EP0937203B1 - Fuel injection valve - Google Patents

Fuel injection valve Download PDF

Info

Publication number
EP0937203B1
EP0937203B1 EP98916807A EP98916807A EP0937203B1 EP 0937203 B1 EP0937203 B1 EP 0937203B1 EP 98916807 A EP98916807 A EP 98916807A EP 98916807 A EP98916807 A EP 98916807A EP 0937203 B1 EP0937203 B1 EP 0937203B1
Authority
EP
European Patent Office
Prior art keywords
valve
fuel injection
valve member
space
injection valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98916807A
Other languages
German (de)
French (fr)
Other versions
EP0937203A1 (en
Inventor
Detlev Potz
Stephan Haas
Thomas Kuegler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0937203A1 publication Critical patent/EP0937203A1/en
Application granted granted Critical
Publication of EP0937203B1 publication Critical patent/EP0937203B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/08Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series the valves opening in direction of fuel flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/042The valves being provided with fuel passages
    • F02M61/045The valves being provided with fuel discharge orifices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/20Closing valves mechanically, e.g. arrangements of springs or weights or permanent magnets; Damping of valve lift
    • F02M61/205Means specially adapted for varying the spring tension or assisting the spring force to close the injection-valve, e.g. with damping of valve lift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/30Fuel-injection apparatus having mechanical parts, the movement of which is damped
    • F02M2200/304Fuel-injection apparatus having mechanical parts, the movement of which is damped using hydraulic means

Definitions

  • the invention relates to a fuel injection valve for Internal combustion engines according to the preamble of claim 1 out.
  • known fuel injector is in a bore of the a piston-shaped valve body projecting into the combustion chamber Valve member axially outwards against a return spring displaceable.
  • the valve member points to his end of the combustion chamber protruding from the bore Valve closing member forming the closing head on its a valve sealing surface facing the valve body having.
  • the valve member acts with this valve sealing surface with one on the combustion chamber end face of the valve body arranged valve seat surface together.
  • a first touch is here with its lower end constantly with the discharge line connected while the second bevel with its lower Boundary edge only after passing through a certain one Opening stroke movement in the overlap with the relief line dips.
  • the known Fuel injector a two-stage hydraulic Blocking of the valve member is reached, a first Control position on the damping chamber the opening of the first Row of spray holes corresponds while the final hydraulically blocked end position of the valve member Open both rows of spray holes and thus opening the corresponds to the entire injection cross section.
  • the known fuel injection valve the disadvantage that the recesses on the valve member very much need to be manufactured exactly to the precise arrangement the precise control of the spray hole rows due to the many control edges to ensure.
  • the known fuel injection valve the injection pressure dependent Blocking of the valve member in intermediate positions not set operationally, which is expensive Geometric adjustment work of the hydraulic stroke stops has the consequence.
  • the for so-called vario register nozzles necessary control of a multi-stage opening stroke of the valve member in Dependence on the fuel injection pressure at the valve manufacturing technology only very complex realize.
  • the fuel injection valve for internal combustion engines according to the invention with the characterizing features of claim 1 has the advantage that the second opening stroke phase of the valve member is adjustable and controllable via a valve inserted into the relief line.
  • a third control edge which controls the start of the second opening stroke phase, can be dispensed with, so that the manufacturing outlay of the recesses on the valve member can be greatly reduced compared to the known solution.
  • the reduction in the control edges furthermore results in a stable long-term operating behavior due to the lower influenceability as a result of geometric inaccuracies in the control recesses.
  • the configuration of the recesses according to the invention also has the advantage that both control edges are each arranged at the upper end of the recesses and can therefore be easily manufactured.
  • the time of the beginning of the second opening stroke phase of the valve member can be set in a simple manner by designing the bore diameter of the relief line and the valve design, for example the design of the valve spring strength of the valve in the relief line.
  • the pressure valve can advantageously be controlled directly by an electrical actuator, which can be designed, for example, as a piezo actuator.
  • valve member of the pressure valve to the armature in a current-carrying coil (solenoid valve), the basic settings being able to be made in each case via a spring.
  • direct control of the pressure valve in the relief line is hydraulically possible, with a regulated hydraulic back pressure being applied to the back of the pressure valve, by means of which the pressure valve can be opened or closed as a result of the pressure difference between the pressure in front of the pressure valve and the back pressure behind it.
  • Another advantageous setting option of the valve in the relief line is the map-controllable adjustment of the spring preload of the valve spring of the pressure valve.
  • the spring preload can be continuously adjusted by means of an adjustable spring support surface, which can be axially displaced, for example, electrically by a piezo actuator or the armature in a magnetic coil or hydraulically by a piston in a working area.
  • an adjustable spring support surface which can be axially displaced, for example, electrically by a piezo actuator or the armature in a magnetic coil or hydraulically by a piston in a working area.
  • a check valve is also advantageously used in an inlet line of the damping chamber, which on the other hand is connected to the low-pressure fuel circuit, preferably the spring chamber of the injection valve is. This check valve also avoids the creation of a negative pressure in the damping chamber and thus cavitation damage and unintentional reverberation of the injection valve member when closing.
  • valve in the discharge line represents its execution as Alternative pistons.
  • This gives as an alternative piston trained valve member of the valve in the Relief line during its opening stroke movement Defined escape volume through which the pressure in the Damping space of the injection valve drops and so the allows second opening stroke.
  • the control volume when Closing stroke of the injection valve member from the Alternative volume is refilled in a simple form. moreover the pressure drop in the damping chamber can be limited exactly, whereby when the damping space is finally closed when the end stroke position of the injection valve member is reached Pressure builds up faster, which is the stopping distance of the Valve element of the injection valve shortened.
  • Another The advantage of this variant is that the sealing function from the alternative volume to the leak oil chamber (e.g. spring chamber) the outer surface of the evasive piston and of the Relief line to the escape volume through a cone seat is guaranteed.
  • valve spring is designed to be block-proof.
  • Another advantage is the arrangement of the damping space in an washer between the valve body and achieved a valve holding body, which makes manufacturing or manufacture of the damping space and relief channel is relatively easy.
  • the damping or control room is on his End face of the valve body facing away from one piston axially displaceable with the valve member, which advantageously by means of a valve member Pressed sealing ring is formed.
  • This one on the Valve member attached seal slides with his The outer circumference seals in one that forms the damping space Hole in the washer.
  • the sealing ring is there advantageously as open to the damping space U-shaped sealing ring, which is preferably made of a PTFE material is made.
  • a spring is inserted for basic sealing, due to the U-shaped hollow profile sealing the sealing ring towards the wall of the washer with increasing Hydraulic pressure in the damping chamber is increased.
  • a den Damping space relief channel is also in advantageously integrated into the washer, wherein also the pressure valve controlling this relief channel in the washer is provided.
  • This pressure valve is preferably designed as a piston check valve, being about the design of the pressure valve spring Opening pressure or the opening time as the start of the second valve member opening stroke phase is adjustable. there is also a throttle point in an advantageous manner Pressure valve upstream.
  • the stroke of the Piston in the pressure valve limited to the minimum necessary stroke and the piston is also made of light materials, to wear and vibrations on the pressure valve as possible to keep low.
  • This anti-rotation device is advantageous Way in a low traffic area, preferably between the upper valve guide and the Fuel injector spring or between this spring and the valve member end arranged. That points to Valve member recesses, preferably an even number of cuts on the one in the valve body holder arranged fitting with complementary formations intervenes.
  • This fitting can be easily with the Assemble the fuel injector to the actual one Adjust the position of the valve member and thus enables one small distance between the valve member and the Rotation fixation, so that a very precise guidance with little wear on the valve member is possible. It is this fitting is particularly advantageous in the washer between the valve body and valve holding body integrate.
  • Fuel injection valves for internal combustion engines are in of the drawing and are shown in the following Description explained in more detail.
  • Figures 1 and 2 show a known fuel injection valve the vario register nozzle design in different Sectional views
  • the figures 3 and 4 enlarged Excerpts from a first embodiment of the Fuel injection valve according to Figure 1 in the area of Damping chamber with a valve in the relief line, wherein the sectional view of Figure 4 by 90 ° from the 3 is rotated
  • FIG. 5 and 6 an anti-rotation device on the valve member of the Fuel injection valve in two views
  • FIG 7 a second embodiment analogous to the representation of the Figure 3, in which the valve in the relief line over a piezo actuator is directly controlled, the figure 8 a third embodiment in which the valve member by a solenoid valve is actuated, Figure 9 a fourth Embodiment in which the opening of the valve in the Relief line using a hydraulic back pressure is adjustable on the pressure valve, Figure 10 is a fifth Embodiment in which the adjustment of the Spring preload force of the valve in the relief line 11 is a sixth via a piezo actuator Embodiment in which the adjustment of the Spring preload of the relief valve via a Magnetic armature takes place, the figure 12 a seventh Embodiment in which the adjustment of the Spring preload of the relief valve via a hydraulic actuating piston takes place, Figures 13 and 14 eighth embodiment in two views, in which a additional check valve in an inlet line of the Damping space is used and Figure 15 is a ninth Embodiment in which the valve member of the valve in the relief line is designed as an escape piston.
  • FIGS. 1 and 2 show a known fuel injection valve of the outwardly opening type with two rows of spray holes which can be opened one after the other (vario register nozzle), on which the control of the valve member stroke according to the invention is realized.
  • the fuel injection valve has a valve body 1, which projects with its lower free end into the combustion chamber of the internal combustion engine to be supplied.
  • the valve body 1 has an axial through bore 3, in which a piston-shaped valve member 5 is axially displaceably guided.
  • the valve member 5 has a closing head 7 protruding from the bore 3 and enlarged in cross section, which forms a valve closing member. This closing head 7, shown enlarged in FIG.
  • valve sealing face 9 which cooperates with a stationary valve seat face 11, which is formed on the end face of the valve body 1 on the combustion chamber side, surrounding the bore 3.
  • the valve sealing surface 9 and the valve seat surface 11 that result in a sealing cross section are conical, the cone angles of the two contact surfaces 9, 11 differing slightly from one another, so that a defined sealing edge is formed.
  • annular pressure chamber 13 is formed, which on the combustion chamber side is enlarged by a diameter extension of the valve member 5 forming an annular shoulder 15 at its transition into the closing head 7 and on the other hand by a cross-sectional expansion 17 of the valve member 5 the bore 3 is limited.
  • This pressure chamber 13 can be filled with high-pressure fuel via a pressure channel 19, for which purpose the pressure channel 19 is connected in a manner not shown to an injection line of an injection pump.
  • Injection channels 21 lead from the annular shoulder 15 delimiting the pressure chamber 13 and are initially designed as a longitudinal bore in the closing head 7 of the valve member 5 and from which control bores are then discharged at the level of the sealing edge.
  • the outlet openings 23 (injection holes) of the injection channels (21) are arranged above the valve sealing surface 9 on the lateral surface of the closing head 7 in such a way that they are covered by the wall of the bore 3 in the closed position of the injection valve, that is to say when the valve member 5 is in contact with the valve seat 11, and can only be opened during the outward opening stroke of the valve member 5 by emerging from the bore 3 of the valve body 1.
  • two rows of rows (spray hole rows) of outlet openings 23, which are arranged one above the other in the axial direction of the valve member 5, are preferably provided and are opened in succession during the valve member opening stroke movement.
  • valve member 5 protrudes with its stem part facing away from the combustion chamber from the valve body 1 into a bore which forms a spring chamber 25 and is enlarged in cross section in a valve holding body 27 which is clamped axially against the valve body 1 by means of a clamping nut 29.
  • a valve closing spring 31 is clamped in the spring chamber 25 in such a way that it is supported with its end near the combustion chamber against the valve body 1 and acts with its end remote from the combustion chamber on a valve plate 33 on the valve member 5 and thus holds the valve member 5 in contact against the valve seat 11.
  • the valve holding body 27 is axially penetrated by the pressure channel 19, a fuel filter 35 being inserted into the pressure channel 19 at the upper end of the valve holding body 27.
  • valve member 5 To limit the outward opening stroke movement of the valve member 5 instructs the valve member 5 its combustion chamber facing away from the valve body 1 in the Valve holding body 27 projecting end radially from Valve member projecting piston 37 on one hydraulic damping space 39 limited.
  • an intermediate plate 41 the axially between a face 43 remote from the combustion chamber Valve body 1 and the end face of the combustion chamber Valve holding body 27 is clamped.
  • the washer 41 has a part of the pressure channel 19 in the form of an axial Through hole on.
  • the Intermediate disc 41 has a central through opening 45, through which the stem of the valve member 5 projects and which limits the damping space 39 radially outward. axial becomes the damping space 39 in the washer 41st on the one hand from the end face 43 of the valve body 1 and on the other hand limited by the valve member piston 37.
  • This Piston 37 is by one on the shaft of the Valve member 5 pressed sealing ring formed as U-sealing ring 47 open to the damping space 39 is formed. There is one in this U-sealing ring 47 for basic sealing Spring 49 inserted.
  • the damping chamber 39 is filled and relieved via the fuel channels shown in FIGS. 3 and 4, to the low pressure circuit of the injection system are connected and the fuel injector to explain them in Figure 4 compared to the representation in 3 is rotated by 90 °.
  • the damping chamber 39 is filled and relieved via two cuts on the valve member 5, which the damping space 39 via relief channels with a low pressure chamber, preferably connect the fuel-filled spring chamber 25.
  • a first bevel 51 on valve member 5 is like this arranged so that when the injector is closed, i.e. with valve member 5 resting on the valve seat 11 with its protrudes into the damping space 39 while its lower end opens into an annular groove 53 on the valve member 5.
  • This annular groove 53 sweeps more precisely as in FIG. 4 shown the mouth of a first relief channel 55, the valve body 1, the intermediate plate 41 and the Valve holding body 27 penetrating into the spring chamber 25 opens.
  • the upper end of the first, away from the combustion chamber Bevel 51 forms with its upper boundary edge a first control edge 57, which is connected to the end face 43 of the valve body 1 cooperates.
  • the valve member 5 has a second bevel 59 on, whose upper combustion chamber distant boundary edge forms second control edge 61.
  • the second bevel 59 continuously covers the mouth a second relief channel 63, which is also characterized by the valve body 1, the washer 41 and the Valve holding body 27 extends to the spring chamber 25.
  • the second control edge 61 has a greater distance from it Face 43 of the valve body 1 than the first Control edge 57.
  • Driving over the second control edge 61 over the end face 43 corresponds to the opening stroke position of the valve member 5, in which both rows of spray holes on Injection cross-section are controlled, whereby after Driving over the second control edge 61 over the end face 43 the damping chamber 39 is finally closed hydraulically and thus the maximum opening stroke position of the valve member certainly.
  • valve 65 in the second Relief line 63 used in the first Embodiment is designed as a check valve.
  • This in the part running in the intermediate disc 41 of the second relief channel 63 has inserted valve 65 an axially displaceable, piston-shaped valve member 67 on that facing the second bevel 59 End has a conical sealing surface 69 with which it a valve seat surface 71 cooperates.
  • the valve member 67 acts a valve spring 72 which on the other hand is supported on the valve holding body 27 in a stationary manner and the design of the opening pressure at valve 65 is adjustable.
  • valve member 5 independently avoid and thus the connection between the bevels 51, 59 and the inlet opening to the relief channels 55, 63 must also be reliably ensured on valve member 5 an anti-rotation device is provided.
  • This anti-rotation is here as in the two views in FIGS. 5 and 6 shown, as a profile 73 on the valve member 5 formed with which the valve member 5 in a complementary recess 75 protrudes in the intermediate plate 41.
  • the fuel injection valve according to the invention works in following way. Holds in the injector closed position the valve spring 31, the valve member 5 with its valve sealing surface 9 in contact with the valve seat 11, the damping space 39 limiting piston 37 is in its starting position and Damping chamber 39 is over the first bevel 51, the Annular groove 53 and the first relief channel 55 with the fuel-filled spring chamber 25 (low pressure chamber) connected and filled with this by fuel, which is called hydraulic Working fluid is used.
  • This first opening stroke phase is ended by driving over the first control edge 57 on the first bevel 51 over the end face 43 of the valve body 1, the damping chamber 39 being closed briefly when the first bevel 51 is completely immersed in the valve body 1 and thereby acting as a hydraulic damper, which blocks a further opening stroke movement of the valve member 5.
  • the valve member 5 In this position, which opens a partial opening cross section on the injection valve, the valve member 5 remains in a first operating mode of the injection valve, which corresponds to the idling range and a partial load range of the internal combustion engine to be supplied. If the entire opening cross-section on the injection valve is to be opened at higher load or speed of the internal combustion engine, the second operating mode is selected on the injection valve.
  • valve member 5 remains only briefly in the intermediate position with a simultaneously increasing fuel injection pressure in the pressure chamber 13 of the injection valve.
  • a second opening pressure limit value in the pressure chamber 13 is exceeded, the force acting on the annular shoulder 15 in the opening direction on the valve member 5 or, proportionally, the pressure in the damping chamber 39 exceeds the locking force on the valve 65 in the second relief channel 63, which was previously constantly connected to the damping chamber 39.
  • the valve 65 is opened, part of the pressure medium is relieved again from the damping chamber 39 via the second bevel 59 and the second relief channel 63 into the spring chamber 25, so that the valve member 5 continues the opening stroke movement in a second opening stroke phase.
  • the upper outlet openings 23B of the injection channels 21 are now opened, so that both rows of spray holes and thus the entire injection cross section are opened.
  • the fuel flowing out via the second bevel 59 is throttled in front of the valve 65 in the second relief channel 63.
  • the opening stroke movement of the valve member 5 is ended when the second control edge 61 is passed over on the second bevel 59 over the end face 43 of the valve body 1, the damping chamber 39 now being finally closed hydraulically and thus limiting the opening stroke movement of the valve member.
  • This reaching the maximum opening stroke stop is advantageously damped, the degree of damping on the valve member being dependent on the modulus of elasticity of the fuel.
  • the arrangement according to the invention of a valve in the second relief channel allows the pause between the two opening stroke phases and the second opening stroke phase of the valve member to be set very precisely, with at least one injection taking place between the two operating modes of the injection valve (half injection cross section - total opening cross section).
  • additional hydraulic stops further intermediate positions of the opening stroke position of the valve member are possible.
  • Valve member 67 has a piston rod 77 which is connected to an actuator 79 of a piezo actuator is attached, which is in Supported closing direction of the valve member 67 fixed to the housing.
  • the valve spring 72 acts on the piezo actuator 79, pretensions this and holds the valve member 67 in contact with the Valve seat.
  • the electrical control of the piezo actuator 79 takes place depending on a map of the to be supplied Internal combustion engine and depending on the current point in time Injection, even during an injection process an adjustment is possible.
  • connection between the piezo actuator 79 and the valve member 67, 77 also via transmission elements respectively.
  • the embodiment is controlled Valve member 67 of valve 65 in the second relief channel 63 via a solenoid valve, the rod 77 of the Pressure valve member 67 is connected to an armature 81, or forms part of this.
  • This anchor 81 protrudes a current-carrying coil 83 of the solenoid valve, so that through the controlled change of the adjacent electrical voltage, the position of the armature 81 and thus the Valve member 67 is adjustable.
  • the basic setting of the Valve can be an additional to the valve spring 72 Adjustment spring 85 are made.
  • Embodiments are set Opening time or the closing characteristic at the valve 65 in the second relief channel 63 via the map-dependent Adjustment of the spring preload of the valve spring 72nd
  • this adjustment of the spring pretensioning force takes place by means of a piezo actuator 89 which is inserted above the valve member 67 into the spring chamber of the valve 65 and which is pretensioned by the valve spring 72, the valve spring 72 being over a Shim 91 is supported directly on the piezo actuator 89.
  • a piezo actuator 89 which is inserted above the valve member 67 into the spring chamber of the valve 65 and which is pretensioned by the valve spring 72, the valve spring 72 being over a Shim 91 is supported directly on the piezo actuator 89.
  • the spring preload of the valve spring 72 of the valve 65 is set in the second relief channel 63 by a magnet armature 93, which is axially displaceably guided in a current-carrying coil 95.
  • the piston-shaped armature 93 forms with its valve-side end face a spring support surface on which the valve spring 72 is supported, which on the other hand engages an annular shoulder of the valve member 67.
  • the axial position of the armature 93 and thus the pretensioning force of the valve spring 72 can now be set by varying the electrical voltage of the coil 95
  • Figure 12 shows a seventh embodiment in which the axial adjustment of the spring support surface Valve spring 72 of valve 65 in the second relief channel 63 hydraulically.
  • the spring contact surface is on a piston 97 is provided, on one end face of which Valve spring 72 abuts and the other facing away Front a hydraulic working space 99 limited.
  • This work space 99 is from a control line 101 a hydraulic system with a pressurized one Hydraulic fluid can be filled, with the pressure supply depending on the operating map of the internal combustion engine is adjustable.
  • the axial displacement of the piston 97 and thus the adjustment of the biasing force of the valve spring 72 now takes place through the controlled pressure supply or relieve in work space 99.
  • the eighth exemplary embodiment shown in FIGS. 13 and 14 in two views has, in addition to the previous exemplary embodiments, a further inlet line 103 in the intermediate disk 41, which continuously opens into the damping chamber 39 starting from the spring chamber 25 filled with lower pressure fuel.
  • a check valve 105 which opens in the direction of the damping chamber 39 and whose valve member is designed as a stepped piston 107, is inserted into this inlet line 103.
  • the stepped piston 107 forms with its end face on the spring chamber side a sealing face 109 with which it is held in contact with a valve seat face 113 by a check valve spring 111.
  • the check valve spring 111 is supported in a stationary manner on the valve body 1 and acts on the stepped piston 107 on its end face facing away from the spring chamber 25.
  • the stepped piston 107 is designed such that it plunges into the smaller diameter of a stepped receiving bore 115 with its larger circumferential surface before the system is seated on the valve seat 113, so that the check valve 105 closes before it contacts the valve seat 113.
  • the biasing force of the check valve spring 111 is so small that the stepped piston 107 is only moved when the pressure between the spring chamber 25 and the damping chamber 39 in contact with the valve seat 113.
  • the check valve 105 thus opens as long as the pressure in the damping chamber 39 is lower than the leakage oil pressure in the spring chamber 39, so that a safe filling of the damping chamber 39 and avoiding negative pressure during the closing stroke movement of the valve member 5 of the injection valve is ensured. If there is pressure equalization between the spring chamber 25 and the damping chamber 39, the check valve 105 closes, the stepped piston being pressure-balanced at this point in time.
  • the valve member of the valve 65 in the second relief channel 63 is designed as an escape piston 117.
  • the valve seat of the valve 65 is designed as a conical protuberance 119, against which the evading piston 117 comes into contact with its flat end face in such a way that a residual volume remains in the valve chamber.
  • the evasive piston 117 is sealingly guided on its circumferential surface on the wall of a valve chamber 121 receiving the valve 65 and is acted upon in a known manner by the valve spring 72 in the closing direction, which is supported on an adjusting disk 91.
  • the evasive piston 117 releases an evasive volume in the valve chamber 121, through which the pressure in the damping chamber 39 drops in such a way that the second opening stroke phase can take place on the valve member 5 and the entire injection cross section of the injection valve is opened.
  • the evasive volume is now conveyed back into the damping space 39, so that the refilling of the damping space 39 is supported, with the evasive piston 117 also taking over the function of a check valve.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

