the invention achieved thereby are at least the following:
  • Compliance with the dimensioning relations according to feature a) results in a homogeneity of the field distribution that is suitable for a large treatment volume, in which a large number of sintered objects can be treated with uniform loading, with respect to the external dimensions of the resonator.
  • Moving the insulating jacket to the outside ensures that the majority of the microwave radiation generated can also be used for the given treatment purpose. As a result, economical operation of the furnace according to the invention as an industrial furnace is only possible.
  • The use of graphite or graphite-based material as the wall material for the cavity resonator not only drastically increases the temperature range within which high-temperature treatment of sintered material is possible, but also the cavity resonator, which is conventionally made of steel Weight and thus the electrical heating power of the additional heating device is reduced, which is necessary for achieving the desired temperature profile. This also increases the economic viability of operating a kiln according to the invention, which is designed as an industrial furnace.
  • In bevorzugter Gestaltung des Brennofens ist als Mikrowellen-Strahlungsquelle mindestens ein Magnetron vorgesehen, das um eine Mittenfrequenz innerhalb einer Bandbreite B, die durch die Beziehung B = Δf/f gegeben ist, in der mit Δf der Frequenzhub bezeichnet ist, von etwa 1/100 durchstimmbar ist.The preferred design of the furnace is as a microwave radiation source at least one magnetron is provided, around a center frequency within a bandwidth B, which is determined by the Relationship B = Δf / f is given, in which with Δf the frequency swing is designated, is tunable by about 1/100.

    Ein solches Magnetron kann z.B. eine Mittenfrequenz von 2,45 GHz haben, was einem Durchstimmbereich von zwischen 2,438 GHz bis 2,462 GHz entspricht.Such a magnetron can e.g. a center frequency of 2.45 GHz, which has a tuning range of between 2.438 GHz up to 2.462 GHz.

    Dadurch sind in dem Hohlraumresonator eine hohe Anzahl von Schwingungstypen anregbar, die bei einem Durchstimmen des Magentrons, z.B. zeitperiodisch zwischen den Grenzfrequenzen, zeitlich nacheinander fortlaufend angeregt werden.As a result, there are a large number of in the cavity resonator Vibration types that can be excited when tuning the magentron, e.g. periodically between the cutoff frequencies, be stimulated consecutively in time.

    Die vorteilhafte Folge hiervon ist, daß zu verschiedenen Zeiten verschiedene räumliche Verteilungen der Feldstärke vorliegen, die im zeitlichen Mittel ein weitgehend homogenes Feld im Behandlungsbereich ergeben.The beneficial consequence of this is that at different times there are different spatial distributions of the field strength, which on average a largely homogeneous field in the treatment area result.

    In zweckmäßiger Gestaltung ist die Strahlungsquelle so ausgelegt, daß die Zeit für einen Frequenzhub zwischen den Grenzfrequenzen im Zehntel-Sekundenbereich liegt, z.B. zwischen 0,05 und 1 Sekunde, d.h. innerhalb einer Zeitspanne, die klein ist gegen die thermische Relaxationszeit des Sintergutes. In a practical design, the radiation source is designed so that the time for a frequency swing between the cut-off frequencies is in the tenths of a second range, e.g. between 0.05 and 1 second, i.e. within a period of time that is small against the thermal relaxation time of the sintered material.

    Diese Maßnahme ist günstig, um innerhalb des Sintergutes thermische Spannungen zu vermeiden. Derartige Spannungen könnten sich aufbauen, wenn als Folge einer zu geringen Änderungsrate der Frequenz die einer bestimmten Frequenz entsprechende Feldverteilung, die notwendigerweise inhomogen ist, über zu lange Zeit hinweg aufrechterhalten bliebe.This measure is beneficial to thermal within the sintered good To avoid tensions. Such tensions could build up if as a result of too low a rate of change the frequency is the field distribution corresponding to a certain frequency, which is necessarily inhomogeneous for too long Would be maintained over time.

    Im Sinne einer effektiven Verbreiterung des Frequenzbandes, innerhalb dessen der Hohlraumresonator anregbar ist, kann es auch vorteilhaft sein, wenn eine Anzahl n von Magnetrons als Mikrowellenstrahlungsquellen vorgesehen sind, die bei verschiedenen Mittenfrequenzen fi (i = 1 bis n) betreibbar und innerhalb ihrer jeweiligen Bandbreiten Δfi durchstimmbar sind.In the sense of an effective broadening of the frequency band within which the cavity resonator can be excited, it can also be advantageous if a number n of magnetrons are provided as microwave radiation sources which can be operated at different center frequencies f i (i = 1 to n) and within their respective Bandwidths Δf i are tunable.

    Ein quasikontinuierlicher "lückenloser" Durchstimmbereich der Frequenz ergibt sich, wenn die Frequenzabstände einander in der Frequenzskala benachbarter Mittenfrequenzen des Magnetrons der Beziehung (Δfi + Δfi+1)/2 genügen.A quasi-continuous "gap-free" tuning range of the frequency results if the frequency spacings in the frequency scale of adjacent center frequencies of the magnetron satisfy the relationship (Δf i + Δf i + 1 ) / 2.

    In bevorzugter Gestaltung des Brennofens ist dessen Hohlraumresonator quaderförmig gestaltet, vorzugsweise so, daß die Kantenlängen lz, ly und lz der Hohlraumbegrenzung mindestens dem 10-fachen der Wellenlänge λ der Mikrowellenstrahlung entsprechen.In a preferred design of the furnace, its cavity resonator is cuboid, preferably such that the edge lengths l z , l y and l z of the cavity boundary correspond to at least 10 times the wavelength λ of the microwave radiation.

    Alternativ hierzu kann der Hohlraumresonator, wie gemäß Anspruch 7 vorgesehen, in derjenigen Richtung gesehen, in der ebene Begrenzungswände des Hohlraumresonators entlang paralleler Eckkanten aneinander angrenzen, eine polygonale Form hat, d.h. die Form eines prismatischen Hohlprofils. In diesen Gestaltungen ist der Resonator auf einfache Weise aus plattenförmigen Elementen zusammensetzbar, insbesondere auch, wie gemäß Anspruch 8 vorgesehen, aus plattenförmigem Graphit-Material.Alternatively, the cavity resonator can be as claimed 7 provided, seen in the direction in which flat boundary walls of the cavity resonator along parallel Adjoin corner edges, has a polygonal shape, i.e. the shape of a prismatic hollow profile. In these designs is the resonator made of plate-shaped in a simple manner Elements can be assembled, in particular also as per Claim 8 provided, made of plate-shaped graphite material.

    Diese Ausbildung des Hohlraumresonators hat den Vorzug, daß der Brennofen bei sehr hohen Temperaturen betreibbar ist, so daß Sinterprozesse in Temperaturbereichen bis zu 1800°C möglich werden.This design of the cavity resonator has the advantage that the Kiln can be operated at very high temperatures, so that Sintering processes in temperature ranges up to 1800 ° C possible become.

    Bei entsprechend vielzahliger Polygonalität und ggf. regelmäßig-polygonaler Gestaltung des Hohlraumresonators ist auch der Grenzfall des zylindrisch-rohrförmigen Resonators in guter Näherung erreichbar.With a correspondingly numerous polygonality and possibly regular polygonal The design of the cavity resonator is also the Limit case of the cylindrical-tubular resonator in good approximation reachable.

    Diese Gestaltung hat unter konstruktiven Gesichtspunkten den Vorteil, daß die Bauform des Resonators besser an ein üblicherweise zylindrisches Außengefäß angenähert werden kann, das evakuierbar ist und/oder mit Schutzgas spülbar ist.This design has the constructive point of view Advantage that the design of the resonator better than usual cylindrical outer vessel can be approximated, which can be evacuated is and / or can be flushed with protective gas.

    Um die z.B. für ein Sintern des Behandlungsgutes erforderliche hohe Mikrowellenleistung in einer gleichmäßigen räumlichen Verteilung in den Hohlraumresonator einkoppeln zu können, ist es vorteilhaft, eine Antennen-Anordnung zu wählen, die gemäß Anspruch 9 eine Rundstrahlcharakteristik hat, d.h. eine Richtwirkung weitgehend vermeidet. Eine derartige Antenne ist gemäß den Merkmalen des Anspruchs 10 als ein mehrere Einzelstrahler umfassender Gruppenstrahler ausgebildet, dessen Einzelstrahler in einer statistisch verteilten Phasenlage speisbar sind.To e.g. required for sintering the material to be treated high microwave power in an even spatial distribution To be able to couple into the cavity resonator, it is advantageous to choose an antenna arrangement according to claim 9 has an omnidirectional characteristic, i.e. a directivity largely avoided. Such an antenna is according to the Features of claim 10 as a multiple single radiator comprising Group emitter trained, the individual emitters in a statistically distributed phase position can be fed.

