EP0946789B1 - Process for carrying out chemical reactions in an electrochemical cell - Google Patents

Process for carrying out chemical reactions in an electrochemical cell Download PDF

Info

Publication number
EP0946789B1
EP0946789B1 EP97951949A EP97951949A EP0946789B1 EP 0946789 B1 EP0946789 B1 EP 0946789B1 EP 97951949 A EP97951949 A EP 97951949A EP 97951949 A EP97951949 A EP 97951949A EP 0946789 B1 EP0946789 B1 EP 0946789B1
Authority
EP
European Patent Office
Prior art keywords
gas
electrodes
liquid
sump
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97951949A
Other languages
German (de)
French (fr)
Other versions
EP0946789A1 (en
Inventor
Nikola Anastasijevic
Stefan Laibach
Dietrich Werner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MG Technologies AG
Original Assignee
Metallgesellschaft AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metallgesellschaft AG filed Critical Metallgesellschaft AG
Publication of EP0946789A1 publication Critical patent/EP0946789A1/en
Application granted granted Critical
Publication of EP0946789B1 publication Critical patent/EP0946789B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes

Definitions

  • the invention relates to a method for converting a gas or gas mixture in the presence of an ion-conducting Liquid in an electrochemical cell with at least two electrodes, namely at least one anode and at least one a cathode, with a between the cathode and the anode external DC voltage acts and through the ion-conducting liquid flows a direct current.
  • German Patent 195 04 920 A method of this kind is described in German Patent 195 04 920 described.
  • the electrochemical cell contains one aqueous ammonium sulfide solution, which the Electrode surfaces almost completely covered. Outdoors Gas containing oxygen comes through a Gas diffusion cathode in contact with the solution, whereby Forms ammonium polysulfide as a product.
  • the fluid level in the cell is not arbitrarily high can be chosen because otherwise annoying leaks occur.
  • the current-voltage characteristic of the cell is unfavorable influenced.
  • the invention has for its object the electrochemical Reaction of gases with liquids even in the presence of Catalysts in a cost-effective manner with high sales to be able to perform reliably even at high pressure.
  • This is achieved according to the invention in the method mentioned at the beginning in that a swamp forms in the lower area of the cell the ion-conducting liquid, in which the Immerse electrodes that are at least 20% of the total Surface of at least one of the electrodes outside the Sump in an upper one through which the gas or gas mixture flows Area and that the upper area with the ion-conducting liquid is sprinkled or sprayed, whereby the electrode surface is at least partially wetted, while the gas or gas mixture on the electrode surfaces flows along. In this way, different gases and liquids are reacted. Usually the gas or gas mixture is oxidized or reduced.
  • Electrodes are perpendicular in the Bottom of the ion-conducting liquid, being through this bottom the current flow between the electrodes is secured. Usually 20 - 95% of the total surface will cover at least one of the electrodes are above the sump. One of the It is also possible that either the anode or the Cathode completely covered by the liquid of the sump is.
  • the electrodes can not only plate or be cylindrical, you can also use an electrode as an electroconductive bed or ordered packing by itself contacting, current-conducting elements. Such Filling or packing can also have a coating Have catalyst.
  • a DC voltage is applied, which is chosen in a wide range can be.
  • the voltage between adjacent anodes and Cathodes can be between 0.01 and 100 V, usually these voltages are in the range of 0.1 to 10 V.
  • the gas can first be introduced into the liquid sump in the lower region of the cell and flow upwards, or the gas can be conducted without leading through the sump to the upper region of the cell to the sprayed or sprinkled electrodes.
  • the gas can be used to introduce a component for the reaction to be carried out in the cell, for example oxygen or hydrogen.
  • a component for the reaction to be carried out in the cell for example oxygen or hydrogen.
  • air, O 2 , H 2 S, NH 3 , SO 2 , SO 3 or a synthesis gas mixture (CO + H 2 ) or also mixtures of these gases can be passed into the cell as the gas.
  • the ion-conducting liquid in the cell which also serves as an electrolyte, it will usually be about an organic or inorganic solution or around a melt act.
  • the electrodes can be made of different materials consist of, for example, metal alloys,
  • Electrode material itself does not have a catalytic effect Catalyst, for example, as a coating on an electric conductive carrier can be applied. That way you can both cathodes and anodes for different reactions be specially trained. It is also possible that Consume electrodes during the conversion and as so-called sacrificial electrodes act. If you are with carbon-rich electrodes works, it may be appropriate be to hydrophobize the surface of what is known in Way by partially covering the surface with Polytetrafluoroethylene succeeds.
  • the desired product of implementation in the cell can be found in the liquid withdrawn from the cell or in the withdrawn liquid Exhaust gas or both in the exhaust gas and in the Liquid.
  • the separation and concentration of the Product then takes place in a manner known per se.
  • the regulation of the desired implementation or implementations takes place e.g. B. by varying the gas and / or liquid supply as well as the current flow in the cell and from outside applied electrical voltage. You can also do that Measure the redox potential in the electrolyte sump and as Use control variable.
  • the electrochemical cell is in a liquid and gas tight housing (1) and has a Anode (2) and a cathode (3).
  • the two electrodes are with an external DC voltage source, not shown connected.
  • the liquid serves as an electrolyte, it is partly circulated and for this purpose through the line (7), the pump (8), the Return line (9) and the distributor (10) returned and from sprayed on top of the electrodes.