Stand der TechnikState of the art

Die Erfindung geht von einem Kraftstoffeinspritzventil für Brennkraftmaschinen nach der Gattung des Patentanspruchs 1 aus. Bei einem derartigen, aus einer früheren deutschen Patentanmeldung mit dem Aktenzeichen DE-196 42 440.2 bekannten Kraftstoffeinspritzventil ist in einer Bohrung des in den Brennraum ragenden Ventilkörpers ein kolbenförmiges Ventilglied entgegen einer Rückstellfeder axial nach außen verschiebbar. Dabei weist das Ventilglied an seinem brennraumseitigen Ende einen aus der Bohrung ragenden, ein Ventilschließglied bildenden Schließkopf auf, der auf seiner dem Ventilkörper zugewandten Seite eine Ventildichtfläche aufweist. Mit dieser Ventildichtfläche wirkt das Ventilglied mit einer an der brennraumseitigen Stirnseite des Ventilkörpers angeordneten Ventilsitzfläche zusammen. Weiterhin sind am Schließkopf des Ventilgliedes zwei übereinander angeordnete Reihen von Einspritzöffnungen vorgesehen, deren Austrittsöffnungen in Schließstellung des Ventilgliedes vom Ventilkörper abgedeckt und beim nach außen gerichteten Öffnungshub nacheinander freigegeben werden. Für eine definierte Aufsteuerung der einzelnen Spritzlochreihen weist das bekannte Kraftstoffeinspritzventil dabei einen den Öffnungshubweg des Ventilgliedes begrenzenden zweistufigen hydraulischen Hubanschlag auf, der als hydraulischer Dämpfungsraum mit zusteuerbarer Entlastung ausgebildet ist. Die Entlascungsleitung ist dabei über zwei Ausnehmungen am Ventilglied mit dem Dämpfungsraum verbindbar, wobei diese Verbindung während der Öffnungshubbewegung des Ventilgliedes nacheinander zusteuerbar ist. Dazu sind die Ausnehmungen beim bekannten Kraftstoffeinspritzventil als zwei Flächenanschliffe am Ventilglied ausgebildet, die mit ihren oberen Enden in den Dämpfungsraum ragen. Dabei bilden die oberen Enden der Anschliffe Steuerkanten, die nacheinander während der Ventilgliedöffnungshubbewegung aus der Uberdeckung mit dem Dämpfungsraum austauchen und von der Wand des Ventilkörpers verschlossen werden. Ein erster Anschliff ist dabei mit seinem unteren Ende ständig mit der Entlastungsleitung verbunden, während der zweite Anschliff mit seiner unteren Begrenzungskante erst nach Durchlaufen einer bestimmten Öffnungshubbewegung in die Überdeckung mit der Entlastungsleitung eintaucht. Auf diese Weise wird beim bekannten Kraftstoffeinspritzventil ein zweistufiges hydraulisches Blockieren des Ventilgliedes erreicht, wobei eine erste Zusteuerposition am Dämpfungsraum dem Aufsteuern der ersten Spritzlochreihe entspricht, während die endgültige hydraulisch blockierte Endlage des Ventilgliedes dem Aufsteuern beider Spritzlochreihen und somit dem Öffnen des gesamten Einspritzquerschnittes entspricht.The invention relates to a fuel injection valve for Internal combustion engines according to the preamble of claim 1 out. In such a case, from an earlier German Patent application with the file number DE-196 42 440.2 known fuel injector is in a bore of the a piston-shaped valve body projecting into the combustion chamber Valve member axially outwards against a return spring displaceable. The valve member points to his end of the combustion chamber protruding from the bore Valve closing member forming the closing head on its a valve sealing surface facing the valve body having. The valve member acts with this valve sealing surface with one on the combustion chamber end face of the valve body arranged valve seat surface together. Farther are two on top of each other on the closing head of the valve member arranged rows of injection openings provided, the Outlet openings in the closed position of the valve member from Valve body covered and when facing outwards Opening stroke are released one after the other. For one defined control of the individual rows of spray holes the known fuel injection valve one Opening stroke of the valve member limiting two-stage hydraulic stroke stop on as hydraulic Damping room is designed with controllable relief. The relief line is on two recesses on Valve member connectable to the damping chamber, these Connection during the opening stroke movement of the valve member can be controlled one after the other. These are the recesses in the known fuel injection valve as two surface grindings formed on the valve member with their upper Project ends into the damping space. The top form Ends of the bevels control edges, one after the other during the valve member opening stroke movement from the overlap with dive out of the damping chamber and from the wall of the valve body be closed. A first touch is here with its lower end constantly with the discharge line connected while the second bevel with its lower Boundary edge only after passing through a certain one Opening stroke movement in the overlap with the relief line dips. In this way, the known Fuel injector a two-stage hydraulic Blocking of the valve member is reached, a first Control position on the damping chamber the opening of the first Row of spray holes corresponds while the final hydraulically blocked end position of the valve member Open both rows of spray holes and thus opening the corresponds to the entire injection cross section.

