EP0945890B1 - AC plasma display panel - Google Patents

AC plasma display panel Download PDF

Info

Publication number
EP0945890B1
EP0945890B1 EP19990400253 EP99400253A EP0945890B1 EP 0945890 B1 EP0945890 B1 EP 0945890B1 EP 19990400253 EP19990400253 EP 19990400253 EP 99400253 A EP99400253 A EP 99400253A EP 0945890 B1 EP0945890 B1 EP 0945890B1
Authority
EP
European Patent Office
Prior art keywords
electrodes
plasma display
display panel
electrode
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19990400253
Other languages
German (de)
French (fr)
Other versions
EP0945890A1 (en
Inventor
Yoshiharu Chikazawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technicolor SA
Original Assignee
Thomson Multimedia SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP98400676A external-priority patent/EP0945889A1/en
Application filed by Thomson Multimedia SA filed Critical Thomson Multimedia SA
Priority to EP19990400253 priority Critical patent/EP0945890B1/en
Publication of EP0945890A1 publication Critical patent/EP0945890A1/en
Application granted granted Critical
Publication of EP0945890B1 publication Critical patent/EP0945890B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/10AC-PDPs with at least one main electrode being out of contact with the plasma
    • H01J11/12AC-PDPs with at least one main electrode being out of contact with the plasma with main electrodes provided on both sides of the discharge space
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/22Electrodes, e.g. special shape, material or configuration
    • H01J11/24Sustain electrodes or scan electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2211/00Plasma display panels with alternate current induction of the discharge, e.g. AC-PDPs
    • H01J2211/20Constructional details
    • H01J2211/22Electrodes
    • H01J2211/24Sustain electrodes or scan electrodes
    • H01J2211/245Shape, e.g. cross section or pattern