  • Part of the liquid is withdrawn as a product through line (12) and leads Circulate fresh liquid through line (13).
  • one of the electrodes is in it Case the cathode (3a), as a liquid and gas permeable Bulk or pack formed, the elements have electrically conductive contact with each other.
  • the anode (2) is formed by a horizontal plate that extends completely in the swamp (4).
  • the surface (5) of the Bottom extends to the lower area of the cathode (3a).
  • the Gas is supplied through line (15) and the other parts the arrangement they already have together with FIG. 1 explained meaning.
  • the anode is replaced by several vertical, parallel plates (2a) formed, the lower Area into the liquid sump (4).
  • the cathode (3) is a horizontal plate located in the sump (4) educated.
  • the remaining parts of the arrangement in FIG. 3 have already been explained together with FIG Circulation pump (8) was shown in Figure 3 for simplification omitted.
  • the horizontal section of Figure 4 are vertical anode plates (2a) can also be seen.
  • the anode can also be used as form several concentric cylinders (2b), the bottom and are open at the top and are partially in the electrolyte sump. in the Such a cell can otherwise correspond to FIG. 3 be trained. Deviating from the illustration in FIG. 3 up to 6 the electrical positive pole can be drawn to the anode and the negative pole is placed on the drawn cathode, without otherwise changing the cell.
  • Figure 6 shows a cell with bipolar electrodes, which as parallel, vertical plates can be formed and stand between the end anode (2) and the end cathode (3). Deviating from this, bipolar electrodes can also be used as concentric cylinder be formed. The remaining parts of the Arrangements according to FIG. 6 have already been carried out together with FIG. 1 explained.
  • FIG. 7 there is one in the housing (1) Gas diffusion cathode (3b), to which a liquid-free Gas space (17) belongs.
  • the gas is through line (15a) fed and withdrawn through line (15b).
  • some of the gas comes through the porous structure of the Gas diffusion cathode (3b) in contact with the electrolyte which is in the sump (4) and from the distributor (10) is sprayed.
  • Inside the structure of the cathode (3b) comes it so to the contact between gas and liquid without disruptive amounts of gas or liquid the cathode structure penetrate completely.
  • the Gas diffusion cathode (3b) from a metal network and one attached to it attached carbon cloth. Are advantageous the fibers of the carbon cloth at least partially hydrophobized, as is also known.
  • the anode is horizontal and in the sump (5) arranged fully submerged, it consists of a Circular disc made of expanded titanium, activated with platinum is, the diameter is 100 mm and the thickness is 1 mm.
  • the cathode is replaced by 8 parallel, vertical plates of 90 mm Height and 50 mm width formed, which is a distance of 4 mm have and which are electrically connected to each other.
  • the cathode plates are made of expanded titanium, which with Platinum is activated.
  • the cathode plates dip 20 mm into the Electrolyte sump.
  • the container (1) is made of glass.
  • the cathode plates are sprinkled with an aqueous solution from above, which contains 5 g NaOH and 6.3 g Na 2 SO 3 per liter and has a temperature of 50 ° C.
  • Air is supplied through line (15) and the exhaust air from line (11) is partly returned to line (15).
  • the amount of the recycle gas is 450 Nl / h, fresh air is added to the recycle gas in an amount of 100 Nl / h.
  • the gas is fed into the sump (4) 10 mm below the liquid level (5), the amount of liquid in circulation is 4 1, the aim of the process is the oxidation of sulfite ions to sulfate ions.
  • FIG. 2 One works in the laboratory with an apparatus according to FIG. 2, whereby the anode (2) through a circular graphite fleece of 100 mm Diameter and a thickness of 25 mm is formed extends horizontally in the sump (4) of the glass container (1).
  • the cathode (3a) is replaced by four Graphite fleece layers with a total height of 100 mm, being at the lower and upper ends of the cathode Stabilizing a polypropylene network is located.
  • the cathode (3a) is immersed 20 mm deep in the sump (4), the diameter the cathode is just like the inside diameter of the Container (1) 120 mm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Umsetzen eines Gases oder Gasgemisches in Gegenwart einer ionenleitenden Flüssigkeit in einer elektrochemischen Zelle mit mindestens zwei Elektroden, nämlich mindestens einer Anode und mindestens einer Kathode, wobei zwischen der Kathode und der Anode eine von außen angelegte elektrische Gleichspannung wirkt und durch die ionenleitende Flüssigkeit ein Gleichstrom fließt.The invention relates to a method for converting a gas or gas mixture in the presence of an ion-conducting Liquid in an electrochemical cell with at least two electrodes, namely at least one anode and at least one a cathode, with a between the cathode and the anode external DC voltage acts and through the ion-conducting liquid flows a direct current.

Ein Verfahren dieser Art ist im deutschen Patent 195 04 920 beschrieben. Hierbei enthält die elektrochemische Zelle eine wäßrige Ammoniumsulfid-Lösung, welche die Elektroden-Oberflächen praktisch vollständig bedeckt. Freien Sauerstoff enthaltendes Gas kommt durch eine Gasdiffusionskathode mit der Lösung in Kontakt, wobei sich Ammoniumpolysulfid als Produkt bildet. Hierbei zeigt es sich, daß der Flüssigkeitsstand in der Zelle nicht beliebig hoch gewählt werden kann, weil sonst störende Undichtigkeiten auftreten. Ferner wird durch einen hohen Flüssigkeitsstand die Strom-Spannungs-Charakteristik der Zelle ungünstig beeinflußt.A method of this kind is described in German Patent 195 04 920 described. The electrochemical cell contains one aqueous ammonium sulfide solution, which the Electrode surfaces almost completely covered. Outdoors Gas containing oxygen comes through a Gas diffusion cathode in contact with the solution, whereby Forms ammonium polysulfide as a product. Here it shows that the fluid level in the cell is not arbitrarily high can be chosen because otherwise annoying leaks occur. Furthermore, due to a high fluid level the current-voltage characteristic of the cell is unfavorable influenced.