    Ein solcher Gruppenstrahler ist in bevorzugter Gestaltung des Ofens gemäß Anspruch 11 als Schlitzstrahler ausgebildet, der eine Mehrzahl von Abstrahlschlitzen einer Schlitzlänge zwischen λ/4 und λ/2 und einer verglichen mit dieser kleinen Schlitzweite w umfaßt, die, in Ausbreitungsrichtung des Mikrowellenfeldes im speisenden Hohlleiter gesehen, über dessen Länge derart verteilt angeordnet sind, daß pro Schlitz gleiche oder annähernd gleiche Beträge, von Mikrowellenenergie in den Hohlraumresonator einkoppelbar sind, wobei, in Ausbreitungsrichtung des Mikrowellenfeldes im Hohlleiter gesehen, die Ausdehnung der einzelnen Schlitze zwischen w und λ/2 beträgt, des weiteren der in Ausbreitungsrichtung des Mikrowellenfeldes im Hohlleiter gemessene Abstand aufeinanderfolgender Schlitze der Schlitzantenne zwischen λ/2 und 3λ/4 beträgt und, bezogen auf die in der Ausbreitungsrichtung verlaufende Längsmittelebene des Hohlleiters, der seitliche Abstand der Schlitze von dieser Mittelebene, über die Länge des Hohlleiters hinweg, schrittweise zunimmt, und daß eine statistische Verteilung der Längsschlitze, die die einzelnen Abstrahlelemente bilden, bezüglich der Längsmittelebene des Hohlleiters vorgesehen istSuch a group radiator is designed in a preferred embodiment of the oven according to claim 11 as a slot radiator, which comprises a plurality of radiation slots with a slot length between λ / 4 and λ / 2 and a compared to this small slot width w, which, in the direction of propagation of the microwave field in the feeding waveguide seen, distributed over its length such that the same or approximately the same amounts of microwave energy can be coupled into the cavity resonator per slot, the extent of the individual slots being between w and λ / 2, viewed in the direction of propagation of the microwave field in the waveguide, furthermore, the distance of successive slots of the slot antenna measured in the direction of propagation of the microwave field in the waveguide is between λ / 2 and 3λ / 4 and, based on the longitudinal center plane of the waveguide running in the direction of propagation, the lateral distance of the slots from this center live, increases gradually over the length of the waveguide, and that a statistical distribution of the longitudinal slots, which form the individual radiation elements, is provided with respect to the longitudinal median plane of the waveguide

    Bei dieser Gestaltung der Schlitzantenne wird eine sehr gute Rundstrahlcharakteristik schon dann erzielt, wenn mindestens 20 Einzelschlitze vorgesehen sind, wobei sich mit zunehmender Anzahl der Schlitze eine immer effektivere Annäherung der Antennencharakteristik an die Rundstrahlcharakteristik ergibt.This design of the slot antenna is a very good one Omnidirectional characteristics already achieved when at least 20 Single slots are provided, with increasing numbers of the slots an increasingly effective approximation of the antenna characteristics to the omnidirectional characteristic.

    In der gemäß Anspruch 13 vorgesehenen, speziellen Gestaltung des Schlitzstrahlers können mindestens einzelne seiner Schlitze auch schräg zur Ausbreitung des Mikrowellenfeldes im Hohlleiter verlaufen.In the special design provided according to claim 13 the slot radiator can at least some of its slots also obliquely to the spread of the microwave field in the waveguide run.

    Unter dem Gesichtspunkt eines gleichmäßigen Energieeintrages in den Hohlraumresonator kann es auch vorteilhaft sein, wenn mehrere Gruppenstrahler der vorgenannten Art vorgesehen sind, wobei sich zum einen statistisch eine gleichmäßigere Verteilung der Phasenlagen der über die einzelnen Antennenelemente eingekoppelten Mikrowellenenergie erzielen läßt und zum anderen auch ein entsprechend erhöhter Energieeintrag möglich wird, der zur Aufheizung eines großvolumigen Sinterstapels geeignet ist.From the point of view of an even energy input in the cavity resonator, it can also be advantageous if several Group spotlights of the aforementioned type are provided, wherein statistically a more even distribution of the phase positions of those coupled in via the individual antenna elements Microwave energy can be achieved and secondly a correspondingly increased energy input is possible, which for Heating a large-volume sintered stack is suitable.

    Sowohl aus konstruktiven Gründen als auch aus Gründen der Abstrahlcharakteristik ("Horn"-Wirkung der Resonatorwände) kann es besonders zweckmäßig sein, wenn die Antenne(n) in streifenförmigen Randbereichen ebener Teile der Resonatorwände angeordnet ist/sind, die in unmittelbarer Nähe von Kanten der Resonatorwandung verlaufen, entlang derer ebene Resonator-Innenflächen aneinander anstoßen. Both for constructional reasons and for reasons of radiation characteristics ("Horn" effect of the resonator walls) can it may be particularly useful if the antenna (s) are strip-shaped Edge areas of flat parts of the resonator walls arranged is / are in the immediate vicinity of edges of the resonator wall run along the flat inner surfaces of the resonator bump into each other.

    Die den Resonator und den bzw. die Hohlleiter, über den/die die Antenne(n) gespeist wird/werden, umgebende Zusatzheizung ist als eine elektrisch steuerbare Widerstandheizung ausgebildet, die, entsprechend einem durch ein Programm vorgegebenen Temperatur-Verlauf angesteuert wird, der dem Temperaturverlauf im Sintergut entsprechen soll, der seinerseits mittels eines Temperatursensors, vorzugsweise einem Pyrometer, überwacht wird und zum Soll-Ist-Wert-Vergleich für die Heizung der Resonatorwand herangezogen wird, deren Temperatur im Sinne einer Nachlaufregelung an die Temperatur des Sintergutes angeglichen wird, die im wesentlichen durch die eingestrahlte Mikrowellenleistung bestimmt wird.The resonator and the waveguide (s) via which the Antenna (s) is / are fed, surrounding auxiliary heating is designed as an electrically controllable resistance heater, which, according to a temperature curve specified by a program is controlled that the temperature curve in Sintered material, which in turn by means of a temperature sensor, preferably a pyrometer is monitored and for the target-actual value comparison for heating the resonator wall whose temperature is used in the sense of a run-on control adjusted to the temperature of the sintered material is essentially due to the radiated microwave power is determined.

    Hierbei ist es zweckmäßig, daß Temperatursensoren für verschiedene Wandbereiche des Resonators vorgesehen sind, mittels derer die gegebenenfalls verschiedenen Resonatorwand-Temperaturen erfaßbar sind, und daß die Heizung den individuell überwachten Wandbereichen zugeordnete Heizelemente umfaßt, die ihrerseits individuell ansteuerbar sind, wobei es zweckmäßig ist, im Fall des quaderförmigen Resonators jeder der Resonatorwände ein eigenes Heizelement und einen eigenen Temperatursensor zuzuordnen.It is expedient that temperature sensors for different Wall areas of the resonator are provided, by means of which the possibly different resonator wall temperatures can be detected and that the heating is monitored individually Wall areas associated heating elements, which in turn are individually controllable, it being useful in the case of the cuboid resonator, each of the resonator walls has its own Assign heating element and its own temperature sensor.

    Bei der erfindungsgemäß vorgesehenen Anordnung der wärmedämmenden Isolation außerhalb des. Resonator-Hohlraumes und auch außerhalb der Heizelemente ist die Isolation selbst aus Graphit oder aus einem Material auf Graphitbasis gebildet , z.B. Graphitfilz und vermittelt dann, eine Anordnung an der Innenseite des den Resonator umgebenden Gehäuses vorausgesetzt, aufgrund der Leitfähigkeit des Graphitmaterials eine wirksame Unterdrückung jeglicher Mikrowellen-Leckstrahlung nach außen.In the arrangement of the thermal insulation provided according to the invention Isolation outside the resonator cavity and also outside the heating element is the insulation itself made of graphite or of a Graphite based material formed, e.g. Graphite felt and then mediates an arrangement on the inside of the resonator surrounding housing provided, due to the conductivity effective suppression of any of the graphite material Microwave leakage radiation to the outside.