Definitions

  • the invention relates to an AC plasma display panel.
  • Plasma display panels have many advantages compared to other displays currently used: they are flat, not subject to flickering, can be viewed in a wide angle and their brightness is comparable to the brightness of cathode ray tubes.
  • CRT cathode ray tubes
  • the AC plasma display panels are either of the coplanar type or of the matrix type.
  • Both types of displays comprise two insulating plates, e.g. made of glass, separated by parallel partitions constituting for instance ribs of one plate. These plates form a sealed space containing a discharge gas such as a mixture of neon and xenon.
  • the back or front plate is covered with phosphors.
  • each pixel comprises red, green and blue phosphors. In other words, each pixel comprises three cells, one for each color.
  • a first set of parallel electrodes called row electrodes, perpendicular to the ribs, are formed on the inner side of, for instance, the back plate. Each row electrode is associated to a cell.
  • a second set of electrodes called column electrodes, parallel to the ribs, are formed on the inner side of the other (front) plate. To each cell is associated one row electrode and one column electrode.
  • a dielectric layer covers at least one set of electrodes.
  • the column electrodes be positioned at locations which are not facing cells. This goal is achieved if the column electrodes face the edges of the ribs constituting borders between pixels.
  • the US patent US5182489 (SANO YOSHIO) describes a plasma display in which "electrodes are confined within an region overlapping the partition wall of the spacer" (column 3, lines 2 to 27).
  • each column electrode has an axis which is coincident with the axis of the corresponding edge of the partition wall. It has been found that, with this embodiment, there is a risk that a discharge be produced on both sides of the partition wall and, therefore, two cells may be excited at the same time. Up to now, no satisfactory solution to this problem has been found. It is the reason why this kind of device has not been used in practice for a matrix type plasma display panel.
  • a first set of parallel electrodes called column electrodes, parallel to the ribs, are associated with the back plate.
  • Each column electrode corresponds to a cell. It is usually disposed between two ribs under the phosphor layer.
  • a second set of electrodes called row electrodes, perpendicular to the ribs, are associated with the transparent front plate. Two row electrodes correspond to one cell.
  • ITO Indium-Tin Oxide
  • an addressing pulse is applied between the column electrode of this cell and one row electrode. This pulse generates charges on the walls of the cell and these wall charges are seeds for a space discharge which is generated by the application of an AC voltage (for instance of a frequency comprised between 100 kHz and 500 kHz) between the two row electrodes of the cell.
  • an AC voltage for instance of a frequency comprised between 100 kHz and 500 kHz
  • the AC voltage is maintained during a controlled duration, called sustain period, which corresponds to the amplitude of the corresponding color component to be displayed.
  • the row electrodes are generally called sustain electrodes.
  • the light transmission efficiency of transparent row electrodes cannot be 100%. Therefore, a part of the emitted light is masked by these electrodes.
  • the transparency of these electrodes may be increased by reducing their thickness; it is also possible to reduce their width. But these reductions increase the electrical resistance of the electrodes and, a high resistance of electrodes is detrimental to the efficiency and simplicity of the control circuits of the display.
  • the invention solves the problems mentioned here above about matrix type displays and coplanar type displays.
  • the invention reduces the obstacles to the path of the light between the phosphors and the display face of the panel.
  • the invention prevents the excitation of neighboring cells without any significant obstacle on the path of the light.
  • the electrodes on the front face that are facing the edges of the corresponding partition walls comprise transparent tongues or protrusions towards the cells to be excited.
  • the provision of transparent tongues does not reduce the light energy transmitted by the display and solves the problem of the non excitation of neighboring cells by imparting to the electric field of the cell to be excited, on one side of the partition, a value which is greater than the electric field on the other side of the partition, provided that, in this case, the electric field on the other side be below the excitation threshold.
  • the invention provides a significant reduction of the obstacles on the path of the emitted light, the coplanar sustain electrodes being, of course, on the back face of the display.
  • each column electrode is disposed closer from the side of the partition wall where is located the cell to be excited, than from the other side.
  • the column electrodes may be bands, for instance straight bands, having their axis shifted towards the side to be excited.
  • the transparent protrusions or tongues are for instance made of a thin film metal, such as ITO (Indium Tin Oxide).
