EP0932850B1 - Multicolor electrophotographic printing device with bipolar toner - Google Patents

Multicolor electrophotographic printing device with bipolar toner Download PDF

Info

Publication number
EP0932850B1
EP0932850B1 EP97947694A EP97947694A EP0932850B1 EP 0932850 B1 EP0932850 B1 EP 0932850B1 EP 97947694 A EP97947694 A EP 97947694A EP 97947694 A EP97947694 A EP 97947694A EP 0932850 B1 EP0932850 B1 EP 0932850B1
Authority
EP
European Patent Office
Prior art keywords
potential
colour
surface element
terms
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97947694A
Other languages
German (de)
French (fr)
Other versions
EP0932850A1 (en
Inventor
Volkhard Maess
Martin Schleusener
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Production Printing Germany GmbH and Co KG
Original Assignee
Oce Printing Systems GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oce Printing Systems GmbH and Co KG filed Critical Oce Printing Systems GmbH and Co KG
Publication of EP0932850A1 publication Critical patent/EP0932850A1/en
Application granted granted Critical
Publication of EP0932850B1 publication Critical patent/EP0932850B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/01Apparatus for electrographic processes using a charge pattern for producing multicoloured copies
    • G03G15/0105Details of unit
    • G03G15/0126Details of unit using a solid developer
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G13/00Electrographic processes using a charge pattern
    • G03G13/01Electrographic processes using a charge pattern for multicoloured copies
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2215/00Apparatus for electrophotographic processes
    • G03G2215/01Apparatus for electrophotographic processes for producing multicoloured copies
    • G03G2215/0167Apparatus for electrophotographic processes for producing multicoloured copies single electrographic recording member
    • G03G2215/0174Apparatus for electrophotographic processes for producing multicoloured copies single electrographic recording member plural rotations of recording member to produce multicoloured copy

Definitions

  • the invention relates to a method for electrophotographic Print a print image with multiple colors on one Image carrier.
  • a printed image contains at least a first one Image element of a first color and at least a third Image element of a third color.
  • a second picture element of the Print image has a background color of the image carrier, so that no toner particles can be applied.
  • the first picture element becomes a first surface element Assigned photoconductor layer.
  • the photoconductor layer and one a predetermined reference potential leading electrode layer are contained in a light-sensitive layer system.
  • the reference potential is usually the zero potential.
  • the second picture element becomes a second surface element and the third picture element a third surface element of the Assigned photoconductor layer.
  • a disadvantage of the tri-level process is that only toner particles of two colors in one Print image can be deposited. A color mix with The use of three basic colors is therefore not necessary to repeat the Procedure excluded. There are several for color mixing Printing operations possible, with one printing operation following the steps Charging, imaging, and developing.
  • a printing method is known from US Pat. No. 5,155,541, in which Exposure and de-entangling techniques of color photography and Tri-level process for printing at least three Colors have been combined.
  • the object of the invention is a method for electrophotographic Print a print image with at least three Specify colors that are a high quality print allowed, and that on a simply constructed printer can be carried out.
  • A2 can print at least three colors Photoconductor layer and an intermediate layer can be saved.
  • a subtractive color mixing can be done by clicking on the Print image another print image in a subsequent printing process is printed as precisely as possible. It will additional printed image on the same photoconductor after removal the first printed image or on another photoconductor generated.
  • the invention is based on the knowledge that the print quality with multiple exposures to print a printed image decreases because of inevitable aberrations and positioning of the layer system with tolerances it cannot be guaranteed that both exposure steps for precise positioning of the picture elements of the printed image. Therefore, the invention only performed an imagewise exposure step. Moreover, aberrations are minimized by that the light-sensitive layer system used only an electrode layer carrying a predetermined reference potential and contains a photoconductor layer, e.g. are mechanically and electrically connected over a large area.
  • the potential on this surface element increased in amount.
  • the light source with the uniform Light distribution only needs a lower light energy radiate because the potentials only by a smaller amount have to be lowered. This allows the through Make good use of the initial potential given the contrast range.
  • this includes Print image at least one first image element of a first Color, at least a second picture element with the color of the Carrier, at least a third picture element of a third Color and at least a fourth picture element of a fourth Colour. So there is also an additive color mix with three Colors in particular also possible if a white carrier is used.
  • On the second 3ildelement can in the rare case in which all picture elements of the Print image are covered with color particles. In this case all the second picture element or a second surface element is omitted relevant measures, referred to below are.
  • the first picture element is a first surface element, the second picture element a second surface element, the third Picture element a third surface element and the fourth picture element a fourth surface element of the photoconductor layer assigned. Since the surface elements differ from picture elements Colors exposed only once in the invention and thus e.g. the above repositioning for a second exposure is not required can be guaranteed that the surface elements are exactly aligned with each other are. With three colors, when using colors, those in the color space a sufficiently large distance from each other have an additive color mix of many others Perform colors. For example, as the first color red, as second color blue and third color green. Positional means that there are adjacent surface elements not or only slightly cover and that between neighboring surface elements also no or almost none White spaces are created.
  • the picture elements are assigned to different colors it leads to unwanted toner overlays that lead to a lead to poor print image. Through gaps between The color of the base material is unwanted to picture elements visible, which also creates a bad print image.
  • the unique pictorial Expose with a high degree of accuracy a covering and an Avoidance of gaps avoided. The consequence is one high print quality.
  • the Surface elements after a previous charge on Initial potential exposed differently in such a way that after the fourth surface element exposes a fourth potential has, the third surface element compared to the fourth Potential third third potential, the second Area element in relation to the third potential in terms of amount higher second potential and the first surface element a higher amount than the second potential has first potential.
  • This will expose differently also known as imagewise exposure. This gradation of potential it is achieved that each color has exactly one potential value assigned.
  • Another imagewise exposure step where the surface elements with different Light energy to be irradiated can be dispensed with as it already does after a single image-wise exposure step, a clear one There is an assignment between potential values and colors.
  • the surface elements with color particles the first color in a first development step developed. Color particles of the first color only deposited on the first surface elements. On the other No toner particles are deposited on surface elements.
  • the first surface elements have at the time of this development step the greatest potential in terms of amount.
  • development process used to apply the color particles the first color is a developing charged area development.
  • the first embodiment of the invention is the color particles the first color positively charged to the selective To facilitate depositing on the first surface elements or to enable.
  • a second development step the first Embodiment of the invention with the surface elements Color particles of the fourth color developed. In doing so negatively charged color particles of the fourth color on the fourth surface elements deposited.
  • the fourth surface elements have that at the time of this development step smallest potential in terms of amount. It is the second Development step accordingly to develop a discharged Area elements (discharged area development).
  • the Surface elements in the first embodiment of the invention near a light source with approximately uniform light distribution arranged.
  • Arranging can e.g. by passing the Surface elements at the light source or by passing them the light source can be reached on the surface elements. But also a static arrangement of the surface elements opposite a light source with homogeneous light distribution is possible.
  • the invention and the first embodiment is based on the knowledge that more color particles of other colors are deposited can, if similar potential relationships as before second development step.
  • the potential increases to the fourth Area elements in terms of amount.
  • the one covered with color particles first and the fourth surface element covered with color particles are exposed much less than in the invention the uncovered surface elements, as the light is not or only weakly penetrates through the color particles.
  • the Potential on the uncovered second surface element and on the uncovered third surface element are reduced in amount since the incident light energy is not absorbed by color particles.
  • the potential on the third surface element is after exposure with equal amount of light energy lower than that current potential on the fourth surface element.
  • the printed image contains at least one further picture element of a further color.
  • the further surface element creates another potential between the first and the third potential or between the second and the third potential.
  • the Layer system near the light source with approximately even Light distribution or near other light sources will further potential gradually lowered until it amounts is lower than the current potential on the already surface elements covered with color particles. Is this Condition can be reached in a further development step Color particles of the other color on the other Area element can be applied.
  • the invention also relates to a method in which instead of the negative initial potential is a positive initial potential is used, the respective instantaneous potentials on the surface elements instead of the negative sign have a positive sign.
  • the invention instead of positively charged color particles negatively charged color particles used and instead of the negatively charged color particles positively charged color particles are used.
  • the invention relates to two potential courses on the surface elements, which is only in the sign of the potentials differ. The technical effects are at both potential courses are the same.
  • the carrier can in one embodiment of the invention directly or indirectly in another embodiment with the help of an intermediate carrier, from which the Color particles are transferred to the carrier.
  • the light-sensitive layer system can be an intermediate support be spared because of the material of the intermediate carrier can be selected so that there is contact between Intermediate carrier and layer system to minimal mechanical The surface of the photoconductor layer comes under stress.
  • Carrier becomes e.g. sheet material or continuous paper used.
  • the invention also relates to an electrophotographic Printer with the features of claim 13.
  • the above The effects mentioned regarding the procedure also apply to the printer according to the invention.
  • the printer according to the invention stands out from that in the mentioned European Printer described in addition to the printer described Characteristics from a simple structure.
  • the layer system is made up of only two layers and it is only one image-wise exposure step per Print image necessary, so that only an imagewise exposure unit with a simple control is required.
  • the invention can be used with a dry toner that is only solid Contains color particles, or executed with a liquid toner in which e.g. the color particles in a liquid are included.
  • FIG. 1 shows a schematic diagram of an electrophotographic Printer 10 for performing an embodiment of the method according to the invention.
  • Printer 10 has one transport device driven by a motor 12 and a shaft 14 16 for transporting an endless carrier material 18 past a printing unit 20 essentially according to a predetermined printing speed VD.
  • a printing unit 20 can be used for a changed transport single sheets can also be printed.
  • the printing unit 20 creates a multicolored toner image, e.g. with the help of a Corona device (see FIG. 2) on the carrier material 18 is transmitted.
  • the carrier material 18 on the printing unit 20 in Direction of an arrow indicating the direction of transport 22 After the carrier material 18 on the printing unit 20 in Direction of an arrow indicating the direction of transport 22 has been transported past, it becomes a fixing station 24 fed in which the still smearable toner image with the Backing material 18 with the help of pressure and temperature smudge-proof is merged.
  • Seen in the transport direction 22 in front of the printing unit 20 is a first deflection unit 26 arranged which the carrier material 18 of the printing unit 20th feeds.
  • Another deflection unit 28 stacks the printed one Carrier material 18 on a stack 30.
  • the carrier material 18 is carried out by a stack 32 at the beginning of the printing process the first deflection unit 26 removed. Instead of the two Stacks 30 and 32 also use rolls on which the Backing material 18 is rolled up.
  • the printing process is controlled by a print controller 34, the at least one microprocessor 36 and a memory 38 contains.
  • the microprocessor 36 works in the memory 38 stored print program and controls the printing process.
  • the pressure controller 34 also prepares Memory 38 stored image data and transfers the processed image data via a control and data bus 40 to the printing unit 20.
  • the motor 12 is via a control line 42 controlled by the pressure controller 34 so that the Carrier material 18 has a transport speed which in essentially corresponds to the printing speed VD.
  • the pressure controller 34 is connected to a via data lines 44 Input / output device 46 connected, among other things, operating commands entered by an operator at the start of the printing process become.
  • FIG. 2 shows the printing unit 20 of the printer 10 with essential functional components.
  • the printing unit 20 contains a photoconductor 60 made of a flexible layer system consists of two conveyor rollers in the manner of a conveyor belt 62 and 64 is performed.
  • the deflection roller 64 driven by a drive motor, not shown, by the pressure control 34 and the control and Data bus 40 is controlled.
  • the printing unit 20 is from an opaque chassis 66 made of a stable Surround material.
  • the chassis 66 has an opening 68 at which the photoconductor 60 is guided inside the printing unit 20 becomes. Outside of the printing unit 20 is the carrier material 18 guided past the opening 68. Through the opening 68 no light can strike the photoconductor 60 from the outside, because the entire printer 10 is opaque Has disguise.
  • Opposite opening 68 is one Corona device 70 arranged with the one on the photoconductor 60 located toner image on the carrier material 18th is transmitted. Corona device 70 is also called Transfer printing device called.
  • the photoconductor 60 contains an electrode layer carrying zero potential 72 and one arranged approximately parallel to it Photoconductor layer 74 with the electrode layer 72 over a large area is in mechanical and electrical contact.
  • the Photoconductor 60 is directed through the deflection rollers 62, 64 an arrow 76 moves.
  • the charging device 78 contains a transverse to the transport direction 76 arranged corona device, each one surface strips of the transverse to the transport direction 76 Photoconductor 60, which is in the immediate vicinity of the charging device 78 is so charged that an initial potential VA of approximately -1200 V on the surface of the photoconductor layer 74 arises in the area of the area strip (cf. Figure 3, step S1).
  • the character generator 80 contains one transverse to the direction of transport 76 arranged row of light emitting diodes, each one Area of the photoconductor lying transversely to the transport direction 76 Illuminate 60 pictorially.
  • the character generator 80 becomes controlled by the pressure controller 34 so that each Image signals for image elements of a line of the printed image at the same time converted into light signals from the light emitting diodes become.
  • the exposure of the photoconductor 60 increases this Potential on the exposed surface elements of the photoconductor 60 since the photoconductor 60 in the exposed areas conducts better, thereby removing charge carriers from the surface of the Photoconductor layer 74 to the electrode layer 72 in the area of exposed areas can flow off.
  • the developer station 82 stores positively charged color particles of the color black K using an auxiliary electrode 120 with a potential VBIAS3 on surface elements that do not were exposed.
  • the exact mechanism of action is based on of Figure 3 explained below (step S3).
  • the developer station 84 stores negatively charged toner particles the color blue B with the help of an auxiliary electrode 122 a potential VBIAS4 on surface elements that match the third light energy were exposed.
  • the exact mode of action the developer station 84 is also below explained with reference to Figure 3 (step S4).
  • the potential on the surface elements with the third light energy were exposed, lowered again, i.e. changed in the negative direction.
  • the photoconductor 60 on the charger 86 passed.
  • Charger 86 contains a corona wire stretched transversely to the transport direction 76, who has a potential to charge the surface of the Photoconductor layer 74 in the area with blue toner particles covered surface elements to a potential VB5.
  • the Potential VB5 is smaller in magnitude than a current one Potential VR5 on the surface elements with the second Light energy were exposed (see FIG. 3, step S5).
  • the strip of photoconductor 60 under consideration then turns on passed the total exposure unit 88.
  • the total exposure unit 88 contains a laser diode that crosses in one arranged to the transport direction 76 of the photoconductor 60 Glass fiber array radiates light energy.
  • the fiber optic array is designed so that essentially over its entire length same light energy is emitted.
  • the light of the Total exposure unit 88 can not by already deposited black or blue toner particles shine through it this toner particle is absorbed.
  • the developer station 90 stores negatively charged toner particles the color red R to the one with the second light energy exposed surface elements of the photoconductor layer 74.
  • the positively charged black are in the transfer station 92 Reversed toner particles, so that almost all on the photoconductor 60 deposited toner particles are negatively charged.
  • a reloading takes place on all surface elements of the Photoconductor, as a result of which the potentials on the Reduce surface elements, i.e. in the negative direction change (see FIG. 3, step S8).
  • the eraser 94 includes a corona device 98 and an exposure unit 100 through which on the photoconductor 60 existing residual charges are removed.
  • Toner particles left after the toner image is transferred remaining on the photoconductor 60 are in the cleaning device 96 using a brush 102 from the photoconductor 60 removed. After being transported past the cleaning facility 96 is the strip of the photoconductor under consideration 60 back in a clean initial condition and on about the same potential in all places.
  • Figure 3 shows the potential profile on the surface of the considered strip of photoconductor 60 in an exposure step and two toner polarities.
  • On the abscissa axis is the time wasted in nine consecutive Time steps S1 to S9 is divided.
  • On the ordinate axis is the potential on the surface of the photoconductor layer 74 with regard to the potential on the electrode layer 72 shown.
  • step S1 the potential on the surface of the Photoconductor layer 74 by the action of the charging device 78 shifted in the negative direction to the initial potential VA, which, as already mentioned, has the value of -1200 V.
  • step S2 the image-wise exposure is carried out using the Character generator 80, whereby the potential curve shown on the surface of selected surface elements the photoconductor layer 74 sets. Surface elements that later covered with black toner particles, are not exposed.
  • the potential VA shifts these surface elements in the course of step S2 only slightly in the positive direction by a non-suppressable Self-discharge of the photoconductor 60 to a value CC2.
  • the potential on the surface elements with the first light energy to be exposed changes into positive direction to a value VW2 of approximately -800 V. That Potential on the surface elements with the second Light energy being exposed changes in the course of Step S2 in the positive direction to a potential value VR2 of around -400 V.
  • the potential on the surface elements, that were exposed with the third light energy changed approximately in step S2 in the positive direction
  • Potential value VB2 of approximately -100 V.
  • step S3 positive black toner particles are passed through the developer station 82 deposited.
  • the auxiliary electrode 120 in the vicinity of the photoconductor 60 has the auxiliary potential VBIAS3 of about -900 V.
  • the positively charged black toner particles Because the potential VBIAS3 is lower than the potentials VW2, VR2 and VB2 these potentials with respect to the potential VBIAS3 positive.
  • positively charged black toner particles can only be deposited on an area that is in relation to the Potentials VBIAS3 has lower potential. It only applies for surface elements that are not exposed in step S2 were. As a result, the are on these surface elements black toner particles.
  • step S4 negative blue toner particles are replaced by the Developer station 84 deposited.
  • the auxiliary electrode 122 in the immediate vicinity of the photoconductor 60 has the auxiliary potential VBIAS4 of about -390V.
  • Located on the auxiliary electrode 122 the negatively charged blue toner particles. Since that Potential VBIAS4 higher than the potentials VK3, VW3 and VR3 these potentials are related to the potential VBIAS4 in the negative direction.
  • the negatively charged blue toner particles can only be deposited on one surface, which is a higher in terms of potential VBIAS4, i.e. in potential shifted in the positive direction. It only applies for surface elements that in step S2 with the third Light energy were exposed. Consequently, on this Surface elements deposited the blue toner particles.
  • step S5 the potential VB4 on the surface of the surface elements covered with blue toner particles with the help charger 86 reduced to about -390 V, i.e. in negative potential direction shifted.
  • the potentials VK4 increase, VW4 or VR4 in step S5 to the potentials VK5, VW5 or VR5.
  • step S6 by the total exposure unit 88 emitted light, the potential VW5 or VR5 on the surface elements not covered with toner particles about 400 V to the potentials VW6 or VR6.
  • the potential on surface elements that in step S2 with the second Light energy has been exposed by further exposure in step S6 to the highest potential on one of the Surface elements.
  • the potentials VK5 and VB5 increase slightly due to the self-discharge of the Photoconductor 60 to the potentials VK6 and VB6.
  • Between Potentials VR6 and VB6 have a difference of about 400 V, so that in the following step S7 similar to step S4 Toner particles are deposited on the surface elements can, which is exposed in step S2 with the second light energy were.
  • step S7 negative red toner particles are replaced by the Developer station 90 deposited.
  • the auxiliary electrode 124 in the immediate vicinity of the photoconductor 60 has the auxiliary potential VBIAS7 of about -370 V. Located on auxiliary electrode 124 the negatively charged red toner particles. Analog to the electrical conditions described in step S4 the negative toner particles are deposited on the surface elements, which is exposed in step S2 with the second light energy were.
  • the potentials VK6, VW6 and VB6 increase due to the self-discharge of the photoconductor 60 on the Potential values VK7, VW7 or VB7.
  • step S8 the strip of the photoconductor under consideration 60 passed the transfer station 92.
  • the transfer station 92 contains a corona device that has the potential charges on the surface of the photoconductor layer 74.
  • the polarity of the black Toner particles on the photoconductor 60 is reversed so that the black toner particles are also negatively charged.
  • step S9 the positively charged by the action Corona device 70 contains the toner particles with toner particles covered area elements essentially under Maintaining their position relative to one another on the carrier material 18 transfer.
  • the potential on the surface elements increases the photoconductor 60 to about -400 V.
  • Figure 4 shows the state of surface elements of the photoconductor 60 at the end of steps S1 to S9.
  • Part a of Figure 4 shows a print image 140, the four picture elements 142 to 148 contains.
  • the picture element 142 has the color blue B, which in Figure 4 is represented by a horizontal hatching.
  • the picture element 144 has the color red R, which is shown in FIG vertical hatching is shown.
  • the picture element 146 has the color black K, which in Figure 4 by an inclined Hatching is shown, its hatching lines around about 45 ° with respect to the horizontal.
  • the Image element 148 has the color white W (color of the carrier material 18) represented by hatching in FIG whose hatching lines are approximately at an angle of 135 ° are aligned with the horizontal.
  • Part b shows a strip-shaped section 150 of the photoconductor 60.
  • Section 150 is transverse on photoconductor 60 arranged to the transport direction 76.
  • Figure 4 the Section 150 shown in plan view, with the photoconductor layer 74 is above.
  • Area elements 152 to 158 on the surface of the photoconductor 60 assigned the picture elements 142 to 148.
  • the picture element 142 the surface element 152 is assigned.
  • the assignment is made so that neighboring Area elements also adjacent image elements of the printed image 140 are assigned.
  • step S1 the charging device 78 on each of the surface elements 152 to 158 generates the initial potential VA.
  • Part c of FIG. 4 shows the state of the surface elements 152 to 158 after imagewise exposure in step S2.
  • the surface element 152 has the greatest third light energy, takes place in the area of the surface element 152 through the Incidence of light well conductive photoconductor layer 74 a charge equalization instead, the potential VB2 of the surface of the surface element 152.
  • the surface element 154 is exposed to the second light energy, which is lower than the third light energy.
  • the lower potential compared to the potential VB2 VR2 on the surface of the surface element 154.
  • the Surface element 156 does not become during imagewise exposure illuminated.
  • the surface element 152 has the greatest potential and the surface element 156 the smallest potential.
  • Part d of Figure 4 shows the surface potentials on the Area elements 152 to 158 at the end of step S3. While of step S3, section 150 becomes the developer station 82 transported past. From the above For this reason, black toner particles are only deposited on the surface of the surface element 156, so that this surface element completely covered with black toner particles (45 ° Hatching).
  • Part e of FIG. 4 shows the surface elements 152 to 158 End of step S4.
  • section 150 transported past developer station 84.
  • blue toner particles on the Surface element 152 deposited horizontal hatching, so that now both the surface element 152 and the surface element 156 are covered with toner particles.
  • Part f of FIG. 4 shows the surface elements 152 to 158 am End of step S6 in which section 150 is even was exposed. Due to the even exposure it happens a potential increase on the surface of the surface elements 154 and 158 that are not covered with toner particles because the incident light the resistance of the photoconductor layer 74 reduced and a partial load carrier compensation between charge carriers on the surface of these surface elements and charge carriers takes place in the electrode layer 72. At the end of step S6, the surface element has 154 the greatest potential on its surface.
  • Part g of FIG. 4 shows the surface elements 152 to 158 am End of step S7.
  • the Section 150 transported past developer station 90. Red toner particles are deposited for the reasons mentioned above on the surface element 154 (vertical hatching).
  • the surface elements 152 to 156 are thus with toner particles covered.
  • Part h of FIG. 4 shows a section 160 of the carrier material 18 at the end of step S9.
  • the toner particles on the Section 150 are essentially below in step S9 Maintaining their mutual position on section 160 of the carrier material 18 transferred.
  • the carrier material 18 has as already mentioned, the color white W (135 ° hatching), so that the print image 140 as a result of the described method with the picture elements 142 to 148 on the section 160 of the Carrier material 18 was printed.
  • a picture element has e.g. when printing with the printer 10 at a resolution of 600 pixels per 25.4 mm of approximately 0.042 mm, so that the representations in FIG. 4 a strong magnification with a magnification factor of is about 200.
  • the human eye can see the pixels an ordinary reading distance of about 30 cm dissolve individually. This results in color mixing effects.
  • the blue picture element 142 and the red picture element 144 result e.g. the mixed color perceived by the eye violet.
  • n colors by the initial potential VA approximately equal to n times the potential requirement for one individual development step is selected. You also have to in the imagewise exposure at least n different Light energies can be generated per picture element, so that n + 1 different potentials can be generated.
  • the Steps S5 to S7 become n-3 times after step S7 repeated.
  • the letter n is a natural number, which can take the values 4, 5, etc.
  • Figure 5 shows a second potential profile on the surface of surface elements of the photoconductor 60 in an exposure step and two toner polarities.
  • the one shown in Figure 5 Potential course applies to a printer that a not shown printing unit 20 ', which is different from the Printing unit 20 differs in that the corona device 70, the charging device 78, the charging device 86, the transfer station 92 and the corona device 98 with opposite ones Operating voltage can be operated.
  • a developer station uses the negative toner particles of black color With the help of an auxiliary electrode with the potential VBIAS3 'of about Deposits +900 V.
  • the developer station 84 is a Developer station for positively charged blue toner particles used.
  • the auxiliary electrode when depositing the blue toner particles has an auxiliary potential VBIAS4 'of around +390 V. Instead of the developer station 90 becomes a developer station used for positively charged red toner particles. At the An auxiliary electrode is used to deposit the red toner particles an auxiliary potential VBIAS7 'of approximately +370 V.
  • the potential curve shown in FIG. 5 differs of the potential curve of Figure 3 in that the sign the potentials are reversed compared to FIG. 3. Under The signs made with reference to FIG. 3 apply Statements also for the potential curve in FIG. 5. Instead of steps S1 to S9 there are now steps S1 ' to S9 '. Instead of the potential VA, a is shown in FIG Potential VA 'with opposite signs is used. In addition, changed potentials VK2 'to occur VK7 ', VW2' to VW7 ', VR2' to VR7 'or VB2' to VB7 'to the Place the potentials VK2 to VK7, VW2 to VW7, VR2 to VR7 or VB2 to VB7.