    Weitere Einzelheiten des erfindungsgemäßen Brennofens ergeben sich aus der nachfolgenden Beschreibung eines speziellen Ausführungsbeispiels und möglicher Abwandlungen desselben anhand der Zeichnung. Es zeigen:

    Fig. 1
    ein Ausführungsbeispiel eines erfindungsgemäßen Brennofens für eine Hochtemperaturbehandlung von keramischem Sintergut mit niedrigem dielektrischem Verlustfaktor, das innerhalb eines quaderförmigen Hohlraumresonators des Brennofens durch Absorption von Mikrowellenenergie aufheizbar ist, in schematisch vereinfachter Blockschaltbild-Darstellung,
    Fig. 1a
    eine schematisch vereinfachte, perspektivische Ansicht des Hohlraumresonators und der Anordnung der Behandlungs-Toleranzen;
    Fig. 2
    Einzelheiten einer zur Einkopplung von Mikrowellenenergie in den Hohlraumresonator des Brennofens gemäß Fig. 1 vorgesehenen Schlitzantennenanordnung, in schematisch vereinfachter, teilweise abgebrochener perspektivischer Ansichtsdarstellung und
    Fig. 2a
    die Schlitzantenne gemäß Fig. 2 in vereinfachter Draufsicht.
    Further details of the kiln according to the invention will become apparent from the following description of a specific exemplary embodiment and possible modifications thereof with the aid of the drawing. Show it:
    Fig. 1
    1 shows an exemplary embodiment of a kiln according to the invention for high-temperature treatment of ceramic sintered material with a low dielectric loss factor, which can be heated within a cuboid cavity of the kiln by absorption of microwave energy, in a schematically simplified block diagram representation,
    Fig. 1a
    a schematically simplified, perspective view of the cavity resonator and the arrangement of the treatment tolerances;
    Fig. 2
    Details of a slot antenna arrangement provided for coupling microwave energy into the cavity resonator of the furnace according to FIG. 1, in a schematically simplified, partially broken away perspective view and
    Fig. 2a
    2 in a simplified top view.

    Der in der Fig. 1 insgesamt mit 10 bezeichnete Brennofen ist für eine Temperafcurbehandlung, insbesondere zum Sintern, lediglich schematisch angedeuteter Werkstücke 11 gedacht, die durch diese thermische Behandlung erst ihre für einen bestimmungsgemäßen Gebrauch der fertigen Werkstücke erforderlichen Materialeigenschaften und/oder räumliche Abmessungen erlangen.The kiln designated 10 in FIG. 1 as a whole for tempera treatment, especially for sintering, only schematically indicated workpieces 11 thought by this thermal treatment is only for an intended use Use of the finished workpieces required material properties and / or achieve spatial dimensions.

    Typische Werkstücke 11, die auf der Basis von nitrid-keramischem Material, insbesondere Si3N4 hergestellt sind, z.B. Kugellager, Ventilkörper- und Gehäuse, Düsen, oder auf der Basis von oxid-keramischem Material herstellbar sind, z.B. Dichtscheiben und -Ringe, und einer sinternden Behandlung bedürfen, sollen in dem Brennofen 10 dieser thermischen Behandlung aussetzbar sein. Typical workpieces 11 which are produced on the basis of nitride-ceramic material, in particular Si 3 N 4 , for example ball bearings, valve body and housing, nozzles, or can be produced on the basis of oxide-ceramic material, for example sealing disks and rings, and require a sintering treatment, should be exposed to this thermal treatment in the furnace 10.

    Hierbei handelt es sich um Materialien mit relativ niedrigem dielektrischem Verlustfaktor (tan δ < 0.01), die in einem insgesamt mit 12 bezeichneten Stapel angeordnet sind.These are relatively low materials dielectric loss factor (tan δ <0.01), which in one a total of 12 stacks are arranged.

    Die Erwärmung des durch die Werkstücke 11 insgesamt gebildeten Sintergutes erfolgt durch Absorption von Mikrowellen-Energie, die von einer Mikrowellenquelle 13 erzeugt wird und über eine insgesamt mit 14 bezeichnete Antennen-Anordnung mit Rundstrahl-Charakteristik in einen insgesamt mit 16 bezeichneten Hohlraumresonator mit elektrisch leitenden Wänden 161 bis 166 eingekoppelt wird, der beim dargestellten, speziellen Ausführungsbeispiel die Form eines Quaders hat, dessen Abmessungen lx, ly und lz sigifikant, z.B. etwa 10 mal größer sind als die Wellenlänge λ der mittels der Mikrowellenquelle 13 erzeugbaren Mikrowellen, und jeweils in der Größenordnung

    Figure 00100001
    liegen, wobei mit Vres das Volumen des Hohlraumresonators 16 bezeichnet ist (Vres = lx . ly . lz). Der Behandlungsraum, innerhalb dessen das Sintergut stapelförmig als dielektrische Beladung des Hohlraumresonators 16 auf nicht eigens dargestellte Weise gehalten wird, ist in der Fig. 1a schematisch als mit dem Inneraum des Hohlraumresonators 16 geometrisch ähnlicher, zentraler Teilraum 17 repräsentiert, dessen zur thermischen Behandlung des Sintergutes 11 nutzbares Volumen ca. 1/3 des Resonatorvolumens Vres betragen kann.The sintered material formed by the workpieces 11 as a whole is heated by absorption of microwave energy which is generated by a microwave source 13 and via an antenna arrangement, generally designated 14, with omnidirectional characteristic into a cavity resonator, generally designated 16, with electrically conductive walls 16 1 to 16 6 is coupled in, which in the special embodiment shown has the shape of a cuboid whose dimensions l x , l y and l z are significant, for example approximately 10 times larger than the wavelength λ of the microwaves that can be generated by means of the microwave source 13, and each in the order of magnitude
    Figure 00100001
    lie, with V res the volume of the cavity resonator 16 is designated (V res = l x . l y . l z ). The treatment room, within which the sintered material is held in a stack as a dielectric loading of the cavity resonator 16 in a manner not specifically shown, is schematically represented in FIG. 1a as a central subspace 17 geometrically similar to the interior of the cavity resonator 16, the one for the thermal treatment of the sintered material 11 usable volume can be approximately 1/3 of the resonator volume V res .

    In einem solchen Resonator 16 lautet die Resonanzbedingung für die Wellenlänge der Mikrowellenstrahlung, die in dem Resonator 16 resonant ist λr = 2 mLx 2 + nLy 2 + oLz 2 wobei mit m, n und o die ganzzahligen Quanten-Zahlen bezeichnet sind, mit denen die Beziehung (1) erfüllbar ist.In such a resonator 16, the resonance condition is for the wavelength of the microwave radiation which is resonant in the resonator 16 λ r = 2 m L x 2 + n L y 2 + O L z 2 where m, n and o denote the integer quantum numbers with which the relationship (1) can be fulfilled.

    Die in einem solchen Hohlraumresonator resonant anregbaren Schwingungstypen ergeben innerhalb des Hohlraumresonators einen in den drei Koordinatenrichtungen x, y und z einen periodisch variierenden Feldverlauf, wobei das Quadrat (E2) der elektrischen Feldstärke (E) des im Hohlraumresonator erzeugten elektrischen Feldes zwischen 0 und einem Maximalbetrag variiert, d.h. eine Feldverteilung, die räumlich extrem inhomogen ist.The types of vibrations that can be resonantly excited in such a cavity result in a periodically varying field course in the three coordinate directions x, y and z within the cavity, the square (E 2 ) of the electric field strength (E) of the electric field generated in the cavity between 0 and one Maximum amount varies, ie a field distribution that is extremely inhomogeneous in space.

    Die für eine qualitativ gleichwertige Behandlung eines über den Behandlungs-Teilraum 17 verteilten Sintergutes erforderliche gleichmäßige Verteilung der elektrischen Feldenergie ist in guter Näherung erreichbar, wenn der Hohlraumresonator in einer hohen Zahl resonanter Schwingungstypen anregbar ist und diese Schwingungstypen zumindest im zeitlichen Mittel überlagerungsfähig sind, wobei die Anzahl ΔN der anregbaren Schwingungstypen durch die Beziehung ΔN = 8.π.vres λ3 · 1Qgesamt gegeben ist, in der mit Vres das Volumen des Hohlraumresonators, mit λ die Vakuumwellenlänge der Mikrowellenstrahlung und mit Qgesamt die Gesamtgüte der insoweit erläuterten Anordnung 10, 11, 12, 13, 14 bezeichnet ist, die ihrerseits durch die Beziehung 1Qgesamt = 1Qres + 1Qant + 1Qdiel + 1Qquelle gegeben ist. In dieser Beziehung ist mit Qres die Güte der Resonatorwand bezeichnet, die durch die Beziehung Qres = 3 · Vres 2 · Ares · e gegeben ist, mit Qant die Güte der Antennenanordnung, für die die Beziehung Qant = 8 . π . Vres Aant . λ gilt, mit Qdiel die Güte des dielektrischen Sintergutes, für welche die Beziehung Qdiel = Vres Vdiel · 1 εr ·tanδ gilt und mit Qquelle die Güte der Mikrowellenquelle (13) bezeichnet ist, die durch die Beziehung Qquelle = 1/B gegeben ist.The uniform distribution of the electrical field energy required for a qualitatively equivalent treatment of a sintered material distributed over the treatment subspace 17 can be achieved to a good approximation if the cavity resonator can be excited in a large number of resonant vibration types and these vibration types are at least capable of being superimposed on average over time, whereby the Number ΔN of the types of vibrations that can be excited by the relationship ΔN = 8.π.v res λ 3 · 1 Q total is given in which V res is the volume of the cavity resonator, λ is the vacuum wavelength of the microwave radiation and Q is the total quality of the arrangement 10, 11, 12, 13, 14 explained so far, which in turn is represented by the relationship 1 Q total = 1 Q res + 1 Q ant + 1 Q diel + 1 Q source given is. In this regard, Q res denotes the quality of the resonator wall, which is given by the relationship Q res = 3 · V res 2A res · E is given with Q ant the quality of the antenna arrangement for which the relationship Q ant = 8th . π. V res A ant , λ with Q diel the quality of the dielectric sintered good for which the relationship Q diel = V res V diel · 1 ε r · tans applies and with Q source the quality of the microwave source (13) is designated by the relationship Q source = 1 / B given is.

