EP0938285A1 - Composition de shampooing contenant une emulsion de silicones - Google Patents

Composition de shampooing contenant une emulsion de silicones

Info

Publication number
EP0938285A1
EP0938285A1 EP96940277A EP96940277A EP0938285A1 EP 0938285 A1 EP0938285 A1 EP 0938285A1 EP 96940277 A EP96940277 A EP 96940277A EP 96940277 A EP96940277 A EP 96940277A EP 0938285 A1 EP0938285 A1 EP 0938285A1
Authority
EP
European Patent Office
Prior art keywords
silicone
alkyl
molecular weight
surfactants
surfactant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP96940277A
Other languages
German (de)
English (en)
Inventor
Hirotaka Uchiyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Procter and Gamble Co filed Critical Procter and Gamble Co
Priority claimed from BR9612764-3A external-priority patent/BR9612764A/pt
Publication of EP0938285A1 publication Critical patent/EP0938285A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/89Polysiloxanes
    • A61K8/896Polysiloxanes containing atoms other than silicon, carbon, oxygen and hydrogen, e.g. dimethicone copolyol phosphate
    • A61K8/898Polysiloxanes containing atoms other than silicon, carbon, oxygen and hydrogen, e.g. dimethicone copolyol phosphate containing nitrogen, e.g. amodimethicone, trimethyl silyl amodimethicone or dimethicone propyl PG-betaine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • A61K8/06Emulsions
    • A61K8/068Microemulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/89Polysiloxanes
    • A61K8/891Polysiloxanes saturated, e.g. dimethicone, phenyl trimethicone, C24-C28 methicone or stearyl dimethicone
    • A61K8/892Polysiloxanes saturated, e.g. dimethicone, phenyl trimethicone, C24-C28 methicone or stearyl dimethicone modified by a hydroxy group, e.g. dimethiconol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/02Preparations for cleaning the hair