Dabei weist das bekannte Kraftstoffeinspritzventil jedoch den Nachteil auf, daß die Ausnehmungen am Ventilglied sehr genau gefertigt werden müssen, um über die präzise Anordnung der vielen Steuerkanten ein genaues Aufsteuern der Spritzlochreihen zu gewährleisten. Zudem läßt sich bei dem bekannten Kraftstoffeinspritzventil die einspritzdruckabhängige Blockierung des Ventilgliedes in Zwischenpositionen nicht betriebsbedingt einstellen, was aufwendige geometrische Anpassungsarbeiten der hydraulischen Hubanschläge zur Folge hat. Somit läßt sich die für die sogenannten Varioregisterdüsen notwendige Steuerung eines mehrstufigen Öffnungshubverlaufes des Ventilgliedes in Abhängigkeit vom am Ventil anstehenden Kraftstoffeinspritzdruck fertigungstechnisch nur sehr aufwendig realisieren.However, the known fuel injection valve the disadvantage that the recesses on the valve member very much need to be manufactured exactly to the precise arrangement the precise control of the spray hole rows due to the many control edges to ensure. In addition, the known fuel injection valve the injection pressure dependent Blocking of the valve member in intermediate positions not set operationally, which is expensive Geometric adjustment work of the hydraulic stroke stops has the consequence. Thus, the for so-called vario register nozzles necessary control of a multi-stage opening stroke of the valve member in Dependence on the fuel injection pressure at the valve manufacturing technology only very complex realize.

Vorteile der ErfindungAdvantages of the invention

Das erfindungsgemäße Kraftstoffeinspritzventil für Brennkraftmaschinen mit den kennzeichnenden Merkmalen des Patentanspruchs 1 hat demgegenüber den Vorteil, daß die zweite Öffnungshubphase des Ventilgliedes über ein in die Entlastungsleitung eingesetztes Ventil einstellbar und steuerbar ist. Zudem kann dabei auf eine dritte Steuerkante, die den Beginn der zweiten Öffnungshubphase steuert, verzichtet werden, so daß der Fertigungsaufwand der Ausnehmungen am Ventilglied gegenüber der bekannten Lösung stark verringerbar ist. Dabei bewirkt die Verringerung der Steuerkanten desweiteren ein stabiles Langzeitbetriebsverhalten aufgrund der geringeren Beeinflußbarkeiten infolge geometrischer Ungenauigkeiten an den Steuerausnehmungen. Desweiteren besitzt die erfindungsgemäße Ausgestaltung der Ausnehmungen zudem den Vorteil, daß beide Steuerkanten jeweils am oberen Ende der Ausnehmungen angeordnet sind, und sich somit gut fertigen lassen. Der Zeitpunkt des Beginns der zweiten Öffnungshubphase des Ventilgliedes läßt sich in einfacher Weise durch die Auslegung des Bohrungsdurchmessers der Entlastungsleitung sowie der Ventilausführung, z.B.die Auslegung der Ventilfederstärke des Ventils in der Entlastungsleitung einstellen.
Besonders vorteilhaft ist es jedoch, den Öffnungszeitpunkt bzw. die Schließcharakteristik des vorzugsweise als Druckventil ausgebildeten Ventils in der Entlastungsleitung während des Betriebs des Einspritzventils kennfeldabhängig einstellen zu können, um so die zweite Öffnungshubphase am Ventilglied des Einspritzventils kontinuierlich steuern zu können. Dazu kann das Druckventil in vorteilhafter Weise durch ein elektrisches Stellglied direkt angesteuert werden, das dabei z.B. als Piezo-Aktor ausgebildet sein kann. Eine weitere Alternative dazu ist die direkte Verbindung des Ventilgliedes des Druckventiles mit dem Anker in einer stromdurchflossenen Spule (Magnetventil), wobei die Grundeinstellungen jeweils über eine Feder vornehmbar sind. Desweiteren ist die direkte Steuerung des Druckvencils in der Entlastungsleitung hydraulisch möglich, wobei auf die Rückseite des Druckventils ein geregelter hydraulischer Gegendruck aufgebracht wird, durch den das Druckventil infolge der Druckdifferenz zwischen dem Druck vor dem Druckventil und dem Gegendruck dahinter geöffnet bzw. geschlossen werden kann.
Eine weitere vorteilhafte Einstellmöglichkeit des Ventils in der Entlastungsleitung ist die kennfeldsteuerbare Verstellung der Federvorspannung der Ventilfeder des Druckventils. Dazu kann die Federvorspannung durch eine verstellbare Federauflagefläche kontinuierlich eingestellt werden, die dabei z.B. elektrisch durch einen Piezo-Aktor oder den Anker in einer Magnetspule oder hydraulisch durch einen Kolben eines Arbeitsraumes axial verschiebbar ist.
Um dabei ein sicheres Wiederbefüllen des als Steuerraum wirkenden Dämpfungsraumes mit Kraftstoff während der Schließbewegung des Ventilgliedes des Einspritzventils zu gewährleisten, ist zudem in vorteilhafter Weise ein Rückschlagventil in eine Zulaufleitung des Dämpfungsraumes eingesetzt, die andererseits mit dem Niederdruck-Kraftstoffkreislauf, vorzugsweise dem Federraum des Einspritzventils verbunden ist. Dabei vermeidet dieses Rückschlagventil zudem das Entstehen eines Unterdruckes im Dämpfungsraum und somit Kavitationsschäden und ein unbeabsichtigtes Nachschwingen des Einspritzventilgliedes beim Schließen.
The fuel injection valve for internal combustion engines according to the invention with the characterizing features of claim 1 has the advantage that the second opening stroke phase of the valve member is adjustable and controllable via a valve inserted into the relief line. In addition, a third control edge, which controls the start of the second opening stroke phase, can be dispensed with, so that the manufacturing outlay of the recesses on the valve member can be greatly reduced compared to the known solution. The reduction in the control edges furthermore results in a stable long-term operating behavior due to the lower influenceability as a result of geometric inaccuracies in the control recesses. Furthermore, the configuration of the recesses according to the invention also has the advantage that both control edges are each arranged at the upper end of the recesses and can therefore be easily manufactured. The time of the beginning of the second opening stroke phase of the valve member can be set in a simple manner by designing the bore diameter of the relief line and the valve design, for example the design of the valve spring strength of the valve in the relief line.
However, it is particularly advantageous to be able to adjust the opening time or the closing characteristic of the valve, which is preferably designed as a pressure valve, in the relief line during the operation of the injection valve, in order to be able to continuously control the second opening stroke phase on the valve member of the injection valve. For this purpose, the pressure valve can advantageously be controlled directly by an electrical actuator, which can be designed, for example, as a piezo actuator. Another alternative to this is the direct connection of the valve member of the pressure valve to the armature in a current-carrying coil (solenoid valve), the basic settings being able to be made in each case via a spring. Furthermore, direct control of the pressure valve in the relief line is hydraulically possible, with a regulated hydraulic back pressure being applied to the back of the pressure valve, by means of which the pressure valve can be opened or closed as a result of the pressure difference between the pressure in front of the pressure valve and the back pressure behind it.
Another advantageous setting option of the valve in the relief line is the map-controllable adjustment of the spring preload of the valve spring of the pressure valve. For this purpose, the spring preload can be continuously adjusted by means of an adjustable spring support surface, which can be axially displaced, for example, electrically by a piezo actuator or the armature in a magnetic coil or hydraulically by a piston in a working area.
In order to ensure safe refilling of the damping chamber acting as the control chamber with fuel during the closing movement of the valve member of the injection valve, a check valve is also advantageously used in an inlet line of the damping chamber, which on the other hand is connected to the low-pressure fuel circuit, preferably the spring chamber of the injection valve is. This check valve also avoids the creation of a negative pressure in the damping chamber and thus cavitation damage and unintentional reverberation of the injection valve member when closing.

Eine weitere vorteilhafte alternative Ausbildung des Ventils in der Entlastungsleitung stellt dessen Ausführung als Ausweichkolben dar. Dabei gibt das als Ausweichkolben ausgebildete Ventilglied des Ventils in der Entlastungsleitung bei seiner Öffnungshubbewegung ein definiertes Ausweichvolumen frei, durch das der Druck im Dämpfungsraum des Einspritzventils absinkt und so den zweiten Öffnungshubweg ermöglicht. Dabei hat diese Ausführungsvariante den Vorteil, daß das Steuervolumen beim Schließhub des Einspritzventilgliedes aus dem Ausweichvolumen in einfacher Form wiederbefüllt wird. Zudem kann der Druckabfall im Dämpfungsraum genau begrenzt werden, wodurch beim endgültigen Verschließen des Dämpfungsraumes beim Erreichen der Endhublage des Einspritzventilgliedes der Druck schneller aufgebaut wird, was den Anhalteweg des Ventilgliedes des Einspritzventils verkürzt. Ein weiterer Vorteil dieser Variante besteht darin, daß die Dichtfunktion von Ausweichvolumen zum Leckölraum (z.B. Federraum) durch die Mantelfläche des Ausweichkolbens und von der Entlastungsleitung zum Ausweichvolumen durch einen Kegelsitz gewährleistet wird.Another advantageous alternative embodiment of the valve in the discharge line represents its execution as Alternative pistons. This gives as an alternative piston trained valve member of the valve in the Relief line during its opening stroke movement Defined escape volume through which the pressure in the Damping space of the injection valve drops and so the allows second opening stroke. It has this Design variant the advantage that the control volume when Closing stroke of the injection valve member from the Alternative volume is refilled in a simple form. moreover the pressure drop in the damping chamber can be limited exactly, whereby when the damping space is finally closed when the end stroke position of the injection valve member is reached Pressure builds up faster, which is the stopping distance of the Valve element of the injection valve shortened. Another The advantage of this variant is that the sealing function from the alternative volume to the leak oil chamber (e.g. spring chamber) the outer surface of the evasive piston and of the Relief line to the escape volume through a cone seat is guaranteed.

Ein weiterer Vorteil wird durch die schräge Ausbildung der oberen Enden der Flächenanschliffe im Ventilglied erreicht, die ein allmähliches Absteuern des Öffnungsquerschnittes zum Dämpfungsraum bewirken und somit Druckschwingungen und daraus resultierende Schwingungen am Ventilglied vermeiden. Um für die Erstbefüllung des Dämpfungsraumes Notlaufeigenschaften am Kraftstoffeinspritzventil zu gewährleisten, ist die Ventilfeder blocksicher ausgelegt. Another advantage is the oblique design of the reached the upper ends of the surface grinding in the valve member, which gradually reduces the opening cross-section to Damping space and thus cause pressure vibrations and Avoid resulting vibrations on the valve member. To have emergency running properties for the initial filling of the damping space on the fuel injector the valve spring is designed to be block-proof.

Ein weiterer Vorteil wird durch die Anordnung des Dämpfungsraumes in einer Zwischenscheibe zwischen dem Ventilkörper und einem Ventilhaltekörper erreicht, wodurch die Fertigung bzw. Herstellung des Dämpfungsraumes und Entlastungskanales relativ einfach möglich ist.Another advantage is the arrangement of the damping space in an washer between the valve body and achieved a valve holding body, which makes manufacturing or manufacture of the damping space and relief channel is relatively easy.