    In den Beziehungen (4), (5), (6) und (7) sind mit

    Ares
    die Fläche der Resonatorwand insgesamt,
    e
    die Eindringtiefe in die Resonatorwand
    Aant
    die abstrahlenden Flächen der Antennenanordnung 14, mit
    Vdiel
    das Volumen des dielektrischen Behandlungsgutes 11, mit
    εr
    die Dielektrizitätszahl des Sintergutes 11, mit
    tan δ
    der dielektrische Verlustfaktor des Sintergutes und mit
    B
    die Bandbreite der Mikrowellenquelle 13
    bezeichnet. In relationships (4), (5), (6) and (7) are with
    A res
    the total area of the resonator wall,
    e
    the depth of penetration into the resonator wall
    A ant
    the radiating surfaces of the antenna arrangement 14, with
    V diel
    the volume of the dielectric material to be treated 11, with
    ε r
    the dielectric constant of the sintered material 11, with
    tan δ
    the dielectric loss factor of the sintered material and with
    B
    the bandwidth of the microwave source 13
    designated.

    Bei dem zur Erläuterung gewählten Brennofen 10 ist als Mikrowellen-Strahlungsquelle 13 ein Magnetron mit einer Grundfrequenz von 2,45 GHz vorgesehen. Das Resonatorvolumen Vres beträgt 1,4 m3, so daß das Verhältnis Vres3 einen Wert von etwa 770 hat. Für den Wert Ares der Gesamtfläche der Resonatorwände 16 1 bis 166 ist ein Wert von 7,6 m3 angenommen. Die Resonatorwände 161 bis 166 bestehen aus plattenförmigem Graphit-Material, so daß sich bei der angegebenen Frequenz der Mikrowellenquelle eine Eindringtiefe e von 32µm ergibt, was einer Güte der Resonatorwand von etwa 8600 entspricht.In the kiln 10 selected for explanation, a magnetron with a fundamental frequency of 2.45 GHz is provided as the microwave radiation source 13. The resonator volume V res is 1.4 m 3 , so that the ratio V res / λ 3 has a value of about 770. A value of 7.6 m 3 is assumed for the value A res of the total area of the resonator walls 16 1 to 16 6 . The resonator walls 16 1 to 16 6 consist of plate-shaped graphite material, so that at the specified frequency of the microwave source there is a penetration depth e of 32 μm, which corresponds to a quality of the resonator wall of approximately 8600.

    Für die "strahlende" Antennenfläche ist ein Wert Aant von 60cm2 angenommen, was einer Güte Qant der Antennen-Anordnung von etwa 48000 entspricht. Für das vom Sintergut 11 eingenommene Volumen von ca. 0.03m3 ergibt sich ein Wert der Güte Qdiel des Sintergutes von 2100, wenn für dessen Dielektrizitätszahl ein Wert von 8 und ein Verlustfaktor von 0.008 angesetzt wird. Bei einem Betrieb des Magnetrons 13 bei fester Frequenz ist die Bandbreite B der von dem Magnetron erzeugten Mikrowellenstrahlung kleiner als 10-6, was einer Quellengüte Qquelle von mehr als 106 entspricht. Bei dielektrischer Beladung des Hohlraumresonators im angegebenen Umfang entspricht die Gesamtgüte Qges ungefähr der Güte Qdiel des dielektrischen Gutes und die Zahl der anregungsfähigen Schwingungstypen ΔN etwa einen Wert von 9. Hieraus ergibt sich, daß eine genügende Zahl von Schwingungstypen, die für eine hinreichend gleichmäßige Verteilung des elektrischen Feldes im Hohlraumresonator notwendig sind, sich nur durch eine breitbandige Mikrowellenquelle erreichen läßt.A value A ant of 60 cm 2 is assumed for the "radiating" antenna area, which corresponds to a quality factor Q ant of the antenna arrangement of approximately 48,000. For the volume of approx. 0.03m 3 occupied by the sintered good 11, the value of the quality Q diel of the sintered good is 2100 if a value of 8 and a loss factor of 0.008 are used for the dielectric constant. When the magnetron 13 is operated at a fixed frequency, the bandwidth B of the microwave radiation generated by the magnetron is less than 10 -6 , which corresponds to a source quality Q source of more than 10 6 . With dielectric loading of the cavity resonator to the specified extent, the total quality Q ges approximately corresponds to the quality Q diel of the dielectric material and the number of excitable vibration types ΔN approximately a value of 9. This results in a sufficient number of vibration types that are sufficient for a sufficiently uniform Distribution of the electrical field in the cavity are necessary, can only be achieved by a broadband microwave source.

    Demgemäß ist der Brennofen 10 dahingehend ausgelegt, daß die folgende Beziehung gilt: Vres · B/λ3 ≥ 20 Accordingly, the furnace 10 is designed to have the following relationship: V res · B / λ 3 ≥ 20

    Die Antennenanordnung 14, mittels derer von dem Magnetron 13 erzeugte Mikrowellenenergie in den Hohlraumresonator 16 einkoppelbar ist, ist als Schlitzstrahler ausgebildet, der eine Mehrzahl von Abstrahlschlitzen 18 umfaßt, deren jeder ein Antennenelement bildet, dessen strahlende Antennenfläche der lichten Schlitzfläche entspricht. Diese Abstrahlschlitze 18 sind in einer gleichzeitig auch einen Innenwandbereich des Hohlraumresonators bildenden Längswand 19 eines Rechteck-Hohlleiters 21 (Fig. 2) angeordnet, in dem die von dem Magnetron 13 erzeugte, am einen Ende des Hohlleiters 21 in diesen eingespeiste Mikrowellenenergie nur in der TE10-Mode (Grundschwingungstyp) beim dargestellten Anordnungs-Beispiel in der z-Richtung ausbreitungsfähig ist, derart, daß der elektrische Feldvektor rechtwinklig zu der mit den Schlitzen 18 versehenen Hohlleiter-Längswand 19 verläuft und die Feldverteilung des elektrischen Feldes im Innenraum des Rechteck-Hohlleiters im wesentlichen symmetrisch zu dessen Längsmittelebene 23 verläuft, die sich ihrerseits in Ausbreitungsrichtung des Mikrowellenfeldes im Hohlleiter 21 erstreckt. Diese Abstrahlschlitze 18 sind, über die Länge lz des Rechteck-Hohlleiters 21 derart verteilt angeordnet, daß pro Abstrahlschlitz 18 jeweils gleiche oder annähernd gleiche Beträge von Mikrowellenenergie in den Hohlraumresonator 16 einkoppelbar sind, und daß die Phasenlagen der durch die Abstrahlschlitze in den Hohlraumresonator 16 eingekoppelten elektromagnetischen Felder in einer statistischen Folge verschieden sind.The antenna arrangement 14, by means of which microwave energy generated by the magnetron 13 can be coupled into the cavity resonator 16, is designed as a slot radiator which comprises a plurality of radiation slots 18, each of which forms an antenna element, the radiating antenna area of which corresponds to the clear slot area. These radiation slots 18 are arranged in a longitudinal wall 19 of a rectangular waveguide 21 (FIG. 2), which at the same time also forms an inner wall region of the cavity, in which the microwave energy generated by the magnetron 13 and fed into it at one end of the waveguide 21 only in the TE 10 mode (basic vibration type) in the arrangement example shown is capable of spreading in the z direction, such that the electric field vector is perpendicular to the longitudinal waveguide wall 19 provided with the slots 18 and the field distribution of the electric field in the interior of the rectangular waveguide runs essentially symmetrically to its longitudinal center plane 23, which in turn extends in the direction of propagation of the microwave field in the waveguide 21. These radiation slots 18 are distributed over the length l z of the rectangular waveguide 21 such that the same or approximately the same amounts of microwave energy can be coupled into the cavity resonator 16 per radiation slot 18, and that the phase positions of the radiation slots through the radiation slots into the cavity resonator 16 coupled electromagnetic fields are different in a statistical sequence.