Der Erfindung liegt die Aufgabe zugrunde, die elektrochemische Umsetzung von Gasen mit Flüssigkeiten auch in Gegenwart von Katalysatoren auf kostengünstige Weise mit hohen Umsätzen betriebssicher auch bei hohem Druck durchführen zu können. Erfindungsgemäß gelingt dies beim eingangs genannten Verfahren dadurch, daß sich im unteren Bereich der Zelle ein Sumpf aus der ionenleitenden Flüssigkeit befindet, in welchen die Elektroden eintauchen, daß sich mindestens 20 % der gesamten Oberfläche mindestens einer der Elektroden außerhalb des Sumpfes in einem vom Gas oder Gasgemisch durchströmten oberen Bereich befinden und daß der obere Bereich mit der ionenleitenden Flüssigkeit berieselt oder besprüht wird, wobei man die Elektrodenoberfläche mindestens teilweise benetzt, während das Gas oder Gasgemisch an der Elektrodenoberflächen entlangströmt. Auf diese Weise können unterschiedliche Gase und Flüssigkeiten zur Reaktion gebracht werden. Üblicherweise wird dabei das Gas oder Gasgemisch oxidiert oder reduziert.The invention has for its object the electrochemical Reaction of gases with liquids even in the presence of Catalysts in a cost-effective manner with high sales to be able to perform reliably even at high pressure. This is achieved according to the invention in the method mentioned at the beginning in that a swamp forms in the lower area of the cell the ion-conducting liquid, in which the Immerse electrodes that are at least 20% of the total Surface of at least one of the electrodes outside the Sump in an upper one through which the gas or gas mixture flows Area and that the upper area with the ion-conducting liquid is sprinkled or sprayed, whereby the electrode surface is at least partially wetted, while the gas or gas mixture on the electrode surfaces flows along. In this way, different gases and liquids are reacted. Usually the gas or gas mixture is oxidized or reduced.

Alle oder zumindest ein Teil der Elektroden steht senkrecht im Sumpf der ionenleitenden Flüssigkeit, wobei durch diesen Sumpf der Stromfluß zwischen den Elektroden gesichert wird. Zumeist werden sich 20 - 95 % der gesamten Oberfläche mindestens einer der Elektroden oberhalb des Sumpfes befinden. Eine der Möglichkeiten ist auch, daß entweder die Anode oder die Kathode vollständig von der Flüssigkeit des Sumpfes bedeckt ist. Die Elektroden können nicht nur platten- oder zylinderförmig ausgebildet sein, man kann eine Elektrode auch als stromleitende Schüttung oder geordnete Packung von sich berührenden, stromleitenden Elementen ausbilden. Eine solche Schüttung oder Packung kann zusätzlich eine Beschichtung mit Katalysator aufweisen.All or at least some of the electrodes are perpendicular in the Bottom of the ion-conducting liquid, being through this bottom the current flow between the electrodes is secured. Mostly 20 - 95% of the total surface will cover at least one of the electrodes are above the sump. One of the It is also possible that either the anode or the Cathode completely covered by the liquid of the sump is. The electrodes can not only plate or be cylindrical, you can also use an electrode as an electroconductive bed or ordered packing by itself contacting, current-conducting elements. Such Filling or packing can also have a coating Have catalyst.

Zwischen der Anode und der Kathode der Zelle wird von außen eine Gleichspannung angelegt, die in weitem Bereich gewählt werden kann. Die Spannung zwischen benachbarten Anoden und Kathoden kann zwischen 0,01 und 100 V liegen, üblicherweise liegen diese Spannungen im Bereich von 0,1 bis 10 V.Between the anode and the cathode of the cell is from the outside a DC voltage is applied, which is chosen in a wide range can be. The voltage between adjacent anodes and Cathodes can be between 0.01 and 100 V, usually these voltages are in the range of 0.1 to 10 V.

Ein großer Teil der gesamten Elektrodenoberfläche befindet sich außerhalb des Flüssigkeitssumpfes und wird von der als Elektrolyt dienenden Flüssigkeit besprüht oder berieselt. Gleichzeitig kommt das in die Zelle geleitete Gas in Kontakt mit den Oberflächen der Elektroden, die sich außerhalb des Sumpfes befinden. Hierbei ist es nicht wichtig, in welche Richtung das Gas strömt. Das Gas kann zunächst in den unteren Bereich der Zelle in den Flüssigkeitssumpf eingeleitet werden und aufwärts strömen oder aber man leitet das Gas, ohne es durch den Sumpf zu führen, in den oberen Bereich der Zelle zu den besprühten oder berieselten Elektroden. Mit dem Gas kann eine Komponente für die in der Zelle durchzuführende Umsetzung, zum Beispiel Sauerstoff oder Wasserstoff, herangeführt werden. Somit kann man als Gas zum Beispiel Luft, O2, H2S, NH3, SO2, SO3 oder ein Synthesegas-Gemisch (CO + H2) oder auch Gemische dieser Gase in die Zelle leiten.A large part of the entire electrode surface is outside the liquid sump and is sprayed or sprinkled by the liquid serving as the electrolyte. At the same time, the gas fed into the cell comes into contact with the surfaces of the electrodes, which are located outside the sump. It is not important in which direction the gas flows. The gas can first be introduced into the liquid sump in the lower region of the cell and flow upwards, or the gas can be conducted without leading through the sump to the upper region of the cell to the sprayed or sprinkled electrodes. The gas can be used to introduce a component for the reaction to be carried out in the cell, for example oxygen or hydrogen. For example, air, O 2 , H 2 S, NH 3 , SO 2 , SO 3 or a synthesis gas mixture (CO + H 2 ) or also mixtures of these gases can be passed into the cell as the gas.

