EP0943055A1 - Method and device for determining the ion flow in internal combustion engines - Google Patents

Method and device for determining the ion flow in internal combustion engines

Info

Publication number
EP0943055A1
EP0943055A1 EP98943636A EP98943636A EP0943055A1 EP 0943055 A1 EP0943055 A1 EP 0943055A1 EP 98943636 A EP98943636 A EP 98943636A EP 98943636 A EP98943636 A EP 98943636A EP 0943055 A1 EP0943055 A1 EP 0943055A1
Authority
EP
European Patent Office
Prior art keywords
signal
ion current
cylinder
measurement
offset correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP98943636A
Other languages
German (de)
French (fr)
Other versions
EP0943055B1 (en
Inventor
Markus Ketterer
Achim Guenther
Udo Niessner
Juergen Foerster
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0943055A1 publication Critical patent/EP0943055A1/en
Application granted granted Critical
Publication of EP0943055B1 publication Critical patent/EP0943055B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P17/00Testing of ignition installations, e.g. in combination with adjusting; Testing of ignition timing in compression-ignition engines
    • F02P17/12Testing characteristics of the spark, ignition voltage or current

Definitions

  • the gases involved can be ionized by chemical and physical processes. If a voltage is applied to two electrodes that protrude from the gas in isolation, a current can be measured. This is referred to below as the ion current.
  • the spark plug is usually used as a measuring probe. After applying a voltage between the center electrode and ground, the ion current can be measured after the ignition spark has subsided.
  • Methods and components implemented in analog technology are used to evaluate the ion current signal, e.g. Short-term integrators, or processes and components implemented in digital technology for use. It is common to switch the measurement signals to these resources several cylinders in succession in order to save costs (multiplexing). The multiplexing is to be carried out without crosstalk between the cylinder channels. Furthermore, it must be prevented that the now shorter, cylinder-specific signal sections lead to a reduction in quality in the offset correction. Improvement of the safety and robustness of engine control and diagnostic functions by using these signals with an improved signal-to-noise ratio for the formation of features.
  • the object of the invention is to provide a method which solves the problems mentioned.
  • FIG. 1 The integration of the method and the device into the technical environment is illustrated in FIG. 1 in the form of a block diagram. Specific configurations of the essential signal processing blocks are explained in more detail in FIGS. 2 to 4, including signal examples.
  • a unit (6) comprising an anti-aliasing filter (6.1) and an analog / digital converter (6.2) can be used to convert the ion current signal (s3), which is continuous in terms of time and value, into a digital signal sequence (s4). be used.
  • a feature generator (7) extracts feature vectors (s5) specific to the cylinder from the digital signal sequence (s4). On the basis of these feature vectors (s5), misfiring occurs in the following classifier (8).
  • a control unit (10) is required to control the ignition (1) and the means (4) according to the invention for offset correction and masking.
  • FIG. 2 The method according to the invention for offset value correction and for spark masking of the ion current signal (sl) generated with the aid of means (3) is illustrated in FIG. 2.
  • the signal (sl) is generated from the signal (sl) in such a way that the signal (sl) is looped through within a defined measurement window area and outside of it
  • Measuring window range is switched to a constant substitute value (slb).
  • the proportion of the spark in the ion current (sl) is masked with this substitute value (slb).
  • the substitute value (slb) should be of the order of magnitude of the residual offset of the ion current signal
  • the substitute value (slb) is determined individually for each cycle shortly before the ignition process by means of a sample and hold circuit (4.2).
  • the ion current signal (sl) is not directly accessed for the determination of the hold value (slb), but rather a signal (sla) which has been cleaned out of interference.
  • the interference correction of the signal (sl) can, for example, with an adapted filter
  • This signal (s2) is characterized in that it is free of jumps and from ignition influences as well as a current offset caused by shunts.
  • the subsequent signal multiplexing (5) is shown in FIG. Because of the special property of the cylinder-specific signals of the type of (s2), the signals from a plurality of cylinders can advantageously be combined in the form of temporal multiplexing to form a common signal (s3). In this case, due to the measurement window masking carried out in (4), a mutual influence of the multiplexed signals is excluded. This greatly reduces the resources required for signal transmission and the subsequent digitization.
  • an anti-aliasing filter (6.1) can advantageously be switched into the signal path.
  • this filter there is also the possibility of adapting the signal (s3) specifically to lower sampling rates.
  • a discrete signal sequence (s4) is available at the output of the analog / digital converter (6.2).
  • cylinder-specific feature vectors (s5) are formed from the signal (s4).
  • a possible implementation of the feature generator (7) is shown as an example in FIG.
  • the medium (7.1) is used to split the continuous data stream (s4) into the individual cylinder parts.
  • a two-dimensional feature vector can then be formed for each cylinder-specific combustion cycle, consisting of the maximum ion current value and the short-term integral over the ion current measurement window.
  • a downstream classifier (8) can make a distinction between regular burns and misfires on the basis of the feature vectors (s5) by comparison with correspondingly calculated threshold values.
  • FIGS. 5 and 6 Based on the method presented, an alternative method, which is explained in more detail by FIGS. 5 and 6, can be used.
  • This alternative method replaces the means 3, 4, 5 and 10 described in FIG. 1, uses the signal from the combustion process (2) and supplies a signal s8.3 which is processed in accordance with the invention in the same way as signal s3.
  • an ion current is advantageously selected in the selection unit (8.1) from a plurality of different cylinders.
  • This ion current signal is measured with means (8.2) before it experiences the offset correction and masking of the ignition spark according to the invention in means (8.3).
  • the masking of the ignition spark and the offset correction are illustrated in FIG. 6.
  • the means (8.3.5) are used to switch to a constant value previously defined according to the invention, which does not allow a jump in the signal (s8.3).
  • a new offset value is first formed with the means (8.3.1) and (8.3.2), which is subtracted from the original signal from means (8.2) with means (8.3.4).
  • the determination of the offset value is completed according to the invention before the ignition spark in the ion current signal becomes visible.
  • the signal from the combustion process (2) can be cleaned up with an adapted filter (8.3.1) as an example.
  • the determined value from means (8.3.1) is held in the sample and hold circuit (8.3.2) until the next switching of means (8.3.5) and (8.1), so that after means (8.3.5) an offset value-adjusted and interference-adjusted according to the invention Signal (s8.3) for further processing in means (6) is present.
  • a control unit 8.4 is required for the timing of means 1, 8.1, 8.2 and 8.3.