    In Ausbreitungsrichtung des Mikrowellenfeldes im Hohlleiter 21 gesehen, beträgt der Abstand d (Fig. 2a) aufeinanderfolgender Schlitze der Schlitzantenne 14 zwischen λ/2 und 3λ/4, wobei abweichend von der zur Erläuterung gewählten Darstellung, in der die längeren Schlitzränder parallel zur Längsmittelebene 23 des Hohlleiters 21 verlaufen, auch Schlitzkonfigurationen mit schräg zu dieser oder gar rechtwinklig zu dieser verlaufenden Längsrändern möglich sind. Bei der dargestellten Konfiguration der Schlitzantenne 14, bei der die Abstrahlschlitze parallel zu dieser Längsmittelebene 23 verlaufen, beträgt die Länge 1 der einzelnen Schlitze 18 zwischen λ/4 und λ/2 und ist signifikant größer als die rechtwinklig zur Längsmittelebene 23 bzw. der Ausbreitungsrichtung der Mikrowellenenergie im Rechteck-Hohlleiter gemessene Weite w der Schlitze. Über die Länge des Rechteck-Hohlleiters 21 hinweg gesehen, an dessen einem Ende die von dem Magnetron 13 erzeugte Mikrowellenenergie eingespeist wird, nimmt der seitliche Abstand a der Abstrahlschlitze von der Längemittelebene 23 des Rechteck-Hohlleiters 21 schrittweise zu.In the direction of propagation of the microwave field in the waveguide 21 seen, the distance d (Fig. 2a) is consecutive Slots of slot antenna 14 between λ / 2 and 3λ / 4, where deviating from the illustration chosen for explanation, in the longer slot edges parallel to the longitudinal median plane 23 of the waveguide 21, also slot configurations with diagonally to this or even perpendicular to this Longitudinal edges are possible. In the configuration shown the slot antenna 14, in which the radiation slots parallel to of this longitudinal center plane 23, the length is 1 individual slots 18 between λ / 4 and λ / 2 and is significant larger than that perpendicular to the longitudinal median plane 23 or the direction of propagation of the microwave energy in the rectangular waveguide measured width w of the slots. Over the length of the Rectangular waveguide 21 seen away at one end the microwave energy generated by the magnetron 13 is fed in is the lateral distance a of the radiation slots from the longitudinal median plane 23 of the rectangular waveguide 21 gradually.

    Die Anordnungsfolge der jeweils auf einer Seite der Längsmittelebene angeordneten Abstrahlschlitze 18' und 18'' (Fig. 2a) entspricht im Abstandsraster der Schlitzabstände d, gesehen in Ausbreitungsrichtung des Mikrowellenfeldes im Rechteck-Hohlleiter 21, einer "binären" Zufallsfolge von Schlitz-Paarungen (1,0) und (0,1), wobei (1,0) bedeutet, daß ein Schlitz 18' auf der einen, "linken" Seite der Längsmittelebene 23 des Rechteck-Hohlleiters 21 vorhanden ist, jedoch nicht ein zu diesem symmetrisch angeordneter schlitz 18'' und die Kombination (0,1), daß auf der anderen "rechten" Seite der Längsmittelebene 23 ein Abstrahlschlitz 18'' vorhanden ist, nicht jedoch auf der der gegenüberliegenden, "linken" Seite. Die Kombination (1,1), die einem Phasenunterschied des über einander genau gegenüberliegend angeordnete Abstrahlschlitze 18' und 18'' abgestrahlten Feldes von π/2 entsprechen würde, sowie die Kombination (0,0) sind bei dem zur Erläuterung gewählten Ausführungsbeispiel, ohne Beschränkung der Allgemeinheit, ausgeschlossen. Die insoweit ihrem prinzipiellen Aufbau nach erläuterte Schlitzantenne wirkt als Gruppenstrahler, dessen durch die Schlitze 18 bzw. 18' und 18" gebildeten Einzelstrahler mit statistisch verteilter Phasenlage speisbar sind, wodurch die Abstrahicharakteristik der Antennen-Anordnung 14 in sehr guter Näherung eine Rundstrahlcharakteristik ist.The order of the arrangement on each side of the median longitudinal plane arranged radiation slots 18 'and 18' '(Fig. 2a) corresponds to the slot spacing d, seen in Direction of propagation of the microwave field in the rectangular waveguide 21, a "binary" random sequence of slot pairings (1,0) and (0,1), where (1,0) means that a slot 18 'on one, "left" side of the longitudinal median plane 23 of the rectangular waveguide 21 is present, but not a symmetrical to this arranged slot 18 '' and the combination (0.1), that on the other "right" side of the median longitudinal plane 23 Beam slot 18 '' is available, but not on the opposite, "left" side. The combination (1,1) that a phase difference of exactly opposite one another arranged radiation slots 18 'and 18' 'emitted Field of π / 2, and the combination (0.0) are in the exemplary embodiment chosen for explanation, without restriction of generality, excluded. The so far slot antenna explained in its basic structure acts as a group radiator, whose through the slots 18 or 18 'and 18 "formed single radiators with statistically distributed Phases can be fed, which reduces the radiation characteristics the antenna arrangement 14 in a very good approximation Omnidirectional characteristic is.

    Der zur Speisung der Abstrahlschlitze 18 der Anennenanordnung 14 vorgesehene Rechteck-Hohlleiter 21 ist, entsprechend der schematischen Darstellung der Fig. 1 in einen prismatischen Graphitkörper 24 integriert, dessen äußere Querschnittskontur derjenigen eines gleichschenklig-rechtwinkligen Dreiecks entspricht, durch dessen Hypothenuse 26 in der Darstellung der Fig. 1 eine Resonatorhohlraum-Begrenzungsfläche repräsentiert ist, die in einem Eckbereich des Hohlraumresonators 16 zwischen den im Bereich der Antennenanordnung 14 rechtwinklig aneinander angrenzenden Resonatorwänden 162 und 164 vermittelt, wobei die den Hohlleiter-Innenraum 22 begrenzenden Wellenleiter-Flächen paarweise parallel bzw, senkrecht zu der schrägen inneren Längebegrenzungsfläche 26 des Hohlraumresonators 16 verlaufen, die durch die "Hypothenusen"-Fläche des Graphitkörpers 24 gebildet ist.The rectangular waveguide 21 provided for feeding the radiation slots 18 of the antenna arrangement 14 is integrated into a prismatic graphite body 24, corresponding to the schematic illustration in FIG 1 represents a resonator cavity boundary surface which mediates in a corner region of the cavity resonator 16 between the resonator walls 16 2 and 16 4 which adjoin one another at right angles in the region of the antenna arrangement 14, the waveguide surfaces delimiting the waveguide interior 22 in pairs in parallel or run perpendicular to the inclined inner longitudinal boundary surface 26 of the cavity resonator 16, which is formed by the "hypotenuses" surface of the graphite body 24.

    Um zur Erhöhung der Anzahl der im Hohlraumresonator anregbaren Schwingungstypen, was der Gleichmäßigkeit der Feldverteilung im Hohlraumresonator zugute kommt, die "effektive" Güte Qquelle des als Energiequelle vorgesehenen Magnetrons zu verringern, ist eine Gestaltung des Magnetrons 13 vorgesehen, bei der dessen Schwingungsfrequenz innerhalb einer Bandbreite von 1/100 der Grundfrequenz f von 2,45 GHz variierbar ist. Die Zykluszeiten der Frequenzvariation, die mittels einer elektronischen Steuer einheit 27 steuerbar ist, sind auf das thermische Relaxationsverhalten des Sintergutes 11 dahingehend abgestimmt, daß sie klein gegen die thermische Relaxationszeit des jeweils zu behandelnden Sintergutes sind. Demgemäß ist die elektronische Steuereinheit 27 so ausgelegt, daß die Zykluszeiten zwischen 0,05 und 1 Sekunde betragen können.In order to reduce the "effective" quality Q source of the magnetron provided as the energy source, in order to increase the number of oscillation types that can be excited in the cavity resonator, which benefits the uniformity of the field distribution in the cavity resonator, a design of the magnetron 13 is provided in which its oscillation frequency within one Bandwidth of 1/100 of the fundamental frequency f of 2.45 GHz is variable. The cycle times of the frequency variation, which can be controlled by means of an electronic control unit 27, are matched to the thermal relaxation behavior of the sintered good 11 in that they are small compared to the thermal relaxation time of the sintered good to be treated. Accordingly, the electronic control unit 27 is designed so that the cycle times can be between 0.05 and 1 second.