Bei der in der Zelle befindlichen ionenleitenden Flüssigkeit, die auch als Elektrolyt dient, wird es sich üblicherweise um eine organische oder anorganische Lösung oder um eine Schmelze handeln.With the ion-conducting liquid in the cell, which also serves as an electrolyte, it will usually be about an organic or inorganic solution or around a melt act.

Die Elektroden können aus unterschiedlichen Materialien bestehen, sie können zum Beispiel aus Metallegierungen,The electrodes can be made of different materials consist of, for example, metal alloys,

Mischoxiden oder kohlenstoffhaltig ausgebildet sein. Wenn das Elektrodenmaterial nicht selbst katalytisch wirkt, kann ein Katalysator zum Beispiel als Beschichtung auf einem elektrisch leitenden Träger aufgebracht werden. Auf diese Weise können sowohl Kathoden als auch Anoden für verschiedene Reaktionen speziell ausgebildet werden. Möglich ist ferner, daß sich Elektroden während der Umsetzung verbrauchen und als sogenannte Opfer-Elektroden wirken. Wenn man mit kohlenstoffreichen Elektroden arbeitet, kann es zweckmäßig sein, deren Oberfläche zu hydrophobisieren, was in bekannter Weise durch teilweises Bedecken der Oberfläche mit Polytetrafluorethylen gelingt.Mixed oxides or carbon-containing. If that Electrode material itself does not have a catalytic effect Catalyst, for example, as a coating on an electric conductive carrier can be applied. That way you can both cathodes and anodes for different reactions be specially trained. It is also possible that Consume electrodes during the conversion and as so-called sacrificial electrodes act. If you are with carbon-rich electrodes works, it may be appropriate be to hydrophobize the surface of what is known in Way by partially covering the surface with Polytetrafluoroethylene succeeds.

Wenn man die Zelle in mehrere Reaktionsräume mit teilweisem Flüssigkeitsaustausch unterteilen will, kann man dies durch ein Diaphragma oder auch mehrere Diaphragmen erreichen, die in an sich bekannter Weise porös und flüssigkeitsdurchlässig sind. Eine weitere Möglichkeit der Unterteilung besteht darin, ionenselektive Membranen zu verwenden, die ebenfalls an sich bekannt sind. If you divide the cell into several reaction rooms with partial If you want to divide fluid exchange, you can do this by reach one or more diaphragms that are in in a known manner, porous and permeable to liquids are. Another way of subdivision is to use ion-selective membranes, which are also in themselves are known.

Das gewünschte Produkt der Umsetzung in der Zelle kann sich in der aus der Zelle abgezogenen Flüssigkeit oder im abgezogenen Abgas oder aber auch sowohl im Abgas als auch in der Flüssigkeit befinden. Die Abtrennung und Konzentrierung des Produkts erfolgt dann in an sich bekannter Weise.The desired product of implementation in the cell can be found in the liquid withdrawn from the cell or in the withdrawn liquid Exhaust gas or both in the exhaust gas and in the Liquid. The separation and concentration of the Product then takes place in a manner known per se.

Die Regelung der erstrebten Umsetzung oder Umsetzungen erfolgt z. B. durch Variieren der Gas- und/oder Flüssigkeitszufuhr sowie auch durch den Stromfluß in der Zelle und die von außen angelegte elektrische Spannung. Ferner kann man das Redox-Potential im Elektrolytsumpf messen und als Regelungsgröße verwenden.The regulation of the desired implementation or implementations takes place e.g. B. by varying the gas and / or liquid supply as well as the current flow in the cell and from outside applied electrical voltage. You can also do that Measure the redox potential in the electrolyte sump and as Use control variable.

Ausgestaltungsmöglichkeiten des Verfahrens werden mit Hilfe der Zeichnung erläutert. Es zeigt:

Fig. 1
eine erste Variante der elektrochemischen Zelle in schematischer Darstellung,
Fig. 2
eine zweite Variante der Zelle,
Fig. 3
eine dritte Variante der Zelle,
Fig. 4
einen horizontalen Schnitt nach der Linie IV-IV in Fig. 3,
Fig. 5
den horizontalen Schnitt durch eine Zelle ähnlich Fig. 3,
Fig. 6
eine Zelle mit bipolaren Elektroden und
Fig. 7
eine Zelle mit einer Gasdiffusionselektrode.
Design options of the method are explained with the aid of the drawing. It shows:
Fig. 1
a first variant of the electrochemical cell in a schematic representation,
Fig. 2
a second variant of the cell,
Fig. 3
a third variant of the cell,
Fig. 4
a horizontal section along the line IV-IV in Fig. 3,
Fig. 5
the horizontal section through a cell similar to Fig. 3,
Fig. 6
a cell with bipolar electrodes and
Fig. 7
a cell with a gas diffusion electrode.