Der Dämpfungs- bzw. Steuerraum ist dabei auf seiner der Stirnfläche des Ventilkörpers abgewandten Seite durch einen axial mit dem Ventilglied verschiebbaren Kolben begrenzt, der in vorteilhafter Weise durch einen auf das Ventilglied aufgepressten Dichtring gebildet ist. Dieser auf dem Ventilglied befestigte Dichtring gleitet dabei mit seinem Außenumfang dichtend in einer, den Dämpfungsraum bildenden Bohrung in der Zwischenscheibe. Der Dichtring ist dabei vorteilhafter Weise als zum Dämpfungsraum hin offener U-Dichtring ausgebildet, der vorzugsweise aus einem PTFE-Werkstoff hergestellt ist. In diesen Dichtring ist zudem eine Feder zur Grundabdichtung eingelegt, wobei aufgrund des U-förmigen Hohlprofiles die Abdichtung des Dichtringes gegenüber der Wand der Zwischenscheibe mit steigendem Hydraulikdruck im Dämpfungsraum verstärkt wird. Ein den Dämpfungsraum entlastender Entlastungskanal ist ebenfalls in vorteilhafter Weise in die Zwischenscheibe integriert, wobei zudem das diesen Entlastungskanal steuernde Druckventil in der Zwischenscheibe vorgesehen ist. Dieses Druckventil ist dabei vorzugsweise als Kolbenrückschlagventil ausgebildet, wobei über die Auslegung der Druckventilfeder der Öffnungsdruck bzw. der Aufsteuerzeitpunkt als Beginn der zweiten Ventilgliedöffnungshubphase einstellbar ist. Dabei ist zudem in vorteilhafter Weise eine Drosselstelle dem Druckventil vorgeschaltet. Vorteilhaft wird der Hub des Kolbens im Druckventil auf den minimal nötigen Hub begrenzt und der Kolben zudem aus leichten Materialien hergestellt, um Verschleiß und Schwingungen am Druckventil möglichst niedrig zu halten. The damping or control room is on his End face of the valve body facing away from one piston axially displaceable with the valve member, which advantageously by means of a valve member Pressed sealing ring is formed. This one on the Valve member attached seal slides with his The outer circumference seals in one that forms the damping space Hole in the washer. The sealing ring is there advantageously as open to the damping space U-shaped sealing ring, which is preferably made of a PTFE material is made. In this sealing ring is also a spring is inserted for basic sealing, due to the U-shaped hollow profile sealing the sealing ring towards the wall of the washer with increasing Hydraulic pressure in the damping chamber is increased. A den Damping space relief channel is also in advantageously integrated into the washer, wherein also the pressure valve controlling this relief channel in the washer is provided. This pressure valve is preferably designed as a piston check valve, being about the design of the pressure valve spring Opening pressure or the opening time as the start of the second valve member opening stroke phase is adjustable. there is also a throttle point in an advantageous manner Pressure valve upstream. The stroke of the Piston in the pressure valve limited to the minimum necessary stroke and the piston is also made of light materials, to wear and vibrations on the pressure valve as possible to keep low.

Um eine sichere Verbindung zwischen den Flächenanschliffen und dem Entlastungskanal zu gewährleisten ist es notwendig, das Ventilglied gegen ein selbständiges Verdrehen zu sichern. Diese Verdrehsicherung ist dabei in vorteilhafter Weise in einem gering belasteten Bereich, vorzugsweise zwischen der oberen Ventilgliedführung und der Kraftstoffeinspritzventilfeder oder zwischen dieser Feder und dem Ventilgliedende angeordnet. Dazu weist das Ventilglied Ausnehmungen, vorzugsweise eine gerade Anzahl von Anschliffen auf, die in ein im Ventilkörperhalter angeordnetes Formstück mit komplementären Anformungen eingreift. Dieses Formstück läßt sich einfach bei der Montage des Kraftstoffeinspritzventils an die tatsächliche Lage des Ventilgliedes anpassen und ermöglicht somit einen geringen Abstand zwischen dem Ventilglied und der Drehlagefixierung, so daß eine sehr genaue Führung mit geringem Verschleiß am Ventilglied möglich ist. Dabei ist es besonders vorteilhaft dieses Formstück mit in die Zwischenscheibe zwischen Ventilkörper und Ventilhaltekörper zu integrieren.To ensure a secure connection between the ground bevels and to ensure the relief channel it is necessary the valve member against self-twisting to back up. This anti-rotation device is advantageous Way in a low traffic area, preferably between the upper valve guide and the Fuel injector spring or between this spring and the valve member end arranged. That points to Valve member recesses, preferably an even number of cuts on the one in the valve body holder arranged fitting with complementary formations intervenes. This fitting can be easily with the Assemble the fuel injector to the actual one Adjust the position of the valve member and thus enables one small distance between the valve member and the Rotation fixation, so that a very precise guidance with little wear on the valve member is possible. It is this fitting is particularly advantageous in the washer between the valve body and valve holding body integrate.

Weitere Vorteile und vorteilhafte Ausgestaltungen des Gegenstandes der Erfindung sind der Beschreibung, der Zeichnung und den Patentansprüchen entnehmbar.Further advantages and advantageous configurations of the The invention relates to the description of Drawing and the claims can be found.

Zeichnungdrawing

Neun Ausführungsbeispiele des erfindungsgemäßen Kraftstoffeinspritzventils für Brennkraftmaschinen sind in der Zeichnung dargestellt und werden in der folgenden Beschreibung näher erläutert.Nine embodiments of the invention Fuel injection valves for internal combustion engines are in of the drawing and are shown in the following Description explained in more detail.

Es zeigen die Figuren 1 und 2 ein bekanntes Kraftstoffeinspritzventil der Varioregisterdüsenbauart in verschiedenen Schnittansichten, die Figuren 3 und 4 vergrößerte Ausschnitte aus einem ersten Ausführungsbeispiel des Kraftstoffeinspritzventils gemäß Figur 1 im Bereich des Dämpfungsraumes mit einem Ventil in der Entlastungsleitung, wobei die Schnittdarstellung der Figur 4 um 90° aus der Ebene der Darstellung der Figur 3 gedreht ist, die Figuren 5 und 6 eine Verdrehsicherung am Ventilglied des Kraftstoffeinspritzventils in zwei Ansichten, die Figur 7 ein zweites Ausführungsbeispiel analog zur Darstellung der Figur 3, bei dem das Ventil in der Entlastungsleitung über einen Piezo-Aktor direktgesteuert wird, die Figur 8 ein drittes Ausführungsbeispiel, bei dem das Ventilglied durch ein Magnetventil betätigt wird, die Figur 9 ein viertes Ausführungsbeispiel, bei dem die Öffnung des Ventils in der Entlastungsleitung mittels eines hydraulischen Gegendruckes am Druckventil einstellbar ist, die Figur 10 ein fünftes Ausführungsbeispiel, bei dem die Verstellung der Federvorspannkraft des Ventils in der Entlastungsleitung über einen Piezo-Aktor erfolgt, die Figur 11 ein sechstes Ausführungsbeispiel, bei dem die Verstellung der Federvorspannkraft des Entlastungsventils über einen Magnetanker erfolgt, die Figur 12 ein siebtes Ausführungsbeispiel, bei dem die Verstellung der Federvorspannkraft des Entlastungsventils über einen hydraulischen Stellkolben erfolgt, die Figuren 13 und 14 ein achtes Ausführungsbeispiel in zwei Ansichten, bei dem ein zusätzliches Rückschlagventil in eine Zulaufleitung des Dämpfungsraumes eingesetzt ist und die Figur 15 ein neuntes Ausführungsbeispiel, bei dem das Ventilglied des Ventils in der Entlastungsleitung als Ausweichkolben ausgebildet ist.Figures 1 and 2 show a known fuel injection valve the vario register nozzle design in different Sectional views, the figures 3 and 4 enlarged Excerpts from a first embodiment of the Fuel injection valve according to Figure 1 in the area of Damping chamber with a valve in the relief line, wherein the sectional view of Figure 4 by 90 ° from the 3 is rotated, FIG. 5 and 6 an anti-rotation device on the valve member of the Fuel injection valve in two views, FIG. 7 a second embodiment analogous to the representation of the Figure 3, in which the valve in the relief line over a piezo actuator is directly controlled, the figure 8 a third embodiment in which the valve member by a solenoid valve is actuated, Figure 9 a fourth Embodiment in which the opening of the valve in the Relief line using a hydraulic back pressure is adjustable on the pressure valve, Figure 10 is a fifth Embodiment in which the adjustment of the Spring preload force of the valve in the relief line 11 is a sixth via a piezo actuator Embodiment in which the adjustment of the Spring preload of the relief valve via a Magnetic armature takes place, the figure 12 a seventh Embodiment in which the adjustment of the Spring preload of the relief valve via a hydraulic actuating piston takes place, Figures 13 and 14 eighth embodiment in two views, in which a additional check valve in an inlet line of the Damping space is used and Figure 15 is a ninth Embodiment in which the valve member of the valve in the relief line is designed as an escape piston.

Beschreibung der AusführungsbeispieleDescription of the embodiments

Die Figuren 1 und 2 zeigen ein bekanntes Kraftstoffeinspritzventil der nach außen öffnenden Bauart mit zwei nacheinander aufsteuerbaren Spritzlochreihen (Varioregisterdüse) an der die erfindungsgemäße Steuerung des Ventilgliedhubs realisiert ist.
Dazu weist das Kraftstoffeinspritzventil einen Ventilkörper 1 auf, der mit seinem unteren freien Ende in den Brennraum der zu versorgenden Brennkraftmaschine ragt. Der Ventilkörper 1 weist eine axiale Durchgangsbohrung 3 auf, in der ein kolbenförmiges Ventilglied 5 axial verschiebbar geführt ist. Das Ventilglied 5 weist an seinem unteren brennraumseitigen Ende einen aus der Bohrung 3 ragenden, im Querschnitt vergrößerten Schließkopf 7 auf, der ein Ventilschließglied bildet. Dieser, in der Figur 2 vergrößert dargestellte Schließkopf 7 bildet mit seiner dem Ventilkörper 1 zugewandten Ringstirnfläche eine Ventildichtfläche 9, die dabei mit einer ortsfesten Ventilsitzfläche 11 zusammenwirkt, die an der brennraumseitigen, die Bohrung 3 umgebenden Stirnfläche des Ventilkörpers 1 gebildet ist. Die einen Dichtquerschitt ergebenden Ventildichtfläche 9 und Ventilsitzfläche 11 sind dabei konisch ausgebildet, wobei die Konuswinkel der beiden Kontaktflächen 9, 11 geringfügig voneinander abweichen, so daß eine definierte Dichtkante gebildet wird. Zwischen der Wand der Bohrung 3 und dem Schaft des Ventilgliedes 5 ist ein ringförmiger Druckraum 13 gebildet, der brennraumseitig von einer eine Ringschulter 15 bildenden Durchmessererweiterung des Ventilgliedes 5 an dessen Übergang in den Schließkopf 7 und andererseits durch eine Querschnittserweiterung 17 des Ventilgliedes 5 auf das Maß der Bohrung 3 begrenzt ist. Dieser Druckraum 13 ist über einen Druckkanal 19 mit Kraftstoff hohen Drucks befüllbar, wozu der Druckkanal 19 in nicht näher gezeigter Weise an eine Einspritzleitung einer Einspritzpumpe angeschlossen ist. Von der den Druckraum 13 begrenzenden Ringschulter 15 führen Einspritzkanäle 21 ab, die zunächst als Längsbohrung im Schließkopf 7 des Ventilgliedes 5 ausgebildet sind und von denen dann in Höhe der Dichtkante Steuerbohrungen abführen. Die Austrittsöffnungen 23 (Spritzlöcher) der Einspritzkanäle (21) sind dabei oberhalb der Ventildichtfläche 9 so an der Mantelfläche des Schließkopfes 7 angeordnet, daß sie in Schließstellung des Einspritzventils, also bei am Ventilsitz 11 anliegendem Ventilglied 5 von der Wand der Bohrung 3 abgedeckt sind und erst beim nach außen gerichteten Öffnungshub des Ventilgliedes 5 durch Austauchen aus der Bohrung 3 des Ventilkörpers 1 aufgesteuert werden. Zudem sind vorzugsweise zwei Reihen von in Achsrichtung des Ventilgliedes 5 übereinander angeordnete Reihen (Spritzlochreihen) von Austrittsöffnungen 23 vorgesehen, die während der Ventilgliedöffnungshubbewegung nacheinander aufgesteuert werden.
Alternativ sind anstatt der übereinanderliegenden Spritzlochreihen auch Längsschlitze als Einspritzöffnungen möglich, deren Querschnitt dann analog in wenigstens zwei Stufen aufgesteuert wird.
Das kolbenförmige Ventilglied 5 ragt mit seinem brennraumabgewandten Schaftteil aus dem Ventilkörper 1 in eine, einen Federraum 25 bildende im Querschnitt erweiterte Bohrung in einem Ventilhaltekörper 27, der mittels einer Spannmutter 29 axial gegen den Ventilkörper 1 verspannt ist. Dabei ist eine Ventilschließfeder 31 derart im Federraum 25 eingespannt, daß sie sich mit ihrem brennraumnahen Ende gegen den Ventilkörper 1 abstützt und mit ihrem brennraumfernen Ende auf einen Ventilteller 33 am Ventilglied 5 einwirkt und das Ventilglied 5 so in Anlage gegen den Ventilsitz 11 gepreßt hält. Desweiteren wird der Ventilhaltekörper 27 axial vom Druckkanal 19 durchdrungen, wobei am oberen Ende des Ventilhaltekörpers 27 ein Kraftstofffilter 35 in den Druckkanal 19 eingesetzt ist.
FIGS. 1 and 2 show a known fuel injection valve of the outwardly opening type with two rows of spray holes which can be opened one after the other (vario register nozzle), on which the control of the valve member stroke according to the invention is realized.
For this purpose, the fuel injection valve has a valve body 1, which projects with its lower free end into the combustion chamber of the internal combustion engine to be supplied. The valve body 1 has an axial through bore 3, in which a piston-shaped valve member 5 is axially displaceably guided. At its lower end on the combustion chamber side, the valve member 5 has a closing head 7 protruding from the bore 3 and enlarged in cross section, which forms a valve closing member. This closing head 7, shown enlarged in FIG. 2, forms with its annular end face facing the valve body 1 a valve sealing face 9, which cooperates with a stationary valve seat face 11, which is formed on the end face of the valve body 1 on the combustion chamber side, surrounding the bore 3. The valve sealing surface 9 and the valve seat surface 11 that result in a sealing cross section are conical, the cone angles of the two contact surfaces 9, 11 differing slightly from one another, so that a defined sealing edge is formed. Between the wall of the bore 3 and the stem of the valve member 5, an annular pressure chamber 13 is formed, which on the combustion chamber side is enlarged by a diameter extension of the valve member 5 forming an annular shoulder 15 at its transition into the closing head 7 and on the other hand by a cross-sectional expansion 17 of the valve member 5 the bore 3 is limited. This pressure chamber 13 can be filled with high-pressure fuel via a pressure channel 19, for which purpose the pressure channel 19 is connected in a manner not shown to an injection line of an injection pump. Injection channels 21 lead from the annular shoulder 15 delimiting the pressure chamber 13 and are initially designed as a longitudinal bore in the closing head 7 of the valve member 5 and from which control bores are then discharged at the level of the sealing edge. The outlet openings 23 (injection holes) of the injection channels (21) are arranged above the valve sealing surface 9 on the lateral surface of the closing head 7 in such a way that they are covered by the wall of the bore 3 in the closed position of the injection valve, that is to say when the valve member 5 is in contact with the valve seat 11, and can only be opened during the outward opening stroke of the valve member 5 by emerging from the bore 3 of the valve body 1. In addition, two rows of rows (spray hole rows) of outlet openings 23, which are arranged one above the other in the axial direction of the valve member 5, are preferably provided and are opened in succession during the valve member opening stroke movement.
Alternatively, instead of the rows of spray holes lying one above the other, longitudinal slots are also possible as injection openings, the cross-section of which is then opened analogously in at least two stages.
The piston-shaped valve member 5 protrudes with its stem part facing away from the combustion chamber from the valve body 1 into a bore which forms a spring chamber 25 and is enlarged in cross section in a valve holding body 27 which is clamped axially against the valve body 1 by means of a clamping nut 29. A valve closing spring 31 is clamped in the spring chamber 25 in such a way that it is supported with its end near the combustion chamber against the valve body 1 and acts with its end remote from the combustion chamber on a valve plate 33 on the valve member 5 and thus holds the valve member 5 in contact against the valve seat 11. Furthermore, the valve holding body 27 is axially penetrated by the pressure channel 19, a fuel filter 35 being inserted into the pressure channel 19 at the upper end of the valve holding body 27.