Abstract

The invention relates to a method for processing ion flow signals in internal combustion engines, involving offset correction, masking and multiplexing for engine control functions, whereby, once the ion flow signal has been measured in each cylinder for the purposes of offset correction before each ignition, the level of the measuring signal in the cylinder is determined. During each masking operation, the measuring signal in a second signal derived from the measuring signal is replaced by the level value and subtracted from the second signal until the next ignition. The channels to be multiplexed are then consolidated by adding the second signals specific to the respective cylinders to a third signal.

Description

Verfahren und Vorrichtung zur Erfassung des Ionenstroms an BrennkraftmaschinenMethod and device for detecting the ion current in internal combustion engines
Stand der TechnikState of the art
Bei Verbrennungen kann durch chemische und physikalische Vorgänge eine Ionisierung der beteiligten Gase erfolgen. Wird an zwei voneinander isoliert in das Gas hineinragenden Elektroden eine Spannung angelegt, kann ein Strom gemessen werden. Dieser wird nachfolgend als Ionenstrom bezeichnet.In the event of burns, the gases involved can be ionized by chemical and physical processes. If a voltage is applied to two electrodes that protrude from the gas in isolation, a current can be measured. This is referred to below as the ion current.
Dieses Phänomen ist auch an Brennkraftmaschinen, z.B. an Ottomotoren, zu beobachten. Seit langem wird versucht, den Ionenstrom für verschiedene otorsteuerungs- und Diagnosefunktionen einzusetzen, beispielsweise für Klopfdetektion, Aussetzererkennung, Phasenerkennung, Schätzung des Verbrennungsdruckes bzw. der Lage des Druckmaximums, Bestimmung der Gemischzusammensetzung und Erkennung der Magerlaufgrenze .This phenomenon is also found on internal combustion engines, e.g. on gasoline engines. For a long time, attempts have been made to use the ion current for various engine control and diagnostic functions, for example for knock detection, misfire detection, phase detection, estimation of the combustion pressure or the position of the pressure maximum, determination of the mixture composition and detection of the lean running limit.
Als Meßsonde wird üblicherweise die Zündkerze verwendet. Nach Anlegen einer Spannung zwischen Mittelelektrode und Masse kann nach Abklingen des Zündfunkens der Ionenstrom gemessen werden.The spark plug is usually used as a measuring probe. After applying a voltage between the center electrode and ground, the ion current can be measured after the ignition spark has subsided.
Dabei treten folgende Probleme auf : Aufgrund von Nebenschlußwiderständen außerhalb und innerhalb der Zündkerze (z.B. Verschmutzung des Zündkerzenisolators) kommt es zu einem Stromoffset, der eine exakte Erfassung des durch die Verbrennung erzeugten Ionenstromes stört . Dieser Stromoffset ist zu eliminieren.The following problems arise: Due to shunt resistances outside and inside the spark plug (for example, contamination of the spark plug insulator), there is a current offset, which disrupts an exact detection of the ion current generated by the combustion. This current offset must be eliminated.
Während der Brenndauer des Zündfunkens ist keine Ionenstrommessung möglich. Eine Ausblendung kann im Ionenstrommeßsignal zu SignalSprüngen führen, welche beispielsweise bei einer nachfolgenden Klopferkennung zu Fehldetektionen führt. Der Zündvorgang ist ohne Störung des Meßsignals auszublenden.No ion current measurement is possible while the spark is on. A blanking can lead to signal jumps in the ion current measurement signal, which leads to false detections, for example, in the event of a subsequent knock detection. The ignition process must be faded out without disturbing the measurement signal.
Zur Auswertung des lonenstromsignals kommen in Analogtechnik realisierte Verfahren und Komponenten, z.B. Kurzzeitintegratoren, oder in Digitaltechnik realisierte Verfahren und Komponenten zur Anwendung. Es ist üblich, die Meßsignale mehrere Zylinder nacheinander auf diese Resourcen zu schalten, um Kosten zu sparen (Multiplexing) . Das Multiplexing ist ohne Übersprechen zwischen den Zylinderkanälen auszuführen. Weiterhin ist zu verhindern, daß die nun kürzeren zylinderindividuellen Signalabschnitte zu einer Qualitätsminderung bei der Offsetkorrektur führen. Verbesserung der Sicherheit und Robustheit von Motorsteuerungs- und Diagnosefunktionen durch Nutzung dieser Signale mit verbessertem Störabstand zur Merkmalsbildung .Methods and components implemented in analog technology are used to evaluate the ion current signal, e.g. Short-term integrators, or processes and components implemented in digital technology for use. It is common to switch the measurement signals to these resources several cylinders in succession in order to save costs (multiplexing). The multiplexing is to be carried out without crosstalk between the cylinder channels. Furthermore, it must be prevented that the now shorter, cylinder-specific signal sections lead to a reduction in quality in the offset correction. Improvement of the safety and robustness of engine control and diagnostic functions by using these signals with an improved signal-to-noise ratio for the formation of features.