    Dem Zweck einer - im zeitlichen Mittel - Reduzierung der Quellengüte Qquelle kann, was nicht eigens dargestellt ist, auch die Maßnahme dienen, daß mehrere Magnetrons als Mikrowellen-Strahlungsquelle vorgesehen sind, die bei verschiedenen Grundfrequenzen fi (i = 1...n) betreibbar sind und jeweils entsprechende charakteristische Bandbreiten Bi haben, wobei es dann zweckmäßig ist, daß die Frequenzabstände Δfl der einander in der Frequenzskala benachbarten Magnetron-Schwingungsfrequenzen, zumindest annähernd dem Wert Δfi + Δfi+l 2 entsprechen.The purpose of a - on average over time - reduction of the source quality Q source , which is not specifically shown, can also serve the measure that several magnetrons are provided as microwave radiation sources, which at different fundamental frequencies fi (i = 1 ... n) are operable and each have corresponding characteristic bandwidths B i , it then being expedient that the frequency spacings Δf l of the magnetron oscillation frequencies adjacent to one another in the frequency scale, at least approximately the value .delta.f i + Δf i + l 2 correspond.

    Wenn zur Einstrahlung von Mikrowellenenergie in den Hohlraumresonator 16 zwei oder mehr Antennen Anordnungen 14 vorgesehen sind, so ist es zweckmäßig, wenn diese azimutal etwa äquidistant um eine parallel zu den Polygonkanten des Resonator-Hohlraumes verlaufende "zentrale" Achse gruppiert sind, um eine gleichmäßige Einstrahlung von Mikrowellenenergie in den Behandlungsraum 17 des Hohlraum-Resonators zu erzielen.When to radiate microwave energy into the cavity 16 two or more antenna arrangements 14 are provided are, it is expedient if they are approximately equidistant azimuthally around a parallel to the polygon edges of the resonator cavity running "central" axis are grouped around a uniform radiation of microwave energy into the treatment room 17 to achieve the cavity resonator.

    Der Brennofen 10 ist mit einer insgesamt mit 28 bezeichneten Heizeinrichtung versehen, die entsprechend der Anzahl der großflächigen Wandelemente 161 bis 166 des Hohlraumresonators 16 ihrerseits sechs elektrische Widerstands-Heizelemente 281 bis 286 umfaßt (Die Widerstands-Heizelemente 285 und 286 sind nicht dargestellt, weil Figur 1 einen Querschnitt zeigt), deren Heizleistungen individuell steuerbar sind, so daß die Temperatur der Wandelemente 161 bis 166 individuell beeinflußbar ist. Die Wandelemente 161 bis 166 sind mit mindestens je einem Temperatursensor 291 bis 296 bestückt (Die Temperatursensoren 295 und 296 sind nicht dargestellt, weil Figur 1 einen Querschnitt zeigt), die für die Istwerte der Wandtemperaturen charakteristische elektrische Ausgangssignale erzeugen.The furnace 10 is provided with a heating device, designated overall by 28, which in turn comprises six electrical resistance heating elements 28 1 to 28 6 according to the number of large wall elements 16 1 to 16 6 of the cavity resonator 16 (the resistance heating elements 28 5 and 28 6 are not shown because Figure 1 shows a cross section), the heating powers of which can be controlled individually, so that the temperature of the wall elements 16 1 to 16 6 can be influenced individually. The wall elements 16 1 to 16 6 are each equipped with at least one temperature sensor 29 1 to 29 6 (the temperature sensors 29 5 and 29 6 are not shown because FIG. 1 shows a cross section), which generate characteristic electrical output signals for the actual values of the wall temperatures.

    Des weiteren ist ein insgesamt mit 32 bezeichnetes Pyrometer vorgesehen, mittels dessen die Temperatur des Sintergutes 11 erfaßbar ist. Dieses Pyrometer 32 umfaßt einen an geeingeter Stelle im Stapel 12 angeordneten Probekörper 33 und einen elektronisch-optischen Sensor 34, mittels dessen die Strahlungstemperatur des Probekörpers 33 erfaßbar ist, so daß ein hierfür charakteristisches elektrisches Ausgangssignal des Sensors 34 ein genaues Maß für die Temperatur des Sintergutes 11 ist. Die elektronische Steuereinheit 31 der Heizeinrichtung 28 vermittelt eine vergleichende Verarbeitung der Istwert-Ausgangssignale der Pyrometer-Anordnung 32 sowie der Temperatursensoren 291 bis 296 und vermittelt auch eine Ansteuerung der Heizelemente 281 bis 286 sowie der Leistungs-Steuerung der Mikrowellenquelle 13 in dem Sinne, daß die Wandtemperatur des Hohlraumresonators 16 insgesamt möglichst exakt der Temperatur des Sintergutes 11 entspricht. Der zeitliche Verlauf der Ofentemperatur, d.h. sowohl der Temperatur des Sintergutes als auch der Resonator-Wandtemperatur(en) wird nach einem Programm gesteuert, das unter Berücksichtung der Materialeigenschaften und der geometrischen Abmessungen der Werkstücke 11 ein qualitativ gutes Behandlungsergebnis ergibt.Furthermore, a pyrometer, designated as a whole by 32, is provided, by means of which the temperature of the sintered material 11 can be detected. This pyrometer 32 comprises a specimen 33 arranged at a suitable location in the stack 12 and an electronic-optical sensor 34, by means of which the radiation temperature of the specimen 33 can be detected, so that a characteristic electrical output signal of the sensor 34 is a precise measure of the temperature of the sintered material 11 is. The electronic control unit 31 of the heating device 28 mediates comparative processing of the actual value output signals of the pyrometer arrangement 32 and the temperature sensors 29 1 to 29 6 and also mediates a control of the heating elements 28 1 to 28 6 and the power control of the microwave source 13 in the Meaning that the wall temperature of the cavity resonator 16 corresponds as exactly as possible to the temperature of the sintered material 11. The course of the furnace temperature over time, ie both the temperature of the sintered material and the resonator wall temperature (s) is controlled according to a program which, taking into account the material properties and the geometric dimensions of the workpieces 11, gives a qualitatively good treatment result.

    Der Hohlraumresonator 16 und die zur Beheizung seiner Wände 161 bis 166 vorgesehenen Heizelemente 281 bis 286 der Heizeinrichtung 28 sind innerhalb eines stabilen Stahlgehäuses 36 angeordnet, das zum Zweck der Möglichkeit einer Schutzgas-Spülung seines Innenraumes 17 einschließlich des Resonator-Hohlraumes oder einer Evakuierung derselben gasdicht ausgeführt ist. Das Stahlgehäuse 36 ist zum Zweck der Wärmeisolierung seines Innenraumes gegenüber dem Umgebungsraum des Brennofens 10 innenseitig mit einer Wärmedämmschicht 38 ausgekleidet, die aus einem hochtemperaturfesten Isolationsmaterial, z.B. Graphitfilz besteht.The cavity resonator 16 and the heating elements 28 1 to 28 6 of the heating device 28 provided for heating its walls 16 1 to 16 6 are arranged within a stable steel housing 36 which, for the purpose of the possibility of a protective gas purging of its interior 17 including the resonator cavity or evacuation of the same is carried out gastight. The steel housing 36 is lined on the inside with a heat insulation layer 38, which consists of a high-temperature-resistant insulation material, for example graphite felt, for the purpose of heat insulation of its interior from the surrounding space of the furnace 10.

    Claims (19)