Zur Begrenzung der nach außen gerichteten Öffnungshubbewegung des Ventilgliedes 5 weist das Ventilglied 5 an seinem brennraumabgewandten, aus dem Ventilkörper 1 in den Ventilhaltekörper 27 ragenden Ende einen radial vom Ventilgliedschaft vorstehenden Kolben 37 auf, der einen hydraulischen Dämpfungsraum 39 begrenzt.To limit the outward opening stroke movement of the valve member 5 instructs the valve member 5 its combustion chamber facing away from the valve body 1 in the Valve holding body 27 projecting end radially from Valve member projecting piston 37 on one hydraulic damping space 39 limited.

Dabei ist dieser Dämpfungsraum 39, wie in dem ersten Ausführungsbeispiel in den Figuren 3 und 4 dargestellt, erfindungsgemäß in einer Zwischenscheibe 41 vorgesehen, die axial zwischen einer brennraumfernen Stirnfläche 43 des Ventilkörpers 1 und der brennraumseitigen Stirnfläche des Ventilhaltekörpers 27 eingespannt ist. Die Zwischenscheibe 41 weist einen Teil des Druckkanals 19 in Form einer axialen Durchgangsbohrung auf. Des weiteren weist die Zwischenscheibe 41 eine zentrale Durchgangsöffnung 45 auf, durch die der Schaft des Ventilgliedes 5 hindurch ragt und die radial auswärts den Dämpfungsraum 39 begrenzt. Axial wird der Dämpfungsraum 39 in der Zwischenscheibe 41 einerseits von der Stirnfläche 43 des Ventilkörpers 1 und andererseits vom Ventilgliedkolben 37 begrenzt. Dieser Kolben 37 wird dabei durch einen auf den Schaft des Ventilgliedes 5 aufgepressten Dichtring gebildet, der als zum Dämpfungsraum 39 offener U-Dichtring 47 ausgebildet ist. Dabei ist in diesen U-Dichtring 47 zur Grundabdichtung eine Feder 49 eingelegt.This is the damping space 39, as in the first Embodiment shown in Figures 3 and 4, According to the invention provided in an intermediate plate 41, the axially between a face 43 remote from the combustion chamber Valve body 1 and the end face of the combustion chamber Valve holding body 27 is clamped. The washer 41 has a part of the pressure channel 19 in the form of an axial Through hole on. Furthermore, the Intermediate disc 41 has a central through opening 45, through which the stem of the valve member 5 projects and which limits the damping space 39 radially outward. axial becomes the damping space 39 in the washer 41st on the one hand from the end face 43 of the valve body 1 and on the other hand limited by the valve member piston 37. This Piston 37 is by one on the shaft of the Valve member 5 pressed sealing ring formed as U-sealing ring 47 open to the damping space 39 is formed. There is one in this U-sealing ring 47 for basic sealing Spring 49 inserted.

Das Befüllen und Entlasten des Dämpfungsraumes 39 erfolgt über die in den Figuren 3 und 4 dargestellten Kraftstoffkanäle, die an den Niederdruckkreislauf des Einspritzsystems angeschlossen sind und zu deren Erläuterung das Kraftstoffeinspritzventil in der Figur 4 gegenüber der Darstellung in der Figur 3 um 90° gedreht ist.The damping chamber 39 is filled and relieved via the fuel channels shown in FIGS. 3 and 4, to the low pressure circuit of the injection system are connected and the fuel injector to explain them in Figure 4 compared to the representation in 3 is rotated by 90 °.

Das Befüllen und Entlasten des Dämpfungsraumes 39 erfolgt über zwei Anschliffe am Ventilglied 5, die den Dämpfungsraum 39 über Entlastungskanäle mit einem Niederdruckraum, vorzugsweise dem Kraftstoffgefüllten Federraum 25 verbinden. The damping chamber 39 is filled and relieved via two cuts on the valve member 5, which the damping space 39 via relief channels with a low pressure chamber, preferably connect the fuel-filled spring chamber 25.

Dabei ist ein erster Anschliff 51 am Ventilglied 5 so angeordnet, daß er bei geschlossenem Einspritzventil, d.h. bei am Ventilsitz 11 anliegendem Ventilglied 5 mit seinem oberen Ende in den Dämpfungsraum 39 hineinragt, während sein unteres Ende in eine Ringnut 53 am Ventilglied 5 einmündet. Diese Ringnut 53 überstreicht wie in der Figur 4 genauer dargestellt die Mündung eines ersten Entlastungskanals 55, der den Ventilkörper 1, die Zwischenscheibe 41 und den Ventilhaltekörper 27 durchdringend in den Federraum 25 einmündet. Das obere brennraumferne Ende des ersten Anschliffs 51 bildet dabei mit seiner oberen Begrenzungskante eine erste Steuerkante 57, die mit der Stirnfläche 43 des Ventilkörpers 1 zusammenwirkt. Dabei entspricht das Überfahren der ersten Steuerkante 57 über die Stirnfläche 43 einer Ventilgliedöffnungshubposition, bei der die unten liegende erste Spritzlochreihe aufgesteuert ist, so daß der Abstand der Steuerkante 57 zur Stirnfläche 43 einem ersten Öffnungshubweg in einer ersten Öffnungshubphase des Ventilgliedes 5 entspricht. Um dabei Schwingungen im System vermeiden zu können läuft der erste Anschliff 51 in Richtung erster Steuerkante 57 schräg aus. Versetzt zum ersten Anschliff 51 weist das Ventilglied 5 einen zweiten Anschliff 59 auf, dessen obere brennraumferne Begrenzungskante eine zweite Steuerkante 61 bildet. Mit seinem unteren, dem Brennraum der zu versorgenden Brennkraftmaschine zugewandten Ende überdeckt der zweite Anschliff 59 ständig die Mündung eines zweiten Entlastungskanals 63, der sich ebenfalls durch den Ventilkörper 1, die Zwischenscheibe 41 und den Ventilhaltekörper 27 bis den Federraum 25 erstreckt. Dabei weist die zweite Steuerkante 61 einen größeren Abstand zur Stirnfläche 43 des Ventilkörpers 1 auf als die erste Steuerkante 57. Das Überfahren der zweiten Steuerkante 61 über die Stirnfläche 43 entspricht dabei der Öffnungshublage des Ventilgliedes 5, bei der beide Spritzlochreihen am Einspritzquerschnitt aufgesteuert sind, wobei nach Überfahren der zweiten Steuerkante 61 über die Stirnfläche 43 der Dämpfungsraum 39 endgültig hydraulisch verschlossen wird und somit die maximale Öffnungshublage des Ventilgliedes bestimmt. Zur Einstellung der sich an die erste Öffnungshubphase und eine Zwischenverzögerung anschließenden zweiten Öffnungshubphase ist ein Ventil 65 in die zweite Entlastungsleitung 63 eingesetzt, das im ersten Ausführungsbeispiel als Rückschlagventil ausgebildet ist. Dieses in den in der Zwischenscheibe 41 verlaufenden Teil des zweiten Entlastungskanals 63 eingesetzte Ventil 65 weist dabei ein axial verschiebbares, kolbenförmiges Ventilglied 67 auf, das an seinem dem zweiten Anschliff 59 zugewandten Ende eine konische Dichtfläche 69 aufweist, mit der es mit einer Ventilsitzfläche 71 zusammenwirkt. Auf die Rückseite des Ventilgliedes 67 wirkt dabei eine Ventilfeder 72, die sich andererseits am Ventilhaltekörper 27 ortsfest abstützt und über deren Auslegung der Öffnungsdruck am Ventil 65 einstellbar ist. Dabei läßt sich über den Öffnungsdruck am Ventil 65 der Zeitpunkt einstellen, zu dem die zweite Öffnungshubphase am Ventilglied 5 beginnen soll, in deren Verlauf der vollständige Öffnungsquerschnitt am Einspritzventil aufgesteuert wird. Desweiteren ist der zweite Entlastungskanal 63 zwischen dem Ventil 65 und dem zweiten Anschliff 59 wenigstens zum Teil als Drosselquerschnitt ausgebildet.A first bevel 51 on valve member 5 is like this arranged so that when the injector is closed, i.e. with valve member 5 resting on the valve seat 11 with its protrudes into the damping space 39 while its lower end opens into an annular groove 53 on the valve member 5. This annular groove 53 sweeps more precisely as in FIG. 4 shown the mouth of a first relief channel 55, the valve body 1, the intermediate plate 41 and the Valve holding body 27 penetrating into the spring chamber 25 opens. The upper end of the first, away from the combustion chamber Bevel 51 forms with its upper boundary edge a first control edge 57, which is connected to the end face 43 of the valve body 1 cooperates. This corresponds to Driving over the first control edge 57 over the end face 43 a valve member opening stroke position at which the bottom lying first spray hole row is opened so that the Distance of the control edge 57 to the end face 43 a first Opening stroke in a first opening stroke phase of the Valve member 5 corresponds. To avoid vibrations in the system To avoid the first bevel 51 runs in the direction first control edge 57 obliquely. Moved to the first Bevel 51, the valve member 5 has a second bevel 59 on, whose upper combustion chamber distant boundary edge forms second control edge 61. With his lower, the Combustion chamber facing the internal combustion engine to be supplied In the end, the second bevel 59 continuously covers the mouth a second relief channel 63, which is also characterized by the valve body 1, the washer 41 and the Valve holding body 27 extends to the spring chamber 25. there the second control edge 61 has a greater distance from it Face 43 of the valve body 1 than the first Control edge 57. Driving over the second control edge 61 over the end face 43 corresponds to the opening stroke position of the valve member 5, in which both rows of spray holes on Injection cross-section are controlled, whereby after Driving over the second control edge 61 over the end face 43 the damping chamber 39 is finally closed hydraulically and thus the maximum opening stroke position of the valve member certainly. To adjust to the first Opening stroke phase and an intermediate delay afterwards second opening stroke phase is a valve 65 in the second Relief line 63 used in the first Embodiment is designed as a check valve. This in the part running in the intermediate disc 41 of the second relief channel 63 has inserted valve 65 an axially displaceable, piston-shaped valve member 67 on that facing the second bevel 59 End has a conical sealing surface 69 with which it a valve seat surface 71 cooperates. On the back the valve member 67 acts a valve spring 72 which on the other hand is supported on the valve holding body 27 in a stationary manner and the design of the opening pressure at valve 65 is adjustable. You can use the opening pressure on Set valve 65 to the time at which the second Opening stroke phase should begin on the valve member 5, in the Course of the full opening cross section at the injection valve is controlled. Furthermore, the second one Relief channel 63 between the valve 65 and the second Ground section 59 at least partially as a throttle cross section educated.