Gemäß Figur 1 befindet sich die elektrochemische Zelle in einem flüssigkeits- und gasdichten Gehäuse (1) und weist eine Anode (2) und eine Kathode (3) auf. Die beiden Elektroden sind mit einer äußeren, nicht dargestellten Gleichspannungsquelle verbunden. Im unteren Bereich der Zelle befindet sich ein Flüssigkeitssumpf (4), dessen Flüssigkeitsoberfläche durch eine gestrichelte Linie (5) angedeutet ist. Die Flüssigkeit dient als Elektrolyt, sie wird teilweise im Kreis geführt und zu diesem Zweck durch die Leitung (7), die Pumpe (8), die Rückleitung (9) und den Verteiler (10) zurückgeführt und von oben auf die Elektroden gesprüht. Einen Teil der Flüssigkeit zieht man als Produkt durch die Leitung (12) ab und führt dem Kreislauf frische Flüssigkeit durch die Leitung (13) zu. Ein Gas oder ein Gasgemisch führt man in der Leitung (15) heran und läßt es zunächst in den Sumpf (4) eintreten, bevor es aufwärts zwischen den besprühten Elektroden strömt, wobei die gewünschte Reaktion stattfindet. Abgas entfernt man aus dem Gehäuse (1) durch die Leitung (11). Je nach der Art der Umsetzung kann dieses Gases ebenfalls als Produkt betrachtet werden.According to Figure 1, the electrochemical cell is in a liquid and gas tight housing (1) and has a Anode (2) and a cathode (3). The two electrodes are with an external DC voltage source, not shown connected. There is a in the lower area of the cell Liquid sump (4), the liquid surface through a dashed line (5) is indicated. The liquid serves as an electrolyte, it is partly circulated and for this purpose through the line (7), the pump (8), the Return line (9) and the distributor (10) returned and from sprayed on top of the electrodes. Part of the liquid is withdrawn as a product through line (12) and leads Circulate fresh liquid through line (13). On Gas or a gas mixture is brought up in line (15) and first let it enter the swamp (4) before it flows upward between the sprayed electrodes, the desired reaction takes place. Exhaust gas is removed from the Housing (1) through the line (11). Depending on the type of Implementation of this gas can also be viewed as a product become.

Wie in Figur 1 zu sehen ist, befindet sich nur der untere Teil der Elektroden (2) und (3) im Elektrolytsumpf (4), wobei durch diesen Sumpf zwischen den Elektroden ein Strom fließen kann. Mindestens 20 % der gesamten Oberfläche der Elektroden befindet sich oberhalb des Sumpfes (4), wobei diese Oberflächen durch die vom Verteiler (10) ausgehenden Flüssigkeitströpfchen mindestens teilweise benetzt werden. Gleichzeitig strömt das aus der Leitung (15) kommende Gas oder Gasgemisch aufwärts entlang der benetzten Elektrodenoberflächen. Zumeist werden sich 20 bis 95 % der gesamten Oberfläche der Elektroden oberhalb des Sumpfes (4) befinden.As can be seen in Figure 1, only the lower part is located the electrodes (2) and (3) in the electrolyte sump (4), whereby by a current can flow through this sump between the electrodes. At least 20% of the total surface of the electrodes is located above the sump (4) Surfaces through the outgoing from the distributor (10) Liquid droplets are at least partially wetted. At the same time, the gas coming from line (15) or Gas mixture up along the wetted Electrode surfaces. Usually 20 to 95% of the entire surface of the electrodes above the sump (4) are located.

Bei der Zelle der Figur 2 ist eine der Elektroden, in diesem Fall die Kathode (3a), als flüssigkeits- und gasdurchlässige Schüttung oder Packung ausgebildet, wobei die Elemente untereinander elektrisch leitenden Kontakt haben. Die Anode (2) wird durch eine horizontale Platte gebildet, die sich vollständig im Sumpf (4) befindet. Die Oberfläche (5) des Sumpfes reicht bis zum unteren Bereich der Kathode (3a). Die Gaszufuhr erfolgt durch die Leitung (15) und die übrigen Teile der Anordnung haben die bereits zusammen mit Figur 1 erläuterte Bedeutung.In the cell of FIG. 2, one of the electrodes is in it Case the cathode (3a), as a liquid and gas permeable Bulk or pack formed, the elements have electrically conductive contact with each other. The anode (2) is formed by a horizontal plate that extends completely in the swamp (4). The surface (5) of the Bottom extends to the lower area of the cathode (3a). The Gas is supplied through line (15) and the other parts the arrangement they already have together with FIG. 1 explained meaning.

Bei der Zelle der Figur 3 wird die Anode durch mehrere vertikale, parallel Platten (2a) gebildet, deren unterer Bereich in den Flüssigkeitssumpf (4) hineinreicht. Die Kathode (3) ist als horizontale, im Sumpf (4) befindliche Platte ausgebildet. Die übrigen Teile der Anordnung der Figur 3 wurden bereits zusammen mit Figur 1 erläutert, die Kreislaufpumpe (8) wurde in Figur 3 zur Vereinfachung weggelassen. Im Horizontalschnitt der Figur 4 sind die vertikalen Anodenplatten (2a) ebenfalls zu sehen. Abweichend von Figur 3 und 4 kann man die Anode auch als mehrere konzentrische Zylinder (2b) ausbilden, die unten und oben offen sind und teilweise im Elektrolytsumpf stehen. Im übrigen kann eine solche Zelle entsprechend Figur 3 ausgebildet sein. Abweichend von der Darstellung in den Fig. 3 bis 6 kann der elektrische Pluspol an die gezeichnete Anode und der Minuspol an die gezeichnete Kathode gelegt werden, ohne die Zelle ansonsten zu verändern.In the cell of Figure 3, the anode is replaced by several vertical, parallel plates (2a) formed, the lower Area into the liquid sump (4). The cathode (3) is a horizontal plate located in the sump (4) educated. The remaining parts of the arrangement in FIG. 3 have already been explained together with FIG Circulation pump (8) was shown in Figure 3 for simplification omitted. In the horizontal section of Figure 4 are vertical anode plates (2a) can also be seen. In contrast to FIGS. 3 and 4, the anode can also be used as form several concentric cylinders (2b), the bottom and are open at the top and are partially in the electrolyte sump. in the Such a cell can otherwise correspond to FIG. 3 be trained. Deviating from the illustration in FIG. 3 up to 6 the electrical positive pole can be drawn to the anode and the negative pole is placed on the drawn cathode, without otherwise changing the cell.