Die Aufgabe der Erfindung besteht in der Angabe eines Verfahrens, das die genannten Probleme löst.The object of the invention is to provide a method which solves the problems mentioned.
Das erfindungsgemäße Verfahren und die erfindungεgemäße Vorrichtung zur Erfassung des Ionenstroms an Brennkraftmaschinen wird im folgenden anhand eines Ausführungsbeispiels mit Bezug auf die Figuren 1 bis 4 erläutert .The method according to the invention and the device according to the invention for detecting the ion current Internal combustion engines are explained below using an exemplary embodiment with reference to FIGS. 1 to 4.
Die Einbindung des Verfahrens und der Vorrichtung in das technische Umfeld wird in Figur 1 in Form einer Blockdarstellung verdeutlicht. Konkrete Ausgestaltungen der wesentlichen Signalverarbeitungsblöcke werden in Figur 2 bis Figur 4 unter Einbeziehung von Signalbeispielen näher erläutert .The integration of the method and the device into the technical environment is illustrated in FIG. 1 in the form of a block diagram. Specific configurations of the essential signal processing blocks are explained in more detail in FIGS. 2 to 4, including signal examples.
Im einzelnen ist in Figur 1 die komplette1 is the complete one
Signalverarbeitungskette dargestellt. Am Anfang dieser Kette steht der Verbrennungsprozeß (2) , der durch die Zündung (1) eingeleitet wird. Bei ordnungsgemäßer Gemischverbrennung findet im Brennraum eine Ionisation statt. Das Mittel (3) dient zur Erzeugung und Messung eines lonenstromsignals (sl) , welches Rückschlüsse auf den Ionisationsprozeß während der Gemischverbrennung zuläßt. Daran schließt sich ein Mittel (4) an, in welcher die erfindungsgemäße Maskierung und Offsetwertkorrektur des lonenstromsignals stattfindet. Mit Hilfe einer Multiplexereinrichtung (5) werden die Ionenstromsignale (s2) von unterschiedlichen Zylindern vorteilhafterweise zu einem Summensignal (s3) zusammengefaßt . Die erfindungsgemäße Aufbereitung des Signals (s3) ermöglicht die Nutzung desselben neben der Aussetzererkennung auch für weiterreichende Anwendungen (9), wie z.B. der Klopfdetektion.Signal processing chain shown. At the beginning of this chain is the combustion process (2), which is initiated by the ignition (1). If the mixture is properly burned, ionization takes place in the combustion chamber. The means (3) is used to generate and measure an ion current signal (sl), which allows conclusions to be drawn about the ionization process during the mixture combustion. This is followed by a means (4) in which the masking and offset value correction of the ion current signal takes place according to the invention. With the aid of a multiplexer device (5), the ion current signals (s2) from different cylinders are advantageously combined to form a sum signal (s3). The processing of the signal (s3) according to the invention enables the same to be used in addition to the misfire detection for further-reaching applications (9), such as the knock detection.
Für die Signalauswertung bietet sich eine rechnergestützte Weiterverarbeitung an. Für die Umsetzung des zeit- und wertekontinuierlichen lonenstromsignals (s3) in eine digitale Signalfolge (s4) kann eine Einheit (6) aus Antialiasing-Filter (6.1) und Analog/Digital-Umsetzer (6.2) verwendet werden. Aus der digitalen Signalfolge (s4) extrahiert ein Merkmalsbildner (7) zylinderindividuelle Merkmalsvektoren (s5) . Auf der Basis dieser Merkmalsvektoren (s5) findet im nachfolgenden Klassifikator (8) die Erkennung von Verbrennungsaussetzern statt .Computer-aided processing is available for signal evaluation. A unit (6) comprising an anti-aliasing filter (6.1) and an analog / digital converter (6.2) can be used to convert the ion current signal (s3), which is continuous in terms of time and value, into a digital signal sequence (s4). be used. A feature generator (7) extracts feature vectors (s5) specific to the cylinder from the digital signal sequence (s4). On the basis of these feature vectors (s5), misfiring occurs in the following classifier (8).
Für die zeitliche Ansteuerung der Zündung (1) sowie des erfindungsgemäßen Mittels (4) zur Offsetkorrektur und Maskierung wird eine Steuereinheit (10) benötigt.A control unit (10) is required to control the ignition (1) and the means (4) according to the invention for offset correction and masking.