Definitions

  • the present invention relates to a shampoo composition comprising a silicone emulsion.
  • shampooing cleans the hair by removing excess soil and sebum.
  • shampooing can leave the hair in a wet, tangled, and generally unmanageable state.
  • One the hair dries, it is often left in a dry, rough, lusterless, or frizzy condition due to removal of the hair's natural oils and other natural conditioning and moisturizing components.
  • the hair can further be left with increased levels of static upon drying which can interfere with combing and result in a condition commonly referred to as "fly-away hair", or contribute to an undesirable phenomena of "split ends", particularly for long hair.
  • silicone conditioning agents Materials which can provide improved overall conditioning benefits while maintaining cleaning performance with the use of anionic detersive surfactants are silicone conditioning agents.
  • shampoos comprising silicone conditioning agents have a tendency of providing undesirable feeling to the hair such as leaving the hair feeling coated, heavy, or soiled after the hair is dried.
  • a suspending agent such as acyl derivatives is required.
  • the combination of silicone conditioning agents and its suspending agents often provide a formulation which is relatively viscous and milky in appearance. This is particularly noticeable for syspending agents such as ethylene glycol stearates.
  • the undesired feeling to the hair as well as the unstability observed for silicone conditioning agents is thought to be due to the particle size of the silicone conditioning agent. This is particularly noticeable when the silicone has a high molecular weight.
  • high molecular weight silicone polymers are known to have favorable conditioning benefits such as smoothness and combing ease, they also tend to have a large particle size and are thermodynamically unstable. Mechanical shearing is known to provide smaller particle size of fluids. High molecular weight silicone polymers are too viscous to emulsify down to a desirable particle size. Thus, high molecular weight silicone polymers, without the aid of a suspending agent, could not be formulated at levels that would provide desired conditioning benefits.
  • Japanese Patent Laid-open 7-138,136 discloses a hair cleaning composition comprising a surfactant, and a water-insoluble highly polymerized silicone emulsion obtained by emulsion polymerization and having an average particle size of 0.2 - 50 microns.
  • European Patent Application 674,898-A discloses a conditioning shampoo composition for hair comprising a stable microemulsion of a high viscosity silicone with a particle size of less than 0.15 microns, in combination with a deposition polymer and a surfactant.
  • United States Patent 5,504,149 discloses a method for making a silicone emulsion having high viscosity wherein a mixture of water, cyclic siloxane, optional nonionic surfactant and cationic surfactant is polymerized by using silanolate or organosilanolate as an initiator.
  • a shampoo composition comprising a silicone emulsion comprising a high molecular weight silicone polymer made via a certain surfactant system have been developed which provide are stable without silicone suspending agents and provide overall improved conditioning benefits by being compatible with a wide range of conditioning agents.
  • the present invention relates to a shampoo composition
  • a silicone emulsion comprising: i) from about 0.01% to about 20% of the entire composition a silicone polymer selected from the group consisting of a polyalkyl siloxane having a molecular weight of at least 20,000, a polyaryl siloxane having a molecular weight of at least 20,000, an amino-substituted siloxane having a molecular weight of at least 5,000, a silicone resin having a molecular weight of at least 5,000, and mixtures thereof; ii) an anionic surfactant; iii) a compatibilizing surfactant; and iv) a cationic surfactant; wherein the silicone polymer is dispersed as a particle having an average size of not more than about 450 nm; (b) from about 5% to about 50% of a detersive surfactant;
  • compositions satisfy the need for a hair conditioning composition which has overall improved conditioning benefits, and which can be used with a wide range of conditioning agents without acyl derivative silicone suspending agents.
  • the shampoo composition of the present invention comprises a silicone emulsion comprising a silicone polymer, an anionic surfactant; a compatibilizing surfactant, and a cationic surfactant.
  • the silicone emulsion is prepared by emulsion polymerization, wherein an aqueous solution or emulsion of the starting silicone material is mixed with an anionic surfactant, followed by addition of a compatibilizing surfactant, and finally by addition of a cationic surfactant.
  • the starting silicone material is selected so that the resulting silicone polymer in the obtained silicone emulsion has more than a certain molecular weight, and dispersed as a particle having an average size of not more than about 450 nm, more preferably about from 150 nm to about 250 nm. Silicone polymers having such particle size make a silicone emulsion which is stable with a wide range of components.
  • a convenient and useful method of preparing the silicone emulsion of the present invention is by utilizing the following procedure: 1) blending a mixture of starting silicone material selected from the group consisting of cyclic silicone oligomers such as cyclic dimehyl siloxanes known as cyclomethicone, mixed silicone hydrolyzates, silanol stopped oligomers, higher molecular weight silicone polymers, functionalized siliconesand mixtures thereof with water, and anionic surfactants; 2) heating the blend obtained by mixing the starting silicone material, water and anionic surfactant to a temperature ranging from about 75 to about 98 °C for a period of time ranging from about 1 to about 5 hours; 3) cooling the anionically emulsion polymerized silicone emulsion to temperature ranging from 0 to about 25 °C for a period of time ranging from about 3 hours to about 24 hours;
  • the silicone polymer is comprised at a level of from about 0.01% to about 20%, more preferably from about 0.1 % to about 10% of the entire composition.
  • Silicone Polymer The silicone polymer of the present invention are those which provide excellent conditioning benefits to the hair.
  • the silicone polymer is selected from the group consisting of a polyalkyl siloxane having a molecular weight of at least 20,000, a polyaryl siloxane having a molecular weight of at least 20,000, an amino-substituted siloxane having a molecular weight of at least 5,000, a silicone resin having a molecular weight of at least 5,000, and mixtures thereof.
  • polyalkyl siloxanes and polyaryl siloxanes useful as silicone polymers herein include those with the following structure (I):
  • R is alkyl or aryl
  • x is an integer from about 200 to about 8,000 having a molecular weight of at least 20,000, more preferably at least 100,000, still more preferably at least 200,000.
  • A represents groups which block the ends of the silicone chains.
  • the alkyl or aryl groups substituted on the siloxane chain (R) or at the ends of the siloxane chains (A) can have any structure as long as the resulting silicone is dispersible, is neither irritating, toxic nor otherwise harmful when applied to the hair, is compatible with the other components of the composition, is chemically stable under normal use and storage conditions, and is capable of being deposited on and conditions the hair.
  • Suitable A groups include hydroxy, methyl, methoxy, ethoxy, propoxy, and aryloxy.
  • the two R groups on the silicon atom may represent the same group or different groups. Preferably, the two R groups represent the same group.
  • Suitable R groups include methyl, ethyl, propyl, phenyl, methylphenyl and phenylmethyl.
  • the preferred polyalkyl and polyaryl silicone polymers are polydimethylsiloxane, polydiethylsiloxane, polymethylphenylsiloxane, and derivatives thereof terminated with hydroxy and carboxyl groups.
  • Polydimethylsiloxane which is also known as dimethicone, and its hydroxyl terminated derivative, which is also known as dimethiconol, is especially preferred.
  • highly arylated silicones such as highly phenylated polyethyl silicone having refractive indices of about 1.46 or higher, especially about 1.52 or higher.
  • a spreading agent such as a surfactant or a silicone resin, as described below to decrease the surface tension and enhance the film forming ability of the material.
  • amino-substituted siloxanes useful as silicone polymers herein include those with the following structure (II):
  • R 1 is a monovalent radical of formula CqH2qL in which q is an integer from 2 to 8 and L is chosen from the groups -N(R 2 )CH 2 -CH 2 -N(R 2 )2 -N(R 2 )2 -N(R 2 ) 3 A "
  • R 2 is chosen from the group consisting of hydrogen, phenyl, benzyl, a saturated hydrocarbon radical, preferably an alkyl radical containing from 1 to 20 carbon atoms, and A " denotes a halide ion.
  • n and m are independent integers of 1 or more selected depending on the desired molecular weight, a and b are independent integers from 1 to 10, and wherein the average molecular weight is at least 5,000, more preferably at least 10,000.
  • R3 R 3 wherein R3 denotes a monovalent hydrocarbon radical having from 1 to 18 carbon atoms, preferably an alkyl or alkenyl radical such as methyl; R 4 denotes a hydrocarbon radical, preferably a C-j-Cis alkylene radical or a C-
  • silicone resins which are highly crosslinked polymeric siloxane systems, having a molecular weight of at least 5,000, preferably at least 10,000.