Um ein selbständiges Verdrehen des Ventilgliedes 5 zu vermeiden und somit die Verbindung zwischen den Anschliffen 51, 59 und der Eintrittsöffnung zu den Entlastungskanälen 55, 63 sicher zu gewährleisten ist am Ventilglied 5 zudem eine Verdrehsicherung vorgesehen. Diese Verdrehsicherung ist dabei wie in den beiden Ansichten in den Figuren 5 und 6 dargestellt, als Profilanformung 73 am Ventilglied 5 ausgebildet, mit der das Ventilglied 5 in eine dazu komplementäre Ausnehmung 75 in der Zwischenscheibe 41 ragt. To turn the valve member 5 independently avoid and thus the connection between the bevels 51, 59 and the inlet opening to the relief channels 55, 63 must also be reliably ensured on valve member 5 an anti-rotation device is provided. This anti-rotation is here as in the two views in FIGS. 5 and 6 shown, as a profile 73 on the valve member 5 formed with which the valve member 5 in a complementary recess 75 protrudes in the intermediate plate 41.

Das erfindungsgemäße Kraftstoffeinspritzventil arbeitet in folgender Weise. In Schließlage des Einspritzventils hält die Ventilfeder 31 das Ventilglied 5 mit seiner Ventildichtfläche 9 in Anlage am Ventilsitz 11, der den Dämpfungsraum 39 begrenzende Kolben 37 ist in seiner Ausgangslage und der Dämpfungsraum 39 ist über den ersten Anschliff 51, die Ringnut 53 und den ersten Entlastungskanal 55 mit dem kraftstoffgefüllten Federraum 25 (Niederdruckraum) verbunden und von diesem mit Kraftstoff gefüllt, der als hydraulische Arbeitsflüssigkeit dient.The fuel injection valve according to the invention works in following way. Holds in the injector closed position the valve spring 31, the valve member 5 with its valve sealing surface 9 in contact with the valve seat 11, the damping space 39 limiting piston 37 is in its starting position and Damping chamber 39 is over the first bevel 51, the Annular groove 53 and the first relief channel 55 with the fuel-filled spring chamber 25 (low pressure chamber) connected and filled with this by fuel, which is called hydraulic Working fluid is used.

Mit Beginn der Einspritzung gelangt unter hohem Druck stehender Kraftstoff über den Druckkanal 19 in den Druckraum 13, wo er in bekannter Weise das Ventilglied 5 an der Ringschulter 15 in Öffnungsrichtung beaufschlagt. Ab Erreichen eines bestimmten Einspritzdruckes im Druckraum 13 übersteigt die am Ventilglied 5 angreifende Druckkraft des Kraftstoffes die Rückstellkraft der Ventilfeder 31 und das Ventilglied 5 hebt nach außen vom Ventilsitz 11 ab. Dabei werden bereits nach einem kurzen Leerhub des Ventilgliedes 5 die Austrittsöffnungen 23A der unteren Spritzlochreihe der Einspritzkanäle 21 freigegeben, so daß der Kraftstoff in den Brennraum der zu versorgenden Brennkraftmaschine eingespritzt wird. Diese erste Öffnungshubphase wird durch das Überfahren der ersten Steuerkante 57 am ersten Anschliff 51 über die Stirnfläche 43 des Ventilkörpers 1 beendet, wobei mit dem vollständigen Eintauchen des ersten Anschliffes 51 in den Ventilkörper 1 der Dämpfungsraum 39 kurzzeitig verschlossen wird und dabei als hydraulischer Dämpfer wirkt, der eine weitere Öffnungshubbewegung des Ventilgliedes 5 blockiert. In dieser, einen Teilöffnungsquerschnitt am Einspritzventil aufsteuernden Position verharrt das Ventilglied 5 in einer ersten Betriebsart des Einspritzventils, die dem Leerlaufbereich und einem Teillastbereich der zu versorgenden Brennkraftmaschine entspricht.
Soll bei höherer Last oder Drehzahl der Brennkraftmaschine der gesamte Öffnungsquerschnitt am Einspritzventil aufgesteuert werden, wird die zweite Betriebsart am Einspritzventil gewählt. In diesem Fall verharrt das Ventilglied 5 nur kurzzeitig in der Zwischenposition bei gleichzeitig weiter ansteigendem Kraftstoffeinspritzdruck im Druckraum 13 des Einspritzventils.
Mit Überschreiten eines zweiten Öffnungsdruckgrenzwertes im Druckraum 13 übersteigt die an der Ringschulter 15 in Öffnungsrichtung am Ventilglied 5 angreifende Kraft bzw. proportional dazu der Druck im Dämpfungsraum 39 die Zuhaltekraft am Ventil 65 im zweiten Entlastungskanal 63, der bisher ständig mit dem Dämpfungsraum 39 verbunden ist. Mit dem Öffnen des Ventils 65 entlastet sich erneut ein Teil des Druckmittels aus dem Dämpfungsraum 39 über den zweiten Anschliff 59 und den zweiten Entlastungskanal 63 in den Federraum 25, so daß das Ventilglied 5 die Öffnungshubbewegung in einer zweiten Öffnungshubphase fortsetzt. Dabei werden nunmehr die oberen Austrittsöffnungen 23B der Einspritzkanäle 21 aufgesteuert, so daß nun beide Spritzlochreihen und somit der gesamte Einspritzquerschnitt aufgesteuert sind. Um diese zweite Öffnungshubphase dabei genauer steuern zu können wird der über den zweiten Anschliff 59 abströmende Kraftstoff vor dem Ventil 65 im zweiten Entlastungskanal 63 gedrosselt.
Die Öffnungshubbewegung des Ventilgliedes 5 wird mit dem Überfahren der zweiten Steuerkante 61 am zweiten Anschliff 59 über die Stirnfläche 43 des Ventilkörpers 1 beendet, wobei der Dämpfungsraum 39 nunmehr endgültig hydraulisch verschlossen ist und somit die Öffnungshubbewegung des Ventilgliedes begrenzt. Dabei erfolgt dieses Erreichen des maximalen Öffnungshubanschlages in vorteilhafter Weise gedämpft, wobei der Grad der Dämpfung am Ventilglied vom E-Modul des Kraftstoffes abhängig ist.
At the start of the injection, fuel under high pressure passes through the pressure channel 19 into the pressure chamber 13, where it acts in a known manner on the valve member 5 on the annular shoulder 15 in the opening direction. When a certain injection pressure in the pressure chamber 13 is reached, the pressure force of the fuel acting on the valve member 5 exceeds the restoring force of the valve spring 31 and the valve member 5 lifts outwards from the valve seat 11. After a short idle stroke of the valve member 5, the outlet openings 23A of the lower row of injection holes in the injection channels 21 are released, so that the fuel is injected into the combustion chamber of the internal combustion engine to be supplied. This first opening stroke phase is ended by driving over the first control edge 57 on the first bevel 51 over the end face 43 of the valve body 1, the damping chamber 39 being closed briefly when the first bevel 51 is completely immersed in the valve body 1 and thereby acting as a hydraulic damper, which blocks a further opening stroke movement of the valve member 5. In this position, which opens a partial opening cross section on the injection valve, the valve member 5 remains in a first operating mode of the injection valve, which corresponds to the idling range and a partial load range of the internal combustion engine to be supplied.
If the entire opening cross-section on the injection valve is to be opened at higher load or speed of the internal combustion engine, the second operating mode is selected on the injection valve. In this case, the valve member 5 remains only briefly in the intermediate position with a simultaneously increasing fuel injection pressure in the pressure chamber 13 of the injection valve.
When a second opening pressure limit value in the pressure chamber 13 is exceeded, the force acting on the annular shoulder 15 in the opening direction on the valve member 5 or, proportionally, the pressure in the damping chamber 39 exceeds the locking force on the valve 65 in the second relief channel 63, which was previously constantly connected to the damping chamber 39. When the valve 65 is opened, part of the pressure medium is relieved again from the damping chamber 39 via the second bevel 59 and the second relief channel 63 into the spring chamber 25, so that the valve member 5 continues the opening stroke movement in a second opening stroke phase. The upper outlet openings 23B of the injection channels 21 are now opened, so that both rows of spray holes and thus the entire injection cross section are opened. In order to be able to control this second opening stroke phase more precisely, the fuel flowing out via the second bevel 59 is throttled in front of the valve 65 in the second relief channel 63.
The opening stroke movement of the valve member 5 is ended when the second control edge 61 is passed over on the second bevel 59 over the end face 43 of the valve body 1, the damping chamber 39 now being finally closed hydraulically and thus limiting the opening stroke movement of the valve member. This reaching the maximum opening stroke stop is advantageously damped, the degree of damping on the valve member being dependent on the modulus of elasticity of the fuel.

Beim sich nach Beendigung der Kraftstoffhochdruckzufuhr anschließenden Schließhub des Ventilgliedes 5 tauchen die Anschliffe 51 und 59 erneut in die Überdeckung mit dem Dämpfungsraum 39 ein, so daß dieser über den ersten Anschliff 51 und den ersten Entlastungskanal 55 erneut mit Kraftstoff aus dem Federraum 25 befüllt wird.When you stop after the high pressure fuel supply Subsequent closing stroke of the valve member 5 dip Grinds 51 and 59 again in the overlap with the Damping space 39, so that this over the first Grind 51 and the first relief channel 55 again Fuel from the spring chamber 25 is filled.

Dabei läßt sich mit der erfindungsgemäßen Anordnung eines Ventils im zweiten Entlastungskanal das Verharren zwischen den beiden Öffnungshubphasen und die zweite Öffnungshubphase des Ventilgliedes sehr genau einstellen, wobei zwischen den beiden Betriebsarten des Einspritzventiles (halber Einspritzquerschnitt - gesamter Öffnungsquerschnitt) wenigstens eine Einspritzung erfolgt.
Alternativ sind dabei über das Vorsehen weiterer hydraulischer Anschläge weitere Zwischenpositionen der Öffnungshublage des Ventilgliedes möglich.
The arrangement according to the invention of a valve in the second relief channel allows the pause between the two opening stroke phases and the second opening stroke phase of the valve member to be set very precisely, with at least one injection taking place between the two operating modes of the injection valve (half injection cross section - total opening cross section).
Alternatively, by providing additional hydraulic stops, further intermediate positions of the opening stroke position of the valve member are possible.

Das in der Figur 7 analog zur Darstellung der Figur 3 gezeigte zweite Ausführungsbeispiel unterscheidet sich zum ersten Ausführungsbeispiel durch die direkte Steuerung des Ventils 65 im Entlastungskanal 63. Dabei weist das Ventilglied 67 eine Kolbenstange 77 auf, die an einem Aktor 79 eines Piezo-Stellers befestigt ist, der sich in Schließrichtung des Ventilgliedes 67 gehäusefest abstützt. Die Ventilfeder 72 wirkt dabei auf den Piezo-Aktor 79, spannt diesen vor und hält das Ventilglied 67 in Anlage am Ventilsitz. Die elektrische Ansteuerung des Piezo-Aktors 79 erfolgt in Abhängigkeit eines Kennfeldes der zu versorgenden Brennkraftmaschine und abhängig vom momentanen Zeitpunkt der Einspritzung, wobei auch während eines Einspritzvorganges eine Verstellung möglich ist. That in FIG. 7 analogous to the representation in FIG. 3 shown second embodiment differs from first embodiment by direct control of the Valve 65 in the relief channel 63 Valve member 67 has a piston rod 77 which is connected to an actuator 79 of a piezo actuator is attached, which is in Supported closing direction of the valve member 67 fixed to the housing. The valve spring 72 acts on the piezo actuator 79, pretensions this and holds the valve member 67 in contact with the Valve seat. The electrical control of the piezo actuator 79 takes place depending on a map of the to be supplied Internal combustion engine and depending on the current point in time Injection, even during an injection process an adjustment is possible.

Dabei kann die Verbindung zwischen dem Piezo-Aktor 79 und dem Ventilglied 67, 77 auch über Übertragungselemente erfolgen.The connection between the piezo actuator 79 and the valve member 67, 77 also via transmission elements respectively.