Das erfindungsgemäße Verfahren zur Offsetwertkorrektur und zur Zündfunkenmaskierung des mit Hilfe des Mittels (3) erzeugten lonenstromsignals (sl) wird in Figur 2 veranschaulicht. In einem ersten Schritt wird dazu aus dem Signal (sl) das Signal (sie) derart erzeugt, daß innerhalb eines definierten Meßfensterbereiches das Signal (sl) durchgeschleift wird und außerhalb diesesThe method according to the invention for offset value correction and for spark masking of the ion current signal (sl) generated with the aid of means (3) is illustrated in FIG. 2. In a first step, the signal (sl) is generated from the signal (sl) in such a way that the signal (sl) is looped through within a defined measurement window area and outside of it
Meßfensterbereiches auf einen konstanten Ersatzwert (slb) umgeschaltet wird. Insbesondere wird der Anteil des Zündfunkens im Ionenstrom (sl) mit diesem Ersatzwert (slb) maskiert. Der Ersatzwert (slb) soll dabei größenordnungsmäßig dem Restoffset des lonenstromsignalsMeasuring window range is switched to a constant substitute value (slb). In particular, the proportion of the spark in the ion current (sl) is masked with this substitute value (slb). The substitute value (slb) should be of the order of magnitude of the residual offset of the ion current signal
(sl) entsprechen. Zu diesem Zweck wird der Ersatzwert (slb) zyklusindividuell kurz vor dem Zündvorgang mittels eines Abtasthalteschaltung (4.2) ermittelt. Vorteilhafterweise wird für die Ermittlung des Haltewertes (slb) nicht auf das Ionenstromsignal (sl) direkt zugegriffen, sondern auf ein störbereinigtes Signal (sla) . Die Störbereinigung des Signals (sl) kann beispielhaft mit einem angepaßten Filter(sl) correspond. For this purpose, the substitute value (slb) is determined individually for each cycle shortly before the ignition process by means of a sample and hold circuit (4.2). Advantageously, the ion current signal (sl) is not directly accessed for the determination of the hold value (slb), but rather a signal (sla) which has been cleaned out of interference. The interference correction of the signal (sl) can, for example, with an adapted filter
(4.1) erfolgen. Durch Subtraktion des Ersatzwertes (slb) von dem Hilfssignal (sie) entsteht schließlich das Ausgangssignal (s2) . Dieses Signal (s2) ist dadurch gekennzeichnet, daß es sprungfrei ist und von Zündeinflüssen sowie von einem durch Nebenschlüssen verursachten Stromoffsets bereinigt ist.(4.1). Subtracting the substitute value (slb) from the auxiliary signal (sie) finally produces the output signal (s2). This signal (s2) is characterized in that it is free of jumps and from ignition influences as well as a current offset caused by shunts.
In Figur 3 ist das anschließende Signalmultiplexing (5) dargestellt. Aufgrund der besonderen Eigenschaft der zylinderindividuellen Signale nach Art von (s2) können die Signale von mehreren Zylindern vorteilhafterweise in Form eines zeitlichen Multiplexings zu einem gemeinsamen Signal (s3) zusammengefaßt werden. Dabei ist aufgrund der in (4) erfolgten Meßfenstermaskierung eine gegenseitige Beeinflussung der gemultiplexten Signale ausgeschlossen.. Dadurch läßt sich der Ressourcenaufwand für die Signalübertragung und die anschließende Digitalisierung stark verringern.The subsequent signal multiplexing (5) is shown in FIG. Because of the special property of the cylinder-specific signals of the type of (s2), the signals from a plurality of cylinders can advantageously be combined in the form of temporal multiplexing to form a common signal (s3). In this case, due to the measurement window masking carried out in (4), a mutual influence of the multiplexed signals is excluded. This greatly reduces the resources required for signal transmission and the subsequent digitization.
Vor dem Analog/Digital-Umsetzer (6.2) kann vorteilhafterweise noch ein Antialiasing-Filter (6.1) in den Signalweg geschalten werden. Durch entsprechende Ausgestaltung dieses Filters besteht ferner die Möglichkeit das Signal (s3) speziell an niedere Abtastraten anzupassen. Am Ausgang des Analog/Digital-Umsetzers (6.2) steht eine diskrete Signalfolge (s4) zur Verfügung.In front of the analog / digital converter (6.2), an anti-aliasing filter (6.1) can advantageously be switched into the signal path. By appropriate design of this filter there is also the possibility of adapting the signal (s3) specifically to lower sampling rates. A discrete signal sequence (s4) is available at the output of the analog / digital converter (6.2).
Mit Hilfe eines Merkmalsbildners (7) werden aus dem Signal (s4) zylinderindividuelle Merkmalsvektoren (s5) gebildet. In Figur 4 ist beispielhaft eine mögliche Realisierung des Merkmalsbildners (7) dargestellt.With the help of a feature generator (7), cylinder-specific feature vectors (s5) are formed from the signal (s4). A possible implementation of the feature generator (7) is shown as an example in FIG.