Description

Die Erfindung betrifft ein Verfahren zum elektrofotografischen Drucken eines Druckbildes mit mehreren Farben auf einen Bildträger.The invention relates to a method for electrophotographic Print a print image with multiple colors on one Image carrier.

Aus der US-Patentschrift 4,078,929 ist ein Verfahren zum elektrofotografischen Drucken mit zwei Farben bekannt. Dieses Verfahren trägt auch den Namen "Tri-Level-Verfahren". Bei diesem Verfahren enthält ein Druckbild mindestens ein erstes Bildelement einer ersten Farbe und mindestens ein drittes Bildelement einer dritten Farbe. Ein zweites Bildelement des Druckbildes hat eine Hintergrundfarbe des Bildträgers, so daß keine Tonerteilchen aufzubringen sind.From US Pat. No. 4,078,929 a method for known electrophotographic printing with two colors. This The process is also called the "tri-level process". at According to this method, a printed image contains at least a first one Image element of a first color and at least a third Image element of a third color. A second picture element of the Print image has a background color of the image carrier, so that no toner particles can be applied.

Das erste Bildelement wird einem ersten Flächenelement einer Fotoleiterschicht zugeordnet. Die Fotoleiterschicht und eine ein vorgegebenes Bezugspotential führende Elektrodenschicht sind in einem lichtempfindlichen Schichtsystem enthalten. Das Bezugspotential ist üblicherweise das Nullpotential. Ebenso wird das zweite Bildelement einem zweiten Flächenelement und das dritte Bildelement einem dritten Flächenelement der Fotoleiterschicht zugeordnet. Nachteilig beim Tri-Level-Verfahren ist, daß nur Tonerteilchen zweier Farben in einem Druckbild abgelagert werden können. Eine Farbmischung mit Hilfe dreier Grundfarben ist demzufolge ohne Wiederholen des Verfahrens ausgeschlossen. Zur Farbmischung sind mehrere Druckvorgänge möglich, wobei ein Druckvorgang die Schritte Aufladen, bildmäßiges Belichten und Entwickeln enthält.The first picture element becomes a first surface element Assigned photoconductor layer. The photoconductor layer and one a predetermined reference potential leading electrode layer are contained in a light-sensitive layer system. The The reference potential is usually the zero potential. As well the second picture element becomes a second surface element and the third picture element a third surface element of the Assigned photoconductor layer. A disadvantage of the tri-level process is that only toner particles of two colors in one Print image can be deposited. A color mix with The use of three basic colors is therefore not necessary to repeat the Procedure excluded. There are several for color mixing Printing operations possible, with one printing operation following the steps Charging, imaging, and developing.

Aus der europäischen Offenlegungsschrift EP 0 606 141 A2 ist ein Drucker bekannt, der zum elektrofotografischen Drucken eines Druckbildes mit mehreren Farben verwendet werden kann. Bei einem Drucker nach der genannten europäischen Offenlegungsschrift wird ein Schichtsystem verwendet das aus vier Schichten besteht. Um dieses Schichtsystem zu fertigen, ist ein erhöhter Aufwand notwendig, da anstelle von zwei Schichten vier Schichten übereinander anzuordnen sind.From European patent application EP 0 606 141 A2 a printer known for electrophotographic printing a print image with multiple colors can be used. With a printer after the named A European layered coating system is used that consists of four layers. To this layer system too manufacture, an increased effort is necessary because instead of two layers four layers are to be arranged one above the other.