    1. Baking oven (10) for the high-temperature treatment of materials with relatively low dielectric loss factor (tan δ) by heating the material by absorption of microwave energy in a resonant chamber, in which the material to be treated is arranged within a central area of the resonator, wherein a uniform energy density of the microwave field is achieved, for example, by irradiating with broadband microwave energy and/or by varying the frequency of the irradiated microwave energy over time, so that in each volume element of the treatment area the square of the electric field strength of the microwave field has the same value, at least over time, within a minor tolerance, wherein an electric heating device is provided, with which the resonator wall can be heated to the same temperature as within the material to be treated, for example, in the sense of a servo control the temperature of the material to be treated can be followed, and wherein a heat insulating envelope (38) is provided, which insulates the baking oven against heat loss into the environment, characterized by the following features:
      a) the resonator chamber (16) and a the microwave energy generating radiation source (13) are sufficiently attuned to each other, so that the relation V λ3 · B ≥ 20 is satisfied, wherein V is the volume of the resonator chamber (16), λ is the wavelength of the microwave radiation and B is their band width, further the amount V/λ3 has a value of at least 300 and the transparent dimensions lx, ly and lz of the resonator chamber (16) in the coordinate directions x, y and z have a value of
      Figure 00250001
      each;
      b) the heating device (28) is arranged outside of the resonator chamber (16) in the immediate vicinity of the resonator wall, and the heat insulating envelope (38) is arranged so that it encompasses the resonator chamber (16) and the heating device (28) from the outside,
      c) the resonator wall (161 through 166) consists of graphite or of temperature maintaining and electrically conductive material based on graphite.
    2. Baking oven according to claim 1, thereby characterized, that, as microwave radiation source (13) a magnetron is provided, which is tunable about a basic frequency f within a band width B = Δf/f of preferably 1/100.
    3. Baking oven according to claim 1 or claim 2, thereby characterized, that time intervals in which within a continuous or stepwise variation of an oscillation frequency of the microwave radiation source (13) occurs, lies between 0.05 and 1s, preferably around 100ms.
    4. Baking oven according to one of claims 1 through 3, thereby characterized, that an amount n of magnetrons are provided, which are operable at various central frequencies fi (i = 1 through n) and each have characteristic band widths Bi.
    5. Baking oven according to claim 4, thereby characterized, that frequency separations of the center frequencies of the magnetrons which are next to each other in a frequency scale satisfy the equation (Δfi + Δfi+i)/2.
    6. Baking oven according to one of claims 1 through 5, thereby characterized, that the resonator chamber (16) has a cuboidal design, such that the dimensions or edge lengths 1x, 1y and 1z of the resonant chamber boundary correspond at least to the 10-fold of the wavelength of the microwave radiation.
    7. Baking oven according to one of claims 7. through 5, thereby characterized, that the resonator chamber (16) has a polygonal cross-section.
    8. Baking oven according to one of claims 1 through 7, thereby characterized, that the resonator chamber (16) is assembled of preferably plate-shaped graphite material (161 through 166).
    9. Baking oven according to one of claims 1 through 8, thereby characterized, that for introduction of the microwave energy into the resonator chamber (16) an antenna-arrangement (14) is provided, which has an omnidirectional characteristic.
    10. Baking oven according to claim 9, thereby characterized, that the antenna-arrangement (14) is formed as a group emitter comprising multiple individual emitters, which the individual emitters can be supplied by a statistically distributed phase position.
    11. Baking oven according to claim 10, thereby characterized, that the group emitter is designed as a slit emitter, which includes a plurality of radiation slits with a slit length of between λ/4 and λ/2 and, in comparison thereto, a small slit width w, which viewed in the direction of radiation of the microwave field in the feeding wave guide, are distributed in such a manner over the length thereof, that per slit the same or approximately similar amount of microwave energy can be introduced into the resonant chamber, wherein, viewed in the direction of propagation of the microwave field in the wave guide, the extension of the individual slits corresponds to between w and λ/2, of which further in the distance measured in the direction of radiation of the microwave field in the wave guide sequential slits of the slit antenna have a value of between λ/2 and 3λ/4, and, with reference to the center plane of the wave guide running in the direction of propagation, the sideways separation of the slits from this center plane, over the length of the wave guide, increases stepwise, and wherein a statistic distribution of the longitudinal slits, which form the individual radiation elements, is provided with respect to the longitudinal center plane of the wave guide.
    12. Baking oven according to claim 11, thereby characterized, that over the length of the wave guide (21) provided to feed the antenna slits (18) at least 20 individual slits are provided.
    13. Baking oven according to claim 12, thereby characterized, that at least some of its slits run perpendicular to the direction of propagation of the microwave field in the wave guide.
    14. Baking oven according to one of claims 9 through 13, thereby characterized, that for introduction of the microwave energy into the resonator chamber (16) at least two group emitters are provided, preferably with slit-antenna arrangement (14, 18).
    15. Baking oven according to claim 14, thereby characterized, that the group emitters (14) are arranged symmetrically with regard to a significant or distinct axis of the resonator chamber.
    16. Baking oven according to one of claims 9 through 15, thereby characterized, that the corresponding antenna-arrangement (14) is arranged in a strip-shaped edge area of the resonator wall, which runs very close to the inner edge of the resonator wall.
    17. Baking oven according to one of claims 1 through 16, thereby characterized, that for the adjustment of a controllable heating device (28) for achievement of equalization of the temperature profile within the resonator chamber, preferably constructed as an electric resistance heater, which maintains the temperature of the resonator walls (161 through 166) at a value which corresponds to the value of the temperature-value in a central area of pile of material being sintered (12), which is sensed as actual value, preferably via a pyrometer (32), and which for its part in accordance with a control program follows a specific temperature profile over time.
    18. Baking oven according to claim 17, thereby characterized, that various wall areas (161-166) of the resonator chamber (16) are provided with associated temperarture sensors (291 through 296), by means of which the possibly varying resonator wall temperatures may be sensed, and that the heating device (28) includes various heater elements (281 through 286) for heating the various walls being monitored, which are individually controllable.
    19. Baking oven according to one of claims 1 through 18, thereby characterized, that the heat insulating envelope intended for heat insulation of the resonator chamber (16) against the outer surroundings of the baking oven (10) is formed internal to oven housing (36) for receiving the resonator chamber (16) and to the heating device (28), and for its part is made of graphite material, in particular graphite felt, with a minimally conductive outer layer.
    EP98904027A 1997-01-04 1998-01-02 Baking oven for the high-temperature treatment of materials with a low dielectric loss factor Expired - Lifetime EP0950341B1 (en)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    DE19700141A DE19700141A1 (en) 1997-01-04 1997-01-04 Kiln for high temperature treatment of materials with low dielectric loss factor
    DE19700141 1997-01-04
    PCT/EP1998/000003 WO1998030068A1 (en) 1997-01-04 1998-01-02 Baking oven for the high-temperature treatment of materials with a low dielectric loss factor

    Publications (2)

    Publication Number Publication Date
    EP0950341A1 EP0950341A1 (en) 1999-10-20
    EP0950341B1 true EP0950341B1 (en) 2002-12-18

    Family

    ID=7816825

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP98904027A Expired - Lifetime EP0950341B1 (en) 1997-01-04 1998-01-02 Baking oven for the high-temperature treatment of materials with a low dielectric loss factor

    Country Status (7)

    Country Link
    US (1) US6163020A (en)
    EP (1) EP0950341B1 (en)
    AT (1) ATE230199T1 (en)
    AU (1) AU6206798A (en)
    CA (1) CA2276469C (en)
    DE (2) DE19700141A1 (en)
    WO (1) WO1998030068A1 (en)