Bei dem in der Figur 8 dargestellten dritten Ausführungsbeispiel erfolgt die Ansteuerung des Ventilgliedes 67 des Ventils 65 im zweiten Entlastungskanal 63 über ein Magnetventil, wobei die Stange 77 des Druckventilgliedes 67 mit einem Anker 81 verbunden ist, bzw. einen Teil von diesem bildet. Dieser Anker 81 ragt dabei in eine stromdurchflossene Spule 83 des Magnetventils, so daß durch die gesteuerte Veränderung der anliegenden elektrischen Spannung die Lage des Ankers 81 und somit des Ventilgliedes 67 einstellbar ist. Die Grundeinstellung des Ventils kann dabei durch eine zur Ventilfeder 72 zusätzliche Einstellfeder 85 vorgenommen werden.In the third shown in Figure 8 The embodiment is controlled Valve member 67 of valve 65 in the second relief channel 63 via a solenoid valve, the rod 77 of the Pressure valve member 67 is connected to an armature 81, or forms part of this. This anchor 81 protrudes a current-carrying coil 83 of the solenoid valve, so that through the controlled change of the adjacent electrical voltage, the position of the armature 81 and thus the Valve member 67 is adjustable. The basic setting of the Valve can be an additional to the valve spring 72 Adjustment spring 85 are made.

Bei dem in der Figur 9 dargestellten vierten Ausführungsbeispiel des erfindungsgemäßen Kraftstoffeinspritzventils erfolgt die Einstellung des Ventils 65 im zweiten Entlastungskanal 63 durch das Anlegen eines einstellbaren hydraulischen Gegendrucks an der federseitigen Rückseite des Ventilgliedes 67. Dabei wird dieser, dem Druck im Dämpfungsraum 39 entgegenwirkende Druck in nicht näher dargestellter Weise in einem zusätzlichen Hydrauliksystem aufgebaut und dem Ventil 65 über die Steuerleitung 87 zugeführt. Die Öffnungsbewegung des Ventilgliedes 67 ist somit durch die Druckdifferenz zwischen dem Dämpfungsraum 39 und dem Gegendruck in der Steuerleitung 87 zusätzlich zur Kraft der Ventilfeder 72 einstellbar.In the fourth shown in Figure 9 Embodiment of the invention The fuel injector is adjusted Valve 65 in the second relief channel 63 by the application an adjustable hydraulic back pressure on the spring-side rear side of the valve member 67 this, counteracting the pressure in the damping chamber 39 in a manner not shown in an additional Hydraulic system built and the valve 65 via the Control line 87 supplied. The opening movement of the Valve member 67 is thus between the pressure difference the damping chamber 39 and the back pressure in the control line 87 adjustable in addition to the force of the valve spring 72.

Bei den in den Figuren 10 bis 12 dargestellten Ausführungsbeispielen erfolgt die Einstellung des Öffnungszeitpunktes bzw. der Schließcharakteristik am Ventil 65 im zweiten Entlastungskanal 63 über die Kennfeldabhängige Verstellung der Federvorspannkraft der Ventilfeder 72.In those shown in Figures 10 to 12 Embodiments are set Opening time or the closing characteristic at the valve 65 in the second relief channel 63 via the map-dependent Adjustment of the spring preload of the valve spring 72nd

Dabei erfolgt diese Verstellung der Federvorspannkraft bei einem in der Figur 10 gezeigten fünften Ausführungsbeispiel mittels eines Piezo-Aktors 89 der oberhalb des Ventilgliedes 67 in den Federraum des Ventils 65 eingesetzt ist und der durch die Ventilfeder 72 vorgespannt ist, wobei sich die Ventilfeder 72 über eine Einstellscheibe 91 direkt am Piezo-Aktor 89 abstützt.
Durch eine entsprechend gesteuerte Bestromung des Piezo-Aktors 89 kann nun dessen axiale Ausdehnung und somit die Federvorspannkraft der Ventilfeder 72 eingestellt werden.
In this case, in a fifth exemplary embodiment shown in FIG. 10, this adjustment of the spring pretensioning force takes place by means of a piezo actuator 89 which is inserted above the valve member 67 into the spring chamber of the valve 65 and which is pretensioned by the valve spring 72, the valve spring 72 being over a Shim 91 is supported directly on the piezo actuator 89.
By means of a correspondingly controlled energization of the piezo actuator 89, its axial extension and thus the spring preload force of the valve spring 72 can now be set.

Bei dem in der Figur 11 gezeigten sechsten Ausführungsbeispiel erfolgt die Einstellung der Federvorspannung der Ventilfeder 72 des Ventils 65 im zweiten Entlastungskanal 63 durch einen Magnetanker 93, der in einer stromdurchflossenen Spule 95 axial verschiebbar geführt ist. Dabei bildet der kolbenförmige Anker 93 mit seiner ventilseitigen Stirnfläche eine Federauflagefläche, an der sich die Ventilfeder 72 abstützt, die andererseits an einem Ringabsatz des Ventilgliedes 67 angreift.
Durch die Variation der elektrischen Spannung der Spule 95 kann nunmehr die axiale Lage des Ankers 93 und somit die Vorspannkraft der Ventilfeder 72 eingestellt werden
In the sixth exemplary embodiment shown in FIG. 11, the spring preload of the valve spring 72 of the valve 65 is set in the second relief channel 63 by a magnet armature 93, which is axially displaceably guided in a current-carrying coil 95. In this case, the piston-shaped armature 93 forms with its valve-side end face a spring support surface on which the valve spring 72 is supported, which on the other hand engages an annular shoulder of the valve member 67.
The axial position of the armature 93 and thus the pretensioning force of the valve spring 72 can now be set by varying the electrical voltage of the coil 95

Die Figur 12 zeigt ein siebtes Ausführungsbeispiel, bei dem die axiale Verstellung der Federauflagefläche der Ventilfeder 72 des Ventils 65 im zweiten Entlastungskanal 63 hydraulisch erfolgt. Dazu ist die Federauflagefläche an einem Kolben 97 vorgesehen, an dessen einen Stirnfläche die Ventilfeder 72 anliegt und dessen andere abgewandte Stirnseite einen hydraulischen Arbeitsraum 99 begrenzt. Dieser Arbeitsraum 99 ist über eine Steuerleitung 101 aus einem Hydrauliksystem mit einer unter Druck stehenden Hydraulikflüssigkeit befüllbar, wobei die Druckzufuhr dabei in Abhängigkeit vom Betriebskennfeld der Brennkraftmaschine einstellbar ist. Die axiale Verstellung des Kolbens 97 und damit die Verstellung der Vorspannkraft der Ventilfeder 72 erfolgt nun durch das gesteuerte Druckzuführen- oder entlasten in den Arbeitsraum 99.Figure 12 shows a seventh embodiment in which the axial adjustment of the spring support surface Valve spring 72 of valve 65 in the second relief channel 63 hydraulically. The spring contact surface is on a piston 97 is provided, on one end face of which Valve spring 72 abuts and the other facing away Front a hydraulic working space 99 limited. This work space 99 is from a control line 101 a hydraulic system with a pressurized one Hydraulic fluid can be filled, with the pressure supply depending on the operating map of the internal combustion engine is adjustable. The axial displacement of the piston 97 and thus the adjustment of the biasing force of the valve spring 72 now takes place through the controlled pressure supply or relieve in work space 99.

Das in den Figuren 13 und 14 in zwei Ansichten dargestellte achte Ausführungsbeispiel weist zusätzlich zu den vorherigen Ausführungsbeispielen eine weitere Zulaufleitung 103 in der Zwischenscheibe 41 auf, die ausgehend vom mit Kraftstoff niederen Drucks gefüllten Federraum 25 ständig in den Dämpfungsraum 39 mündet. In diese Zulaufleitung 103 ist ein in Richtung Dämpfungsraum 39 öffnendes Rückschlagventil 105 eingesetzt, dessen Ventilglied als Stufenkolben 107 ausgebildet ist. Dabei bildet der Stufenkolben 107 mit seiner federraumseitigen Stirnfläche eine Dichtfläche 109, mit der er durch eine Rückschlagventilfeder 111 in Anlage an einer Ventilsitzfläche 113 gehalten wird. Die Rückschlagventilfeder 111 stützt sich ortsfest am Ventilkörper 1 ab und beaufschlagt den Stufenkolben 107 an seiner dem Federraum 25 abgewandten Stirnseite. Dabei ist der Stufenkolben 107 so ausgelegt, daß er bereits vor der Anlage an den Ventilsitz 113 mit seiner größeren Umfangsfläche dichtend in den kleineren Durchmesser einer gestuften Aufnahmebohrung 115 eintaucht, so daß das Rückschlagventil 105 bereits vor Anlage am Ventilsitz 113 schließt. Dabei ist die Vorspannkraft der Rückschlagventilfeder 111 so klein ausgeführt, daß der Stufenkolben 107 erst bei einem Druckausgleich zwischen dem Federraum 25 und dem Dämpfungsraum 39 in Anlage an den Ventilsitz 113 verschoben wird.
Das Rückschlagventil 105 öffnet somit solange der Druck im Dämpfungsraum 39 geringer ist als der Lecköldruck im Federraum 39, so daß eine sichere Befüllung des Dämpfungsraumes 39 und ein Vermeiden von Unterdruck während der Schließhubbewegung des Ventilgliedes 5 des Einspritzventils gewährleistet ist. Ist ein Druckausgleich zwischen dem Federraum 25 und dem Dämpfungsraum 39 gegeben, schließt das Rückschlagventil 105, wobei der Stufenkolben zu diesem Zeitpunkt druckausgeglichen ist.
The eighth exemplary embodiment shown in FIGS. 13 and 14 in two views has, in addition to the previous exemplary embodiments, a further inlet line 103 in the intermediate disk 41, which continuously opens into the damping chamber 39 starting from the spring chamber 25 filled with lower pressure fuel. A check valve 105, which opens in the direction of the damping chamber 39 and whose valve member is designed as a stepped piston 107, is inserted into this inlet line 103. The stepped piston 107 forms with its end face on the spring chamber side a sealing face 109 with which it is held in contact with a valve seat face 113 by a check valve spring 111. The check valve spring 111 is supported in a stationary manner on the valve body 1 and acts on the stepped piston 107 on its end face facing away from the spring chamber 25. The stepped piston 107 is designed such that it plunges into the smaller diameter of a stepped receiving bore 115 with its larger circumferential surface before the system is seated on the valve seat 113, so that the check valve 105 closes before it contacts the valve seat 113. The biasing force of the check valve spring 111 is so small that the stepped piston 107 is only moved when the pressure between the spring chamber 25 and the damping chamber 39 in contact with the valve seat 113.
The check valve 105 thus opens as long as the pressure in the damping chamber 39 is lower than the leakage oil pressure in the spring chamber 39, so that a safe filling of the damping chamber 39 and avoiding negative pressure during the closing stroke movement of the valve member 5 of the injection valve is ensured. If there is pressure equalization between the spring chamber 25 and the damping chamber 39, the check valve 105 closes, the stepped piston being pressure-balanced at this point in time.

Bei dem in der Figur 15 dargestellten neunten Ausführungsbeispiel ist das Ventilglied des Ventils 65 im zweiten Entlastungskanal 63 als Ausweichkolben 117 ausgebildet. Dazu ist der Ventilsitz des Ventils 65 als kegelförmige Aufstülpung 119 ausgebildet, an der der Ausweichkolben 117 mit seiner planen Stirnfläche derart zur Anlage gelangt, daß ein Restvolumen im Ventilraum verbleibt. Der Ausweichkolben 117 ist dabei an seiner Umfangsfläche dichtend an der Wand eines das Ventil 65 aufnehmenden Ventilraumes 121 geführt und wird in bekannter Weise von der Ventilfeder 72 in Schließrichtung beaufschlagt, die sich an einer Einstellscheibe 91 abstützt.
Der Ausweichkolben 117 gibt dabei beim Öffnen des Ventils 65 ein Ausweichvolumen im Ventilraum 121 frei, durch das der Druck im Dämpfungsraum 39 derart absinkt, daß die zweite Öffnungshubphase am Ventilglied 5 erfolgen kann und der gesamte Einspritzquerschnitt des Einspritzventils aufgesteuert wird.
Bei der Rückstellbewegung des Ventilgliedes 5 und dem Schließen des Ventils 65 wird nun das Ausweichvolumen in den Dämpfungsraum 39 zurückgefördert, so daß die Wiederbefüllung des Dämpfungsraumes 39 unterstützt wird, wobei der Ausweichkolben 117 dabei auch die Funktion eines Rückschlagventils übernimmt.
In the ninth exemplary embodiment shown in FIG. 15, the valve member of the valve 65 in the second relief channel 63 is designed as an escape piston 117. For this purpose, the valve seat of the valve 65 is designed as a conical protuberance 119, against which the evading piston 117 comes into contact with its flat end face in such a way that a residual volume remains in the valve chamber. The evasive piston 117 is sealingly guided on its circumferential surface on the wall of a valve chamber 121 receiving the valve 65 and is acted upon in a known manner by the valve spring 72 in the closing direction, which is supported on an adjusting disk 91.
When the valve 65 opens, the evasive piston 117 releases an evasive volume in the valve chamber 121, through which the pressure in the damping chamber 39 drops in such a way that the second opening stroke phase can take place on the valve member 5 and the entire injection cross section of the injection valve is opened.
With the return movement of the valve member 5 and the closing of the valve 65, the evasive volume is now conveyed back into the damping space 39, so that the refilling of the damping space 39 is supported, with the evasive piston 117 also taking over the function of a check valve.