Figur 6 zeigt eine Zelle mit bipolaren Elektroden, die als parallele, vertikale Platten ausgebildet sein können und zwischen der Endanode (2) und der Endkathode (3) stehen. Abweichend davon können bipolare Elektroden auch als konzentrische Zylinder ausgebildet sein. Die übrigen Teile der Anordnung gemäß Figur 6 wurden bereits zusammen mit Figur 1 erläutert.Figure 6 shows a cell with bipolar electrodes, which as parallel, vertical plates can be formed and stand between the end anode (2) and the end cathode (3). Deviating from this, bipolar electrodes can also be used as concentric cylinder be formed. The remaining parts of the Arrangements according to FIG. 6 have already been carried out together with FIG. 1 explained.

Gemäß Figur 7 befindet sich im Gehäuse (1) eine Gasdiffusionskathode (3b), zu der ein flüssigkeitsfreier Gasraum (17) gehört. Das Gas wird durch die Leitung (15a) zugeführt und durch die Leitung (15b) abgezogen. Im Gasraum (17) kommt ein Teil des Gases durch die poröse Struktur der Gasdiffusionskathode (3b) mit dem Elektrolyten in Kontakt, der sich im Sumpf (4) befindet und aus dem Verteiler (10) versprüht wird. Innerhalb der Struktur der Kathode (3b) kommt es so zum Kontakt zwischen Gas und Flüssigkeit ohne daß aber störende Mengen an Gas oder Flüssigkeit die Kathodenstruktur völlig durchdringen. In an sich bekannter Weise kann die Gasdiffusionskathode (3b) aus einem Metallnetz und einem daran befestigten Kohlenstofftuch bestehen. Vorteilhafterweise sind die Fasern des Kohlenstofftuchs zumindest teilweise hydrophobisiert, wie es ebenfalls bekannt ist.According to Figure 7 there is one in the housing (1) Gas diffusion cathode (3b), to which a liquid-free Gas space (17) belongs. The gas is through line (15a) fed and withdrawn through line (15b). In the gas room (17) some of the gas comes through the porous structure of the Gas diffusion cathode (3b) in contact with the electrolyte which is in the sump (4) and from the distributor (10) is sprayed. Inside the structure of the cathode (3b) comes it so to the contact between gas and liquid without disruptive amounts of gas or liquid the cathode structure penetrate completely. In a manner known per se, the Gas diffusion cathode (3b) from a metal network and one attached to it attached carbon cloth. Are advantageous the fibers of the carbon cloth at least partially hydrophobized, as is also known.

Beispiel 1:Example 1:

Im Labor wird mit einer Anordnung entsprechend Fig. 3 gearbeitet, doch wird die dort beschriebene Kathode (3) nun zur Anode. Die Anode ist horizontal liegend und im Sumpf (5) voll eingetaucht angeordnet, sie besteht aus einer Kreisscheibe aus Titan-Streckmetall, das mit Platin aktiviert ist, der Durchmesser beträgt 100 mm und die Dicke 1 mm. Die Kathode wird durch 8 parallele, vertikale Platten von 90 mm Höhe und 50 mm Breite gebildet, die einen Abstand von 4 mm haben und die miteinander elektrisch leitend verbunden sind. Die Kathodenplatten bestehen aus Titan-Streckmetall, das mit Platin aktiviert ist. Die Kathodenplatten tauchen 20 mm in den Elektrolytsumpf ein. Der Behälter (1) ist aus Glas.An arrangement corresponding to FIG. 3 is used in the laboratory worked, but the cathode (3) described there is now to the anode. The anode is horizontal and in the sump (5) arranged fully submerged, it consists of a Circular disc made of expanded titanium, activated with platinum is, the diameter is 100 mm and the thickness is 1 mm. The The cathode is replaced by 8 parallel, vertical plates of 90 mm Height and 50 mm width formed, which is a distance of 4 mm have and which are electrically connected to each other. The cathode plates are made of expanded titanium, which with Platinum is activated. The cathode plates dip 20 mm into the Electrolyte sump. The container (1) is made of glass.