  • the cross-linking is introduced through the incorporation of trifunctional and tetrafunctional silanes with monofunctional or difunctional, or both, silanes during manufacture of the silicone resin.
  • the degree of crosslinking that is required in order to result in a silicone resin will vary according to the specific silane units incorporated into the silicone resin.
  • silicone materials which have a sufficient level of trifunctional and tetrafunctional siloxane monomer units, and hence, a sufficient level of crosslinking, such that they dry down to a rigid, or hard, film are considered to be silicone resins.
  • the ratio of oxygen atoms to silicon atoms is indicative of the level of crosslinking in a particular silicone material.
  • Silicone materials which have at least about 1.1 oxygen atoms per silicon atom will generally be silicone resins herein.
  • the ratio of oxygen:silicon atoms is at least about 1.2:1.0.
  • Silanes used in the manufacture of silicone resins include monomethyl-, dimethyl-, trimethyl-, monophenyl-, diphenyl-, methylphenyl-, monovinyl-, and methylvinyl- chlorosilanes, and tetrachlorosilane, with the methyl-substituted silanes being most commonly utilized. Without being bound by theory, it is believed that the silicone resins can enhance deposition of other silicones on the hair and can enhance the glossiness of hair with high refractive index volumes.
  • silicone resin powders such as the material given the CTFA designation polymethylsilsequioxane.
  • Silicone resins can conveniently be identified according to a shorthand nomenclature system well known to those skilled in the art as the "MDTQ" nomenclature. Under this system, the silicone is described according to the presence of various siloxane monomer units which make up the silicone. Briefly, the symbol M denotes the monofunctional unit (CH ⁇ t ⁇ SiOJrj.s; D denotes the difunctional unit (CH ⁇ SiO; T denotes the trifunctional unit (CH3)SiO ⁇
  • Typical alternate substituents include groups such as vinyl, phenyl, amino, hydroxyl, etc.
  • the molar ratios of the various units either in terms of subscripts to the symbols indicating the total number of each type of unit in the silicone, or an average thereof, or as specifically indicated ratios in combination with molecular weight, complete the description of the silicone material under the MDTQ system.
  • Higher relative molar amounts of T, Q, T' and/or Q' to D, D', M and/or or M' in a silicone resin is indicative of higher levels of crosslinking.
  • the overall level of crosslinking can also be indicated by the oxygen to silicon ratio.
  • the silicone resins for use herein which are preferred are MQ, MT, MTQ,
  • the preferred silicone substituent is methyl.
  • MQ resins wherein the M:Q ratio is from about 0.5:1.0 to about 1.5:1.0.
  • anionic surfactant useful for making the silicone emulsion of the present invention are those which act as an acid catalyst for polymerizing the starting silicone material, and are compatible with the remainder of components.
  • exemplary anionic surfactants are alkyl sulfonic acids, aryl sulfonic acids, or alkyl aryl sulfonic acids where the alkyl group ranges from one to twenty carbon atoms and the aryl group ranges from six to thirty atoms.
  • Highly preferable anionic surfactants are those selected from the group consisting of benzene sulfonic acid, xylene sulfonic acid, dodecylbenzene sulfonic acid, and twelve to eighteen carbon atom alkyl group sulfonic acids, and mixtures thereof.
  • Compatibilizing Surfactant The compatibilizing surfactant useful for making the silicone emulsion of the present invention are those which function to compatibilize the anionically emulsion polymerized silicone emulsion with the cationic surfactant.
  • anionic surfactant is directly added to the anionic mixture obtained after the initial emulsion polymerization of starting silicone material with anionic surfactants, the anionic surfactants included in the anionically emulsion polymerized silicone emulsion having opposing ion charges to the cationic surfactants react to destroy the emulsion and/or produce undesirable precipitation.
  • the anionically emulsion polymerized silicone emulsion obtained is treated with a compatibilizing surfactant.
  • Useful compatibilizing surfactants are those having an HLB ratio greater than 9.
  • Particularly useful compatibilizing surfactants are ethoxylated fatty acid esters such as polyglycerin fatty acid esters, polyoxyethylene sorbitan fatty acid esters, polyoxyethylene castor oils, polyoxyethylene secondary alkyl ethers where the alkyl group ranges from 6 to 40 carbon atoms, polyoxyethylene alkyl ethers where the alkyl group ranges from 6 to 40 carbon atoms, polyoxyethylene alkyl amines where the alkyl groups range from 6 to 40 carbon atoms and may be independently selected, polyoxyethylene alkyl amides where the alkyl groups range from 6 to 40 carbon atoms and the alkyl groups may be independently selected, amphoteric betaine surfactants, and polyoxyethylene lanolins.
  • ethoxylated fatty acid esters such as polyglycerin fatty acid esters, polyoxyethylene sorbitan fatty acid esters, polyoxyethylene castor oils, polyoxyethylene secondary alkyl ethers where the alkyl group ranges
  • a particularly preferred group of surfactants are POE(4) lauryl ether, POE(9) lauryl ether, POE(23) lauryl ether, POE(20) stearyl ether, and POE(20) sorbitan mono- palmitate.
  • surfactants which may be used to compatibilize the anionic emulsion with cationic surfactants is the group consisting of lauryldimethylaminoacetic acid betaine, coco fatty amide propyldimethylaminoacetic acid betaine, 2-alkyl-N-carboxymethyl-N- hydroxyethylimidazolinium betaine, sodium N-lauroyl sarcosine, and lanolin derivatives of quaternary ammonium salts.
  • Cationic Surfactant is the group consisting of lauryldimethylaminoacetic acid betaine, coco fatty amide propyldimethylaminoacetic acid betaine, 2-alkyl-N-carboxymethyl-N- hydroxyethylimidazolinium betaine, sodium N-lauroyl sarcosine, and lanolin derivatives of quaternary ammonium salts.
  • the emulsion can be treated with a cationic surfactant to obtain the cationic surfactant containing silicone emulsion of the present invention.
  • a cationic surfactant useful for making the silicone emulsion of the present invention are any known to the artisan.
  • cationic surfactants useful herein are those corresponding to the general formula (I):
  • R4 wherein R 1 , R 2 , R 3 , and R 4 are independently selected from an aliphatic group of from 1 to about 22 carbon atoms or an aromatic, alkoxy, polyoxyalkylene, alkylamido, hydroxyalkyl, aryl or alkylaryl group having up to about 22 carbon atoms; and X is a salt-forming anion such as those selected from halogen, (e.g. chloride, bromide), acetate, citrate, lactate, glycolate, phosphate, nitrate, sulfonate, sulfate, alkylsulfate, and alkyl sulfonate radicals.
  • halogen e.g. chloride, bromide
  • the aliphatic groups can contain, in addition to carbon and hydrogen atoms, ether linkages, and other groups such as amino groups.
  • the longer chain aliphatic groups e.g., those of about 12 carbons, or higher, can be saturated or unsaturated. Preferred is when R 1 , R 2 , R3_ and R 4 are independently selected from C1 to about C22 alkyl.
  • Nonlimiting examples of cationic surfactants useful in the present invention include the materials having the following CTFA designations: quaternium-8, quatemium-24, quaternium-26, quaternium-27, quaternium-30, quaternium-33, quaternium- 43, quaternium-52, quaternium-53, quaternium-56, quatemium-60, quaternium-62, quaternium-70, quaternium-72, quaternium-75, quaternium- 77, quaternium-78, quaternium-80, quaternium-81 , quatemium-82, quaternium-83, quaternium-84, and mixtures thereof.
  • CTFA designations quaternium-8, quatemium-24, quaternium-26, quaternium-27, quaternium-30, quaternium-33, quaternium- 43, quaternium-52, quaternium-53, quaternium-
  • hydrophilically substituted cationic surfactants in which at least one of the substituents contain one or more aromatic, ether, ester, amido, or amino moieties present as substituents or as linkages in the radical chain, wherein at least one of the Rl - R 4 radicals contain one or more hydrophilic moieties selected from alkoxy (preferably C-i - C3 alkoxy), polyoxyalkylene (preferably C-
  • the hydrophilically substituted cationic conditioning surfactant contains from 2 to about 10 nonionic hydrophile moieties located within the above stated ranges.
  • Preferred hydrophilically substituted cationic surfactants include those of the formula (II) through (VII) below:
  • n is from 8-28, x+y is from 2 to about 40, Z ⁇ is a short chain alkyl, preferably a C-j - C3 alkyl, more preferably methyl, or (CH2CH2 ⁇ )zH wherein x+y+z is up to 60, and X is a salt forming anion as defined above;
  • ⁇ 2 is an alkyl, preferably a C-
  • R13 is a hydrocarbyl, preferably a C1 - C3 alkyl, more preferably methyl, Z 4 and Z ⁇ are, independently, short chain hydrocarbyls, preferably C2 - C4 alkyl or alkenyl, more preferably ethyl, a is from 2 to about 40, preferably from about 7 to about 30, and X is a salt forming anion as defined above;
  • R 15 OH wherein R 14 and R 15 , independently, are C1.3 alkyl, preferably methyl, ⁇ 6 is a C12 to C22 hydrocarbyl, alkyl carboxy or alkylamido, and A is a protein, preferably a collagen, keratin, milk protein, silk, soy protein, wheat protein, or hydrolyzed forms thereof; and X is a salt forming anion as defined above;
  • Rl 7 wherein b is 2 or 3, R 16 and R ⁇ 7 , independently are C-