    Families Citing this family (35)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    WO2001030118A1 (en) 1999-10-18 2001-04-26 The Penn State Research Foundation Microwave processing in pure h fields and pure e fields
    US6344635B2 (en) 1999-12-28 2002-02-05 Corning Incorporated Hybrid method for firing of ceramics
    CN1178553C (en) 1999-12-28 2004-12-01 康宁股份有限公司 Hybrid method for firing of ceramics
    JP2002054634A (en) * 2000-08-07 2002-02-20 Nippon Steel Corp Static pressure gas bearing
    JP4641372B2 (en) * 2000-12-29 2011-03-02 コーニング インコーポレイテッド Apparatus and method for processing ceramics
    DE10329411B4 (en) * 2003-07-01 2006-01-19 Forschungszentrum Karlsruhe Gmbh Microwave resonator, a process line constructed modularly from such a microwave resonator, a method for operating and by this method thermally processed objects / workpieces by means of a microwave
    US8444756B2 (en) 2003-08-07 2013-05-21 Ivoclar Vivadent Ag Lithium silicate materials
    US9220576B2 (en) 2003-08-07 2015-12-29 Ivoclar Vivadent Ag Machining of ceramic materials
    JP4005049B2 (en) * 2004-04-16 2007-11-07 松下電器産業株式会社 Microwave firing furnace
    ES2489523T3 (en) 2005-02-08 2014-09-02 Ivoclar Vivadent Ag Lithium silicate glass ceramic material
    KR100645948B1 (en) 2005-05-17 2006-11-14 신승도 Microwave furnace capable of precise temperature control
    WO2009020378A2 (en) * 2007-08-09 2009-02-12 Byung Kwan Kim Microwave sintering furnace and method for sintering artificial tooth using the same
    EP2101547B1 (en) * 2008-03-11 2014-03-05 Vita Zahnfabrik H. Rauter GmbH & Co. KG Dental sintering furnace and method for sintering ceramic dental elements
    DE102008015483B4 (en) * 2008-03-25 2018-10-11 Ivoclar Vivadent Ag Oven for the thermal treatment of a dental firing object
    DK2377830T3 (en) 2010-04-16 2016-07-18 Ivoclar Vivadent Ag Lithium silicate glass ceramics and glass with transition metal.
    US8865606B2 (en) 2010-04-16 2014-10-21 Ivoclar Vivadent Ag Process for the preparation of dental restorations
    WO2013053867A2 (en) 2011-10-14 2013-04-18 Ivoclar Vivadent Ag Lithium silicate glass ceramic and lithium silicate glass comprising a pentavalent metal oxide
    ES2568249T3 (en) 2011-10-14 2016-04-28 Ivoclar Vivadent Ag Vitroceramic glass and lithium silicate glass with divalent metal oxide
    DK2765976T3 (en) 2011-10-14 2016-05-17 Ivoclar Vivadent Ag LITHIUM SILICATE GLASS CERAMICS AND GLASS WITH TETRAVALENT METAL OXIDE
    RU2017118926A (en) 2011-10-14 2018-11-05 Ивоклар Вивадент Аг LITHIUM-SILICATE GLASS CERAMICS AND GLASS WITH TREVALENT METAL OXIDE
    JP6633278B2 (en) 2011-10-14 2020-01-22 イフォクレール ヴィヴァデント アクチェンゲゼルシャフトIvoclar Vivadent AG Lithium silicate glass ceramic and glass containing monovalent metal oxide
    HUE027870T2 (en) 2011-10-14 2016-11-28 Ivoclar Vivadent Ag Lithium silicate glass ceramic and lithium silicate glass comprising a hexavalent metal oxide
    US9371249B2 (en) 2012-05-04 2016-06-21 Ivoclar Vivadent Ag Lithium disilicate-apatite glass-ceramic
    JP6340362B2 (en) 2012-05-11 2018-06-06 イフォクレール ヴィヴァデント アクチェンゲゼルシャフトIvoclar Vivadent AG Pre-sintered blank for dental purposes
    EP2847140A1 (en) 2012-05-11 2015-03-18 Ivoclar Vivadent AG Pre-sintered blank for dental purposes
    EP2765119B1 (en) 2013-02-12 2021-07-28 Ivoclar Vivadent AG Blank for dental purposes
    EP2792649B1 (en) 2013-04-15 2019-11-27 Ivoclar Vivadent AG Lithium silicate glass ceramic and glass with rubidium oxide content
    US20150289323A1 (en) * 2014-04-04 2015-10-08 Btu International, Inc. Thermal reactor
    ES2954898T3 (en) 2014-05-13 2023-11-27 Ivoclar Vivadent Ag Procedure for the production of lithium silicate glasses and lithium silicate glass ceramic materials
    EP3050856B1 (en) 2015-01-30 2019-05-29 Ivoclar Vivadent AG Lithium silicate diopside glass ceramic
    US10882071B2 (en) * 2015-03-27 2021-01-05 Centre National De La Recherche Scientifique Method for thermal treatment of a surface coating on a metal part by microwaves
    DE102015218439A1 (en) 2015-09-25 2017-03-30 Robert Bosch Gmbh In its core losses reduced part and process for its preparation
    KR101781477B1 (en) * 2016-09-19 2017-10-23 유한회사 에스피앤파트너스 Microwave range and radiation module thereof
    US10578361B2 (en) * 2017-04-24 2020-03-03 Desktop Metal, Inc. Microwave furnace for thermal processing
    US11766718B2 (en) * 2019-09-12 2023-09-26 Desktop Metal, Inc. Compound furnace

    Family Cites Families (12)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE1070311B (en) * 1957-07-27 1959-12-03
    US4160145A (en) * 1978-02-16 1979-07-03 Armstrong Cork Company Microwave applicator device
    US4307277A (en) * 1978-08-03 1981-12-22 Mitsubishi Denki Kabushiki Kaisha Microwave heating oven
    FR2571201B1 (en) * 1984-10-02 1987-01-02 Valeo METHOD FOR HEATING IN THE MASS OF A SUBSTANCE FOR EXAMPLE FOR VULCANIZATION OR POLYMERIZATION
    US4963709A (en) * 1987-07-24 1990-10-16 The United States Of America As Represented By The Department Of Energy Method and device for microwave sintering large ceramic articles
    DE4037091C2 (en) * 1990-11-22 1996-06-20 Leybold Ag Device for generating a homogeneous microwave field
    US5191183A (en) * 1991-02-21 1993-03-02 Ontario Hydro Apparatus for processing ceramics using microwave oven with resistance heating unit
    DE4200101A1 (en) * 1992-01-03 1993-07-08 Reinhard Schulze Microwave application esp. for drying of stacked materials - provides simultaneous exposure of two or more loads having different coeffts. of absorption of microwaves
    US5449887A (en) * 1993-03-25 1995-09-12 Martin Marietta Energy Systems, Inc. Thermal insulation for high temperature microwave sintering operations and method thereof
    GB2281016A (en) * 1993-08-10 1995-02-15 Ea Tech Ltd Microwave-assisted processing of materials
    DE29512436U1 (en) * 1995-08-02 1995-10-19 Möbius, Arnold, 76344 Eggenstein-Leopoldshafen Device for low-reflection absorption of microwaves
    DE19633245C1 (en) * 1996-08-17 1997-11-27 Karlsruhe Forschzent High mode microwave resonator for high temperature treatment of materials

    Also Published As

    Publication number Publication date
    WO1998030068A1 (en) 1998-07-09
    CA2276469A1 (en) 1998-07-09
    US6163020A (en) 2000-12-19
    DE19700141A1 (en) 1998-07-09
    DE59806718D1 (en) 2003-01-30
    EP0950341A1 (en) 1999-10-20
    CA2276469C (en) 2002-04-16
    ATE230199T1 (en) 2003-01-15
    AU6206798A (en) 1998-07-31

    Similar Documents

    Publication Publication Date Title
    EP0950341B1 (en) Baking oven for the high-temperature treatment of materials with a low dielectric loss factor
    DE69426463T2 (en) MICROWAVE PLASMA REACTOR
    DE69304383T2 (en) Microwave emitter and plasma reactor using this device
    WO1999042778A2 (en) Method and device for microwave sintering of nuclear fuel
    DE69527087T2 (en) MICROWAVE HEATING DEVICE WITH VARIABLE FREQUENCY
    US6114811A (en) Electromagnetic high-frequency apparatus with a transmission wall having antennas
    DE3912568A1 (en) GAS LASER, ESPECIALLY CO (DOWN ARROW) 2 (DOWN ARROW) LASER
    DE2504860A1 (en) MICROWAVE OVEN
    DE69405899T2 (en) Improved tuning for dielectric materials with low dielectric constants
    WO1990013151A1 (en) Generation of a high-frequency field in a useful volume
    US6630653B2 (en) Device for adjusting the distribution of microwave energy density in an applicator and use of this device
    DD263648B5 (en) Device for the generation of a microwave plasma with a large expansion and homogeneity
    EP1665324B1 (en) Electron cyclotron resonance (ecr) plasma source having a linear plasma discharge opening
    DE3044379C2 (en)
    DE2236234C3 (en) Dielectric window for microwave energy
    DE102020113578A1 (en) Microwave treatment facility
    DE19700140A1 (en) Kiln for high temperature treatment of materials with low dielectric loss factor
    DE3923277C2 (en)
    DE69830083T2 (en) ELECTROMAGNETIC RADIATION EXPOSURE CHAMBER FOR IMPROVED HEATING
    DE102008001637B4 (en) Microwave oven for the thermal treatment of goods
    DE3242638A1 (en) Waveguide for radio-frequency transmission
    DE19515362C2 (en) Device for sublimation of the ashes of fusion reactors in evacuable chambers
    DE1230468B (en) Waveguide slot antenna for microwaves with electrically swiveling directional diagram
    DE1491350C (en) Multi-beam transit time tube
    WO1988009071A1 (en) Laser and process for production of a laser beam

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 19990619

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH DE FR GB IT LI NL SE

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    17Q First examination report despatched

    Effective date: 20010802

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH DE FR GB IT LI NL SE

    REF Corresponds to:

    Ref document number: 230199

    Country of ref document: AT

    Date of ref document: 20030115

    Kind code of ref document: T

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REF Corresponds to:

    Ref document number: 59806718

    Country of ref document: DE

    Date of ref document: 20030130

    Kind code of ref document: P

    Ref document number: 59806718

    Country of ref document: DE

    Date of ref document: 20030130

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20030212

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: TRGR

    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: AT

    Payment date: 20031204

    Year of fee payment: 7

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20031208

    Year of fee payment: 7

    26N No opposition filed

    Effective date: 20030919

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20031211

    Year of fee payment: 7

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: CH

    Payment date: 20031212

    Year of fee payment: 7

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 20031215

    Year of fee payment: 7

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: SE

    Payment date: 20031218

    Year of fee payment: 7

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BE

    Payment date: 20040115

    Year of fee payment: 7

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20040127

    Year of fee payment: 7

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

    Effective date: 20050102

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050102

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050102

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050103

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050131

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050131

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050131

    BERE Be: lapsed

    Owner name: *GERO HOCHTEMPERATUROFEN G.M.B.H.

    Effective date: 20050131

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050801

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050802

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20050102

    EUG Se: european patent has lapsed
    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050930

    NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

    Effective date: 20050801

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    BERE Be: lapsed

    Owner name: *GERO HOCHTEMPERATUROFEN G.M.B.H.

    Effective date: 20050131