  • the column electrodes facing the edges of walls, are positioned in locations where they do not decrease the visibility of cells, they can be realized with a low electric resistance. This is favorable to the efficiency and simplicity of the control circuits of the display.
  • the invention provides a plasma display panel comprising a back substrate, a first set of parallel electrodes associated to the back substrate, a front transparent substrate, a second set of electrodes associated to the front substrate, the electrodes of the second set having a direction which is transverse with respect to the direction of the electrodes of the first set, and partition walls which are situated between the back and the front substrates, and extend in the direction of the second set of electrodes, each electrode of the second set facing the edge of a corresponding partition wall.
  • This display is characterized in that :
  • each protrusion faces the phosphor(s) of the corresponding cell.
  • the length of the protrusions is, for example, a fraction of the width separating two partition walls.
  • the axis of each electrode of the second set is shifted, with respect to the axis of the facing edge of the corresponding partition wall, towards the side of the cell to excite.
  • each electrode of the second set is covered with black paint in the area in front of the edge of the corresponding partition wall.
  • the panel comprises means for imparting to the electric field of the cell to be excited, on one side of the partition wall, a value which is greater than the value of the electric field on the other side of the partition walls, the electric field on this other side being below the excitation threshold.
  • each protrusion may face a corresponding electrode of the first set.
  • the panel is of the coplanar type, wherein the electrodes of the first set are arranged by pairs, and the AC sustain voltage is provided between the electrodes of each pair ; further, the protrusion is facing one electrode of the corresponding pair or the interval between the electrodes of the corresponding pair.
  • the phosphors of the cells may be associated with the front substrate.
  • the plasma display represented on figures 1, 2 and 3 comprises a back glass substrate 10 covered by a dielectric layer 12 in which are embedded row electrodes 14 1 , 14 2 , 14 3 , etc. These electrodes 14 i are parallel to each other and the distance between two neighboring electrodes is constant.
  • the inner surface of the back substrate 10 presents ribs 16 1 , 16 2 , 16 3 , ... forming partition walls which, in the example, are represented attached to the substrate 10. These ribs may be formed in one piece with the back substrate 10 or with the front substrate.
  • ribs 16 1 , 16 2 , 16 3 are perpendicular to electrodes 14 i .
  • the distance between two neighboring ribs is constant.
  • the interval 24 between two ribs 16 1 and 16 2 forms a groove at the bottom of which is the dielectric layer 12 covered by a phosphor 17. In the direction of the groove there is a succession of red, green and blue phosphors.
  • the sidewalls 20, 22 of each groove 24 may be also covered with phosphors (figure 3).
  • the panel comprises also a front substrate 26 which is transparent.
  • this substrate 26 is made of glass.
  • the inner face of this glass substrate 26 is covered with a transparent dielectric layer 28 (figures 1 and 3).
  • Column electrodes 30 1 , 30 2 , 30 3 , etc. are embedded in the dielectric layer 28.
  • these column electrodes 30 i cover the inner surface 26 1 of the glass substrate 26 and are covered by the transparent layer 28.
  • Each column electrode 30 i faces the front edge 32 i of a corresponding partition, or rib, 16 i (figure 3).
  • the column electrodes 30 i are facing the partition walls and not the grooves 24, they do not limit the efficiency of the display because they are not situated in front of the phosphors 17 but in the interval between phosphors wherein no light is generated.
  • Electrodes 14 could be designated as column electrodes and the electrodes 30 could be designated as row electrodes.
  • each column electrode 30 i is parallel to the axis of the corresponding partition wall 16 i but it is shifted towards one of the grooves 24, i.e. away from the other groove 25 (figure 3) on the other side of the partition 16 i .
  • the electric field produced by the voltage between a row electrode 14 i and a column electrode 30 i will be higher in the groove 24 than in the groove 25. Therefore, it is possible to generate a discharge in groove 24 without producing a discharge in the neighboring groove 25.
  • each column electrode 30 i is attached protrusions or tongues 36 i 1 , 36 i 2 , etc. extending above the cell to be excited.
  • the protrusion 36 l 1 is above a groove 24. It is made of a transparent material such as ITO (Indium Tin Oxide).
  • the length of the tongue 36 l 1 is about half the width of the groove between partitions 16 1 and 16 2 .
  • each tongues 36 i j are parallel and above the corresponding pair row electrodes 14 j . In this way, the distance between the tongues 36 and the electrodes 14 is minimized in order to maximize the electric field produced between the column electrodes and the row electrodes.