  • hydrophilically substituted cationic surfactants useful in the present invention include the materials having the following CTFA designations: quaternium-16, quaternium-61 , quaternium-71 , quatemium-79 hydrolyzed collagen, quaternium-79 hydrolyzed keratin, quaternium-79 hydrolyzed milk protein, quaternium-79 hydrolyzed silk, quatemium-79 hydrolyzed soy protein, and quaternium-79 hydrolyzed wheat protein.
  • Highly preferred compounds include commercially available materials; VARIQUAT K1215 and 638 from Witco Chemical, MACKPRO KLP, MACKPRO WLW, MACKPRO MLP, MACKPRO NSP, MACKPRO NLW, MACKPRO WWP, MACKPRO NLP, MACKPRO SLP from Mclntyre, ETHOQUAD 18/25, ETHOQUAD 0/12PG, ETHOQUAD C/25, ETHOQUAD S/25, and ETHODUOQUAD from Akzo, DEHYQUAT SP from Henkel, and ATLAS G265 from ICI Americas.
  • Salts of primary, secondary, and tertiary fatty amines are also suitable cationic surfactants.
  • the alkyl groups of such amines preferably have from about 12 to about 22 carbon atoms, and can be substituted or unsubstituted.
  • Such amines useful herein, include stearamido propyl dimethyl amine, diethyl amino ethyl stearamide, dimethyl stearamine, dimethyl soyamine, soyamine, myristyl amine, tridecyl amine, ethyl stearylamine, N- tallowpropane diamine, ethoxylated (with 5 moles of ethylene oxide) stearylamine, dihydroxy ethyl stearylamine, and arachidylbehenylamine.
  • Suitable amine salts include the halogen, acetate, phosphate, nitrate, citrate, lactate, and alkyl sulfate salts.
  • Such salts include stearylamine hydrochloride, soyamine chloride, stearylamine formate, N-tallowpropane diamine dichloride and stearamidopropyl dimethylamine citrate.
  • Cationic amine surfactants included among those useful in the present invention are disclosed in U.S. Patent 4,275,055, Nachtigal, et al., issued June 23, 1981 , which is incorporated by reference herein in its entirety.
  • the cationic surfactants for use herein may also include a plurality of ammonium quaternary moieties or amino moieties, or a mixture thereof.
  • DETERSIVE SURFACTANTS The compositions of the present invention comprise a detersive surfactant selected from the group consisting of anionic surfactants, nonionic surfactants, amphoteric surfactants, zwitterionic surfactants, and mixtures thereof.
  • the purpose of the detersive surfactant is to provide cleaning performance to the composition.
  • detersive surfactant as used herein, is intended to distinguish these surfactants from surfactants which are primarily emulsifying surfactants, i.e., surfactants which provide an emulsifying benefit and which have low cleansing performance.
  • surfactants have both detersive and emulsifying properties. It is not intended to exclude emulsifying surfactants from the present invention.
  • the detersive surfactants may or may not be the same surfactants comprised in the silicone emulsion as mentioned above.
  • the detersive surfactants will generally comprise from about 5% to about 50%, preferably from about 8% to about 30%, and more preferably from about 10% to about 25%, by weight of the composition.
  • Anionic Surfactants will generally comprise from about 5% to about 50%, preferably from about 8% to about 30%, and more preferably from about 10% to about 25%, by weight of the composition.
  • Anionic surfactants useful herein include alkyl and alkyl ether sulfates. These materials have the respective formulae ROSO3M and RO(C2H4 ⁇ ) x S ⁇ 3M, wherein R is alkyl or alkenyl of from about 8 to about 30 carbon atoms, x is 1 to about 10, and M is hydrogen or a cation such as ammonium, alkanolammonium (e.g., triethanolammonium), a monovalent metal cation (e.g., sodium and potassium), or a polyvalent metal cation (e.g., magnesium and calcium).
  • M should be chosen such that the anionic surfactant component is water soluble.
  • the anionic surfactant should be chosen such that the Krafft temperature is about 15°C or less, preferably about 10°C or less, and more preferably about 0°C or less. It is also preferred that the anionic surfactant be soluble in the composition hereof.
  • Krafft temperature refers to the point at which solubility of an ionic surfactant becomes determined by crystal lattice energy and heat of hydration, and corresponds to a point at which solubility undergoes a sharp, discontinuous increase with increasing temperature.
  • Each type of surfactant will have its own characteristic Krafft temperature.
  • Krafft temperature for ionic surfactants is, in general, well known and understood in the art. See, for example, Myers, Drew, Surfactant Science and Technology, pp. 82-85, VCH Publishers, Inc. (New York, New York, USA), 1988 (ISBN 0-89573-399- 0), which is incorporated by reference herein in its entirety.
  • R has from about 12 to about 18 carbon atoms in both the alkyl and alkyl ether sulfates.
  • the alkyl ether sulfates are typically made as condensation products of ethylene oxide and monohydric alcohols having from about 8 to about 24 carbon atoms.
  • the alcohols can be derived from fats, e.g., coconut oil, palm oil, tallow, or the like, or the alcohols can be synthetic. Lauryl alcohol and straight chain alcohols derived from coconut oil and palm oil are preferred herein.
  • Such alcohols are reacted with 1 to about 10, and especially about 3, molar proportions of ethylene oxide and the resulting mixture of molecular species having, for example, an average of 3 moles of ethylene oxide per mole of alcohol, is sulfated and neutralized.
  • alkyl ether sulfates which can be used in the present invention are sodium and ammonium salts of coconut alkyl triethylene glycol ether sulfate; tallow alkyl triethylene glycol ether sulfate, and tallow alkyl hexaoxyethylene sulfate.
  • Highly preferred alkyl ether sulfates are those comprising a mixture of individual compounds, said mixture having an average alkyl chain length of from about 12 to about 16 carbon atoms and an average degree of ethoxylation of from 1 to about 4 moles of ethylene oxide.
  • Such a mixture also comprises from 0% to about 20% by weight C ⁇
  • Suitable anionic surfactants are the water-soluble salts of organic, sulfuric acid reaction products of the general formula [RI-SO3-M] where R " ! is selected from the group consisting of a straight or branched chain, saturated aliphatic hydrocarbon radical having from about 8 to about 24, preferably about 10 to about 18, carbon atoms; and M is as previously described above in this section.
  • surfactants are the salts of an organic sulfuric acid reaction product of a hydrocarbon of the methane series, including iso-, neo-, and n-paraffins, having about 8 to about 24 carbon atoms, preferably about 12 to about 18 carbon atoms and a sulfonating agent, e.g., S03, H2SO4, obtained according to known sulfonation methods, including bleaching and hydrolysis.
  • a sulfonating agent e.g., S03, H2SO4
  • alkali metal and ammonium sulfonated C 0- 8 n-paraffins are preferred.
  • anionic surfactants are the reaction products of fatty acids esterified with isethionic acid and neutralized with sodium hydroxide where, for example, the fatty acids are derived from coconut or palm oil; or sodium or potassium salts of fatty acid amides of methyl tauride in which the fatty acids, for example, are derived from coconut oil.
  • Other similar anionic surfactants are described in U.S. Patents 2,486,921 , 2,486,922, and 2,396,278, which are incorporated by reference herein in their entirety.
  • anionic surfactants suitable herein are the succinates, examples of which include disodium N-octadecylsulfosuccinate; disodium lauryl sulfosuccinate; diammonium lauryl sulfosuccinate; tetra sodium N-(1 ,2-dicarboxyethyl)-N-octadecyl- sulfosuccinate; the diamyl ester of sodium sulfosuccinic acid; the dihexyl ester of sodium sulfosuccinic acid; and the dioctyl ester of sodium sulfosuccinic acid.
  • anionic surfactants suitable herein are those that are derived from amino acids.
  • Nonlimiting examples of such surfactants include N-acyl- L-glutamate, N-acyl-N-methyl-alanate, N-acylsarcosinate, and their salts.
  • Still other useful surfactants are those that are derived from taurine, which is also known as 2-aminoethanesulfonic acid. An example of such an acid is N-acyl-N-methyl taurate.
  • Suitable anionic surfactants include olefin sulfonates having about 10 to about 24 carbon atoms.
  • olefin sulfonates is used herein to mean compounds which can be produced by the sulfonation of alpha-olefins by means of uncomplexed sulfur trioxide, followed by neutralization of the acid reaction mixture in conditions such that any sulfones which have been formed in the reaction are hydrolyzed to give the corresponding hydroxy-alkanesulfonates.
  • the sulfur trioxide can be liquid or gaseous, and is usually, but not necessarily, diluted by inert diluents, for example by liquid SO2, chlorinated hydrocarbons, etc., when used in the liquid form, or by air, nitrogen, gaseous SO2, etc., when used in the gaseous form.
  • the alpha-olefins from which the olefin sulfonates are derived are mono-olefins having about 12 to about 24 carbon atoms, preferably about 14 to about 16 carbon atoms. Preferably, they are straight chain olefins.
  • the olefin sulfonates can contain minor amounts of other materials, such as alkene disulfonates depending upon the reaction conditions, proportion of reactants, the nature of the starting olefins and impurities in the olefin stock and side reactions during the sulfonation process.
  • alkene disulfonates depending upon the reaction conditions, proportion of reactants, the nature of the starting olefins and impurities in the olefin stock and side reactions during the sulfonation process.