Weiterhin müssen zwei im Schichtsystem enthaltene lichtempfindliche Schichten mit zwei Lichtstrahlen belichtet werden die jeweils unterschiedliche Wellenlängen haben. In einer ersten Variante des Druckers nach der genannten europäischen Offenlegungsschrift wird der Fotoleiter zweimal an einer Belichtungsstation zum bildmäßigen Belichten vorbeigeführt. Dadurch verringert sich die Druckgeschwindigkeit auf die Hälfte. In beiden Durchläufen muß eine Belichtungsstation zwei verschiedene Lichtstrahlen bereitstellen. Der Aufwand für die Belichtung verdoppelt sich deshalb z.B. hinsichtlich des Erzeugens der Belichtungssignale und hinsichtlich der Anforderungen an das optische System bezüglich der Abbildungsfehler.Furthermore, two photosensitive components contained in the coating system must be used Layers can be exposed with two light beams each have different wavelengths. In a first variant of the printer according to the European The photoconductor is published twice on one Exposure station passed for imagewise exposure. This reduces the printing speed on the Half. An exposure station must be used in both runs provide two different light beams. The effort for exposure therefore doubles e.g. regarding generating the exposure signals and with respect to the Optical system requirements regarding aberrations.

In einer zweiten Variante der genannten europäischen Offenlegungsschrift wird in einem Durchlauf das lichtempfindliche Schichtsystem an zwei Belichtungsstellen vorbeigeführt. An jeder dieser Belichtungsstellen müssen aber immer noch zwei Belichtungsstrahlen bereitgestellt werden. Die Anforderungen an die Abbildungsgenauigkeit des verwendeten optischen Systems erhöhen sich bei der zweiten Variante weiter. So werden zu den unterschiedlichen Wellenlängen der beiden Belichtungsstrahlen für die erste Belichtungsstation TE-Lichtwellen (transversal-elektromagnetisch) verwendet und in der zweiten Belichtungsstation TM-Lichtwellen (transversal-magnetisch). In a second variant of the aforementioned European patent application becomes the photosensitive in one pass Layer system led past two exposure points. On but each of these exposure points still need two Exposure beams are provided. The requirements the imaging accuracy of the optical system used increase further with the second variant. So be to the different wavelengths of the two exposure beams for the first exposure station TE light waves (transverse electromagnetic) used and in the second Exposure station TM light waves (transverse magnetic).

Aus der US 5,155,541 ist ein Druckverfahren bekannt, bei dem Belichtungs- und Entrickbungstechniken der Farbfotografie und des Tri-Level -Verfahren für den Druck mindestens dreier Farben Kombiniert worden sind.A printing method is known from US Pat. No. 5,155,541, in which Exposure and de-entangling techniques of color photography and Tri-level process for printing at least three Colors have been combined.

Aufgabe der Erfindung ist es, ein Verfahren zum elektrofotografischen Drucken eines Druckbildes mit mindestens drei Farben anzugeben, das einen Druck mit hoher Druckqualität gestattet, und das auf einem einfach aufgebauten Drucker durchgeführt werden kann.The object of the invention is a method for electrophotographic Print a print image with at least three Specify colors that are a high quality print allowed, and that on a simply constructed printer can be carried out.

Diese Aufgabe wird durch ein Verfahren mit den Merkmalen des Patentanspruchs 1 gelöst. Gegenüber dem bekannten Verfahren aus der oben genannten Offenlegungsschrift EP 0 606 141 A2 sind bei der Erfindung im Druckbild Bildelemente mit mindestens drei verschiedenen Farben der in den Entwicklungsschritten aufgebrachten Farbpartikel enthalten. Trotz Verzichts auf subtraktive Farbmischung in einem Druckvorgang beim Verfahren nach der Erfindung kann additive Farbmischung durch nebeneinander angeordnete Farbpartikel erzeugt werden. Durch das Verfahren nach der Erfindung ist lediglich ein bildmäßiger Belichtungsschritt mit einer einzigen Lichtfrequenz und Licht einer Polarisationsart erforderlich, so daß eine einfache bildmäßige Belichtung durchgeführt wird. Das lichtempfindliche Schichtsystem kann beim Verfahren nach der Erfindung einfach aufgebaut sein. Gegenüber dem Dokument EP 0 606 141 A2 können beim Druck mindestens dreier Farben eine Fotoleiterschicht und eine Zwischenschicht eingespart werden. Eine subtraktive Farbmischung kann erfolgen, indem auf das Druckbild in einem folgenden Druckvorgang ein weiteres Druckbild möglichst passergenau aufgedruckt wird. Dabei wird das weitere Druckbild auf dem selben Fotoleiter nach Entfernen des ersten Druckbilds oder auf einem weiteren Fotoleiter erzeugt.This task is accomplished by a process with the characteristics of Claim 1 solved. Compared to the known method from the above-mentioned laid-open publication EP 0 606 141 A2 are image elements with at least in the invention in the printed image three different colors in the development steps applied paint particles included. Despite the waiver for subtractive color mixing in one printing process in the method according to the invention additive color mixing are generated by color particles arranged side by side. By the method according to the invention is only one imagewise exposure step with a single light frequency and polarization type light required so that a simple imagewise exposure is performed. The Photosensitive layer system can be used in the process according to Invention can be constructed simply. Compared to document EP 0 606 141 A2 can print at least three colors Photoconductor layer and an intermediate layer can be saved. A subtractive color mixing can be done by clicking on the Print image another print image in a subsequent printing process is printed as precisely as possible. It will additional printed image on the same photoconductor after removal the first printed image or on another photoconductor generated.

Die Erfindung geht von der Erkenntnis aus, daß die Druckqualität bei einem mehrfachen Belichten zum Druck eines Druckbildes sinkt, da durch unvermeidbare Abbildungsfehler und eine mit Toleranzen behaftete Positionierung des Schichtsystems nicht gewährleistet werden kann, daß beide Belichtungsschritte zu einer lagegenauen Positionierung der Bildelemente des Druckbildes führen. Deshalb wird bei der Erfindung nur ein bildmäßiger Belichtungsschritt durchgeführt. Außerdem werden bei der Erfindung Abbildungsfehler dadurch minimiert, daß das verwendete lichtempfindliche Schichtsystem lediglich eine ein vorgegebenes Bezugspotential führende Elektrodenschicht und eine Fotoleiterschicht enthält, die z.B. großflächig mechanisch und elektrisch verbunden sind.The invention is based on the knowledge that the print quality with multiple exposures to print a printed image decreases because of inevitable aberrations and positioning of the layer system with tolerances it cannot be guaranteed that both exposure steps for precise positioning of the picture elements of the printed image. Therefore, the invention only performed an imagewise exposure step. Moreover In the invention, aberrations are minimized by that the light-sensitive layer system used only an electrode layer carrying a predetermined reference potential and contains a photoconductor layer, e.g. are mechanically and electrically connected over a large area.

Bei der Erfindung wird nach dem Aufbringen von geladenen Farbpartikeln der jeweiligen Farbe auf mindestens eines der Flächenelemente das Potential auf diesem Flächenelement betragsmäßig erhöht. Die Lichtquelle mit der gleichmäßigen Lichtverteilung muß so nur eine geringere Lichtenergie ausstrahlen, da die Potentiale nur um einen geringeren Betrag abgesenkt werden müssen. Dadurch läßt sich der durch das Anfangspotential vorgegebene Kontrastbereich gut ausnutzen.In the invention is loaded after the application of Color particles of the respective color on at least one of the Surface elements the potential on this surface element increased in amount. The light source with the uniform Light distribution only needs a lower light energy radiate because the potentials only by a smaller amount have to be lowered. This allows the through Make good use of the initial potential given the contrast range.

In einem ersten Ausführungsbeispiel der Erfindung enthält das Druckbild mindestens ein erstes Bildelement einer ersten Farbe, mindestens ein zweites Bildelement mit der Farbe des Trägers, mindestens ein drittes Bildelement einer dritten Farbe und mindestens ein viertes Bildelement einer vierten Farbe. Somit ist auch eine additive Farbmischung mit drei Farben insbesondere auch dann möglich, wenn ein weißer Träger verwendet wird. Auf das zweite 3ildelement kann in dem seltenen Fall verzichtet werden, in dem alle Bildelemente des Druckbildes mit Farbpartikeln bedeckt werden. In diesem Fall entfallen alle das zweite Bildelement bzw. ein zweites Flächenelement betreffende Maßnahmen, die im folgenden genannt sind.In a first embodiment of the invention, this includes Print image at least one first image element of a first Color, at least a second picture element with the color of the Carrier, at least a third picture element of a third Color and at least a fourth picture element of a fourth Colour. So there is also an additive color mix with three Colors in particular also possible if a white carrier is used. On the second 3ildelement can in the rare case in which all picture elements of the Print image are covered with color particles. In this case all the second picture element or a second surface element is omitted relevant measures, referred to below are.

Dem ersten Bildelement ist ein erstes Flächenelement, dem zweiten Bildelement ein zweites Flächenelement, dem dritten Bildelement ein drittes Flächenelement und dem vierten Bildelement ein viertes Flächenelement der Fotoleiterschicht zugeordnet. Da die Flächenelemente zu Bildelementen verschiedener Farben bei der Erfindung jeweils nur einmal belichtet werden und somit z.B. das oben genannte Neupositionieren für ein zweites Belichten entfällt, kann gewährleistet werden, daß die Flächenelemente exakt lagegenau zueinander ausgerichtet sind. Mit drei Farben läßt sich beim Verwenden von Farben, die im Farbraum einen hinreichend großen Abstand zueinander haben, eine additive Farbmischung sehr vieler anderer Farben durchführen. So kann z.B. als erste Farbe Rot, als zweite Farbe Blau und als dritte Farbe Grün verwendet werden. Lagegenau bedeutet, daß sich benachbarte Flächenelemente nicht oder nur unwesentlich überdecken und daß zwischen benachbarten Flächenelementen auch keine oder nahezu keine Leerräume entstehen. Durch Überdecken von Flächenelementen, die Bildelementen verschiedener Farben zugeordnet sind, kommt es zu ungewollten Tonerüberlagerungen, die zu einem schlechten Druckbild führen. Durch Zwischenräume zwischen Bildelementen ist die Farbe des Trägermaterials ungewollt sichtbar, wodurch ebenfalls ein schlechtes Druckbild entsteht. Bei der Erfindung wird durch das einmalige bildmäßige Belichten mit großer Genauigkeit ein Überdecken und ein Entstehen von Zwischenräumen vermieden. Die Folge ist eine hohe Druckqualität.The first picture element is a first surface element, the second picture element a second surface element, the third Picture element a third surface element and the fourth picture element a fourth surface element of the photoconductor layer assigned. Since the surface elements differ from picture elements Colors exposed only once in the invention and thus e.g. the above repositioning for a second exposure is not required can be guaranteed that the surface elements are exactly aligned with each other are. With three colors, when using colors, those in the color space a sufficiently large distance from each other have an additive color mix of many others Perform colors. For example, as the first color red, as second color blue and third color green. Positional means that there are adjacent surface elements not or only slightly cover and that between neighboring surface elements also no or almost none White spaces are created. By covering surface elements, the picture elements are assigned to different colors it leads to unwanted toner overlays that lead to a lead to poor print image. Through gaps between The color of the base material is unwanted to picture elements visible, which also creates a bad print image. In the invention, the unique pictorial Expose with a high degree of accuracy a covering and an Avoidance of gaps avoided. The consequence is one high print quality.

Beim ersten Ausführungsbeispiel der Erfindung werden die Flächenelemente nach einer vorhergehenden Aufladung auf ein Anfangspotential unterschiedlich derart belichtet, daß nach dem Belichten das vierte Flächenelement ein viertes Potential hat, das dritte Flächenelement ein gegenüber dem vierten Potential betragsmäßig höheres drittes Potential, das zweite Flächenelement ein gegenüber dem dritten Potential betragsmäßig höheres zweites Potential und das erste Flächenelement ein gegenüber dem zweiten Potential betragsmäßig höheres erstes Potential hat. Dieses unterschiedliche Belichten wird auch als bildmäßiges Belichten bezeichnet. Durch diese Potentialabstufung wird erreicht, daß jeder Farbe genau ein Potentialwert zugeordnet ist. Ein weiterer bildmäßiger Belichtungsschritt, bei dem Flächenelemente mit unterschiedlichen Lichtenergien bestrahlt werden, kann entfallen, da bereits nach einem einzigen bildmäßigen Belichtungsschritt eine eindeutige Zuordnung zwischen Potentialwerten und Farben vorliegt.In the first embodiment of the invention, the Surface elements after a previous charge on Initial potential exposed differently in such a way that after the fourth surface element exposes a fourth potential has, the third surface element compared to the fourth Potential third third potential, the second Area element in relation to the third potential in terms of amount higher second potential and the first surface element a higher amount than the second potential has first potential. This will expose differently also known as imagewise exposure. This gradation of potential it is achieved that each color has exactly one potential value assigned. Another imagewise exposure step, where the surface elements with different Light energy to be irradiated can be dispensed with as it already does after a single image-wise exposure step, a clear one There is an assignment between potential values and colors.

Nach dem bildmäßigen Belichten werden beim ersten Ausführungsbeispiel der Erfindung die Flächenelemente mit Farbpartikeln der ersten Farbe in einem ersten Entwicklungsschritt entwickelt. Dabei werden Farbpartikel der ersten Farbe nur auf den ersten Flächenelementen abgelagert. Auf den anderen Flächenelementen werden keine Tonerteilchen abgelagert. Die ersten Flächenelemente haben zum Zeitpunkt dieses Entwicklungsschritts das betragsmäßig größte Potential. Bei dem verwendeten Entwicklungsverfahren zum Aufbringen der Farbpartikel der ersten Farbe handelt es sich um ein Entwickeln aufgeladener Flächenelemente (charged area development). Beim ersten Ausführungsbeispiel der Erfindung werden die Farbpartikel der ersten Farbe positiv aufgeladen, um das selektive Ablagern auf den ersten Flächenelementen zu erleichtern bzw. zu ermöglichen.After the imagewise exposure are in the first embodiment the invention, the surface elements with color particles the first color in a first development step developed. Color particles of the first color only deposited on the first surface elements. On the other No toner particles are deposited on surface elements. The first surface elements have at the time of this development step the greatest potential in terms of amount. In which development process used to apply the color particles the first color is a developing charged area development. At the The first embodiment of the invention is the color particles the first color positively charged to the selective To facilitate depositing on the first surface elements or to enable.

In einem zweiten Entwicklungsschritt werden beim ersten Ausführungsbeispiel der Erfindung die Flächenelemente mit Farbpartikeln der vierten Farbe entwickelt. Dabei werden negativ geladene Farbpartikel der vierten Farbe auf den vierten Flächenelementen abgelagert. Die vierten Flächenelemente haben zum Zeitpunkt dieses Entwicklungsschritts das betragsmäßig kleinste Potential. Es handelt sich beim zweiten Entwicklungsschritt demzufolge um ein Entwickeln entladener Flächenelemente (discharged area development).In a second development step, the first Embodiment of the invention with the surface elements Color particles of the fourth color developed. In doing so negatively charged color particles of the fourth color on the fourth surface elements deposited. The fourth surface elements have that at the time of this development step smallest potential in terms of amount. It is the second Development step accordingly to develop a discharged Area elements (discharged area development).