  • column electrodes 30 are not transparent; they can be realized in a metal which has a low resistively and a significant cross section in order to minimize the resistance and, therefore, minimize losses and deformations of the pulses applied to these electrodes.
  • the transparent tongues 36 have a higher resistance. However, these tongues do not increase significantly the resistance of the bus or column electrodes.
  • the plasma display panel operates as follows:
  • each cell 40 ij corresponds one row electrode 14j, and one column electrode 30 i (figure 2).
  • a high voltage pulse is applied between the electrode 30 i and the electrode 14j, the gas in the cell 40 ij is excited and produces a discharge generating ultraviolet (UV) light.
  • UV light excites the phosphors 17.
  • the discharge and the UV light is maintained after the disappearance of the pulse by applying a lower AC voltage between the row electrode 14 j and the column electrode 30 i and this UV light disappears when the AC voltage is no more applied between said electrodes.
  • This kind of display where the maintenance voltage is produced between row electrodes and column electrodes, is called, as mentioned above, a "matrix type" plasma display panel.
  • the plasma display represented on figures 4-7 is of the coplanar type.
  • It comprises a back glass substrate 10 covered by a dielectric layer 12 in which are embedded row sustain electrodes 14 11 , 14 12 , 14 21 , 14 23 , etc. These electrodes 14 j1 , 14 j2 , are parallel to each other and form pairs. The distance d (Fig 5) between two electrodes of the same pair is smaller than the distance D between two pairs.
  • the inner surface of the back substrate 10 presents ribs 16 1 , 16 2 , 16 3 , ... forming partition walls which, in the example, are represented attached to the substrate 10. These ribs may be formed in one piece with the back substrate 10 or with the front substrate.
  • ribs 16 1 , 16 2 , 16 3 are perpendicular to electrodes 14 j1 , 14 j2 .
  • the distance between two neighboring ribs is constant.
  • the interval 24 between two ribs 16 1 and 16 2 forms a groove at the top of which is a dielectric layer covered by a phosphor 17. In the direction of the groove, there is a succession of red, green and blue phosphors.
  • the sidewalls 20, 22 of each groove 24 may be also covered with phosphors.
  • the panel comprises also a front substrate 26 which is transparent.
  • this substrate 26 is made of glass.
  • the inner face of this glass substrate 26 is covered with a transparent dielectric layer 28 which receives the phosphor 17.
  • the column electrodes 30 1 , 30 2 , 30 3 , etc. are embedded in the dielectric layer 28.
  • these column electrodes 30 i cover the inner surface 26 1 of the glass substrate 26 and are covered by the transparent layer 28.
  • Each column electrode 30 i faces the front edge 32 i of a corresponding partition, or rib, 16 i .
  • each column electrode 30 i is parallel to the axis of the corresponding partition wall 16 i but it is shifted towards one of the grooves 24, i.e. away from the other groove 25 on the other side of the partition 16 i .
  • each tongue 36 i j is paral-1el and above the corresponding pair of row electrodes 14 j1 and 14 j2 . In this way, the distance between the tongues 36 and the electrodes 14 is minimized in order to maximize the electric field produced between the column electrodes and the row electrodes.
  • the tongue 36 has a width slightly greater than the width d separating the electrodes 14 j1 and 14 j2 but inferior to the width d' separating the two external edges of the electrodes 14 j1 and 14 j2 .
  • the electrodes 30 have an axis which is in the medium plane of the partition wall 16. In that case, the correct cell is excited because of the presence of the tongue 36.
  • Column electrodes 30 are not transparent; they can be realized in a metal which has a low resistivity and a significant cross section in order to minimize the resistance and, therefore, minimize losses and deformations of the pulses applied to these electrodes.
  • the transparent tongues 36 have a higher resistance. bowever, these tongues do not increase significantly the resistance of the bus or column electrodes.
  • the plasma display panel operates as follows:
  • each cell 40 ij corresponds two row electrodes 14 j1 and 14 j2 , and one column electrode 30 i .
  • a high voltage pulse is applied between the electrode 30 i and the electrode 14 j2 , electric charges are produced on the walls of the cell. These charges constitute seeds for a discharge of the gas (Xe and Ne) inside the cell.
  • the gas in the cell 40 ij is excited and produces a discharge generating ultraviolet (UV) light. This UV light excites the phosphors 17. This UV light disappears when the AC voltage is no more applied between said electrodes.
  • UV ultraviolet
  • the plasma display according to the invention is efficient, i.e. there is no loss of light, because no electrode (or electrodes of minimum area) hides each cell. Moreover, the resistance of the electrodes can be minimized; therefore, there is no degradation of the pulses applied to the electrodes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Gas-Filled Discharge Tubes (AREA)