Zuerst erfolgt mit Hilfe eines Mittels (7.1) die Aufspaltung des kontinuierlichen Datenstroms (s4) in die zylinderindividuellen Anteile. In einfachster Ausführung kann anschließend für jeden zylinderindividuellen Verbrennungszyklus ein zweidimensionaler Merkmalsvektor, bestehend aus dem Ionenstrommaximalwert und dem Kurzzeitintegral über das Ionenstrommeßfenster, gebildet werden. Ein nachgeschalteter Klassifikator (8) kann anhand der Merkmalsvektoren (s5) durch Vergleich mit entsprechend berechneten Schwellwerten eine Unterscheidung von regulären Verbrennungen und Verbrennungsaussetzern vornehmen.First the medium (7.1) is used to split the continuous data stream (s4) into the individual cylinder parts. In the simplest version, a two-dimensional feature vector can then be formed for each cylinder-specific combustion cycle, consisting of the maximum ion current value and the short-term integral over the ion current measurement window. A downstream classifier (8) can make a distinction between regular burns and misfires on the basis of the feature vectors (s5) by comparison with correspondingly calculated threshold values.
In Anlehnung an das vorgestellte Verfahren kann ein, alternatives Verfahren, das durch die Figuren 5 und 6 näher erläutert wird, genutzt werden.Based on the method presented, an alternative method, which is explained in more detail by FIGS. 5 and 6, can be used.
Dieses alternative Verfahren ersetzt die in Figur 1 beschriebenen Mittel 3,4,5 und 10, benutzt das Signal aus dem Verbrennungsprozeß (2) und liefert ein Signal s8.3, das in gleicher Weise wie Signal s3 erfindungsgemäß verarbeitet wird.This alternative method replaces the means 3, 4, 5 and 10 described in FIG. 1, uses the signal from the combustion process (2) and supplies a signal s8.3 which is processed in accordance with the invention in the same way as signal s3.
In dem ersten erfindungsgemäßen Schritt wird in der Auswahleinheit (8.1) unter mehreren von unterschiedlichen Zylindern in vorteilhafter Weise ein Ionenstrom ausgewählt. Dieses Ionenstromsignal wird mit Mittel (8.2) gemessen, bevor es in Mittel (8.3) die erfindungsgemäße Offsetkorrektur und Maskierung des Zündfunkens erfährt . Die Maskierung des Zündfunkens und die Offsetkorrektur wird in Figur 6 veranschaulicht.In the first step according to the invention, an ion current is advantageously selected in the selection unit (8.1) from a plurality of different cylinders. This ion current signal is measured with means (8.2) before it experiences the offset correction and masking of the ignition spark according to the invention in means (8.3). The masking of the ignition spark and the offset correction are illustrated in FIG. 6.
Bevor das Mittel (8.1) die Auswahl der Ionenströme verändert, wird mit Mittel (8.3.5) auf einen zuvor erfindungsgemäß festgelegten, konstanten Wert umgeschaltet, welcher keinen Sprung im Signal (s8.3) zuläßt. Während dieser Maskierung wird zunächst ein neuer Offsetwert mit den Mitteln (8.3.1) und (8.3.2) gebildet, der mit Mittel (8.3.4) von dem ursprünglichen Signal aus Mittel (8.2) abgezogen wird. Die Bestimmung des Offsetwertes ist erfindungsgemäß abgeschlossen, bevor im Ionenstromsignal der Zündfunke sichtbar wird. Die Störbereinigung des Signals aus dem Verbrennungsprozeß (2) kann beispielhaft mit einem angepaßten Filter (8.3.1) erfolgen. Ist im Anschluß daran der Einfluß des Zündfunkens auf das Ionenstromsignal zu Ende, wird mit Mittel (8.3.5) auf den Ausgang des Mittels (8.3.4) zurückgeschalten. In der Abtasthalteschaltung (8.3.2) wird der ermittelte Wert aus Mittel (8.3.1) bis zum nächsten Umschalten der Mittel (8.3.5) und (8.1) gehalten, so daß nach Mittel (8.3.5) ein erfindungsgemäß offsetwertbereinigtes und störbereinigtes Signal (s8.3) zur weiteren Verarbeitung in Mittel (6) vorliegt. Für die zeitliche Ansteuerung der Mittel 1, 8.1, 8.2 und 8.3 wird eine Steuereinheit 8.4 benötigt. Before the means (8.1) changes the selection of the ion currents, the means (8.3.5) are used to switch to a constant value previously defined according to the invention, which does not allow a jump in the signal (s8.3). During this masking, a new offset value is first formed with the means (8.3.1) and (8.3.2), which is subtracted from the original signal from means (8.2) with means (8.3.4). The determination of the offset value is completed according to the invention before the ignition spark in the ion current signal becomes visible. The signal from the combustion process (2) can be cleaned up with an adapted filter (8.3.1) as an example. When the influence of the ignition spark on the ion current signal has ended, use means (8.3.5) to switch back to the output of the means (8.3.4). The determined value from means (8.3.1) is held in the sample and hold circuit (8.3.2) until the next switching of means (8.3.5) and (8.1), so that after means (8.3.5) an offset value-adjusted and interference-adjusted according to the invention Signal (s8.3) for further processing in means (6) is present. A control unit 8.4 is required for the timing of means 1, 8.1, 8.2 and 8.3.