Nach den ersten beiden Entwicklungsschritten werden die Flächenelemente beim ersten Ausführungsbeispiel der Erfindung nahe einer Lichtquelle mit etwa gleichmäßiger Lichtverteilung angeordnet. Das Anordnen kann z.B. durch Vorbeiführen der Flächenelemente an der Lichtquelle oder durch Vorbeiführen der Lichtquelle an den Flächenelementen erreicht werden. Aber auch ein statisches Anordnen der Flächenelemente gegenüber einer Lichtquelle mit homogener Lichtverteilung ist möglich. Dabei werden entweder die dem Druckbild zugeordneten Flächenelemente des Schichtsystems gleichzeitig gegenüber der Lichtquelle angeordnet oder die Flächenelemente werden nacheinander gegenüber der Lichtquelle angeordnet, wobei z.B. Flächenelemente, die Bildelementen einer Zeile zugeordnet sind gleichzeitig belichtet werden können. Die Erfindung und das erste Ausführungsbeispiel gehen von der Erkenntnis aus, daß weitere Farbpartikel weiterer Farben abgelagert werden können, wenn ähnliche Potential-Verhältnisse wie vor dem zweiten Entwicklungsschritt geschaffen werden. Durch das Ablagern der negativ geladenen Farbpartikel im zweiten Entwicklungsschritt erhöht sich das Potential auf den vierten Flächenelementen betragsmäßig. Das mit Farbpartikeln bedeckte erste und das mit Farbpartikeln bedeckte vierte Flächenelement werden bei der Erfindung erheblich weniger belichtet als die nicht bedeckten Flächenelemente, da das Licht nicht bzw. nur stark abgeschwächt durch die Farbpartikel dringt. Das Potential auf dem nicht bedeckten zweiten Flächenelement und auf dem nicht bedeckten dritten Flächenelement wird jedoch betragsmäßig verringert, da die auftreffende Lichtenergie nicht durch Farbpartikel absorbiert wird. Das Potential auf dem dritten Flächenelement ist nach dem Belichten mit gleicher Lichtenergie betragsmäßig niedriger als das momentane Potential auf dem vierten Flächenelement. Demzufolge liegen nun für das zweite Flächenelement ähnliche Potential-Verhältnisse vor wie sie vor dem zweiten Entwicklungsschritt für das dritte Flächenelement bestanden. In einem dritten Entwicklungsschritt werden bei der Erfindung Farbpartikel der dritten Farbe auf den dritten Flächenelementen abgelagert. Auf den zweiten Flächenelemente werden keine Farbpartikel abgelagert. Beim Übertragen der auf den anderen Flächenelementen abgelagerten Farbpartikel auf den Träger in einem späteren Verfahrensschritt bleibt der Träger in Bereichen farbpartikelfrei, die beim Übertragen den zweiten Flächenelementen zugeordnet sind. Dadurch hat das Druckbild letzlich Bildelemente mit der Farbe des Trägers.After the first two development steps, the Surface elements in the first embodiment of the invention near a light source with approximately uniform light distribution arranged. Arranging can e.g. by passing the Surface elements at the light source or by passing them the light source can be reached on the surface elements. But also a static arrangement of the surface elements opposite a light source with homogeneous light distribution is possible. Either the surface elements assigned to the print image of the layer system at the same time compared to the Light source arranged or the surface elements are successively arranged opposite the light source, e.g. Area elements, the image elements assigned to a line are exposed at the same time. The invention and the first embodiment is based on the knowledge that more color particles of other colors are deposited can, if similar potential relationships as before second development step. By the Deposition of the negatively charged color particles in the second development step the potential increases to the fourth Area elements in terms of amount. The one covered with color particles first and the fourth surface element covered with color particles are exposed much less than in the invention the uncovered surface elements, as the light is not or only weakly penetrates through the color particles. The Potential on the uncovered second surface element and on the uncovered third surface element, however reduced in amount since the incident light energy is not absorbed by color particles. The potential on the third surface element is after exposure with equal amount of light energy lower than that current potential on the fourth surface element. As a result, are similar for the second surface element Potential relationships before as before the second development step passed for the third surface element. In a third development step in the invention Color particles of the third color on the third surface elements deposited. There are none on the second surface elements Color particles deposited. When transferring the one to the other Colored particles deposited on the carrier in surface elements the carrier remains in areas in a later process step free of color particles when transferring the second surface elements assigned. This has the printed image ultimately picture elements with the color of the carrier.

In einem weiteren Ausführungsbeispiel enthält das Druckbild mindestens ein weiteres Bildelement einer weiteren Farbe. Beim bildmäßigen Belichten wird auf dem weiteren Flächenelement ein weiteres Potential erzeugt, das zwischen dem ersten und dem dritten Potential bzw. zwischen dem zweiten und dem dritten Potential liegt. Durch mehrmaliges Anordnen des Schichtsystems nahe der Lichtquelle mit etwa gleichmäßiger Lichtverteilung bzw. nahe weiterer Lichtquellen wird das weitere Potential schrittweise abgesenkt, bis es betragsmäßig niedriger ist als die momentanen Potentiale auf den bereits mit Farbpartikeln bedeckten Flächenelementen. Ist dieser Zustand erreicht, können in einem weiteren Entwicklungsschritt Farbpartikel der weiteren Farbe auf das weitere Flächenelement aufgetragen werden. Bei der Erfindung wird die mögliche Anzahl von farblich jeweils unterschiedlichen weiteren Bildelementen in einem Druckbild lediglich durch die Höhe des Anfangspotentials begrenzt, da die Potentiale, die den einzelnen Farben zugeordnet sind, mindestens etwa 300 V auseinanderliegen sollten.In a further exemplary embodiment, the printed image contains at least one further picture element of a further color. During the image-wise exposure on the further surface element creates another potential between the first and the third potential or between the second and the third potential. By arranging the Layer system near the light source with approximately even Light distribution or near other light sources will further potential gradually lowered until it amounts is lower than the current potential on the already surface elements covered with color particles. Is this Condition can be reached in a further development step Color particles of the other color on the other Area element can be applied. In the invention, the possible number of different different colors Image elements in a print image only by the height of the initial potential, since the potentials that the individual colors are assigned, at least about 300 V. should be apart.

Die Erfindung betrifft auch ein Verfahren, bei dem anstelle des negativen Anfangspotentials ein positives Anfangspotential verwendet wird, wobei die jeweiligen momentanen Potentiale auf den Flächenelementen anstelle des negativen Vorzeichens ein positives Vorzeichen haben. Außerdem werden anstelle der positiv geladenen Farbpartikel negativ geladene Farbpartikel verwendet und anstelle der negativ geladenen Farbpartikel werden positiv geladene Farbpartikel verwendet. Somit bezieht sich die Erfindung auf zwei Potentialverläufe auf den Flächenelementen, die sich lediglich im Vorzeichen der Potentiale unterscheiden. Die technischen Wirkungen sind bei beiden Potentialverläufen gleich. The invention also relates to a method in which instead of the negative initial potential is a positive initial potential is used, the respective instantaneous potentials on the surface elements instead of the negative sign have a positive sign. In addition, instead of positively charged color particles negatively charged color particles used and instead of the negatively charged color particles positively charged color particles are used. Thus relates the invention relates to two potential courses on the surface elements, which is only in the sign of the potentials differ. The technical effects are at both potential courses are the same.

Der Träger kann in einem Ausführungsbeispiel der Erfindung direkt oder in einem anderen Ausführungsbeispiel indirekt mit Hilfe eines Zwischenträgers bedruckt werden, von dem aus die Farbpartikel auf den Träger übertragen werden. Durch Verwenden eines Zwischenträgers kann das lichtempfindliche Schichtsystem geschont werden, da das Material des Zwischenträgers so ausgewählt werden kann, daß es bei Berührungen zwischen Zwischenträger und Schichtsystem zu minimaler mechanischer Belastung der Oberfläche der Fotoleiterschicht kommt. Als Träger wird z.B. blattförmiges Material oder Endlospapier verwendet.The carrier can in one embodiment of the invention directly or indirectly in another embodiment With the help of an intermediate carrier, from which the Color particles are transferred to the carrier. By using The light-sensitive layer system can be an intermediate support be spared because of the material of the intermediate carrier can be selected so that there is contact between Intermediate carrier and layer system to minimal mechanical The surface of the photoconductor layer comes under stress. As Carrier becomes e.g. sheet material or continuous paper used.

Die Erfindung betrifft außerdem einen elektrofotografischen Drucker mit den Merkmalen des Patentanspruchs 13. Die oben genannten Wirkungen bezüglich des Verfahrens gelten auch für den Drucker nach der Erfindung. Der Drucker nach der Erfindung zeichnet sich gegenüber dem in der genannten europäischen Druckschrift beschriebenen Drucker neben den genannten Eigenschaften durch einen einfachen Aufbau aus. Insbesondere ist das Schichtsystem nur aus zwei Schichten aufgebaut und es ist nur ein einziger bildmäßiger Belichtungsschritt pro Druckbild notwendig, so daß nur eine bildmäßige Belichtungseinheit mit einer einfachen Steuerung benötigt wird.The invention also relates to an electrophotographic Printer with the features of claim 13. The above The effects mentioned regarding the procedure also apply to the printer according to the invention. The printer according to the invention stands out from that in the mentioned European Printer described in addition to the printer described Characteristics from a simple structure. In particular the layer system is made up of only two layers and it is only one image-wise exposure step per Print image necessary, so that only an imagewise exposure unit with a simple control is required.

Die Erfindung kann mit einem trockenen Toner, der nur feste Farbpartikel enthält, oder mit einem flüssigen Toner ausgeführt werden, in dem z.B. die Farbpartikel in einer Flüssigkeit enthalten sind.The invention can be used with a dry toner that is only solid Contains color particles, or executed with a liquid toner in which e.g. the color particles in a liquid are included.

Im folgenden wird die Erfindung anhand von Ausführungsbeispielen beschrieben. Dabei zeigen:

Figur 1
eine Prinzipdarstellung eines elektrofotografischen Druckers mit wesentlichen elektronischen und mechanischen Funktionseinheiten,
Figur 2
die Druckeinheit des Druckers mit wesentlichen funktionellen Komponenten,
Figur 3
den Potentialverlauf auf dem Fotoleiter bei einem Belichtungsschritt und zwei Tonerpolaritäten,
Figur 4
den Zustand von Flächenelementen des Fotoleiters in verschiedenen Verfahrensschritten, und
Figur 5
einen zweiten Potentialverlauf auf dem Fotoleiter bei einem Belichtungsschritt und zwei Tonerpolaritäten.
The invention is described below using exemplary embodiments. Show:
Figure 1
a schematic diagram of an electrophotographic printer with essential electronic and mechanical functional units,
Figure 2
the printer's printing unit with essential functional components,
Figure 3
the potential curve on the photoconductor in one exposure step and two toner polarities,
Figure 4
the state of surface elements of the photoconductor in various process steps, and
Figure 5
a second potential curve on the photoconductor in one exposure step and two toner polarities.

Figur 1 zeigt eine Prinzipdarstellung eines elektrofotografischen Druckers 10 zum Durchführen eines Ausführungsbeispiels des Verfahrens nach der Erfindung. Der Drucker 10 hat eine durch einen Motor 12 und eine Welle 14 angetriebene Transportvorrichtung 16 zum Transport eines Endlos-Trägermaterials 18 vorbei an einer Druckeinheit 20 im wesentlichen gemäß einer vorgegebenen Druckgeschwindigkeit VD. Alternativ zum Endlos-Trägermaterial 18 können bei einem veränderten Transport auch Einzelblätter bedruckt werden. Die Druckeinheit 20 erzeugt ein mehrfarbiges Tonerbild, das z.B. mit Hilfe einer Koronaeinrichtung (vgl. Figur 2) auf das Trägermaterial 18 übertragen wird.Figure 1 shows a schematic diagram of an electrophotographic Printer 10 for performing an embodiment of the method according to the invention. Printer 10 has one transport device driven by a motor 12 and a shaft 14 16 for transporting an endless carrier material 18 past a printing unit 20 essentially according to a predetermined printing speed VD. Alternatively to Endless carrier material 18 can be used for a changed transport single sheets can also be printed. The printing unit 20 creates a multicolored toner image, e.g. with the help of a Corona device (see FIG. 2) on the carrier material 18 is transmitted.

Nachdem das Trägermaterial 18 an der Druckeinheit 20 in Richtung eines die Transportrichtung verdeutlichenden Pfeiles 22 vorbeitransportiert wurde, wird es einer Fixierstation 24 zugeführt, in der das noch verwischbare Tonerbild mit dem Trägermaterial 18 mit Hilfe von Druck und Temperatur wischfest verschmolzen wird. In der Transportrichtung 22 gesehen vor der Druckeinheit 20 ist eine erste Umlenkeinheit 26 angeordnet, die das Trägermaterial 18 der Druckeinheit 20 zuleitet. Eine weitere Umlenkeinheit 28 stapelt das bedruckte Trägermaterial 18 auf einen Stapel 30. Das Trägermaterial 18 wird zu Beginn des Druckvorgangs von einem Stapel 32 durch die erste Umlenkeinheit 26 entnommen. Anstelle der beiden Stapel 30 und 32 werden auch Rollen verwendet, auf denen das Trägermaterial 18 aufgerollt ist.After the carrier material 18 on the printing unit 20 in Direction of an arrow indicating the direction of transport 22 has been transported past, it becomes a fixing station 24 fed in which the still smearable toner image with the Backing material 18 with the help of pressure and temperature smudge-proof is merged. Seen in the transport direction 22 in front of the printing unit 20 is a first deflection unit 26 arranged which the carrier material 18 of the printing unit 20th feeds. Another deflection unit 28 stacks the printed one Carrier material 18 on a stack 30. The carrier material 18 is carried out by a stack 32 at the beginning of the printing process the first deflection unit 26 removed. Instead of the two Stacks 30 and 32 also use rolls on which the Backing material 18 is rolled up.