Die Kathodenplatten werden mit einer wäßrigen Lösung von oben berieselt, die pro Liter 5 g NaOH und 6,3 g Na2SO3 enthält und eine Temperatur von 50°C aufweist. Durch die Leitung (15) wird Luft zugeführt und die Abluft der Leitung (11) teilweise zur Leitung (15) zurückgeführt. Die Menge des Kreislaufgases beträgt 450 Nl/h, Frischluft wird in einer Menge von 100 Nl/h dem Kreislaufgas zugemischt. Die Gaszufuhr in den Sumpf (4) erfolgt 10 mm unter dem Flüssigkeitsspiegel (5), die im Umlauf befindliche Flüssigkeitsmenge beträgt 4 1, das Ziel des Verfahrens ist die Oxidation von Sulfitionen zu Sulfationen. The cathode plates are sprinkled with an aqueous solution from above, which contains 5 g NaOH and 6.3 g Na 2 SO 3 per liter and has a temperature of 50 ° C. Air is supplied through line (15) and the exhaust air from line (11) is partly returned to line (15). The amount of the recycle gas is 450 Nl / h, fresh air is added to the recycle gas in an amount of 100 Nl / h. The gas is fed into the sump (4) 10 mm below the liquid level (5), the amount of liquid in circulation is 4 1, the aim of the process is the oxidation of sulfite ions to sulfate ions.

Ein erster Versuch erfolgte mit einem Strom von 1A, zur Kontrolle wurde ein zweiter Versuch stromlos durchgeführt, und schließlich arbeitete man in einem dritten Versuch ganz ohne Elektroden. Nach einer Versuchsdauer von jeweils 2 Stunden waren folgende Anteile der Sulfitionen zu Sulfationen oxidiert: 1. Versuch 66 Gew.-% 2. Versuch 17 Gew.-% 3. Versuch 5 Gew.-% A first test was carried out with a current of 1A, a second test was carried out without current as a control, and finally a third test was carried out without electrodes. After a test period of 2 hours each, the following fractions of the sulfite ions were oxidized to sulfate ions: 1. attempt 66% by weight 2nd attempt 17% by weight 3rd attempt 5% by weight

Beispiel 2:Example 2:

Man arbeitet im Labor mit einer Apparatur gemäß Fig. 2, wobei die Anode (2) durch ein kreisförmiges Grafitvlies von 100 mm Durchmesser und einer Dicke von 25 mm gebildet wird, das sich horizontal im Sumpf (4) des Glasbehälters (1) erstreckt. Die Kathode (3a) wird durch vier übereinander liegende Grafitvlieslagen mit einer Gesamthöhe von 100 mm gebildet, wobei sich am unteren und oberen Ende der Kathode zur Stabilisierung ein Polypropylennetz befindet. Die Kathode (3a) ist 20 mm tief in den Sumpf (4) eingetaucht, der Durchmesser der Kathode beträgt ebenso wie der Innendurchmesser des Behälters (1) 120 mm.One works in the laboratory with an apparatus according to FIG. 2, whereby the anode (2) through a circular graphite fleece of 100 mm Diameter and a thickness of 25 mm is formed extends horizontally in the sump (4) of the glass container (1). The The cathode (3a) is replaced by four Graphite fleece layers with a total height of 100 mm, being at the lower and upper ends of the cathode Stabilizing a polypropylene network is located. The cathode (3a) is immersed 20 mm deep in the sump (4), the diameter the cathode is just like the inside diameter of the Container (1) 120 mm.

Eine wäßrige Lösung von 4,2 g/l NaOH und 8,5 g/l Na2SO3 wird in einer Menge von 4 1 im Umlauf gehalten und auf die Kathode (3a) gesprüht, die Begasung erfolgt wie im Beispiel 1. Ebenso wie im Beispiel 1 werden drei verschiedene Versuche von jeweils 2 Stunden Dauer durchgeführt und folgende Ergebnisse bezüglich des Anteils der zu Sulfationen oxidierten Sulfitionen gefunden: 1. Versuch (Strom 1A) 47 Gew.-% 2. Versuch (stromlos) 9 Gew.-% 3. Versuch (ohne Elektroden) 3 Gew.-% An aqueous solution of 4.2 g / l NaOH and 8.5 g / l Na 2 SO 3 is kept in circulation in an amount of 4 l and sprayed onto the cathode (3a), the gassing takes place as in example 1. Likewise As in Example 1, three different tests, each lasting 2 hours, are carried out and the following results are found with regard to the proportion of sulfite ions oxidized to sulfate ions: 1. Trial (current 1A) 47% by weight 2nd Attempt (currentless) 9% by weight 3rd Trial (without electrodes) 3% by weight

Claims (6)

  1. A process for reacting a gas or gas mixture in the presence of an ion-conducting liquid in an electrochemical cell having at least two electrodes, namely at least one anode and at least one cathode, wherein an externally-applied electrical d.c. voltage acts between the cathode and the anode and a direct current flows through the ion-conducting liquid, characterised in that in the lower region of the cell there is a sump of the ion-conducting liquid, into which the electrodes dip, that at least 20% of the entire surface of at least one of the electrodes is located outside the sump in an upper region through which the gas or gas mixture flows, and that the upper region is sprinkled or sprayed with the ion-conducting liquid, the electrode surface being at least partially wetted, while the gas or gas mixture flows along the electrode surfaces.
  2. A process according to Claim 1, characterised in that the gas or gas mixture is oxidised in contact with the liquid and the electrodes.
  3. A process according to Claim 1, characterised in that the gas or gas mixture is reduced in contact with the liquid and the electrodes.
  4. A process according to Claim 1 or one of the following claims, characterised in that 20 to 95% of the entire surface of at least one of the electrodes is located above the sump consisting of the ion-conducting liquid.
  5. A process according to Claim 1 or one of the following claims, characterised in that the surface of at least part of the electrodes is formed to be catalytically effective.
  6. A process according to Claim 1 or one of the following claims, characterised in that at least one electrode is in the form of a gas diffusion electrode, the gas diffusion electrode being in contact firstly with a gas chamber through which gas or gas mixture flows and the other side of the electrode being sprinkled or sprayed with the liquid.
EP97951949A 1996-12-02 1997-11-21 Process for carrying out chemical reactions in an electrochemical cell Expired - Lifetime EP0946789B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19649832 1996-12-02
DE19649832A DE19649832A1 (en) 1996-12-02 1996-12-02 Process for performing chemical reactions in an electrochemical cell
PCT/EP1997/006538 WO1998024949A1 (en) 1996-12-02 1997-11-21 Process for carrying out chemical reactions in an electrochemical cell