Claims

Ansprüche Expectations
1. Verfahren zur Verarbeitung der Ionenstromsignale von Brennkraftmaschinen durch Offsetkorrektur, Ausblendung und Multiplexing für Motorsteuerungsfunktionen, dadurch gekennzeichnet, daß nach der Messung des lonenstromsignals in jedem Zylinder zum Zwecke der Offsetkorrektur vor jedem Zündvorgang der Pegel des Meßsignals des Zylinders erfaßt, während des Ausblendvorganges das Meßsignal in einem 2. Signal, welches aus dem Meßsignal abgeleitet ist, durch den Pegelwert ersetzt sowie bis zum nächsten Zündvorgang vom 2. Signal subtrahiert wird und anschließend die zu multiplexenden Kanäle durch Addition der 2. Signale der betreffenden Zylinder zu einem 3. Signal zusammengefaßt werden .1. Method for processing the ion current signals from internal combustion engines by offset correction, blanking and multiplexing for engine control functions, characterized in that after measuring the ion current signal in each cylinder for the purpose of offset correction, the level of the measurement signal of the cylinder is recorded before each ignition process, and the measurement signal is recorded during the blanking process in a 2nd signal, which is derived from the measurement signal, is replaced by the level value and subtracted from the 2nd signal until the next ignition process and then the channels to be multiplexed are combined into a 3rd signal by adding the 2nd signals of the relevant cylinders .
2. Verfahren zur Verarbeitung der Ionenstromsignale von Brennkraftmaschinen, dadurch gekennzeichnet, daß ein Zylinder zur Ionenstrommessung ausgewählt, dessen Offsetwert gebildet und vom ursprünglichen Ionenstromsignal abgezogen wird sowie eine Maskierung des Zündfunkens und der davor erfindungsgemäß stattfinden Umschaltung des Zylinders zur Ionenstrommessung und Offsetkorrektur mit einem zuvor festgelegten konstanten Wert erfolgt und dieses Signal als 3. Signal weiterverarbeitet wird.2. Method for processing the ion current signals from internal combustion engines, characterized in that a cylinder is selected for ion current measurement, the offset value of which is formed and subtracted from the original ion current signal, as well as masking of the ignition spark and the switching of the cylinder that takes place beforehand according to the invention for ion current measurement and offset correction with a previously determined constant value and this signal is further processed as a 3rd signal.
3. Verfahren nach Anspruch 1 oder 2 , dadurch gekennzeichnet, daß das so aufbereitete Signal mittels eines Verfahrens zur Klopferkennung weiterverarbeitet wird. 3. The method according to claim 1 or 2, characterized in that the signal prepared in this way is further processed using a method for knock detection.
4. Verfahren nach Anspruch 1 oder 2 , dadurch gekennzeichnet, daß die erfaßten Pegelwerte, welche den Offsetstrom kennzeichnen, durch Vergleich mit festen oder betriebszustandsabhangigen Schwellwerten eine Diagnose des Zündsystems und des Kerzenzustandes (Kerzenverschmutzung) ermöglichen.4. The method according to claim 1 or 2, characterized in that the detected level values, which characterize the offset current, enable a diagnosis of the ignition system and the candle condition (candle contamination) by comparison with fixed or operating state-dependent threshold values.
5. Verfahren nach Anspruch 1 oder 2 dadurch gekennzeichnet, daß durch Kurzzeitintegration des 3. Signals innerhalb von den einzelnen Zylindern zugeordneten Meßfenstern ein 1. Merkmal entsteht, welches durch Vergleich mit festen oder betriebszustandsabhangigen Schwellwerten eine Aussetzererkennung ermöglicht5. The method according to claim 1 or 2, characterized in that through short-term integration of the 3rd signal within the measuring windows assigned to the individual cylinders, a 1st feature is created, which enables misfire detection by comparison with fixed or operating state-dependent threshold values
6. Verfahren nach Anspruch 1 oder 2 dadurch gekennzeichnet, daß durch Maximalwertauswertung des 3. Signals innerhalb von den einzelnen Zylindern zugeordneten Meßfenstern ein 2. Merkmal entsteht, welches durch Vergleich mit festen oder betriebszustandsabhangigen Schwellwerten eine Aussetzererkennung ermöglicht.6. The method according to claim 1 or 2, characterized in that by maximum value evaluation of the 3rd signal within the measuring windows assigned to the individual cylinders, a 2nd feature is created, which enables misfire detection by comparison with fixed or operating state-dependent threshold values.
7. Verfahren nach Anspruch 1 oder 2 , 5 und 6 , dadurch gekennzeichnet, daß beide Merkmale in einem zweidimensionalen Merkmalsraum zur Erkennung von Aussetzern verwendet werden.7. The method according to claim 1 or 2, 5 and 6, characterized in that both features are used in a two-dimensional feature space to detect dropouts.
8. Anspruch 1 oder 2, dadurch gekennzeichnet, daß das 3. Signal einer Tiefpaßfilterung und Analog-Digitalwandlung unterzogen wird und in einem geeigneten Mikrorechner als Grundlage weiterer Motorsteuerungsfunktionen verwendet wird. 8. Claim 1 or 2, characterized in that the 3rd signal is subjected to low-pass filtering and analog-digital conversion and is used in a suitable microcomputer as the basis for further engine control functions.
9. Anspruch 1 oder 2 , 5 , 6 , 7 und 8 , dadurch gekennzeichnet, daß die Aussetzererkennung nach der Digialisierung im Mikrorechner durchgeführt wird.9. Claim 1 or 2, 5, 6, 7 and 8, characterized in that the misfire detection is carried out in the microcomputer after digitization.