Der Druckvorgang wird von einer Drucksteuerung 34 gesteuert, die mindestens einen Mikroprozessor 36 und einen Speicher 38 enthält. Der Mikroprozessor 36 arbeitet ein im Speicher 38 abgelegtes Druckprogramm ab und steuert dabei den Druckvorgang. Außerdem bereitet die Drucksteuerung 34 ebenfalls im Speicher 38 gespeicherte Bilddaten auf und überträgt die aufbereiteten Bilddaten über einen Steuer- und Datenbus 40 zur Druckeinheit 20. Der Motor 12 wird über eine Steuerleitung 42 von der Drucksteuerung 34 so angesteuert, daß das Trägermaterial 18 eine Transportgeschwindigkeit hat, die im wesentlichen mit der Druckgeschwindigkeit VD übereinstimmt. Die Drucksteuerung 34 ist über Datenleitungen 44 mit einem Ein-/Ausgabegerät 46 verbunden, über das u.a. Bedienkommandos zum Start des Druckprozesses durch eine Bedienperson eingegeben werden.The printing process is controlled by a print controller 34, the at least one microprocessor 36 and a memory 38 contains. The microprocessor 36 works in the memory 38 stored print program and controls the printing process. In addition, the pressure controller 34 also prepares Memory 38 stored image data and transfers the processed image data via a control and data bus 40 to the printing unit 20. The motor 12 is via a control line 42 controlled by the pressure controller 34 so that the Carrier material 18 has a transport speed which in essentially corresponds to the printing speed VD. The pressure controller 34 is connected to a via data lines 44 Input / output device 46 connected, among other things, operating commands entered by an operator at the start of the printing process become.

Figur 2 zeigt die Druckeinheit 20 des Druckers 10 mit wesentlichen funktionellen Komponenten. Die Druckeinheit 20 enthält einen Fotoleiter 60, der aus einem flexiblen Schichtsystem besteht, das nach Art eines Transportbandes um zwei Umlenkrollen 62 und 64 geführt wird. Die Umlenkrolle 64 wird durch einen nicht dargestellten Antriebsmotor angetrieben, der durch die Drucksteuerung 34 und über den Steuer- und Datenbus 40 angesteuert wird. Die Druckeinheit 20 ist von einem lichtundurchlässigen Chassis 66 aus einem stabilen Werkstoff umgeben. Das Chassis 66 hat eine Öffnung 68, an der der Fotoleiter 60 im Inneren der Druckeinheit 20 vorbeigeführt wird. Außerhalb der Druckeinheit 20 wird das Trägermaterial 18 an der Öffnung 68 vorbeigeführt. Durch die Öffnung 68 kann kein Licht von außen auf den Fotoleiter 60 auftreffen, da der gesamte Drucker 10 eine lichtundurchlässige Verkleidung hat. Der Öffnung 68 gegenüberliegend ist eine Koronaeinrichtung 70 angeordnet, mit der ein auf dem Fotoleiter 60 befindliches Tonerbild auf das Trägermaterial 18 übertragen wird. Die Koronaeinrichtung 70 wird auch als Umdruckeinrichtung bezeichnet.Figure 2 shows the printing unit 20 of the printer 10 with essential functional components. The printing unit 20 contains a photoconductor 60 made of a flexible layer system consists of two conveyor rollers in the manner of a conveyor belt 62 and 64 is performed. The deflection roller 64 driven by a drive motor, not shown, by the pressure control 34 and the control and Data bus 40 is controlled. The printing unit 20 is from an opaque chassis 66 made of a stable Surround material. The chassis 66 has an opening 68 at which the photoconductor 60 is guided inside the printing unit 20 becomes. Outside of the printing unit 20 is the carrier material 18 guided past the opening 68. Through the opening 68 no light can strike the photoconductor 60 from the outside, because the entire printer 10 is opaque Has disguise. Opposite opening 68 is one Corona device 70 arranged with the one on the photoconductor 60 located toner image on the carrier material 18th is transmitted. Corona device 70 is also called Transfer printing device called.

Der Fotoleiter 60 enthält eine Nullpotential führende Elektrodenschicht 72 und eine etwa parallel dazu angeordnete Fotoleiterschicht 74, die mit der Elektrodenschicht 72 großflächig in mechanischem und elektrischem Kontakt steht. Der Fotoleiter 60 wird durch die Umlenkrollen 62, 64 in Richtung eines Pfeils 76 bewegt. Dabei wird ein quer zur Transportrichtung des Fotoleiters 60 liegender Flächenstreifen des Fotoleiters 60 nacheinander an einer Aufladevorrichtung 78, einem Zeichengenerator 80, einer Entwicklerstation 82 zum Ablagern von schwarzen Tonerteilchen, einer Entwicklerstation 84 zum Ablagern von blauen Tonerteilchen, einer Ladevorrichtung 86, einer Totalbelichtungseinheit 88, einer Entwicklerstation 90 zum Ablagern roter Tonerteilchen, einer Umladestation 92, der Koronaeinrichtung 70, einer Löscheinrichtung 94 und an einer Säuberungseinrichtung 96 vorbeigeführt.The photoconductor 60 contains an electrode layer carrying zero potential 72 and one arranged approximately parallel to it Photoconductor layer 74 with the electrode layer 72 over a large area is in mechanical and electrical contact. The Photoconductor 60 is directed through the deflection rollers 62, 64 an arrow 76 moves. This will be a cross to the direction of transport of the photoconductor 60 area strip of the Photoconductor 60 successively on a charging device 78, a character generator 80, a developer station 82 for Deposition of black toner particles, a developer station 84 for depositing blue toner particles, a charger 86, a total exposure unit 88, a developer station 90 for depositing red toner particles, a transfer station 92, the corona device 70, an extinguishing device 94 and passed a cleaning device 96.

Die Aufladevorrichtung 78 enthält eine quer zur Transportrichtung 76 angeordnete Koronaeinrichtung, die einen jeweils quer zur Transportrichtung 76 liegenden Flächenstreifen des Fotoleiters 60, der sich in unmittelbarer Nähe der Aufladevorrichtung 78 befindet, so auflädt, daß ein Anfangspotential VA von ungefähr -1200 V auf der Oberfläche der Fotoleiterschicht 74 im Bereich des Flächenstreifens entsteht (vgl. Figur 3, Schritt S1).The charging device 78 contains a transverse to the transport direction 76 arranged corona device, each one surface strips of the transverse to the transport direction 76 Photoconductor 60, which is in the immediate vicinity of the charging device 78 is so charged that an initial potential VA of approximately -1200 V on the surface of the photoconductor layer 74 arises in the area of the area strip (cf. Figure 3, step S1).

Der Zeichengenerator 80 enthält eine quer zur Transportrichtung 76 angeordnete Zeile aus Leuchtdioden, die jeweils einen quer zur Transportrichtung 76 liegenden Bereich des Fotoleiters 60 bildmäßig beleuchten. Der Zeichengenerator 80 wird durch die Drucksteuerung 34 so angesteuert, daß jeweils Bildsignale zu Bildelementen einer Zeile des Druckbildes gleichzeitig in Leuchtsignale der Leuchtdioden umgesetzt werden. Durch das Belichten des Fotoleiters 60 steigt das Potential auf den belichteten Flächenelementen des Fotoleiters 60, da der Fotoleiter 60 in den belichteten Bereichen besser leitet, wodurch Ladungsträger von der Oberfläche der Fotoleiterschicht 74 zur Elektrodenschicht 72 im Bereich der belichteten Flächen abfließen können. Flächenelemente, auf denen schwarze Tonerteilchen abgelagert werden sollen, werden nicht belichtet; Flächenelemente, auf denen keine Tonerteilchen abgelagert werden sollen, werden mit einer ersten Lichtenergie belichtet; Flächenelemente, auf denen rote Tonerteilchen abgelagert werden sollen, werden mit einer gegenüber der ersten Lichtenergie höheren zweiten Lichtenergie belichtet und Flächenelemente, auf denen später blaue Tonerteilchen abgelagert werden sollen, werden mit einer gegenüber der zweiten Lichtenergie höheren dritten Lichtenergie belichtet. Mit steigender Lichtenergie erhöht sich das Potential auf den jeweiligen Flächenelementen, d.h., das Potential verändert sich in positive Richtung (vgl. Figur 3, Schritt S2).The character generator 80 contains one transverse to the direction of transport 76 arranged row of light emitting diodes, each one Area of the photoconductor lying transversely to the transport direction 76 Illuminate 60 pictorially. The character generator 80 becomes controlled by the pressure controller 34 so that each Image signals for image elements of a line of the printed image at the same time converted into light signals from the light emitting diodes become. The exposure of the photoconductor 60 increases this Potential on the exposed surface elements of the photoconductor 60 since the photoconductor 60 in the exposed areas conducts better, thereby removing charge carriers from the surface of the Photoconductor layer 74 to the electrode layer 72 in the area of exposed areas can flow off. Surface elements, on where black toner particles are to be deposited not exposed; Area elements on which no toner particles should be deposited with a first Light energy exposed; Surface elements on which red Toner particles are to be deposited with a compared to the first light energy higher second light energy exposed and surface elements on which later blue Toner particles are to be deposited with a compared to the second light energy higher third light energy exposed. With increasing light energy this increases Potential on the respective surface elements, i.e. that Potential changes in a positive direction (see FIG. 3, Step S2).

Die Entwicklerstation 82 lagert positiv geladene Farbpartikel der Farbe Schwarz K unter Verwendung einer Hilfselektrode 120 mit einem Potential VBIAS3 auf Flächenelementen ab, die nicht belichtet wurden. Der genaue Wirkungsmechanismus wird anhand der Figur 3 weiter unten erläutert (Schritt S3).The developer station 82 stores positively charged color particles of the color black K using an auxiliary electrode 120 with a potential VBIAS3 on surface elements that do not were exposed. The exact mechanism of action is based on of Figure 3 explained below (step S3).

Die Entwicklerstation 84 lagert negativ geladene Tonerteilchen der Farbe Blau B mit Hilfe einer Hilfselektrode 122 mit einem Potential VBIAS4 auf Flächenelementen ab, die mit der dritten Lichtenergie belichtet wurden. Die genaue Wirkungsweise der Entwicklerstation 84 wird ebenfalls weiter unten anhand der Figur 3 erläutert (Schritt S4).The developer station 84 stores negatively charged toner particles the color blue B with the help of an auxiliary electrode 122 a potential VBIAS4 on surface elements that match the third light energy were exposed. The exact mode of action the developer station 84 is also below explained with reference to Figure 3 (step S4).

Durch das Ablagern der negativ geladenen blauen Tonerteilchen wird das Potential auf den Flächenelementen, die mit der dritten Lichtenergie belichtet wurden, wieder abgesenkt, d.h. in negativer Richtung verändert. Um das Potential auf diesen Flächenelementen noch weiter abzusenken, d.h. in negativer Richtung zu verändern, wird der Fotoleiter 60 an der Ladevorrichtung 86 vorbeigeführt. Die Ladevorrichtung 86 enthält einen quer zur Transportrichtung 76 gespannten Koronadraht, der ein Potential hat, das eine Aufladung der Oberfläche der Fotoleiterschicht 74 im Bereich der mit blauen Tonerteilchen bedeckten Flächenelemente auf ein Potential VB5 bewirkt. Das Potential VB5 ist betragsmäßig kleiner als ein momentanes Potential VR5 auf den Flächenelementen, die mit der zweiten Lichtenergie belichtet wurden (vgl. Figur 3, Schritt S5).By depositing the negatively charged blue toner particles the potential on the surface elements with the third light energy were exposed, lowered again, i.e. changed in the negative direction. To the potential on this Lower surface elements even further, i.e. in negative To change direction, the photoconductor 60 on the charger 86 passed. Charger 86 contains a corona wire stretched transversely to the transport direction 76, who has a potential to charge the surface of the Photoconductor layer 74 in the area with blue toner particles covered surface elements to a potential VB5. The Potential VB5 is smaller in magnitude than a current one Potential VR5 on the surface elements with the second Light energy were exposed (see FIG. 3, step S5).

Danach wird der betrachtete Streifen des Fotoleiters 60 an der Totalbelichtungseinheit 88 vorbeigeführt. Die Totalbelichtungseinheit 88 enthält eine Laserdiode, die in ein quer zur Transportrichtung 76 des Fotoleiters 60 angeordnetes Glasfaserarray Lichtenergie einstrahlt. Das Glasfaserarray ist so ausgebildet, daß über seine gesamte Länge im wesentlichen gleiche Lichtenergie ausgestrahlt wird. Das Licht der Totalbelichtungseinheit 88 kann nicht durch bereits abgelagerte schwarze oder blaue Tonerteilchen strahlen, da es durch diese Tonerteilchen absorbiert wird. Trifft das Licht der Totalbelichtungseinheit 88 jedoch auf Flächenelemente der Fotoleiterschicht 74, die noch nicht mit Tonerteilchen bedeckt sind, so wird das Potential auf diesen Flächenelementen erhöht, d.h. in positiver Richtung verändert (vgl. Figur 3, Schritt S6).The strip of photoconductor 60 under consideration then turns on passed the total exposure unit 88. The total exposure unit 88 contains a laser diode that crosses in one arranged to the transport direction 76 of the photoconductor 60 Glass fiber array radiates light energy. The fiber optic array is designed so that essentially over its entire length same light energy is emitted. The light of the Total exposure unit 88 can not by already deposited black or blue toner particles shine through it this toner particle is absorbed. Meets the light of the Total exposure unit 88, however, on surface elements of the Photoconductor layer 74 which is not yet covered with toner particles the potential on these surface elements increased, i.e. changed in the positive direction (see FIG. 3, Step S6).

Die Entwicklerstation 90 lagert negativ geladene Tonerteilchen der Farbe Rot R auf den mit der zweiten Lichtenergie belichteten Flächenelementen der Fotoleiterschicht 74 ab. Dabei wird eine Hilfselektrode 124 mit einem Potential VBIAS7 verwendet. Die genaue Wirkungsweise des Ablagerns der roten Tonerteilchen wird ebenfalls anhand der Figur 3 weiter unten erläutert (Schritt S7). The developer station 90 stores negatively charged toner particles the color red R to the one with the second light energy exposed surface elements of the photoconductor layer 74. An auxiliary electrode 124 with a potential VBIAS7 used. The exact mode of action of depositing the red Toner particles are also shown in FIG. 3 below explained (step S7).

In der Umladestation 92 werden die positiv geladenen schwarzen Tonerteilchen umgepolt, so daß nahezu alle auf dem Fotoleiter 60 abgelagerten Tonerteilchen negativ geladen sind. Dabei erfolgt eine Umladung auf allen Flächenelementen des Fotoleiters, in deren Folge sich die Potentiale auf den Flächenelementen verringern, d.h. in negativer Richtung verändern (vgl. Figur 3, Schritt S8). Durch diese Maßnahme wird erreicht, daß das Übertragen des Tonerbildes vom Fotoleiter 60 auf das Trägermaterial 18 mit Hilfe der Koronaeinrichtung 70 sicher durchgeführt wird (vgl. Figur 3, Schritt S9).The positively charged black are in the transfer station 92 Reversed toner particles, so that almost all on the photoconductor 60 deposited toner particles are negatively charged. A reloading takes place on all surface elements of the Photoconductor, as a result of which the potentials on the Reduce surface elements, i.e. in the negative direction change (see FIG. 3, step S8). By this measure it is achieved that the transfer of the toner image from the photoconductor 60 on the carrier material 18 with the aid of the corona device 70 is carried out safely (cf. FIG. 3, step S9).