  • a specific alpha-olefin sulfonate mixture of the above type is described more fully in U.S. Patent 3,332,880, to Pflaumer and Kessler, issued July 25, 1967, which is incorporated by reference herein in its entirety.
  • Another class of anionic surfactants suitable for use in the present invention are the betaalkyloxy alkane sulfonates. These compounds have the following formula: OR 2 H
  • R " ! is a straight chain alkyl group having from about 6 to about 20 carbon atoms
  • R2 is a lower alkyl group having from about 1 , preferred, to about 3 carbon atoms
  • M is as hereinbefore described.
  • anionic surfactants suitable for use are described in McCutcheon's, Emulsifiers and Detergents, 1989 Annual, published by M. C. Publishing Co., and in U.S. Patent 3,929,678, which descriptions are incorporated herein by reference in their entirety.
  • Preferred anionic surfactants for use include ammonium lauryl sulfate, ammonium laureth sulfate, triethylamine lauryl sulfate, triethylamine laureth sulfate, triethanolamine lauryl sulfate, triethanolamine laureth sulfate, monoethanolamine lauryl sulfate, monoethanolamine laureth sulfate, diethanolamine lauryl sulfate, diethanolamine laureth sulfate, lauric monoglyceride sodium sulfate, sodium lauryl sulfate, sodium laureth sulfate, potassium lauryl sulfate, potassium laureth sulfate, sodium lauryl sarcosinate, sodium lauroyl sarcosinate, lauryl sarcosine, cocoyl sarcosine, ammonium cocoyl sulfate, ammonium lauroyl
  • Amphoteric surfactants for use in the shampoo compositions include the derivatives of aliphatic secondary and tertiary amines in which the aliphatic radical is straight or branched and one of the aliphatic substituents contains from about 8 to about 18 carbon atoms and one contains an anionic water solubilizing group, e.g., carboxy, sulfonate, sulfate, phosphate, or phosphonate.
  • an anionic water solubilizing group e.g., carboxy, sulfonate, sulfate, phosphate, or phosphonate.
  • Zwitterionic surfactants for use in the shampoo compositions include the derivatives of aliphatic quaternary ammonium, phosphonium, and sulfonium compounds, in which the aliphatic radicals are straight or branched, and wherein one of the aliphatic substituents contains from about 8 to about 18 carbon atoms and one contains an anionic group, e.g., carboxy, sulfonate, sulfate, phosphate, or phosphonate.
  • a general formula for these compounds is: (R 3 ) x
  • R contains an alkyl, alkenyl, or hydroxy alkyl radical of from about 8 to about 18 carbon atoms, from 0 to about 10 ethylene oxide moieties and from 0 to about 1 glyceryl moiety;
  • Y is selected from the group consisting of
  • R is an alkyl or monohydroxyalkyl group containing 1 to about 3 carbon atoms
  • X is 1 when Y is a sulfur atom
  • R is an alkylene or hydroxyalkylene of from 1 to about 4 carbon atoms and Z is a radical selected from the group consisting of carboxylate, sulfonate, sulfate, phosphonate, and phosphate groups.
  • amphoteric and zwitterionic surfactants also include sultaines and amidosultaines.
  • Sultaines, including amidosultaines include for example, cocodimethylpropylsultaine, stearyldimethylpropylsultaine, lauryl-bis-(2-hydroxyethyl) propylsultaine and the like; and the amidosultaines such as cocamidodimethylpropylsultaine, stearylamidododimethylpropylsultaine, laurylamidobis-(2-hydroxyethyl) propylsultaine, and the like.
  • amidohydroxysultaines such as the C12-C 8 hydrocarbyl amidopropyl hydroxysultaines, especially C 2-C 4 hydrocarbyl amido propyl hydroxysultaines, e.g., laurylamidopropyl hydroxysultaine and cocamidopropyl hydroxysultaine.
  • C12-C 8 hydrocarbyl amidopropyl hydroxysultaines especially C 2-C 4 hydrocarbyl amido propyl hydroxysultaines, e.g., laurylamidopropyl hydroxysultaine and cocamidopropyl hydroxysultaine.
  • Other sultaines are described in U.S. Patent 3,950,417, which is incorporated herein by reference in its entirety.
  • amphoteric surfactants are the aminoalkanoates of the formula R-NH(CH2)r»COOM, the iminodialkanoates of the formula R-N[(CH2)mCOOM]2 and mixtures thereof; wherein n and m are numbers from 1 to about 4, R is Cs - C22 alkyl or alkenyl, and M is hydrogen, alkali metal, alkaline earth metal, ammonium or alkanolammonium.
  • suitable aminoalkanoates include n-alkylamino-propionates and n-alkyliminodipropionates, specific examples of which include N-lauryl-beta-amino propionic acid or salts thereof, and N-lauryl-beta-imino-dipropionic acid or salts thereof, and mixtures thereof.
  • suitable amphoteric surfactants include those represented by the formula :
  • R4 R 2 wherein R ⁇ is Cs - C22 alkyl or alkenyl, preferably C 2-C16, R2 and R 3 is independently selected from the group consisting of hydrogen, CH2CO2M, CH2CH2OH, CH2CH2OCH2CH2COOM, or (CH 2 CH 2 0) m H wherein m is an integer from 1 to about 25, and R 4 is hydrogen, CH2CH2OH, or CH2CH2 ⁇ CH 2 CH2COOM, Z is CO2M or CH2CO2M, n is 2 or 3, preferably 2, M is hydrogen or a cation, such as alkali metal (e.g., lithium, sodium, potassium), alkaline earth metal (beryllium, magnesium, calcium, strontium, barium), or ammonium.
  • alkali metal e.g., lithium, sodium, potassium
  • alkaline earth metal beryllium, magnesium, calcium, strontium, barium
  • ammonium such as alkali metal (e.g., lithium
  • This type of surfactant is sometimes classified as an imidazoline-type amphoteric surfactant, although it should be recognized that it does not necessarily have to be derived, directly or indirectly, through an imidazoline intermediate.
  • Suitable materials of this type are marketed under the tradename MIRANOL and are understood to comprise a complex mixture of species, and can exist in protonated and non-protonated species depending upon pH with respect to species that can have a hydrogen at R2. All such variations and species are meant to be encompassed by the above formula.
  • Examples of surfactants of the above formula are monocarboxylates and dicarboxylates. Examples of these materials include cocoamphocarboxypropionate, cocoamphocarboxypropionic acid, cocoamphocarboxyglycinate (alternately referred to as cocoamphodiacetate), and cocoamphoacetate.
  • MIRANOL C2M CONC. N.P. MIRANOL C2M CONC. O.P.
  • MIRANOL C2M SF MIRANOL CM SPECIAL (Miranol, Inc.); ALKATERIC 2CIB (Alkaril Chemicals); AMPHOTERGE W-2 (Lonza, Inc.); MONATERIC CDX-38, MONATERIC CSH-32 (Mona Industries); REWOTERIC AM-2C (Rewo Chemical Group); and SCHERCOTERIC MS-2 (Scher Chemicals).
  • Betaine surfactants i.e. zwitterionic surfactants, suitable for use in the shampoo compositions are those represented by the formula:
  • R ⁇ is a member selected from the group consisting of COOM and CHCH 2 S0 3
  • R2 is lower alkyl or hydroxyalkyl
  • R 3 is lower alkyl or hydroxyalkyl
  • R 4 is a member selected from the group consisting of hydrogen and lower alkyl
  • R5 is higher alkyl or alkenyl
  • Y is lower alkyl, preferably methyl
  • m is an integer from 2 to 7, preferably from 2 to 3
  • n is the integer 1 or 0
  • M is hydrogen or a cation, as previously described, such as an alkali metal, alkaline earth metal, or ammonium.
  • lower alkyl or "hydroxyalkyl” means straight or branch chained, saturated, aliphatic hydrocarbon radicals and substituted hydrocarbon radicals having from one to about three carbon atoms such as, for example, methyl, ethyl, propyl, isopropyl, hydroxypropyl, hydroxyethyl, and the like.
  • higher alkyl or alkenyl means straight or branch chained saturated (i.e., “higher alkyl") and unsaturated (i.e., “higher alkenyl”) aliphatic hydrocarbon radicals having from about eight to about 20 carbon atoms such as, for example, lauryl, cetyl, stearyl, oleyl, and the like. It should be understood that the term “higher alkyl or alkenyl” includes mixtures of radicals which may contain one or more intermediate linkages such as ether or polyether linkages or non-functional substitutents such as hydroxyl or halogen radicals wherein the radical remains of hydrophobic character.
  • surfactant betaines of the above formula wherein n is zero which are useful herein include the alkylbetaines such as cocodimethylcarboxymethylbetaine, lauryldimethylcarboxymethylbetaine, lauryl dimethyl-alpha-carboxyethylbetaine, cetyldimethyl- carboxymethylbetaine, lauryl-bis-(2-hydroxyethyl)carboxymethylbetaine, stearyl-bis-(2-hydroxypropyl)carboxymethylbetaine, oleyl- dimethyl-gamma-carboxypropylbetaine, lauryl-bix-(2-hydroxypropyl)- alpha-carboxyethylbetaine, etc.
  • alkylbetaines such as cocodimethylcarboxymethylbetaine, lauryldimethylcarboxymethylbetaine, lauryl dimethyl-alpha-carboxyethylbetaine, cetyldimethyl- carboxymethylbetaine, lauryl-bis-(2-
  • the sulfobetaines may be represented by cocodimethylsulfopropylbetaine, stearyldimethylsulfopropylbetaine, lauryl-bis-(2-hydroxyethyl)sulfopropylbetaine, and the like.
  • amido betaines and amidosulfo betaines useful in the shampoo compositions include the amidocarboxybetaines, such as cocamidodimethylcarboxymethylbetaine, laurylamidodi- methylcarboxymethylbetaine, cetylamidodimethylcarboxymethylbetaine, laurylamido-bis-(2-hydroxyethyl)-carboxymethylbetaine, cocamido-bis-(2-hydroxyethyl)-carboxymethylbetaine, etc.
  • amidocarboxybetaines such as cocamidodimethylcarboxymethylbetaine, laurylamidodi- methylcarboxymethylbetaine, cetylamidodimethylcarboxymethylbetaine, laurylamido-bis-(2-hydroxyethyl)-carboxymethylbetaine, cocamido-bis-(2-hydroxyethyl)-carboxymethylbetaine, etc.
  • amido sulfobetaines may be represented by cocamidodimethylsulfopropylbetaine, stearylamidodimethylsulfopropylbetaine, lauryl- amido-bis-(2-hydroxyethyl)-sulfopropylbetaine, and the like.
  • the shampoo compostions of the present invention can comprise a nonionic surfactant.