Description

  • The invention relates to an AC plasma display panel.
  • Plasma display panels have many advantages compared to other displays currently used: they are flat, not subject to flickering, can be viewed in a wide angle and their brightness is comparable to the brightness of cathode ray tubes. In spite of the fact that the sequential excitation of pixels (picture elements) presents more difficulties than with cathode ray tubes (CRT), they may replace, in the future, such CRTs for the display of all kinds of pictures, more particularly in television receivers.
  • The AC plasma display panels are either of the coplanar type or of the matrix type.
  • It is recalled here the principle and structure of such plasma display panels. Both types of displays comprise two insulating plates, e.g. made of glass, separated by parallel partitions constituting for instance ribs of one plate. These plates form a sealed space containing a discharge gas such as a mixture of neon and xenon. The back or front plate is covered with phosphors. In case of color displays, each pixel comprises red, green and blue phosphors. In other words, each pixel comprises three cells, one for each color.
  • In a matrix type panel as disclosed in US3892998 patent, a first set of parallel electrodes, called row electrodes, perpendicular to the ribs, are formed on the inner side of, for instance, the back plate. Each row electrode is associated to a cell. A second set of electrodes, called column electrodes, parallel to the ribs, are formed on the inner side of the other (front) plate. To each cell is associated one row electrode and one column electrode.
  • It should be noted here that, in an AC display, a dielectric layer covers at least one set of electrodes.
  • When a high voltage pulse is applied between the row electrode and the column electrode of the cell, an electric discharge is created within this cell. This electric discharge generates ultra-violet (UV) light which excites the phosphor of the addressed cell. This visible light, resulting from the excitation of the phosphor, is viewed through the transparent front plate. The electric discharge is maintained during a controlled duration by the application of an alternate voltage (AC) between the row electrode and the column electrode. The controlled duration corresponds to the amplitude of the corresponding color component to be displayed.
  • As the visible light is seen through the transparent front plate, it is preferable that the column electrodes be positioned at locations which are not facing cells. This goal is achieved if the column electrodes face the edges of the ribs constituting borders between pixels. The US patent US5182489 (SANO YOSHIO) describes a plasma display in which "electrodes are confined within an region overlapping the partition wall of the spacer" (column 3, lines 2 to 27).
  • In a known device of this type, each column electrode has an axis which is coincident with the axis of the corresponding edge of the partition wall. It has been found that, with this embodiment, there is a risk that a discharge be produced on both sides of the partition wall and, therefore, two cells may be excited at the same time. Up to now, no satisfactory solution to this problem has been found. It is the reason why this kind of device has not been used in practice for a matrix type plasma display panel.
  • In a coplanar plasma display panel as disclosed in US5736815 and US5587624 patents, a first set of parallel electrodes, called column electrodes, parallel to the ribs, are associated with the back plate. Each column electrode corresponds to a cell. It is usually disposed between two ribs under the phosphor layer. A second set of electrodes, called row electrodes, perpendicular to the ribs, are associated with the transparent front plate. Two row electrodes correspond to one cell. As these row electrodes are interposed between the phosphors and the face of the front plate to be seen by the viewer, they are usually transparent, for instance made of ITO (Indium-Tin Oxide).
  • In order to excite the phosphors of a cell, it is necessary to convert the gas of the cell into a plasma which generates ultra-violet (UV) light. For obtaining the plasma within a cell, an addressing pulse is applied between the column electrode of this cell and one row electrode. This pulse generates charges on the walls of the cell and these wall charges are seeds for a space discharge which is generated by the application of an AC voltage (for instance of a frequency comprised between 100 kHz and 500 kHz) between the two row electrodes of the cell.
  • The AC voltage is maintained during a controlled duration, called sustain period, which corresponds to the amplitude of the corresponding color component to be displayed. The row electrodes are generally called sustain electrodes.
  • The light transmission efficiency of transparent row electrodes cannot be 100%. Therefore, a part of the emitted light is masked by these electrodes. The transparency of these electrodes may be increased by reducing their thickness; it is also possible to reduce their width. But these reductions increase the electrical resistance of the electrodes and, a high resistance of electrodes is detrimental to the efficiency and simplicity of the control circuits of the display.
  • The invention solves the problems mentioned here above about matrix type displays and coplanar type displays. For coplanar type displays, the invention reduces the obstacles to the path of the light between the phosphors and the display face of the panel. For matrix type displays, the invention prevents the excitation of neighboring cells without any significant obstacle on the path of the light.
  • According to the invention, the electrodes on the front face that are facing the edges of the corresponding partition walls, comprise transparent tongues or protrusions towards the cells to be excited.
  • It will be appreciated that, for matrix type displays, the provision of transparent tongues does not reduce the light energy transmitted by the display and solves the problem of the non excitation of neighboring cells by imparting to the electric field of the cell to be excited, on one side of the partition, a value which is greater than the electric field on the other side of the partition, provided that, in this case, the electric field on the other side be below the excitation threshold.