Claims (26)

  1. Fuel injection valve for internal combustion engines, with a valve member 5 which is displaceable axially outwards in a bore (3) of a valve body (1) counter to a return force and which, at its combustion-space-side end, has a closing head (7) which projects out of the bore (3) and forms a valve-closing member and which, on its side facing the valve body (1), has a valve sealing surface (9) by which it co-operates with a valve seat surface (11) arranged on the combustion-space-side end face of the valve body (1), and with at least one injection orifice (21) which emanates from a pressure space (13) and is located on the closing head (7) and the outflow orifice (23) of which is covered by the valve body (1) in the closing position of the valve member (5) and is exposed during the outwardly directed opening stroke, and also with a two-stage hydraulic stroke stop which limits the opening-stroke travel of the valve member (5) and which is designed as a hydraulic damping space (39) with a closable relief line, the relief line being connectable to the damping space (39) via at least two recesses on the valve member (5), with the result that hydraulic connections are formed which can be closed in succession during the opening-stroke movement of the valve member (5), characterized in that at least one of the recesses is connectable to a low-pressure space via a relief duct (63) containing a valve (65).
  2. Fuel injection valve according to Claim 1, characterized in that the outflow orifices (23) of the injection ducts (21) can be opened variably during the opening-stroke movement of the valve member (5) and are designed preferably as two injection-hole rows on the valve member (5), which are arranged axially one above the other and of which, after the execution of a first opening-stroke phase of the valve member (5), only a first lower row of outflow orifices (23A) which is near the combustion space is opened, whilst the second upper row of outflow orifices (23B) is opened only during a second opening-stroke phase of the valve member (5).
  3. Fuel injection valve according to Claim 1, characterized in that the recesses on the valve member (5) are designed as ground-down surface portions, of which the upper ends facing away from the combustion space form control edges which co-operate with an end face (43) of the valve body (1), said end face axially delimiting the damping space (39).
  4. Fuel injection valve according to Claim 3, characterized in that a first ground-down portion (51) is designed as an oblique ground-down surface portion, of which the lower more deeply worked-in end facing the combustion space constantly projects into an annular space (53) formed between the valve member (5) and the bore (3) and connected to the low-pressure space, and which with its shallow-tapering axially upper end issues into the damping space (39) when the valve member (5) bears on the valve seat (11), the edge at the upper end, remote from the combustion space, of the first ground-down portion (51) forming a first control edge (57).
  5. Fuel injection valve according to Claim 3, characterized in that a second ground-down portion (59) is provided, of which the axially upper end remote from the combustion space forms a second control edge (61) and of which the lower axial end facing the combustion space is constantly connected to the relief duct (63) containing the valve (65).
  6. Fuel injection valve according to Claims 4 and 5, characterized in that the first and second control edges (57, 61) on the valve member (5) are offset axially in height to one another, in such a way that the first control edge (57) can be closed after the execution of a first opening-stroke phase of the valve member (5), whilst the second control edge (61) is closed by the end face (43) of the valve body (1) only after the execution of a total opening-stroke travel of the valve member (5).
  7. Fuel injection valve according to Claim 1, characterized in that the damping space (39) is provided in an intermediate disc (41) clamped between the valve body 1 and a valve holding body (27).
  8. Fuel injection valve according to Claims 3 and 7, characterized in that the damping space (39) is delimited, at its axial end opposite the end face (43) of the valve body (1), by a piston (37) which is fastened to the valve member (5) and which, at its exterior circumference, is sealingly guided in a slidably displaceable manner on the wall of the damping space (39).
  9. Fuel injection valve according to Claim 8, characterized in that the piston (37) is designed as a U-shaped sealing ring (47) which is open to the damping space (39) and which is pressed onto the shank of the valve member (5).
  10. Fuel injection valve according to Claim 9, characterized in that a spring (49) is inserted into the U-shaped sealing ring (47).
  11. Fuel injection valve according to Claim 7, characterized in that the valve (65) is arranged in the intermediate disc (41).
  12. Fuel injection valve according to Claim 5, characterized in that the valve (65) is preceded in the relief duct (63) by a throttle point.
  13. Fuel injection valve according to Claim 1, characterized in that an anti-twist device against independent twisting is provided on the valve member (5) of the injection valve.
  14. Fuel injection valve according to Claim 13, characterized in that the anti-twist device is formed by an integrally formed profile (73) on the valve member (5) and by a recess (75), complementary thereto, in the housing, preferably in an intermediate disc (41).
  15. Fuel injection valve according to Claim 1, characterized in that the valve (65) in the relief duct (63) can be set by means of an electrical actuator.
  16. Fuel injection valve according to Claim 15, characterized in that the actuator is designed as a piezoelectric actuator (79).
  17. Fuel injection valve according to Claim 15, characterized in that the actuator is designed as a solenoid valve, the armature (81), projecting into a live coil (83), of the solenoid valve being connected to a valve member (67) of the pressure valve (65).
  18. Fuel injection valve according to Claim 1, characterized in that the opening of the valve (65) in the relief duct (63) can be controlled by an adjustable hydraulic counterpressure on that side of a valve member (67) of the valve (65) which faces away from the damping space (39).
  19. Fuel injection valve according to Claim 1, characterized in that the opening pressure on the valve (65) in the relief duct (63) can be set continuously by an adjustment of the spring prestressing force of a valve spring (72).
  20. Fuel injection valve according to Claim 19, characterized in that the adjustment of the spring prestressing force on the valve (65) takes place by means of an axial displacement of a spring bearing surface.
  21. Fuel injection valve according to Claim 20, characterized in that the spring bearing surface is displaced by means of a piezoelectric setter (89).
  22. Fuel injection valve according to Claim 20, characterized in that the spring bearing surface is displaced by means of an electromagnetic armature (93) arranged in a coil (95).
  23. Fuel injection valve according to Claim 20, characterized in that the spring bearing surface is displaced by means of a hydraulic piston (97).
  24. Fuel injection valve according to Claim 1, characterized in that a non-return valve (105) opening in the direction of the damping space (39) is inserted into an inflow line (103) of the damping space (39), said inflow line preferably emanating from the low-pressure space.
  25. Fuel injection valve according to Claim 1, characterized in that the valve member of the valve (65) in the relief duct (63) is designed as a bypass piston (117) which, during its opening-stroke movement, exposes a defined bypass volume in the valve space (121) of the valve (65).
  26. Fuel injection valve according to Claim 25, characterized in that a valve seat surface of the bypass piston guided sealingly in the valve space (121) is designed as a conical turned-up portion (119).
EP98916807A 1997-09-11 1998-02-27 Fuel injection valve Expired - Lifetime EP0937203B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19739905 1997-09-11
DE19739905A DE19739905A1 (en) 1997-09-11 1997-09-11 Fuel injector
PCT/DE1998/000575 WO1999013214A1 (en) 1997-09-11 1998-02-27 Fuel injection valve

Publications (2)

Publication Number Publication Date
EP0937203A1 EP0937203A1 (en) 1999-08-25
EP0937203B1 true EP0937203B1 (en) 2002-05-15

Family

ID=7841992

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98916807A Expired - Lifetime EP0937203B1 (en) 1997-09-11 1998-02-27 Fuel injection valve

Country Status (5)

Country Link
US (1) US6105879A (en)
EP (1) EP0937203B1 (en)
JP (1) JP2001504915A (en)
DE (2) DE19739905A1 (en)
WO (1) WO1999013214A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19900037A1 (en) * 1999-01-02 2000-07-06 Bosch Gmbh Robert Fuel injector
DE19947196A1 (en) 1999-10-01 2001-04-05 Bosch Gmbh Robert Fuel injection device for diesel engine has control valve for regulating fuel feed from high pressure space to injection valve
US6691935B1 (en) * 2000-02-07 2004-02-17 Robert Bosch Gmbh Injection nozzle
DE10031579A1 (en) * 2000-06-29 2002-01-17 Bosch Gmbh Robert Pressure controlled injector with vario register injector
DE20020281U1 (en) * 2000-11-30 2001-03-01 Hammelmann Maschinenfabrik GmbH, 59302 Oelde Rotary drive for a hydraulic tool
DE10111293B4 (en) 2001-03-09 2008-11-20 Robert Bosch Gmbh Fuel injection device for internal combustion engines
DE10115396A1 (en) * 2001-03-29 2002-10-10 Bosch Gmbh Robert Fuel injection device for internal combustion engines
DE10118699A1 (en) * 2001-04-17 2002-10-31 Bosch Gmbh Robert Fuel injection device and fuel system for internal combustion engines, and internal combustion engine
DE10133167A1 (en) * 2001-07-07 2003-01-23 Bosch Gmbh Robert High-pressure fuel device
DE10231583A1 (en) * 2002-07-11 2004-01-29 Daimlerchrysler Ag Fuel injection nozzle of an internal combustion engine with direct injection nozzle
DE10232693A1 (en) * 2002-07-18 2004-02-05 Siemens Ag Fuel injection valve, for an IC motor, has structured outer surfaces for the valve housing and the closed valve plate to give a smooth surface over the dividing line which is free of steps/edges to prevent the entry of burned fuel residue
DE10248379A1 (en) * 2002-10-17 2004-04-29 Robert Bosch Gmbh Fuel injection device for an internal combustion engine
US7520269B2 (en) * 2005-06-28 2009-04-21 Advanced Global Equities And Intellectual Properties Fuel injector nozzle assembly
US10731614B2 (en) * 2015-10-15 2020-08-04 Continental Automotive Gmbh Fuel injection valve with an anti bounce device
DE102018208857A1 (en) * 2018-06-06 2019-12-12 Robert Bosch Gmbh Injector for gaseous and liquid fuels
US11906067B2 (en) 2022-01-21 2024-02-20 Hamilton Sundstrand Corporation Active valve shimming

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2762654A (en) * 1952-07-01 1956-09-11 Gen Motors Corp Fuel injection device
US4182492A (en) * 1978-01-16 1980-01-08 Combustion Research & Technology, Inc. Hydraulically operated pressure amplification system for fuel injectors
DE3405161A1 (en) * 1984-02-14 1985-08-22 Robert Bosch Gmbh, 7000 Stuttgart FUEL INJECTION NOZZLE FOR INTERNAL COMBUSTION ENGINES
US4750675A (en) * 1987-10-05 1988-06-14 General Motors Corporation Damped opening poppet covered orifice fuel injection nozzle
US5275337A (en) * 1992-06-15 1994-01-04 Cummins Engine Company, Inc. High pressure limiting valve with fast response and fuel injector equipped therewith
DE4444363A1 (en) * 1994-12-14 1996-06-20 Bosch Gmbh Robert Multi-jet fuel injector
DE19618698A1 (en) * 1996-05-09 1997-11-13 Bosch Gmbh Robert Fuel injection valve for internal combustion engines
DE19642440A1 (en) 1996-10-15 1998-04-16 Bosch Gmbh Robert Fuel injection valve for internal combustion engines

Also Published As

Publication number Publication date
WO1999013214A1 (en) 1999-03-18
EP0937203A1 (en) 1999-08-25
US6105879A (en) 2000-08-22
DE19739905A1 (en) 1999-03-18
DE59804130D1 (en) 2002-06-20
JP2001504915A (en) 2001-04-10

Similar Documents

Publication Publication Date Title
EP0898650B1 (en) Fuel injection device for internal combustion engines
EP0657642B1 (en) Fuel injection device for internal combustion engines
EP0657644B1 (en) Fuel injection device for internal combustion engines
EP0937203B1 (en) Fuel injection valve
EP2171258B1 (en) Control valve for a fuel injection valve
DE4311627A1 (en) Fuel injection device for internal combustion engines
DE19816316A1 (en) Fuel injection device for internal combustion engines
DE19709794A1 (en) Valve for controlling liquids
WO2008049669A1 (en) Injector with an axial pressure-compensating control valve
DE102008001597A1 (en) Fuel injector
DE102007042466B3 (en) Injection system with reduced switching leakage and method of manufacturing an injection system
DE10100390A1 (en) Injector
DE19716226C2 (en) Fuel injection valve for internal combustion engines
DE10210927A1 (en) Fuel injection valve for internal combustion engines
DE102007010498A1 (en) Injector, particularly common-rail-injector for injecting fuel into combustion chamber of internal-combustion engine, has control valve connected with high pressure area and separated from low pressure area in primary switching position
WO2008049668A1 (en) Injector for injecting fuel into combustion chambers of internal combustion engines
DE102012224398A1 (en) Fuel injection valve for injecting fuel into combustion chambers of high-speed self-ignition engine of vehicle, has switching case cooperating with sealing seat placed at inner side of valve piece to open and close inlet throttle
DE102007005382A1 (en) Injector i.e. common rail injector, for injecting fuel e.g. diesel, into combustion chamber of internal-combustion engine, has control valve for varying control pressure, and fuel tank connected with nozzle chamber via throttle channel
EP1961953A1 (en) Multiway valve
DE19642440A1 (en) Fuel injection valve for internal combustion engines
WO2001096734A1 (en) Fuel injection device for internal combustion engines
DE10032924A1 (en) Fuel injection device for internal combustion engines
EP2286080A1 (en) Fuel injector with perforated seat nozzle
DE102007001365A1 (en) Common rail injector, for injecting e.g. petrol, into combustion chamber of internal combustion engine, has switching chamber connected with low pressure area by connecting channel that is closed and opened by control valve
EP1339974A1 (en) Fuel injection system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19990920

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20010516

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59804130

Country of ref document: DE

Date of ref document: 20020620

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020801

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030127

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030218

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20040218

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040227

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040414

Year of fee payment: 7

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051031

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20051031