  • Nonionic surfactants include those compounds produced by condensation of alkylene oxide groups, hydrophilic in nature, with an organic hydrophobic compound, which may be aliphatic or alkyl aromatic in nature.
  • nonionic surfactants for use in the shampoo compositions include the following:
  • polyethylene oxide condensates of alkyl phenols e.g., the condensation products of alkyl phenols having an alkyl group containing from about 6 to about 20 carbon atoms in either a straight chain or branched chain configuration, with ethylene oxide, the said ethylene oxide being present in amounts equal to from about 10 to about 60 moles of ethylene oxide per mole of alkyl phenol;
  • Rl contains an alkyl, alkenyl or monohydroxy alkyl radical of from about 8 to about 18 carbon atoms, from 0 to about 10 ethylene oxide moieties, and from 0 to about 1 glyceryl moiety
  • R 2 and R 3 contain from about 1 to about 3 carbon atoms and from 0 to about 1 hydroxy group, e.g., methyl, ethyl, propyl, hydroxyethyl, or hydroxypropyl radicals;
  • R contains an alkyl, alkenyl or monohydroxyalkyl radical ranging from about 8 to about 18 carbon atoms in chain length, from 0 to about 10 ethylene oxide moieties and from 0 to 1 glyceryl moieties and R' and R" are each alkyl or monohydroxyalkyl groups containing from about 1 to about 3 carbon atoms;
  • long chain dialkyl sulfoxides containing one short chain alkyl or hydroxy alkyl radical of from 1 to about 3 carbon atoms (usually methyl) and one long hydrophobic chain which include alkyl, alkenyl, hydroxy alkyl, or keto alkyl radicals containing from about 8 to about 20 carbon atoms, from 0 to about 10 ethylene oxide moieties and from 0 to 1 glyceryl moieties;
  • alkyl polysaccharide (APS) surfactants e.g. alkyl polyglycosides
  • alkyl polysaccharide (APS) surfactants e.g. alkyl polyglycosides
  • APS surfactants having a hydrophobic group with about 6 to about 30 carbon atoms and a polysaccharide (e.g., polyglycoside) as the hydrophilic group; optionally, there can be a polyalkylene-oxide group joining the hydrophobic and hydrophilic moieties; and the alkyl group (i.e., the hydrophobic moiety) can be saturated or unsaturated, branched or unbranched, and unsubstituted or substituted (e.g., with hydroxy or cyclic rings); a preferred material is alkyl polyglucoside which is commercially available from Henkel, ICI Americas, and Seppic; and (8) polyoxyethylene alkyl ethers such as those of the formula
  • RO(CH2CH2) n H and polyethylene glycol (PEG) glyceryl fatty esters such as those of the formula R(0)OCH2CH(OH)CH2(OCH 2 CH2) n OH, wherein n is from 1 to about 200, preferably from about 20 to about 100, and R is an alkyl having from about 8 to about 22 carbon atoms.
  • Conditioning agents known in the industry may be comprised in the present invention.
  • Suitable conditioning agents include cationic surrfactants, such as those useful for making the silicone emulsion as described above, water soluble cationic polymers, fatty compounds, nonvolatile dispersed silicones, hydrocarbons, proteins, and mixtures thereof. These conditioning agents are comprised at a level of from about 0.01% to about 20% of the conditioning shampoo composition of the present invention.
  • Water soluble cationic polymers are useful herein.
  • water soluble is meant a polymer which is sufficiently soluble in water to form a substantially clear solution to the naked eye at a concentration of 0.1% in water, i.e. distilled or equivalent, at 25°C.
  • the polymer will be sufficiently soluble to form a substantially clear solution at a 0.5% concentration, more preferably at a 1.0% concentration.
  • the water soluble cationic polymers hereof will generally have a weight average molecular weight which is at least about 5,000, typically at least about 10,000, and is less than about 10 million. Preferably, the molecular weight is from about 100,000 to about 2 million.
  • the cationic polymers will generally have cationic nitrogen-containing moieties such as quaternary ammonium or cationic amino moieties, and mixtures thereof.
  • the cationic charge density is preferably at least about 0.1 meq/gram, more preferably at least about 0.2 meq/gram, and preferably less than about
  • the cationic charge density of the cationic polymer can be determined according to the Kjeldahl Method, which is well-known to those skilled in the art. Those skilled in the art will recognize that the charge density of amino-containing polymers can vary depending upon pH and the isoelectric point of the amino groups. The charge density should be within the above limits at the pH of intended use.
  • any anionic counterions can be utilized for the water soluble cationic polymers so long as the water solubility criteria is met. Suitable counterions include halides (e.g., Cl, Br, I, or F, preferably Cl, Br, or I), sulfate, and methylsulfate. Others can also be used, as this list is not exclusive.
  • the cationic nitrogen-containing moiety will be present generally as a substituent, on a fraction of the total monomer units of the cationic hair conditioning polymers.
  • the water soluble cationic polymer can comprise copolymers, terpolymers, etc.
  • Suitable water soluble cationic polymers include, for example, copolymers of vinyl monomers having cationic amine or quaternary ammonium functionalities with water soluble spacer monomers such as acryl- amide, methacrylamide, alkyl and dialkyl acryiamides, alkyl and dialkyl methacrylamides, alkyl acrylate, alkyl methacrylate, vinyl caprolactone, and vinyl pyrrolidone.
  • the alkyl and dialkyl substituted monomers preferably have C -C7 alkyl groups, more preferably C1-C3 alkyl groups.
  • Other suitable spacer monomers include vinyl esters, vinyl alcohol (made by hydrolysis of polyvinyl acetate), maleic anhydride, propylene glycol, and ethylene glycol.
  • the cationic amines can be primary, secondary, or tertiary amines, depending upon the particular species and the pH of the composition. In general, secondary and tertiary amines, especially tertiary amines, are preferred.
  • Amine-substituted vinyl monomers can be polymerized in the amine form, and then optionally can be converted to ammonium by a quaternization reaction.
  • Amines can also be similarly quaternized subsequent to formation of the polymer.
  • tertiary amine functionalities can be quaternized by reaction with a salt of the formula R'X wherein R' is a short chain alkyl, preferably a C1-C7 alkyl, more preferably a C1-C3 alkyl, and X is an anion which forms a water soluble salt with the quaternized ammonium.
  • Suitable cationic amino and quaternary ammonium monomers include, for example, vinyl compounds substituted with dialkylaminoalkyl acrylate, dialkylaminoalkyl methacrylate, monoalkylaminoalkyl acrylate, monoalkylaminoalkyl methacrylate, trialkyl methacryloxyalkyl ammonium salts, trialkyl acryloxyalkyl ammonium salts, diallyl quaternary ammonium salts, and vinyl quaternary ammonium monomers having cyclic cationic nitrogen-containing rings such as pyridinium, imidazolium, and quaternized pyrrolidone, e.g., alkyl vinyl imidazolium, alkyl vinyl pyridinium, alkyl vinyl pyrrolidone salts.
  • the alkyl portions of these monomers are preferably lower alkyls such as the C1-C3 alkyls, more preferably C and C2 alkyls.
  • Suitable amine-substituted vinyl monomers for use herein include dialkylaminoalkyl acrylate, dialkylaminoalkyl methacrylate, dialkylaminoalkyl acrylamide, and dialkylaminoalkyl methacrylamide, wherein the alkyl groups are preferably C1-C7 alkyl and more preferably C1-C3, alkyl.
  • the water soluble cationic polymers hereof can comprise mixtures of monomer units derived from amine- and/or quaternary ammonium- -substituted monomer and/or compatible spacer monomers.
  • Suitable water soluble cationic polymers include, for example: copolymers of 1-vinyl-2-pyrrolidone and 1-vinyl-3-methylimidazolium salt (e.g., chloride salt), referred to in the industry by the CTFA designation as polyquaternium-16, which is commercially available from BASF Corporation under the LUVIQUAT tradename (e.g., LUVIQUAT FC 370); copolymers of 1-vinyl-2-pyrrolidone and dimethylaminoethyl methacrylate, referred to as polyquaternium-11 , which is commercially available from Gaf Corporation (Wayne, NJ, USA) under the GAFQUAT tradename (e.g., GAFQUAT 755N); cationic diallyl quaternary am
  • cationic polymers that can be used include polysaccharide polymers, such as cationic cellulose derivatives and cationic starch derivatives.
  • Cationic polysaccharide polymer materials suitable for use herein include those of the formula having repeating units: Ri
  • R 2 wherein A is an anhydroglucose residual group, such as a starch or cellulose anhydroglucose residual, R is an alkylene oxyalkylene, polyoxyalkylene, or hydroxyalkylene group, or combination thereof, R 1 , R , and R 3 independently are alkyl, aryl, alkylaryl, arylalkyl, alkoxyalkyl, or alkoxyaryl groups, each group containing up to about 18 carbon atoms, and the total number of carbon atoms for each cationic moiety (i.e., the sum of carbon atoms in R1 , R2 and R 3 ) preferably being about 20 or less, and X is an anionic counterion, e.g., halide, sulfate, nitrate, and the like.
  • A is an anhydroglucose residual group, such as a starch or cellulose anhydroglucose residual
  • R is an alkylene oxyalky
  • Cationic cellulose is available from Amerchol Corp. (Edison, NJ, USA) in their Polymer JR®, LR® and SR® series of polymers, as salts of hydroxyethyl cellulose reacted with trimethyl ammonium substituted epoxide, referred to by the CTFA designation polyquaternium-10.
  • Another type of cationic cellulose includes the polymeric quaternary ammonium salts of hydroxyethyl cellulose reacted with lauryl dimethyl ammonium-substituted epoxide, referred to by the CTFA as polyquaternium-24, and which is available from Amerchol Corp. (Edison, NJ, USA) under the tradename Polymer LM-200®.