Nach dem Übertragen des Tonerbildes mit Hilfe der Koronaeinrichtung 70 wird der nunmehr von Tonerteilchen im wesentlichen freie Fotoleiter 60 an der Löscheinrichtung 94 vorbeigeführt. Die Löscheinrichtung 94 enthält eine Koronaeinrichtung 98 und eine Belichtungseinheit 100, durch die auf dem Fotoleiter 60 vorhandene Restladungen entfernt werden.After transferring the toner image using the corona device 70 is now essentially toner particles free photoconductor 60 past the extinguishing device 94. The eraser 94 includes a corona device 98 and an exposure unit 100 through which on the photoconductor 60 existing residual charges are removed.

Tonerteilchen, die nach dem Übertragen des Tonerbildes noch auf dem Fotoleiter 60 verblieben sind, werden in der Säuberungseinrichtung 96 mit Hilfe einer Bürste 102 vom Fotoleiter 60 entfernt. Nach dem Vorbeitransport an der Säuberungseinrichtung 96 befindet sich der betrachtete Streifen des Fotoleiters 60 wieder in einem sauberen Anfangszustand und hat an allen Stellen etwa das gleiche Potential.Toner particles left after the toner image is transferred remaining on the photoconductor 60 are in the cleaning device 96 using a brush 102 from the photoconductor 60 removed. After being transported past the cleaning facility 96 is the strip of the photoconductor under consideration 60 back in a clean initial condition and on about the same potential in all places.

Figur 3 zeigt den Potentialverlauf auf der Oberfläche des betrachteten Streifens des Fotoleiters 60 bei einem Belichtungsschritt und zwei Tonerpolaritäten. Auf der Abszissenachse ist die Zeit abgetragen, die in neun aufeinanderfolgende Zeit-Schritte S1 bis S9 unterteilt ist. Auf der Ordinatenachse ist das Potential auf der Oberfläche der Fotoleiterschicht 74 bezüglich des Potentials auf der Elektrodenschicht 72 dargestellt. Figure 3 shows the potential profile on the surface of the considered strip of photoconductor 60 in an exposure step and two toner polarities. On the abscissa axis is the time wasted in nine consecutive Time steps S1 to S9 is divided. On the ordinate axis is the potential on the surface of the photoconductor layer 74 with regard to the potential on the electrode layer 72 shown.

Im Schritt S1 wird das Potential auf der Oberfläche der Fotoleiterschicht 74 durch Einwirken der Aufladevorrichtung 78 in negativer Richtung auf das Anfangspotential VA verschoben, das wie bereits erwähnt den Wert von -1200 V hat.In step S1, the potential on the surface of the Photoconductor layer 74 by the action of the charging device 78 shifted in the negative direction to the initial potential VA, which, as already mentioned, has the value of -1200 V.

Im Schritt S2 erfolgt das bildmäßige Belichten mit Hilfe des Zeichengenerators 80, wodurch sich der dargestellte Potentialverlauf auf der Oberfläche ausgewählter Flächenelemente der Fotoleiterschicht 74 einstellt. Flächenelemente, die später mit schwarzen Tonerteilchen bedeckt werden sollen, werden nicht belichtet. Das Potential VA verschiebt sich auf diesen Flächenelementen im Verlauf des Schrittes S2 nur geringfügig in positiver Richtung durch eine nicht zu unterdrückende Selbstentladung des Fotoleiters 60 auf einen Wert VK2. Das Potential auf den Flächenelementen, die mit der ersten Lichtenergie belichtet werden, verändert sich in positiver Richtung auf einen Wert VW2 von etwa -800 V. Das Potential auf den Flächenelementen, die mit der zweiten Lichtenergie belichtet werden, verändert sich im Verlaufe des Schrittes S2 in positiver Richtung auf einen Potentialwert VR2 von etwa -400 V. Das Potential auf den Flächenelementen, die mit der dritten Lichtenergie belichtet wurden, verändert sich im Schritt S2 in positiver Richtung etwa auf einen Potentialwert VB2 von etwa -100 V.In step S2, the image-wise exposure is carried out using the Character generator 80, whereby the potential curve shown on the surface of selected surface elements the photoconductor layer 74 sets. Surface elements that later covered with black toner particles, are not exposed. The potential VA shifts these surface elements in the course of step S2 only slightly in the positive direction by a non-suppressable Self-discharge of the photoconductor 60 to a value CC2. The potential on the surface elements with the first light energy to be exposed changes into positive direction to a value VW2 of approximately -800 V. That Potential on the surface elements with the second Light energy being exposed changes in the course of Step S2 in the positive direction to a potential value VR2 of around -400 V. The potential on the surface elements, that were exposed with the third light energy changed approximately in step S2 in the positive direction Potential value VB2 of approximately -100 V.

Im Schritt S3 werden positive schwarze Tonerteilchen durch die Entwicklerstation 82 abgelagert. Die Hilfselektrode 120 in der Nähe des Fotoleiters 60 hat das Hilfspotential VBIAS3 von etwa -900 V. Auf der Hilfselektrode 120 befinden sich die positiv geladenen schwarzen Tonerteilchen. Da das Potential VBIAS3 geringer als die Potentiale VW2, VR2 und VB2 ist, sind diese Potentiale bezüglich des Potentials VBIAS3 positiv. Die positiv geladenen schwarzen Tonerteilchen können jedoch nur auf eine Fläche abgelagert werden, die ein bezüglich des Potentials VBIAS3 niedrigeres Potential hat. Das trifft nur für Flächenelemente zu, die im Schritt S2 nicht belichtet wurden. Demzufolge werden auf diesen Flächenelementen die schwarzen Tonerteilchen abgelagert. Durch das Ablagern der positiv geladenen Tonerteilchen erhöht sich das Potential auf den mit schwarzen Tonerteilchen bedeckten Flächenelementen auf einen Potentialwert VK3. Durch die erwähnte nicht zu vermeidende Selbstentladung des Fotoleiters 60 erhöhen sich die Potentiale VW2, VR2 bzw. VB2 leicht auf die Potentialwerte VW3, VR3 bzw. VB3.In step S3, positive black toner particles are passed through the developer station 82 deposited. The auxiliary electrode 120 in the vicinity of the photoconductor 60 has the auxiliary potential VBIAS3 of about -900 V. On the auxiliary electrode 120 are the positively charged black toner particles. Because the potential VBIAS3 is lower than the potentials VW2, VR2 and VB2 these potentials with respect to the potential VBIAS3 positive. The however, positively charged black toner particles can only be deposited on an area that is in relation to the Potentials VBIAS3 has lower potential. It only applies for surface elements that are not exposed in step S2 were. As a result, the are on these surface elements black toner particles. By depositing the positively charged toner particles increase the potential the surface elements covered with black toner particles to a potential value VK3. Through the mentioned not too avoiding self-discharge of the photoconductor 60 increases the potentials VW2, VR2 or VB2 slightly to the potential values VW3, VR3 or VB3.

Im Schritt S4 werden negative blaue Tonerteilchen durch die Entwicklerstation 84 abgelagert. Die Hilfselektrode 122 in unmittelbarer Nähe des Fotoleiters 60 hat das Hilfspotential VBIAS4 von etwa -390V. Auf der Hilfselektrode 122 befinden sich die negativ geladenen blauen Tonerteilchen. Da das Potential VBIAS4 höher als die Potentiale VK3, VW3 und VR3 ist, liegen diese Potentiale bezüglich des Potentials VBIAS4 in negativer Richtung. Die negativ geladenen blauen Tonerteilchen können jedoch nur auf einer Fläche abgelagert werden, die ein bezüglich des Potentials VBIAS4 höheres, d.h. in positiver Richtung verschobenes Potential hat. Das trifft nur für Flächenelemente zu, die im Schritt S2 mit der dritten Lichtenergie belichtet wurden. Demzufolge werden auf diese Flächenelemente die blauen Tonerteilchen abgelagert. Durch das Ablagern der negativ geladenen blauen Tonerteilchen verringert sich das Potential auf den mit blauen Tonerteilchen bedeckten Flächenelementen auf einen Potentialwert VB4. Durch die Selbstentladung des Fotoleiters 60 erhöhen sich die Potentiale VK3, VW3 bzw. VR3 leicht auf die Potentialwerte VK4, VW4 bzw. VR4.In step S4, negative blue toner particles are replaced by the Developer station 84 deposited. The auxiliary electrode 122 in the immediate vicinity of the photoconductor 60 has the auxiliary potential VBIAS4 of about -390V. Located on the auxiliary electrode 122 the negatively charged blue toner particles. Since that Potential VBIAS4 higher than the potentials VK3, VW3 and VR3 these potentials are related to the potential VBIAS4 in the negative direction. The negatively charged blue toner particles can only be deposited on one surface, which is a higher in terms of potential VBIAS4, i.e. in potential shifted in the positive direction. It only applies for surface elements that in step S2 with the third Light energy were exposed. Consequently, on this Surface elements deposited the blue toner particles. By the deposition of the negatively charged blue toner particles the potential on those with blue toner particles decreases covered surface elements to a potential value VB4. The self-discharge of the photoconductor 60 increases the Potentials VK3, VW3 or VR3 slightly on the potential values VK4, VW4 or VR4.

Im Schritt S5 wird das Potential VB4 auf der Oberfläche der mit blauen Tonerteilchen bedeckten Flächenelemente mit Hilfe der Ladevorrichtung 86 auf etwa -390 V verringert, d.h. in negativer Potentialrichtung verschoben. Durch die Selbstentladung des Fotoleiters 60 erhöhen sich die Potentiale VK4, VW4 bzw. VR4 im Schritt S5 auf die Potentiale VK5, VW5 bzw. VR5. In step S5, the potential VB4 on the surface of the surface elements covered with blue toner particles with the help charger 86 reduced to about -390 V, i.e. in negative potential direction shifted. By self-discharge of the photoconductor 60, the potentials VK4 increase, VW4 or VR4 in step S5 to the potentials VK5, VW5 or VR5.

Im Schritt S6 wird durch das von der Totalbelichtungseinheit 88 ausgestrahlte Licht, das Potential VW5 bzw. VR5 auf den nicht mit Tonerteilchen bedeckten Flächenelementen jeweils um etwa 400 V auf die Potentiale VW6 bzw. VR6 erhöht. Das Potential auf Flächenelementen, die im Schritt S2 mit der zweiten Lichtenergie belichtet wurden, wird durch die weitere Belichtung im Schritt S6 zum höchsten Potential auf einem der Flächenelemente. Die Potentiale VK5 bzw. VB5 erhöhen sich geringfügig aufgrund der Selbstentladung des Fotoleiters 60 auf die Potentiale VK6 bzw. VB6. Zwischen den Potentialen VR6 und VB6 besteht eine Differenz von etwa 400 V, so daß im folgenden Schritt S7 ähnlich wie im Schritt S4 Tonerteilchen auf die Flächenelemente abgelagert werden können, die im Schritt S2 mit der zweiten Lichtenergie belichtet wurden.In step S6 by the total exposure unit 88 emitted light, the potential VW5 or VR5 on the surface elements not covered with toner particles about 400 V to the potentials VW6 or VR6. The potential on surface elements that in step S2 with the second Light energy has been exposed by further exposure in step S6 to the highest potential on one of the Surface elements. The potentials VK5 and VB5 increase slightly due to the self-discharge of the Photoconductor 60 to the potentials VK6 and VB6. Between Potentials VR6 and VB6 have a difference of about 400 V, so that in the following step S7 similar to step S4 Toner particles are deposited on the surface elements can, which is exposed in step S2 with the second light energy were.

Im Schritt S7 werden negative rote Tonerteilchen durch die Entwicklerstation 90 abgelagert. Die Hilfselektrode 124 in unmittelbarer Nähe des Fotoleiters 60 hat das Hilfspotential VBIAS7 von etwa -370 V. Auf der Hilfselektrode 124 befinden sich die negativ geladenen roten Tonerteilchen. Analog zu den im Schritt S4 beschriebenen elektrischen Verhältnissen werden die negativen Tonerteilchen auf die Flächenelemente abgelagert, die im Schritt S2 mit der zweiten Lichtenergie belichtet wurden. Die Potentiale VK6, VW6 bzw. VB6 erhöhen sich aufgrund der Selbstentladung des Fotoleiters 60 auf die Potentialwerte VK7, VW7 bzw. VB7.In step S7, negative red toner particles are replaced by the Developer station 90 deposited. The auxiliary electrode 124 in the immediate vicinity of the photoconductor 60 has the auxiliary potential VBIAS7 of about -370 V. Located on auxiliary electrode 124 the negatively charged red toner particles. Analog to the electrical conditions described in step S4 the negative toner particles are deposited on the surface elements, which is exposed in step S2 with the second light energy were. The potentials VK6, VW6 and VB6 increase due to the self-discharge of the photoconductor 60 on the Potential values VK7, VW7 or VB7.

Im Schritt S8 wird der betrachtete Streifen des Fotoleiters 60 an der Umladestation 92 vorbeigeführt. In der Umladestation 92 ist eine Koronaeinrichtung enthalten, die das Potential auf der Oberfläche der Fotoleiterschicht 74 umlädt. Beim Vorbeitransport werden die Potentiale auf allen Flächenelementen wesentlich verringert, wobei die Polarität der schwarzen Tonerteilchen auf dem Fotoleiter 60 umgepolt wird, so daß auch die schwarzen Tonerteilchen negativ geladen sind. In step S8, the strip of the photoconductor under consideration 60 passed the transfer station 92. In the transfer station 92 contains a corona device that has the potential charges on the surface of the photoconductor layer 74. At the Transporting past the potential on all surface elements significantly reduced, the polarity of the black Toner particles on the photoconductor 60 is reversed so that the black toner particles are also negatively charged.

Im Schritt S9 werden durch die Einwirkung der positiv geladenen Koronaeinrichtung 70 die Tonerteilchen von mit Tonerteilchen bedeckten Flächenelementen im wesentlichen unter Beibehaltung ihrer Lage zueinander auf das Trägermaterial 18 übertragen. Dabei erhöht sich das Potential auf den Flächenelementen des Fotoleiters 60 auf etwa -400 V.In step S9, the positively charged by the action Corona device 70 contains the toner particles with toner particles covered area elements essentially under Maintaining their position relative to one another on the carrier material 18 transfer. The potential on the surface elements increases the photoconductor 60 to about -400 V.