10. Vorrichtung zur Verarbeitung der Ionenstromsignale von Brennkraftmaschinen durch Offsetkorrektur, Ausblendung und Multiplexing für Motorsteuerungsfunktionen, dadurch gekennzeichnet, daß nach der Messung des lonenstromsignals in jedem Zylinder zum Zwecke der Offsetkorrektur vor jedem Zündvorgang der Pegel des Meßsignals des Zylinders erfaßt, während des Ausblendvorganges das Meßsignal in einem 2. Signal, welches aus dem Meßsignal abgeleitet ist, durch den Pegelwert ersetzt sowie bis zum nächsten Zündvorgang vom 2. Signal subtrahiert wird und anschließend die zu multiplexenden Kanäle durch Addition der 2. Signale der betreffenden Zylinder zu einem 3. Signal zusammengefaßt werden.10. Device for processing the ion current signals from internal combustion engines by offset correction, blanking and multiplexing for engine control functions, characterized in that after measuring the ion current signal in each cylinder for the purpose of offset correction, the level of the measurement signal of the cylinder is recorded before each ignition process, and the measurement signal during the blanking process in a 2nd signal, which is derived from the measurement signal, is replaced by the level value and subtracted from the 2nd signal until the next ignition process and then the channels to be multiplexed are combined into a 3rd signal by adding the 2nd signals of the relevant cylinders .
11. Vorrichtung zur Verarbeitung der Ionenstromsignale von Brennkraftmaschinen, dadurch gekennzeichnet, daß ein Zylinder zur lonenstrommessung ausgewählt, dessen Offsetwert gebildet und vom ursprünglichen Ionenstromsignal abgezogen wird sowie eine Maskierung des Zündfunkens und der davor erfindungsgemäß stattfinden Umschaltung des Zylinders zur lonenstrommessung und Offsetkorrektur mit einem zuvor festgelegten konstanten Wert erfolgt.11. Device for processing the ion current signals from internal combustion engines, characterized in that a cylinder is selected for ion current measurement, the offset value of which is formed and subtracted from the original ion current signal, as well as a masking of the ignition spark and the switching of the cylinder that takes place beforehand according to the invention for ion current measurement and offset correction with a previously determined one constant value occurs.
12. Vorrichtung nach Anspruch 10 oder 11, dadurch gekennzeichnet, daß das so aufbereitete Signal mittels einer Vorrichtung zur Klopferkennung weiterverarbeitet wird.12. Device according to claim 10 or 11, characterized in that the signal prepared in this way is further processed by means of a device for knock detection.
13. Vorrichtung nach Anspruch 10 oder 11, dadurch gekennzeichnet, daß die erfaßten Pegelwerte, welche den Offsetstrom kennzeichnen, durch Vergleich mit festen oder betriebszustandsabhangigen Schwellwerten eine Diagnose des Zündsystems und des Kerzenzustandes (Kerzenverschmutzung) ermöglichen.13. Device according to claim 10 or 11, characterized in that the detected level values, which Identify the offset current and enable a diagnosis of the ignition system and the plug condition (plug contamination) by comparing it with fixed or operating state-dependent threshold values.
14. Vorrichtung nach Anspruch 10 oder 11 dadurch gekennzeichnet, daß durch Kurzzeitintegration des 3. Signals innerhalb von den einzelnen Zylindern zugeordneten Meßfenstern ein 1. Merkmal entsteht, welches durch Vergleich mit festen oder betriebszustandsabhangigen Schwellwerten eine Aussetzererkennung ermöglicht14. The device according to claim 10 or 11, characterized in that through short-term integration of the 3rd signal within the measuring windows assigned to the individual cylinders, a 1st feature is created, which enables misfire detection by comparison with fixed or operating state-dependent threshold values
15. Vorrichtung nach Anspruch 10 oder 11 dadurch gekennzeichnet, daß durch Maximalwertauswertung des 3. Signals innerhalb von den einzelnen Zylindern zugeordneten Meßfenstern ein 2. Merkmal entsteht, welches durch Vergleich mit festen oder betriebszustandsabhangigen Schwellwerten eine Aussetzererkennung ermöglicht.15. The device according to claim 10 or 11, characterized in that by maximum value evaluation of the 3rd signal within the measuring windows assigned to the individual cylinders, a 2nd feature is created, which enables misfire detection by comparison with fixed or operating state-dependent threshold values.
16. Vorrichtung nach Anspruch 10 oder 11, 14 und 15, dadurch gekennzeichnet, daß beide Merkmale in einem zweidimensionalen Merkmalsraum zur Erkennung von Aussetzern verwendet werden .16. The device according to claim 10 or 11, 14 and 15, characterized in that both features are used in a two-dimensional feature space to detect dropouts.
17. Anspruch 10 oder 11, dadurch gekennzeichnet, daß das17. Claim 10 or 11, characterized in that the
3. Signal einer Tiefpaßfilterung und Analog-Digitalwandlung unterzogen wird und in einem geeigneten Mikrorechner als Grundlage weiterer Motorsteuerungsfunktionen verwendet wird.3. Signal is subjected to low-pass filtering and analog-to-digital conversion and is used in a suitable microcomputer as the basis for further engine control functions.
18. Vorrichtung nach Anspruch 10 oder 11, 14, 15, 16 oder 17, dadurch gekennzeichnet, daß die Aussetzererkennung nach der Digitalisierung im Mikrorechner durchgeführt wird. 18. The device according to claim 10 or 11, 14, 15, 16 or 17, characterized in that the misfire detection is carried out in the microcomputer after digitization.
EP98943636A 1997-10-07 1998-07-03 Method and device for determining the ion flow in internal combustion engines Expired - Lifetime EP0943055B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19744163A DE19744163A1 (en) 1997-10-07 1997-10-07 Processing of IC engine ionic current signals for engine control functions
DE19744163 1997-10-07
PCT/DE1998/001839 WO1999018350A1 (en) 1997-10-07 1998-07-03 Method and device for determining the ion flow in internal combustion engines