  • water soluble cationic polymers that can be used include cationic guar gum derivatives, such as guar hydroxypropyltrimonium chloride (commercially available from Celanese Corp. in their Jaguar R series).
  • cationic guar gum derivatives such as guar hydroxypropyltrimonium chloride (commercially available from Celanese Corp. in their Jaguar R series).
  • Other materials include quaternary nitrogen-containing cellulose ethers (e.g., as described in U.S. Patent 3,962,418, which is incorporated by reference herein in its entirety), and copolymers of etherified cellulose and starch (e.g., as described in U.S. Patent 3,958,581 , which is incorporated herein by reference in its entirety).
  • Preferred for use herein are water soluble cationic polymers selected from the group consisting of polyquaternium-7, polyquaternium-10, polyquaternium-11 , and mixtures thereof.
  • Fatty compounds including fatty alcohols, fatty acids, fatty alcohol derivatives, fatty acid derivatives, and mixtures thereof are preferred conditioning agents. It is recognized that the compounds disclosed in this section of the specification can in some instances fall into more than one classification, e.g., some fatty alcohol derivatives can also be classified as fatty acid derivatives. Also, it is recognized that some of these compounds can have properties as nonionic surfactants and can alternatively be classified as such. However, a given classification is not intendend to be a limitation on that particular compound, but is done so for convenience of classification and nomenclature.
  • Nonlimiting examples of the fatty alcohols, fatty acids, fatty alcohol derivatives, and fatty acid derivatives are found in International Cosmetic Ingredient Dictionary, Fifth Edition, 1993, and CTFA Cosmetic Ingredient Handbook, Second Edition, 1992, both of which are incorporated by reference herein in their entirety.
  • the fatty alcohols useful herein are those having from about 10 to about 30 carbon atoms, preferably from about 12 to about 22 carbon atoms, and more preferably from about 16 to about 22 carbon atoms. These fatty alcohols can be straight or branched chain alcohols and can be saturated or unsaturated.
  • Nonlimiting examples of fatty alcohols include decyl alcohol, undecyl alcohol, dodecyl, myristyl, cetyl alcohol, stearyl alcohol, isostearyl alcohol, isocetyl alcohol, behenyl alcohol, linalool, oleyl alcohol, cholesterol, c/s-4-f-butylcyclohexanol, myricy alcohol and mixtures thereof.
  • Especially preferred fatty alcohols are those selected from the group consisting of cetyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, and mixtures thereof.
  • the fatty acids useful herein are those having from about 10 to about 30 carbon atoms, preferably from about 12 to about 22 carbon atoms, and more preferably from about 16 to about 22 carbon atoms. These fatty acids can be straight or branched chain acids and can be saturated or unsaturated. Also included are diacids, triacids, and other multiple acids which meet the carbon number requirement herein. Also included herein are salts of these fatty acids. Nonlimiting examples of fatty acids include lauric acid, palmitic acid, stearic acid, behenic acid, arichidonic acid, oleic acid, isostearic acid, sebacic acid, and mixtures thereof.
  • fatty acids selected from the group consisting of palmitic acid, stearic acid, and mixtures thereof.
  • the fatty alcohol derivatives are defined herein to include alkyl ethers of fatty alcohols, alkoxylated fatty alcohols, alkyl ethers of alkoxylated fatty alcohols, esters of fatty alcohols and mixtures thereof.
  • Nonlimiting examples of fatty alcohol derivatives include materials such as methyl stearyl ether; 2- ethylhexyl dodecyl ether; stearyl acetate; cetyl propionate; the ceteth series of compounds such as ceteth-1 through ceteth-45, which are ethylene glycol ethers of cetyl alcohol, wherein the numeric designation indicates the number of ethylene glycol moieties present; the steareth series of compounds such as steareth-1 through 100, which are ethylene glycol ethers of steareth alcohol, wherein the numeric designation indicates the number of ethylene glycol moieties present; ceteareth 1 through ceteareth-50, which are the ethylene glycol ethers of ceteareth alcohol, i.e.
  • Preferred for use herein are steareth-2, steareth-4, ceteth-2, and mixtures thereof.
  • the fatty acid derivatives are defined herein to include fatty acid esters of the fatty alcohols as defined above in this section, fatty acid esters of the fatty alcohol derivatives as defined above in this section when such fatty alcohol derivatives have an esterifiable hydroxyl group, fatty acid esters of alcohols other than the fatty alcohols and the fatty alcohol derivatives described above in this section, hydroxy-substitued fatty acids, and mixtures thereof.
  • Hydrocarbons are useful herein as conditioning agents.
  • Useful hydrocarbons include straight chain, cyclic, and branched chain hydrocarbons which can be either saturated or unsaturated.
  • the hydrocarbons preferably will have from about 12 to about 40 carbon atoms, more preferably from about 12 to about 30 carbon atoms, and most preferably from about 12 to about 22 carbon atoms.
  • polymeric hydrocarbons of alkenyl monomers such as polymers of C2-C6 alkenyl monomers. These polymers can be straight or branched chain polymers.
  • the straight chain polymers will typically be relatively short in length, having a total number of carbon atoms as described above in this paragraph.
  • the branched chain polymers can have substantially higher chain lengths.
  • the number average molecular weight of such materials can vary widely, but will typically be up to about 500, preferably from about 200 to about 400, and more preferably from about 300 to about 350.
  • mineral oils are liquid mixtures of hydrocarbons that are obtained from petroleum. Specific examples of suitable hydrocarbon materials include paraffin oil, mineral oil, dodecane, isododecane, hexadecane, isohexadecane, eicosene, isoeicosene, tridecane, tetradecane, polybutene, polyisobutene, and mixtures thereof.
  • Isododecane, isohexadeance, and isoeicosene are commercially available as Permethyl 99A, Permethyl 101 A, and Permethyl 1082, from Presperse, South Plainfield, NJ.
  • a copolymer of isobutene and normal butene is commercially available as Indopol H-100 from Amoco Chemicals.
  • hydrocarbon conditioning agents selected from the group consisting of mineral oil, isododecane, isohexadecane, polybutene, polyisobutene, and mixtures thereof.
  • the shampoo composition of the present invention are substantially free of acyl derivative silicone suspending agents.
  • substantially free it is meant that the suspending agent is not included in such a sufficient amount to provide suspending effect to the silicone polymers. It is recognized that the same suspending agents can be included in smaller amounts to provide a pearlecent effect to the composition. In the present invention, it is not intended to exclude small amounts of suspending agents which could only provide a pearlecent effect, but cannot provide suspending effect to silicone polymers. Generally, suspending effect to silicone polymers cannot be seen at levels lower than about 1.5%.
  • suspending agents herein include those which are present in crystalline form. These suspending agents are described in U.S. Patent 4,741,855, which is incorporated herein by reference in its entirety. These preferred suspending agents include ethylene glycol esters of fatty acids preferably having from about 16 to about 22 carbon atoms such as the ethylene glycol stearates, both mono and distearate. OPTIONAL COMPONENTS
  • a wide variety of additional ingredients can be formulated into the present composition. These include: other conditioning agents such as hydrolysed collagen, hydrolysed keratin, proteins, plant extracts, and nutrients; hair-hold polymers; other surfactants such as anionic surfactants; thickening agents such as xanthan gum, guar gum, hydroxyethylcellulose, methylcellulose, starch and starch derivatives; viscosity modifiers such as methanolamides of long chain fatty acids such as cocomonoethanol amide; preservatives such as benzyl alcohol, methyl paraben, propyl paraben and imidazolidinyl urea; solvents such as polyvinyl alcohol, ethyl alcohol and volatile and non-volatile silicone fluids of low molecular weight; pH adjusting agents, such as citric acid, sodium citrate, succinic acid, phosphoric acid, sodium hydroxide, sodium carbonate; salts, in general, such as potassium acetate and sodium chloride; coloring agents, such as
  • the components shown below can be prepared by any conventional method well known in the art.
  • a suitable method is as follows: Polyquaternium-10, when present polyethyleneglycol, mineral oil, and detersive surfactants are dispersed in water to form a homogenious mixture. To this mixture is added other ingredients except for silicone emulsion and perfume are added and agitated. The obtained mixture is passed through a heat exchanger to cool, and the silicone emulsion and perfume is added. The obtained compositions is poured into bottles to make a shampoo compositions. COMPONENTS IN COMPOSITION AMOUNT (%)
  • Polyquaternium-10 0.5 1.0 1.0 1.0 1.0
  • the dimethiconol included has an average molcular weight of about 280,000 with average particle size of about 160nm, and the level to the entire composition is 2%.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Cosmetics (AREA)