  • For coplanar type displays, the invention provides a significant reduction of the obstacles on the path of the emitted light, the coplanar sustain electrodes being, of course, on the back face of the display.
  • In an embodiment, each column electrode is disposed closer from the side of the partition wall where is located the cell to be excited, than from the other side.
  • In that case, the column electrodes may be bands, for instance straight bands, having their axis shifted towards the side to be excited.
  • The transparent protrusions or tongues are for instance made of a thin film metal, such as ITO (Indium Tin Oxide).
  • As the column electrodes, facing the edges of walls, are positioned in locations where they do not decrease the visibility of cells, they can be realized with a low electric resistance. This is favorable to the efficiency and simplicity of the control circuits of the display.
  • The invention provides a plasma display panel comprising a back substrate, a first set of parallel electrodes associated to the back substrate, a front transparent substrate, a second set of electrodes associated to the front substrate, the electrodes of the second set having a direction which is transverse with respect to the direction of the electrodes of the first set, and partition walls which are situated between the back and the front substrates, and extend in the direction of the second set of electrodes, each electrode of the second set facing the edge of a corresponding partition wall. This display is characterized in that :
    • each electrode of the second set comprises, for each cell, a transparent protrusion extending towards the side of the partition wall corresponding to this cell.
  • In an embodiment each protrusion faces the phosphor(s) of the corresponding cell.
  • The length of the protrusions is, for example, a fraction of the width separating two partition walls.
  • In an embodiment, the axis of each electrode of the second set is shifted, with respect to the axis of the facing edge of the corresponding partition wall, towards the side of the cell to excite.
  • In an embodiment, each electrode of the second set is covered with black paint in the area in front of the edge of the corresponding partition wall.
  • In an embodiment, where the plasma display panel is of the matrix type wherein the sustain AC voltage for each cell is provided between the corresponding electrodes of the first set and the second set, the panel comprises means for imparting to the electric field of the cell to be excited, on one side of the partition wall, a value which is greater than the value of the electric field on the other side of the partition walls, the electric field on this other side being below the excitation threshold.
  • In that case each protrusion may face a corresponding electrode of the first set.
  • According to another embodiment, the panel is of the coplanar type, wherein the electrodes of the first set are arranged by pairs, and the AC sustain voltage is provided between the electrodes of each pair ; further, the protrusion is facing one electrode of the corresponding pair or the interval between the electrodes of the corresponding pair.
  • In this embodiment, the phosphors of the cells may be associated with the front substrate.
  • Other features and advantages of the invention will appear with the description of certain of its embodiments, this description being made with reference to the following drawings, wherein:
    • Figure 1 is an isometric exploded view of a matrix type display panel according to the invention,
    • figure 2 shows the electrodes of the panel of figure 1,
    • figure 3 is a section of the panel represented on figure 1,
    • figure 4 is a view similar to figure 1 for a coplanar type display panel according to the invention,
    • figure 5 is a view similar to figure 2, but for the embodiment of figure 4,
    • figure 6 is a view similar to figure 3 for the embodiment of figure 4, and
    • figure 7 corresponds to a variant of figure 5.
  • The plasma display represented on figures 1, 2 and 3 comprises a back glass substrate 10 covered by a dielectric layer 12 in which are embedded row electrodes 141, 142, 143, etc. These electrodes 14i are parallel to each other and the distance between two neighboring electrodes is constant.
  • The inner surface of the back substrate 10 presents ribs 161, 162, 163, ... forming partition walls which, in the example, are represented attached to the substrate 10. These ribs may be formed in one piece with the back substrate 10 or with the front substrate.
  • These ribs 161, 162, 163 are perpendicular to electrodes 14i. The distance between two neighboring ribs is constant. The interval 24 between two ribs 161 and 162 forms a groove at the bottom of which is the dielectric layer 12 covered by a phosphor 17. In the direction of the groove there is a succession of red, green and blue phosphors. The sidewalls 20, 22 of each groove 24 may be also covered with phosphors (figure 3).
  • The panel comprises also a front substrate 26 which is transparent. In the example, this substrate 26 is made of glass. The inner face of this glass substrate 26 is covered with a transparent dielectric layer 28 (figures 1 and 3). Column electrodes 301, 302, 303, etc. are embedded in the dielectric layer 28. In the example, these column electrodes 30i cover the inner surface 261 of the glass substrate 26 and are covered by the transparent layer 28.
  • Each column electrode 30i faces the front edge 32i of a corresponding partition, or rib, 16i (figure 3).
  • As the column electrodes 30i are facing the partition walls and not the grooves 24, they do not limit the efficiency of the display because they are not situated in front of the phosphors 17 but in the interval between phosphors wherein no light is generated.
  • It is to be noted here that the wordings "column electrode" and "row electrode" are used for convenience purpose. The electrodes 14 could be designated as column electrodes and the electrodes 30 could be designated as row electrodes.
  • According to one aspect of the invention, the axis of each column electrode 30i is parallel to the axis of the corresponding partition wall 16i but it is shifted towards one of the grooves 24, i.e. away from the other groove 25 (figure 3) on the other side of the partition 16i. In this manner, the electric field produced by the voltage between a row electrode 14i and a column electrode 30i will be higher in the groove 24 than in the groove 25. Therefore, it is possible to generate a discharge in groove 24 without producing a discharge in the neighboring groove 25.