Publications (2)

Publication Number Publication Date
EP0943055A1 true EP0943055A1 (en) 1999-09-22
EP0943055B1 EP0943055B1 (en) 2003-10-01

Family

ID=7844778

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98943636A Expired - Lifetime EP0943055B1 (en) 1997-10-07 1998-07-03 Method and device for determining the ion flow in internal combustion engines

Country Status (5)

Country Link
US (1) US6185500B1 (en)
EP (1) EP0943055B1 (en)
JP (1) JP2001507426A (en)
DE (2) DE19744163A1 (en)
WO (1) WO1999018350A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10008553B4 (en) * 2000-02-24 2009-01-29 Robert Bosch Gmbh Method and device for evaluating an ion current sensor signal of an internal combustion engine
US6498490B2 (en) 2000-06-28 2002-12-24 Delphi Technologies, Inc. Ion sense ignition bias circuit
JP3633580B2 (en) * 2002-04-17 2005-03-30 三菱電機株式会社 Misfire detection device for internal combustion engine
JP3614149B2 (en) * 2002-04-17 2005-01-26 三菱電機株式会社 Combustion state detection device for internal combustion engine
DE10248227A1 (en) * 2002-10-16 2004-04-29 Volkswagen Ag Signal transmission method between ignition control device and engine control device for automobile IC engine using combining of engine parameter signals before transmission
US6998846B2 (en) * 2002-11-01 2006-02-14 Visteon Global Technologies, Inc. Ignition diagnosis using ionization signal
US6951201B2 (en) * 2002-11-01 2005-10-04 Visteon Global Technologies, Inc. Method for reducing pin count of an integrated coil with driver and ionization detection circuit by multiplexing ionization and coil charge current feedback signals
US20050028786A1 (en) * 2003-08-05 2005-02-10 Zhu Guoming G. Ionization detection system architecture to minimize PCM pin count
US6848421B1 (en) 2003-09-12 2005-02-01 Delphi Technologies, Inc. Engine control method and apparatus using ion sense combustion monitoring
US20090078027A1 (en) * 2007-09-25 2009-03-26 Lycoming Engines, A Division Of Avco Corporation Aircraft engine cylinder assembly knock detection and suppression system
ITRE20110060A1 (en) * 2011-08-02 2013-02-03 Emak Spa "CARBURETION CONTROL SYSTEM"
DE102016218673B4 (en) * 2016-09-28 2019-03-28 Robert Bosch Gmbh Method and device for knock detection of an internal combustion engine
US11542899B2 (en) * 2020-11-30 2023-01-03 Matthew M Delleree Ion sensing for vapor start control

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3128027A1 (en) * 1981-07-16 1983-02-03 Robert Bosch Gmbh, 7000 Stuttgart Device for detecting knocking in internal-combustion engines
US5206809A (en) * 1989-09-04 1993-04-27 Nissan Motor Company, Limited Heat measuring system for detecting knock in internal combustion engine
KR940010732B1 (en) * 1991-02-15 1994-10-24 미쓰비시덴키 가부시키가이샤 Combustion detecting apparatus for internal combustion engine
US5337716A (en) * 1992-02-04 1994-08-16 Mitsubishi Denki Kabushiki Kaisha Control apparatus for internal combustion engine
US5687082A (en) * 1995-08-22 1997-11-11 The Ohio State University Methods and apparatus for performing combustion analysis in an internal combustion engine utilizing ignition voltage analysis
DE19642654B4 (en) * 1996-10-16 2004-02-05 Daimlerchrysler Ag Method for controlling the adjustable operating parameters of a direct-injection internal combustion engine
US5775298A (en) * 1996-12-09 1998-07-07 General Motors Corporation Internal combustion engine control

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9918350A1 *

Also Published As

Publication number Publication date
DE19744163A1 (en) 1999-04-08
EP0943055B1 (en) 2003-10-01
US6185500B1 (en) 2001-02-06
DE59809800D1 (en) 2003-11-06
WO1999018350A1 (en) 1999-04-15
JP2001507426A (en) 2001-06-05

Similar Documents

Publication Publication Date Title
DE4207140C2 (en) Misfire detector system for detecting misfire in an internal combustion engine
EP0943055B1 (en) Method and device for determining the ion flow in internal combustion engines
DE19915088A1 (en) Evaluation of ion current signals for assessing combustion processes involves subjecting measured ion current to smoothing short-duration integration, forming integrator maximum value
DE4232845C2 (en) Method and device for determining the combustion state of internal combustion engines
DE102011077171A1 (en) Method and control unit for monitoring cable faults on a broadband lambda probe
DE102014005866A1 (en) A method and system for processing acquired ionization current data for real-time estimation of combustion chamber pressure in a spark-ignition engine
DE19535094A1 (en) Misfiring detection of one or more continually misfiring cylinders of IC engine
DE102012201594A1 (en) Method for signal conditioning for a collecting particle sensor
EP0897061B1 (en) Misfire detection method for internal combustion engine having two spark plugs per cylinder
DE102014220398A1 (en) Method for checking the function of a sensor for the detection of particles
DE102008043124A1 (en) Lambda sensor diagnosing method for internal combustion engine i.e. diesel engine, involves presetting diagnostic pumping voltages in relation to operating pumping voltage, and determining condition of sensor from diagnostic pumping current
EP0674103A2 (en) Method for the detection of knocking in an internal combustion engine equipped with a high voltage inductive transistorised ignition device
EP3289347B1 (en) Method and device for determining an internal resistance of a sensor element
DE19963225B4 (en) Method for monitoring the combustion process in a diesel engine and corresponding measuring system
DE19838223C2 (en) Method for determining the ion content after a combustion process in a self-igniting internal combustion engine
EP0071603B1 (en) Method and device for detecting abnormal combustion phenomena in an internal combustion engine
DE4207141C2 (en) Misfire detector system for detecting misfire in an internal combustion engine
EP0705386B1 (en) Process for detecting an ignition pulse group
DE60035013T2 (en) Method for combustion analysis for an internal combustion engine
DE4207139C2 (en) Misfire detector system for internal combustion engines
EP2776820B1 (en) Method for correcting measured values from a sensor element
EP0529281B1 (en) Method of detecting a contacting of measuring leads
DE102023112971A1 (en) Method for detecting knock in a combustion chamber of a cylinder
DE10036279A1 (en) Determination of the torque of an internal combustion engine
DE102014214413A1 (en) Method for operating a gas sensor to improve the long-term stability of the gas sensor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR IT SE

17P Request for examination filed

Effective date: 19991015

17Q First examination report despatched

Effective date: 20020426

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20031001

REF Corresponds to:

Ref document number: 59809800

Country of ref document: DE

Date of ref document: 20031106

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040704

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040702

EUG Se: european patent has lapsed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20060719

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20080331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090918

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110201

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59809800

Country of ref document: DE

Effective date: 20110201