Abstract

L'invention concerne des compositions de shampooing contenant une émulsion de silicones qui comprend un polymère de silicone sélectionné dans un groupe formé par: un polyalkyle siloxane dont la masse molaire atteint au moins 20.000, un polyaryle siloxane dont la masse molaire atteint au moins 20.000, un siloxane à substitution amino dont la masse molaire atteint au moins 5.000, une résine de silicones dont la masse molaire atteint au moins 5.000 et des mélanges de ces derniers; un tensio-actif anionique, un tensio-actif assurant la compatibilité et un tensio-actif cationique, le polymère de silicone étant dispersé sous forme particulaire d'une grosseur moyenne inférieure ou égale à 450 nm, un tensio-actif détersif, un agent de conditionnement, et de l'eau. La composition est sensiblement dépourvue d'agents de suspension des silicones.
EP96940277A 1996-11-04 1996-11-04 Composition de shampooing contenant une emulsion de silicones Withdrawn EP0938285A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
PCT/US1996/017578 WO1998019656A1 (fr) 1996-11-04 1996-11-04 Composition de shampooing contenant une emulsion de silicones
BR9612764-3A BR9612764A (pt) 1996-11-04 1996-11-04 Composição de xampu
CN96180552.8A CN1241931A (zh) 1996-11-04 1996-11-04 包含硅氧烷乳液的香波组合物

Publications (1)

Publication Number Publication Date
EP0938285A1 true EP0938285A1 (fr) 1999-09-01

Family

ID=27160162

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96940277A Withdrawn EP0938285A1 (fr) 1996-11-04 1996-11-04 Composition de shampooing contenant une emulsion de silicones

Country Status (4)

Country Link
EP (1) EP0938285A1 (fr)
JP (1) JP3234604B2 (fr)
CN (1) CN1241931A (fr)
WO (1) WO1998019656A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2785799B1 (fr) * 1998-11-12 2002-11-29 Oreal Composition cosmetique conditionnante et detergente comprenant un tensioactif carboxylique, une silicone et un polymere cationique, utilisation et procede.
GB9902629D0 (en) * 1999-02-05 1999-03-31 Unilever Plc Shampoo compositions
US6808701B2 (en) 2000-03-21 2004-10-26 Johnson & Johnson Consumer Companies, Inc. Conditioning compositions
GB0016807D0 (en) * 2000-07-07 2000-08-30 Unilever Plc Shampoo compositions
JP3843020B2 (ja) * 2002-01-21 2006-11-08 花王株式会社 毛髪洗浄剤
EP1757421A1 (fr) * 2005-08-22 2007-02-28 Aisapack Holding SA Préforme multicouche et méthode de réalisation
US10258548B2 (en) * 2015-04-23 2019-04-16 The Procter And Gamble Company Hair care conditioning composition

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2068124A1 (fr) * 1991-05-24 1992-11-25 Daniel J. Halloran Compositions capillaires optiquement claires renfermant des micro-emulsions de silicone a groupement fonctionnel amine
GB9117740D0 (en) * 1991-08-16 1991-10-02 Unilever Plc Cosmetic composition
US5248445A (en) * 1992-01-30 1993-09-28 Helene Curtis, Inc. Stable conditioning shampoo containing fatty acid
CN1184415A (zh) * 1995-04-21 1998-06-10 普罗克特和甘保尔公司 具有不溶性硅氧烷调理剂和阳离子聚合物的香波

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9819656A1 *

Also Published As

Publication number Publication date
WO1998019656A1 (fr) 1998-05-14
JPH11500459A (ja) 1999-01-12
CN1241931A (zh) 2000-01-19
JP3234604B2 (ja) 2001-12-04

Similar Documents

Publication Publication Date Title
US5876705A (en) Conditioning shampoo compositions
US20020031532A1 (en) Shampoo composition comprising silicone emulsion
US5955066A (en) Conditioning shampoo compositions having improved stability
US6284230B1 (en) Hair conditioning shampoo compositions comprising primary anionic surfactant
CA2309701A1 (fr) Compositions de shampooings traitants
WO1999024013A1 (fr) Compositions de shampooings traitants
WO1999013835A1 (fr) Shampooing traitant a base d'esters huiles de poids moleculaire eleve
CA2274849A1 (fr) Compositions de shampooing conditionneur
EP0946132A1 (fr) Apres-shampoing comprenant un compose huileux insoluble dans l'eau a poids moleculaire eleve
WO2000064410A1 (fr) Compositions d'apres-shampoingons
GB2315770A (en) Conditioning shampoo compositions comprising polyalkoxylated polyalkyleneamine
EP0938285A1 (fr) Composition de shampooing contenant une emulsion de silicones
US6368582B1 (en) Hair conditioning compositions comprising water-insoluble high molecular weight oily compound
WO2000064411A1 (fr) Compositions d'apres-shampoingons
EP0946131A1 (fr) Composition de conditionnement pour les cheveux contenant une emulsion silicone
CA2271078A1 (fr) Composition de shampooing contenant une emulsion de silicones
WO1998024401A1 (fr) Compositions de conditionnement des cheveux comprenant un compose huileux insoluble dans l'eau de poids moleculaire eleve
AU7720396A (en) Shampoo composition comprising silicone emulsion
GB2315769A (en) Conditioning shampoo comprising quaternary polyalkoxylated polyalkyleneamine
MXPA99004178A (en) Shampoo composition comprising silicone emulsion
MXPA98002978A (en) Compositions of champu acondiciona
MXPA00004590A (en) Conditioning shampoo compositions
MXPA99004177A (en) Hair conditioning composition comprising silicone emulsion
MXPA99006148A (en) Conditioning shampoo compositions

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990521

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

17Q First examination report despatched

Effective date: 20010530

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20011010