  • Moreover, to each column electrode 30i are attached protrusions or tongues 36 i 1 , 36 i 2 , etc. extending above the cell to be excited. In the example represented on figure 3, the protrusion 36 l 1 is above a groove 24. It is made of a transparent material such as ITO (Indium Tin Oxide). In this embodiment, the length of the tongue 36 l 1 is about half the width of the groove between partitions 161 and 162.
  • As represented on figure 2, each tongues 36 i j are parallel and above the corresponding pair row electrodes 14j. In this way, the distance between the tongues 36 and the electrodes 14 is minimized in order to maximize the electric field produced between the column electrodes and the row electrodes.
  • As column electrodes 30 are not transparent; they can be realized in a metal which has a low resistively and a significant cross section in order to minimize the resistance and, therefore, minimize losses and deformations of the pulses applied to these electrodes.
  • The transparent tongues 36 have a higher resistance. However, these tongues do not increase significantly the resistance of the bus or column electrodes.
  • The plasma display panel operates as follows:
  • To each cell 40ij (figure 2) corresponds one row electrode 14j, and one column electrode 30i (figure 2). When a high voltage pulse is applied between the electrode 30i and the electrode 14j, the gas in the cell 40ij is excited and produces a discharge generating ultraviolet (UV) light. This UV light excites the phosphors 17. The discharge and the UV light is maintained after the disappearance of the pulse by applying a lower AC voltage between the row electrode 14j and the column electrode 30i and this UV light disappears when the AC voltage is no more applied between said electrodes.
  • This kind of display, where the maintenance voltage is produced between row electrodes and column electrodes, is called, as mentioned above, a "matrix type" plasma display panel.
  • The plasma display represented on figures 4-7 is of the coplanar type.
  • It comprises a back glass substrate 10 covered by a dielectric layer 12 in which are embedded row sustain electrodes 1411, 1412, 1421, 1423, etc. These electrodes 14j1, 14j2, are parallel to each other and form pairs. The distance d (Fig 5) between two electrodes of the same pair is smaller than the distance D between two pairs.
  • The inner surface of the back substrate 10 (fig. 4) presents ribs 161, 162, 163, ... forming partition walls which, in the example, are represented attached to the substrate 10. These ribs may be formed in one piece with the back substrate 10 or with the front substrate.
  • These ribs 161, 162, 163 are perpendicular to electrodes 14j1, 14j2. The distance between two neighboring ribs is constant. The interval 24 between two ribs 161 and 162 forms a groove at the top of which is a dielectric layer covered by a phosphor 17. In the direction of the groove, there is a succession of red, green and blue phosphors. The sidewalls 20, 22 of each groove 24 may be also covered with phosphors.
  • The panel comprises also a front substrate 26 which is transparent. In the example, this substrate 26 is made of glass. The inner face of this glass substrate 26 is covered with a transparent dielectric layer 28 which receives the phosphor 17. The column electrodes 301, 302, 303, etc. are embedded in the dielectric layer 28. In the example, these column electrodes 30i cover the inner surface 261 of the glass substrate 26 and are covered by the transparent layer 28.
  • Each column electrode 30i faces the front edge 32i of a corresponding partition, or rib, 16i.
  • Like in the first embodiment, the axis of each column electrode 30i is parallel to the axis of the corresponding partition wall 16i but it is shifted towards one of the grooves 24, i.e. away from the other groove 25 on the other side of the partition 16i.
  • As represented on figure 5, each tongue 36 i j is paral-1el and above the corresponding pair of row electrodes 14j1 and 14j2. In this way, the distance between the tongues 36 and the electrodes 14 is minimized in order to maximize the electric field produced between the column electrodes and the row electrodes.
  • The best result is obtained with the embodiment of Fig 7 where the tongue 36 is right above address (and sustain) electrode 14j2 and not above sustain electrode 14j1.
  • In the embodiment of Fig 5, the tongue 36 has a width slightly greater than the width d separating the electrodes 14j1 and 14j2 but inferior to the width d' separating the two external edges of the electrodes 14j1 and 14j2.
  • In another embodiment (not shown), which may be used in both embodiments represented on figures 5 and 7, the electrodes 30 have an axis which is in the medium plane of the partition wall 16. In that case, the correct cell is excited because of the presence of the tongue 36.
  • Column electrodes 30 are not transparent; they can be realized in a metal which has a low resistivity and a significant cross section in order to minimize the resistance and, therefore, minimize losses and deformations of the pulses applied to these electrodes.
  • The transparent tongues 36 have a higher resistance. bowever, these tongues do not increase significantly the resistance of the bus or column electrodes.
  • The plasma display panel operates as follows:
  • To each cell 40ij (figure 5) corresponds two row electrodes 14j1 and 14j2, and one column electrode 30i. When a high voltage pulse is applied between the electrode 30i and the electrode 14j2, electric charges are produced on the walls of the cell. These charges constitute seeds for a discharge of the gas (Xe and Ne) inside the cell. When an AC voltage is applied between sustain electrodes 14j1 and 14j2, the gas in the cell 40ij is excited and produces a discharge generating ultraviolet (UV) light. This UV light excites the phosphors 17. This UV light disappears when the AC voltage is no more applied between said electrodes.
  • For both embodiments, in order to improve the contrast of the display, it is possible to cover with black paint the column electrodes 30 above the edges 32i of the partition walls 16i.
  • The plasma display according to the invention is efficient, i.e. there is no loss of light, because no electrode (or electrodes of minimum area) hides each cell. Moreover, the resistance of the electrodes can be minimized; therefore, there is no degradation of the pulses applied to the electrodes.