In einem nicht dargestellten Schritt wird die noch vorhandene Restladung auf dem Fotoleiter 60 durch die Löscheinrichtung 94 entfernt, so daß der Fotoleiter 60 auf seiner Oberfläche nach dem Passieren der Löscheinrichtung 94 einen Potentialwert von etwa 0 V hat.In a step, not shown, the still existing one Residual charge on the photoconductor 60 by the eraser 94 removed so that the photoconductor 60 on its surface after passing the quench 94 a potential value of about 0 V.

Figur 4 zeigt den Zustand von Flächenelementen des Fotoleiters 60 am Ende der Schritte S1 bis S9. Teil a der Figur 4 zeigt ein Druckbild 140, das vier Bildelemente 142 bis 148 enthält. Das Bildelement 142 hat die Farbe Blau B, die in Figur 4 durch eine horizontale Schraffur dargestellt wird.Figure 4 shows the state of surface elements of the photoconductor 60 at the end of steps S1 to S9. Part a of Figure 4 shows a print image 140, the four picture elements 142 to 148 contains. The picture element 142 has the color blue B, which in Figure 4 is represented by a horizontal hatching.

Das Bildelement 144 hat die Farbe Rot R, die in Figur 4 durch eine vertikale Schraffur dargestellt wird. Das Bildelement 146 hat die Farbe Schwarz K, die in Figur 4 durch eine geneigte Schraffur dargestellt wird, deren Schraffurlinien um etwa 45° bezüglich der Horizontalen angeordnet sind. Das Bildelement 148 hat die Farbe Weiß W (Farbe des Trägermaterials 18), die in Figur 4 durch eine Schraffur dargestellt wird, deren Schraffurlinien etwa um einen Winkel von 135° bezüglich der Horizontalen ausgerichtet sind.The picture element 144 has the color red R, which is shown in FIG vertical hatching is shown. The picture element 146 has the color black K, which in Figure 4 by an inclined Hatching is shown, its hatching lines around about 45 ° with respect to the horizontal. The Image element 148 has the color white W (color of the carrier material 18) represented by hatching in FIG whose hatching lines are approximately at an angle of 135 ° are aligned with the horizontal.

Teil b zeigt einen streifenförmigen Abschnitt 150 des Fotoleiters 60. Der Abschnitt 150 ist auf dem Fotoleiter 60 quer zur Transportrichtung 76 angeordnet. In Figur 4 wird der Abschnitt 150 in Draufsicht dargestellt, wobei die Fotoleiterschicht 74 oben ist. Durch die Drucksteuerung 34 werden Flächenelementen 152 bis 158 auf der Oberfläche des Fotoleiters 60 die Bildelemente 142 bis 148 zugeordnet. Dem Bildelement 142 wird das Flächenelement 152 zugeordnet. Dem Bildelement 144, 146 bzw. 148 wird das Flächenelement 154, 156 bzw. 158 zugeordnet. Die Zuordnung erfolgt so, daß benachbarten Flächenelementen auch benachbarte Bildelemente des Druckbildes 140 zugeordnet sind. Im Schritt S1 wird durch die Aufladevorrichtung 78 auf jedem der Flächenelemente 152 bis 158 das Anfangspotential VA erzeugt.Part b shows a strip-shaped section 150 of the photoconductor 60. Section 150 is transverse on photoconductor 60 arranged to the transport direction 76. In Figure 4 the Section 150 shown in plan view, with the photoconductor layer 74 is above. By the pressure controller 34 Area elements 152 to 158 on the surface of the photoconductor 60 assigned the picture elements 142 to 148. The picture element 142 the surface element 152 is assigned. The picture element 144, 146 or 148, the surface element 154, 156 or 158 assigned. The assignment is made so that neighboring Area elements also adjacent image elements of the printed image 140 are assigned. In step S1, the charging device 78 on each of the surface elements 152 to 158 generates the initial potential VA.

Teil c der Figur 4 zeigt den Zustand der Flächenelemente 152 bis 158 nach dem bildmäßigen Belichten im Schritt S2. Da auf das Flächenelement 152 die größte, dritte Lichtenergie fällt, findet über die im Bereich des Flächenelementes 152 durch den Lichteinfall gut leitende Fotoleiterschicht 74 ein Ladungsausgleich statt, in dessen Folge sich das Potential VB2 auf der Oberfläche des Flächenelementes 152 einstellt. Das Flächenelement 154 wird mit der zweiten Lichtenergie belichtet, die niedriger als die dritte Lichtenergie ist. Demzufolge stellt sich das gegenüber dem Potential VB2 niedrigere Potential VR2 auf der Oberfläche des Flächenelementes 154 ein. Das Flächenelement 156 wird beim bildmäßigen Belichten nicht beleuchtet. Demzufolge stellt sich auf der Oberfläche des Flächenelementes 156 am Ende des bildmäßigen Belichtungsschrittes S2 ein Potential VK2 ein, das nur etwas über dem Anfangspotential VA liegt. Auf der Oberfläche des Flächenelementes 158 stellt sich nach dem Belichten mit der ersten Lichtenergie im Schritt S2 das Potential VW2 ein. Da die erste Lichtenergie niedriger als die zweite Lichtenergie ist, ist das Potential VW2 geringer als das Potential VR2.Part c of FIG. 4 shows the state of the surface elements 152 to 158 after imagewise exposure in step S2. There on the surface element 152 has the greatest third light energy, takes place in the area of the surface element 152 through the Incidence of light well conductive photoconductor layer 74 a charge equalization instead, the potential VB2 of the surface of the surface element 152. The surface element 154 is exposed to the second light energy, which is lower than the third light energy. As a result, the lower potential compared to the potential VB2 VR2 on the surface of the surface element 154. The Surface element 156 does not become during imagewise exposure illuminated. As a result, arises on the surface of the Surface element 156 at the end of the imagewise exposure step S2 a potential VK2 that is only slightly above that Initial potential VA is. On the surface of the surface element 158 turns up after exposure with the first Light energy in step S2 the potential VW2. Since the first light energy is lower than the second light energy, the potential VW2 is lower than the potential VR2.

Ein nicht mit Tonerteilchen bedecktes Flächenelement, das am Ende eines der Schritte S2 bis S9 das höchste Potential hat, wird durch einen Stern in der rechten oberen Ecke des jeweiligen Flächenelementes gekennzeichnet. Ein nicht mit Tonerteilchen bedecktes Flächenelement, das am Ende eines der Schritte S2 bis S9 den niedrigsten Potentialwert hat, wird durch ein Kreuz in der rechten oberen Ecke des betreffenden Flächenelementes gekennzeichnet. Im Teil c der Figur 4 hat das Flächenelement 152 das größte Potential und das Flächenelement 156 das kleinste Potential.A surface element not covered with toner particles, which on End of one of the steps S2 to S9 has the highest potential, is indicated by an asterisk in the top right corner of each Area element marked. A not with toner particles covered area element that at the end of one of the Steps S2 to S9 has the lowest potential value by a cross in the top right corner of the concerned Area element marked. In part c of Figure 4 the surface element 152 has the greatest potential and the surface element 156 the smallest potential.

Teil d der Figur 4 zeigt die Oberflächenpotentiale auf den Flächenelementen 152 bis 158 am Ende des Schrittes S3. Während des Schrittes S3 wird der Abschnitt 150 an der Entwicklerstation 82 vorbeitransportiert. Aus den oben genannten Gründen lagern sich schwarze Tonerteilchen nur auf der Oberfläche des Flächenelementes 156 an, so daß dieses Flächenelement vollständig mit schwarzen Tonerteilchen bedeckt ist (45° Schraffur).Part d of Figure 4 shows the surface potentials on the Area elements 152 to 158 at the end of step S3. While of step S3, section 150 becomes the developer station 82 transported past. From the above For this reason, black toner particles are only deposited on the surface of the surface element 156, so that this surface element completely covered with black toner particles (45 ° Hatching).

Teil e der Figur 4 zeigt die Flächenelemente 152 bis 158 am Ende des Schrittes S4. Im Schritt S4 wird der Abschnitt 150 an der Entwicklerstation 84 vorbeitransportiert. Dabei werden aus den oben genannten Gründen blaue Tonerteilchen auf dem Flächenelement 152 abgelagert (horizontale Schraffur), so daß nunmehr sowohl das Flächenelement 152 als auch das Flächenelement 156 mit Tonerteilchen bedeckt sind.Part e of FIG. 4 shows the surface elements 152 to 158 End of step S4. In step S4, section 150 transported past developer station 84. In doing so for the above reasons, blue toner particles on the Surface element 152 deposited (horizontal hatching), so that now both the surface element 152 and the surface element 156 are covered with toner particles.

Teil f der Figur 4 zeigt die Flächenelemente 152 bis 158 am Ende des Schrittes S6, in dem der Abschnitt 150 gleichmäßig belichtet wurde. Durch das gleichmäßige Belichten kommt es zu einer Potentialerhöhung auf der Oberfläche der Flächenelemente 154 und 158, die nicht mit Tonerteilchen bedeckt sind, da das auftreffende Licht den Widerstand der Fotoleiterschicht 74 verringert und ein teilweiser Ladungsträgerausgleich zwischen Ladungsträgern auf der Oberfläche dieser Flächenelemente und Ladungsträgern in der Elektrodenschicht 72 stattfindet. Am Ende des Schrittes S6 hat das Flächenelement 154 auf seiner Oberfläche das größte Potential.Part f of FIG. 4 shows the surface elements 152 to 158 am End of step S6 in which section 150 is even was exposed. Due to the even exposure it happens a potential increase on the surface of the surface elements 154 and 158 that are not covered with toner particles because the incident light the resistance of the photoconductor layer 74 reduced and a partial load carrier compensation between charge carriers on the surface of these surface elements and charge carriers takes place in the electrode layer 72. At the end of step S6, the surface element has 154 the greatest potential on its surface.

Teil g der Figur 4 zeigt die Flächenelemente 152 bis 158 am Ende des Schrittes S7. Im Verlauf dieses Schrittes wird der Abschnitt 150 an der Entwicklerstation 90 vorbeitransportiert. Aus den oben genannten Gründen lagern sich rote Tonerteilchen auf dem Flächenelement 154 ab (vertikale Schraffur). Part g of FIG. 4 shows the surface elements 152 to 158 am End of step S7. In the course of this step the Section 150 transported past developer station 90. Red toner particles are deposited for the reasons mentioned above on the surface element 154 (vertical hatching).

Die Flächenelemente 152 bis 156 sind somit mit Tonerteilchen bedeckt.The surface elements 152 to 156 are thus with toner particles covered.

Teil h der Figur 4 zeigt einen Abschnitt 160 des Trägermaterials 18 am Ende des Schrittes S9. Die Tonerteilchen auf dem Abschnitt 150 werden im Schritt S9 im wesentlichen unter Beibehaltung ihrer gegenseitigen Lage auf den Abschnitt 160 des Trägermaterials 18 übertragen. Das Trägermaterial 18 hat wie bereits erwähnt die Farbe Weiß W (135° Schraffur), so daß als Resultat des beschriebenen Verfahrens das Druckbild 140 mit den Bildelementen 142 bis 148 auf den Abschnitt 160 des Trägermaterials 18 gedruckt wurde.Part h of FIG. 4 shows a section 160 of the carrier material 18 at the end of step S9. The toner particles on the Section 150 are essentially below in step S9 Maintaining their mutual position on section 160 of the carrier material 18 transferred. The carrier material 18 has as already mentioned, the color white W (135 ° hatching), so that the print image 140 as a result of the described method with the picture elements 142 to 148 on the section 160 of the Carrier material 18 was printed.

Ein Bildelement hat beim Druck mit dem Drucker 10 z.B. bei einer Auflösung von 600 Bildpunkten pro 25,4 mm eine Breite von etwa 0,042 mm, so daß die Darstellungen in der Figur 4 eine starke Vergrößerung mit einem Vergrößerungsfaktor von etwa 200 ist. Das menschliche Auge kann die Bildpunkte bei einem gewöhnlichen Leseabstand von etwa 30 cm nicht mehr einzeln auflösen. Demzufolge ergeben sich Farbmischeffekte. Das blaue Bildelement 142 und das rote Bildelement 144 ergeben z.B. die vom Auge wahrgenommene Mischfarbe Violett.A picture element has e.g. when printing with the printer 10 at a resolution of 600 pixels per 25.4 mm of approximately 0.042 mm, so that the representations in FIG. 4 a strong magnification with a magnification factor of is about 200. The human eye can see the pixels an ordinary reading distance of about 30 cm dissolve individually. This results in color mixing effects. The blue picture element 142 and the red picture element 144 result e.g. the mixed color perceived by the eye violet.

Vom vorstehend beschriebenen Verfahren für drei Farben kommt man zu einem Verfahren mit n Farben, indem das Anfangspotential VA etwa gleich dem n-fachen Potentialbedarf für einen einzelnen Entwicklungsschritt gewählt wird. Außerdem müssen bei der bildmäßigen Belichtung mindestens n verschiedene Lichtenergien pro Bildelement erzeugt werden können, so daß n+1 verschiedene Potentiale erzeugt werden können. Die Schritte S5 bis S7 werden nach dem Schritt S7 noch n-3 mal wiederholt. Der Buchstabe n ist dabei eine natürliche Zahl, die die Werte 4, 5 usw. annehmen kann.It comes from the three color process described above one goes to a method with n colors by the initial potential VA approximately equal to n times the potential requirement for one individual development step is selected. You also have to in the imagewise exposure at least n different Light energies can be generated per picture element, so that n + 1 different potentials can be generated. The Steps S5 to S7 become n-3 times after step S7 repeated. The letter n is a natural number, which can take the values 4, 5, etc.

Figur 5 zeigt einen zweiten Potentialverlauf auf der Oberfläche von Flächenelementen des Fotoleiters 60 bei einem Belichtungsschritt und zwei Tonerpolaritäten. Der in Figur 5 gezeigte Potentialverlauf gilt für einen Drucker, der eine nicht dargestellte Druckeinheit 20' enthält, die sich von der Druckeinheit 20 dadurch unterscheidet, daß die Koronaeinrichtung 70, die Aufladevorrichtung 78, die Ladevorrichtung 86, die Umladestation 92 und die Koronaeinrichtung 98 mit entgegengesetzter Betriebsspannung betrieben werden. Außerdem wird anstelle der Entwicklerstation 82 eine Entwicklerstation verwendet, die negative Tonerteilchen der Farbe Schwarz mit Hilfe einer Hilfselektrode mit dem Potential VBIAS3' von etwa +900 V ablagert. Anstelle der Entwicklerstation 84 wird eine Entwicklerstation für positiv geladene blaue Tonerteilchen verwendet. Die Hilfselektrode beim Ablagern der blauen Tonerteilchen hat ein Hilfspotential VBIAS4' von etwa +390 V. Anstelle der Entwicklerstation 90 wird eine Entwicklerstation für positiv geladene rote Tonerteilchen verwendet. Beim Ablagern der roten Tonerteilchen wird eine Hilfselektrode mit einem Hilfspotential VBIAS7' von etwa +370 V verwendet.Figure 5 shows a second potential profile on the surface of surface elements of the photoconductor 60 in an exposure step and two toner polarities. The one shown in Figure 5 Potential course applies to a printer that a not shown printing unit 20 ', which is different from the Printing unit 20 differs in that the corona device 70, the charging device 78, the charging device 86, the transfer station 92 and the corona device 98 with opposite ones Operating voltage can be operated. Besides, will instead of the developer station 82, a developer station uses the negative toner particles of black color With the help of an auxiliary electrode with the potential VBIAS3 'of about Deposits +900 V. Instead of the developer station 84 is a Developer station for positively charged blue toner particles used. The auxiliary electrode when depositing the blue toner particles has an auxiliary potential VBIAS4 'of around +390 V. Instead of the developer station 90 becomes a developer station used for positively charged red toner particles. At the An auxiliary electrode is used to deposit the red toner particles an auxiliary potential VBIAS7 'of approximately +370 V.