Publications (2)

Publication Number Publication Date
EP0946789A1 EP0946789A1 (en) 1999-10-06
EP0946789B1 true EP0946789B1 (en) 2001-03-21

Family

ID=7813328

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97951949A Expired - Lifetime EP0946789B1 (en) 1996-12-02 1997-11-21 Process for carrying out chemical reactions in an electrochemical cell

Country Status (7)

Country Link
US (1) US6238547B1 (en)
EP (1) EP0946789B1 (en)
AU (1) AU717326B2 (en)
BR (1) BR9714368A (en)
DE (2) DE19649832A1 (en)
ES (1) ES2155708T3 (en)
WO (1) WO1998024949A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004018748A1 (en) 2004-04-17 2005-11-10 Bayer Materialscience Ag Electrochemical cell

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3996118A (en) * 1972-05-11 1976-12-07 The Mead Corporation Method for promoting reduction-oxidation of electrolytically produced gases
DE3401636A1 (en) * 1984-01-19 1985-07-25 Hoechst Ag, 6230 Frankfurt ELECTROCHEMICAL METHOD FOR TREATING LIQUID ELECTROLYTE
DE4119836A1 (en) * 1991-06-12 1992-12-17 Arnold Gallien ELECTROLYSIS CELL FOR GAS DEVELOPING OR GAS-CONSUMING ELECTROLYTIC PROCESSES AND METHOD FOR OPERATING THE ELECTROLYSIS CELL
DE19531707A1 (en) * 1995-08-30 1997-03-06 Degussa Processes for cleaning gases
DE19614018A1 (en) * 1996-04-09 1997-10-16 Degussa Process and electrolysis cell for cleaning gases

Also Published As

Publication number Publication date
AU717326B2 (en) 2000-03-23
DE19649832A1 (en) 1998-06-04
AU5554998A (en) 1998-06-29
EP0946789A1 (en) 1999-10-06
US6238547B1 (en) 2001-05-29
BR9714368A (en) 2000-10-17
ES2155708T3 (en) 2001-05-16
WO1998024949A1 (en) 1998-06-11
DE59703201D1 (en) 2001-04-26

Similar Documents

Publication Publication Date Title
EP0717130B1 (en) Pressure compensated electrochemical cell
DE2437273C2 (en)
DE2616614C2 (en) Electrolysis device
EP0095997B1 (en) Process for the electrolytic production of hydrogen peroxide, and use thereof
DE2523950A1 (en) ELECTROCHEMICAL DEVICE AND ITS USE
DE1299608B (en) Process and device for the electrolytic removal of traces of metals from non-metallic aqueous salt solutions
DE10013339C1 (en) Process for regulating the concentration of metal ions in an electrolyte liquid comprises feeding part of the liquid through an auxiliary cell consisting of an insoluble auxiliary anode and an auxiliary cathode
DE4438275B4 (en) Electrolytic cell and process for the electrolysis of an aqueous saline solution
DE2609212C3 (en) Electrolytic cell without a diaphragm
EP0946789B1 (en) Process for carrying out chemical reactions in an electrochemical cell
DE2828621C2 (en)
DE2003885C3 (en) Electrolytic cell
EP0436146A1 (en) Process for the electrochemical regeneration of chromosulphuric acid
DE3590684T1 (en) Process for gas separation
DE19954247A1 (en) Tubular electrode stacking arrangement for an electrolytic cell having a gas diffusion electrode, useful for chlor-alkali production
DE1471800A1 (en) Fuel element with catalyzed fuel electrode, oxygen electrode and electrolyte
EP0150019B1 (en) Method of electrolyzing using liquid electrolytes and porous electrodes
DE2212015A1 (en) Device for monitoring pollution components
DE2836353B1 (en) Process for the extraction of hydrogen and sulfuric acid by electrochemical decomposition of an electrolyte and electrode for carrying out the electrochemical decomposition
DE68928338T2 (en) Cell and method for operating an electrochemical cell of the liquid-gaseous type
DE19504920C1 (en) Process for the electrochemical production of ammonium polysulfide
DE69821955T2 (en) NEW THREE-DIMENSIONAL ELECTRODE
DE2311877A1 (en) ELECTRODES FOR ELECTROCHEMICAL PROCESSES
EP0192718B1 (en) Process and device for the production of ozone
EP0137911B1 (en) Process for manufacturing a depassivating layer and depassivating layer on an electrode for an electrochemical cell

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990702

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 20000831

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB SE

REF Corresponds to:

Ref document number: 59703201

Country of ref document: DE

Date of ref document: 20010426

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: MG TECHNOLOGIES AG

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2155708

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20010621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011122

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EUG Se: european patent has lapsed

Ref document number: 97951949.3

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20011121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020730

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20091120

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59703201

Country of ref document: DE

Effective date: 20110601

Ref country code: DE

Ref legal event code: R119

Ref document number: 59703201

Country of ref document: DE

Effective date: 20110531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20111115

Year of fee payment: 15

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20140305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121122