Claims (10)

  1. An AC plasma display panel comprising a back substrate (10), a first set of parallel electrodes (14) associated to the back substrate, a front transparent substrate (26), a second set of electrodes (30) associated to the front substrate, the electrodes of the second set having a direction which is transverse with respect to the direction of the electrodes of the first set, and partition walls (16) which are situated between the back and the front substrates, and extend in the direction of the second set of electrodes, each electrode of the second set facing the edge of a corresponding partition wall characterized in that :
    - each electrode of the second set comprises, for each cell, a transparent protrusion (36) extending towards the side of the partition wall corresponding to this cell.
  2. A plasma display panel according to claim 1, characterized in that each protrusion faces the phosphors) (17) of the corresponding cell.
  3. A plasma display panel according to claim 1 or 2, characterized in that each protrusion is made of a thin film metal, such as Indium Tin Oxide.
  4. A plasma display panel according to any of these preceding claims, characterized in that the length of the protrusions is a fraction of the width separating two partition walls.
  5. A plasma display panel according to any of the previous claims, characterized in that the axis of each electrode (30) of the second set is shifted, with respect to the axis of the facing edge (32) of the corresponding partition wall, towards the side of the cell to excite.
  6. A plasma display panel according to any of the previous claims, characterized in that each electrode of the second set is covered with black paint in the area in front of the edge of the corresponding partition wall.
  7. A plasma display panel according to any of the previous claims, characterized in that it is of the matrix type wherein a sustain AC voltage for each cell is provided between the corresponding electrodes of the first set and the second set and it comprises means for imparting to the electric field of the cell to be excited, on one side of the partition wall, a value which is greater than the value of the electric field on the other side of the partition walls, the electric field on this other side being below the excitation threshold.
  8. A plasma display panel according to claim 7, characterized in that each protrusion is facing a corresponding electrode of the first set.
  9. A plasma display panel according to any of the claims 1 to 6, characterized in that said panel is of the coplanar type, the electrodes of the first set being arranged by pairs, an AC sustain voltage being provided between the electrodes of each pair, and wherein the protrusion is facing one electrode of the corresponding pair or the interval between the electrodes of the corresponding pair.
  10. A plasma display panel according to claim 9, characterized in that the phosphors of the cells are associated with the front substrate.
EP19990400253 1998-03-23 1999-02-04 AC plasma display panel Expired - Lifetime EP0945890B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19990400253 EP0945890B1 (en) 1998-03-23 1999-02-04 AC plasma display panel

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP98400676A EP0945889A1 (en) 1998-03-23 1998-03-23 Plasma display panels
EP98400676 1998-03-23
EP19990400253 EP0945890B1 (en) 1998-03-23 1999-02-04 AC plasma display panel

Publications (2)

Publication Number Publication Date
EP0945890A1 EP0945890A1 (en) 1999-09-29
EP0945890B1 true EP0945890B1 (en) 2003-09-10

Family

ID=26151595

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19990400253 Expired - Lifetime EP0945890B1 (en) 1998-03-23 1999-02-04 AC plasma display panel

Country Status (1)

Country Link
EP (1) EP0945890B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2807566A1 (en) * 2000-04-05 2001-10-12 Thomson Plasma IMPROVEMENT TO THE MATRIIEL TYPE ALTERNATIVE PLASMA PANEL
WO2002058095A1 (en) * 2001-01-17 2002-07-25 Matsushita Electric Industrial Co., Ltd. Plasma display panel and its manufacturing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0744003B2 (en) * 1988-12-20 1995-05-15 大日本印刷株式会社 Plasma display panel
JP2964512B2 (en) * 1989-12-18 1999-10-18 日本電気株式会社 Color plasma display
JPH08313884A (en) * 1995-05-12 1996-11-29 Sony Corp Discharge panel

Also Published As

Publication number Publication date
EP0945890A1 (en) 1999-09-29

Similar Documents

Publication Publication Date Title
US6380678B1 (en) Plasma display panel
US6806645B2 (en) Plasma display panel
EP1347488A1 (en) Plasma display device
WO2003075302A1 (en) Plasma display
US6400082B1 (en) AC plasma display panel having electrode sets including transparent protrusions
US6137227A (en) Plasma display panel
EP0945890B1 (en) AC plasma display panel
US6515419B1 (en) Plasma display panel with barriers and electrodes having different widths depending on the discharge cell
US6628075B1 (en) Plasma display panel with first and second inner and outer electrodes
US20050264195A1 (en) Plasma display panel
US7372204B2 (en) Plasma display panel having igniter electrodes
KR100323978B1 (en) Plasma Display Apparatus
US6380677B1 (en) Plasma display panel electrode
US6541914B1 (en) Plasma display panel including grooves in phosphor
JP3994626B2 (en) Plasma display panel
EP1746624A2 (en) Plasma display panel
US20050264233A1 (en) Plasma display panel (PDP)
KR100347226B1 (en) Plasma display panel
KR100392957B1 (en) Plasma Display Panel
KR100660250B1 (en) Plasma display panel
US7375468B2 (en) Plasma display panel having scan electrode closer to address electrode
US6335592B1 (en) Plasma display panel with specific electrode structures
EP1724808A1 (en) Plasma display panel
US20060076889A1 (en) Plasma display panel (PDP)
KR100686836B1 (en) Plasma Display Panel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20000316

AKX Designation fees paid

Free format text: DE FR GB

17Q First examination report despatched

Effective date: 20021007

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69911093

Country of ref document: DE

Date of ref document: 20031016

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040614

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050111

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050218

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050222

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060901

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060204

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20061031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060228