Der in Figur 5 gezeigte Potentialverlauf unterscheidet sich vom Potentialverlauf der Figur 3 dadurch, daß die Vorzeichen der Potentiale gegenüber der Figur 3 umgekehrt sind. Unter Beachtung der Vorzeichen gelten die anhand der Figur 3 gemachten Aussagen auch für den Potentialverlauf der Figur 5. Anstelle der Schritte S1 bis S9 stehen nunmehr Schritte S1' bis S9'. Anstelle des Potentials VA wird in Figur 5 ein Potential VA' mit entgegengesetzten Vorzeichen verwendet. Außerdem treten im Vorzeichen geänderte Potentiale VK2' bis VK7', VW2' bis VW7', VR2' bis VR7' bzw. VB2' bis VB7' an die Stelle der Potentiale VK2 bis VK7, VW2 bis VW7, VR2 bis VR7 bzw. VB2 bis VB7.The potential curve shown in FIG. 5 differs of the potential curve of Figure 3 in that the sign the potentials are reversed compared to FIG. 3. Under The signs made with reference to FIG. 3 apply Statements also for the potential curve in FIG. 5. Instead of steps S1 to S9 there are now steps S1 ' to S9 '. Instead of the potential VA, a is shown in FIG Potential VA 'with opposite signs is used. In addition, changed potentials VK2 'to occur VK7 ', VW2' to VW7 ', VR2' to VR7 'or VB2' to VB7 'to the Place the potentials VK2 to VK7, VW2 to VW7, VR2 to VR7 or VB2 to VB7.

Claims (13)

  1. Method for the electrophotographic printing of a print image (140) with a plurality of colours on a carrier (18),
    wherein a layer system (60) is charged to a starting potential (VA),
    at least three different potentials (VK2, VR2, VB2), referred to as first, third and fourth potential, are generated on the layer system (60) by image-wise exposure,
    the third potential (VR2) having a value that is greater in terms of amount than the fourth potential and the first potential (VK2) having a value that is greater in terms of amount than the third potential (VR2),
    in a developing step with colour particles of a first colour (K) and a first polarity, these colour particles are applied onto locations having the first potential (VK3),
    in a developing step with colour particles of a fourth colour (B) of the other polarity, these colour particles are applied onto locations having the fourth potential (VB4),
    the third potential (VR6) is lowered in terms of amount by uniform exposure to a value below the momentary value of the fourth potential (VB6) that is present after said developing step with colour particles of the fourth colour (B),
    and wherein in a developing step with colour particles of a third colour (R) of the other polarity, these colour particles are applied onto locations having the lowered, third potential (VR7),
    characterized in that the potential on surface elements already covered with colour particles is increased in terms of amount at least once before the uniform exposure (step S5).
  2. Method according to claim 1, characterized in that the print image (140) contains at least one first image element (146) of a first colour (K), at least one second image element (148) having the colour (W) of the carrier (18), at least one third image element (144) having a third colour (R) and at least one fourth image element (142) having a fourth colour (B),
    a first surface element (156) of a photoconductor layer (74) is allocated to the first image element (146), a second surface element (158) is allocated to the second image element (148), a third surface element (154) is allocated to the third image element (144), and a fourth surface element (152) of the photoconductor layer (74) is allocated to the fourth image element (142),
    the photoconductor layer (74) and an electrode layer (72) carrying a predetermined reference potential are contained in a layer system (60),
    and in that the following steps are implemented:
    S1) the surface elements (152 to 158) are charged to a negative starting potential (VA) (step S1),
    S2) the surface elements (152 to 158) are differently exposed such that, following the exposure, the fourth surface element (152) has a fourth potential (VB2), the third surface element (154) has a third potential (VR2) that is higher in terms of amount compared to the fourth potential (VB2), the second surface element (158) has a second potential (VW2) that is higher in terms of amount compared to the third potential (VR2) and the first surface element (156) has a first potential (VK2) that is higher in terms of amount compared to the second potential (VW2) (step S2),
    S3) the surface elements (152 to 158) are developed with colour particles of the first colour (K) (step S3),
    wherein positively charged colour particles of the first colour (K) are deposited on the first surface element (156) using a first auxiliary electrode (120) that has a first auxiliary potential (VBIAS3) that is higher in terms of amount than the momentary potential (VW3) on the second surface element (158) and lower in terms of amount than the momentary potential (VK3) on the first surface element (156),
    S4) the surface elements (152 to 158) are developed with colour particles of the fourth colour (B) (step S4),
    wherein negatively charged colour particles of the fourth colour (B) are deposited on the fourth surface element (152) using a second auxiliary electrode (122) that has a second auxiliary potential (VBIAS4) that is higher in terms of amount than the momentary potential (VB4) on the fourth surface element (152) and is lower in terms of amount than the momentary potential (VR4) on the third surface element (154),
    S6) the surface elements (152 to 158) are arranged close to a light source (88) having an approximately uniform light distribution (step S6),
    wherein the first surface element (156) covered with colour particles and the fourth surface element (152) covered with colour particles are exposed substantially less than the non-covered, second surface element (158) and the non-covered, third surface element (154),
    and wherein the momentary potential (VR6) on the third surface element (154) is reduced in terms of amount to a potential (VR6) that is lower in terms of amount than the momentary potential (VB6) on the fourth surface element (152),
    S7) the surface elements (152 to 158) are developed with colour particles of the third colour (R) (step S7),
    wherein negatively charged colour particles of the third colour (R) are deposited on the third surface element (154) using a third auxiliary electrode (124) that has a third auxiliary potential (VBIAS7) that is higher in terms of amount than the momentary potential (VR7) on the third surface element (154) and lower in terms of amount than the momentary potential (VB7) on the fourth surface element (152) and than the momentary potential (VW7) on the second surface element (158).
  3. Method according to claim 1, characterized in that the print image (140) contains at least one first image element (146) of a first colour (K), at least one third image element (144) of a third colour (R) and at least one fourth image element (142) of a fourth colour (B),
    a first surface element (156) of a photoconductor layer (74) is allocated to the first image element (146), a third surface element (154) is allocated to the third image element (144) and a fourth surface element (152) of the photoconductor layer (74) is allocated to the fourth image element (142),
    the photoconductor layer (74) and an electrode layer (72) carrying a predetermined reference potential are contained in a layer system (60),
    and in that the following steps are implemented:
    S1) the surface elements (152 to 156) are charged to a negative starting potential (VA) (step 81),
    S2) the surface elements (152 to 156) are differently exposed such that, following the exposure, the fourth surface element (152) has a fourth potential (VB2), the third surface element (154) has a third potential (VR2) that is higher in terms of amount compared to the fourth potential (VB2), and the first surface element (156) has a first potential (VK2) that is higher in terms of amount compared to the third potential (VR2) (step S2),
    S3) the surface elements (152 to 156) are developed with colour particles of the first colour (K) (step S3),
    wherein positively charged colour particles of the first colour (K) are deposited on the first surface element (156) using a first auxiliary electrode (120) that has a first auxiliary potential (VBIAS3) that is higher in terms of amount than the momentary potential (VR3) on the third surface element (154) and lower in terms of amount than the momentary potential (VK3) on the first surface element (156),
    S4) the surface elements (152 to 156) are developed with colour particles of the fourth colour (B) (step S4),
    wherein negatively charged colour particles of the fourth colour (B) are deposited on the fourth surface element (152) using a second auxiliary electrode (122) that has a second auxiliary potential (VBIAS4) that is higher in terms of amount than the momentary potential (VB4) on the fourth surface element (152) and lower in terms of amount than the momentary potential (VR4) on the third surface element (154),
    S6) the surface elements (152 to 156) are arranged close to a light source (88) having an approximately uniform light distribution (step S6),
    wherein the first surface element (156) covered with colour particles and the fourth surface element (152) covered with colour particles are exposed substantially less than the non-covered third surface element (154),
    and wherein the momentary potential (VR6) on the third surface element (154) is reduced in terms of amount to a potential (VR6) that is lower in terms of amount than the momentary potential (VB6) on the fourth surface element (152),
    S7) the surface elements (152 to 156) are developed with colour particles of the third colour (R) (step S7),
    wherein negatively charged colour particles of the third colour (R) are deposited on the third surface element (154) using a third auxiliary electrode (124) that has a third auxiliary potential (VBIAS7) that is higher in terms of amount than the momentary potential (VR7) on the third surface element (154) and lower in terms of amount than the momentary potential (VB7) on the fourth surface element (152).
  4. Method according to claim 2 or 3, characterized in that the print image (140) contains at least one further image element of a further colour,
    the further image element being allocated to a further surface element of the photoconductor layer (74),
    the further surface element being charged to the starting potential (VA) (step S1),
    the further surface element being exposed such given different exposure that, following the exposure, it has a further potential that is higher in terms of amount than the third potential (VR2) and is lower in terms of amount than the second potential (VW2) or, respectively, the first potential (VK2) (step S2),
    in that, given repeated arranging of the surface elements (152 to 158) close to the light source (88) or, respectively, close to a respective light source, the non-covered further surface element is respectively considerably more exposed than surface elements covered with colour particles,
    wherein the potential on the further surface element is reduced in terms of amount, given the respective arranging,
    and in that the surface elements are developed with colour particles of the further colour,
    wherein negatively charged colour particles of the further colour are deposited on the further surface element using a further auxiliary electrode that has a further auxiliary potential that is higher in terms of amount than the momentary potential on the further surface element and lower in terms of amount than the momentary potentials on the other surface elements.
  5. Method according to one of the claims 1 to 4, characterized in that the deposited colour particles having a positive polarity are recharged to a negative polarity (step S8).
  6. Method according to claim 1, characterized in that the print image (140) contains at least one first image element (146) of a first colour (K), at least one second image element (148) with the colour (W) of the carrier (18), at least one third image element (144) of a third colour (R) and at least one fourth image element (142) with a fourth colour (B),
    a first surface element (156) of a photoconductor layer (74) is allocated to the first image element (146), a second surface element (158) is allocated to the second image element (148), a third surface element (154) is allocated to the third image element (144) and a fourth surface element (152) of the photoconductor layer (74) is allocated to the fourth image element (142),
    the photoconductor layer (74) and an electrode layer (72) carrying a predetermined reference potential are contained in a layer system (60),
    and in that the following steps are implemented:
    S1) the surface elements (152 to 158) are charged to a positive starting potential (VA') (step S1')
    S2) the surface elements (152 to 158) are differently exposed such that, following the exposure, the fourth surface element (152) has a fourth potential (VB2'), the third surface element (154) has a third potential (VR2') that is higher in terms of amount compared to the fourth potential (VB2'), the second surface element (158) has a second potential (VW2') that is higher in terms of amount compared to the third potential (VR2') and the first surface element (156) has a first potential (VK2') that is higher in terms of amount compared to the second potential (VW2') (step S2'),
    S3) the surface elements (152 to 158) are developed with colour particles of the first colour (K) (step S3'),
    wherein negatively charged colour particles of the first colour (K) are deposited on the first surface element (156) using a first auxiliary electrode (120) that has a first auxiliary potential (VBIAS3') that is higher in terms of amount than the momentary potential (VW3') on the second surface element (158) and lower in terms of amount than the momentary potential (VK3') on the first surface element (156),
    S4) the surface elements (152 to 158) are developed with colour particles of the fourth colour (B) (step S4'),
    wherein positively charged colour particles of the fourth colour (B) are deposited on the fourth surface element (152) using a second auxiliary electrode (122) that has a second auxiliary potential (VBIAS4') that is higher in terms of amount than the momentary potential (VB4') on the fourth surface element (152) and lower in terms of amount than the momentary potential (VR4') on the third surface element (154),
    S6) the surface elements (152 to 158) are arranged close to a light source (88) having an approximately uniform light distribution (step S6'),
    wherein the first surface element (156) covered with colour particles and the fourth surface element (152) covered with colour particles are exposed substantially less than the non-covered second surface element (158) and the non-covered third surface element (154),
    and wherein the momentary potential (VR6') on the third surface element (154) is reduced in terms of amount to a potential (VR6') that is lower in terms of amount than the momentary potential (VB6') on the fourth surface element (152),
    S7) the surface elements (152 to 158) are developed with colour particles of the third colour (R) (step S7'),
    wherein positively charged colour particles of the third colour (R) are deposited on the third surface element (154) using a third auxiliary electrode (124) that has a third auxiliary potential (VBIAS7') that is higher in terms of amount than the momentary potential (VR7') on the third surface element (154) and lower in terms of amount than the momentary potential (VB7') on the fourth surface element (152) and than the momentary potential (VW7') on the second surface element (158).
  7. Method according to claim 1, characterized in that the print image (140) contains at least one first image element (146) of a first colour (K), at least one third image element (144) of a third colour (R) and at least one fourth image element (142) with a fourth colour (B),
    a first surface element (156) of a photoconductor layer (74) is allocated to the first image element (146), a third surface element (154) is allocated to the third image element (144) and a fourth surface element (152) of the photoconductor layer (74) is allocated to the fourth image element (142),
    the photoconductor layer (74) and an electrode layer (72) carrying a predetermined reference potential are contained in a layer system (60),
    and in that the following steps are implemented:
    S1) the surface elements (152 to 156) are charged to a positive starting potential (VA') (step S1')
    S2) the surface elements (152 to 156) are differently exposed such that, following the exposure, the fourth surface element (152) has a fourth potential (VB2'), the third surface element (154) has a third potential (VR2') that is higher in terms of amount compared to the fourth potential (VB2'), and the first surface element (156) has a first potential (VK2') that is higher in terms of amount compared to the third potential (VR2') (step S2'),
    S3) the surface elements (152 to 156) are developed with colour particles of the first colour (K) (step S3'),
    wherein negatively charged colour particles of the first colour (K) are deposited on the first surface element (156) using a first auxiliary electrode (120) that has a first auxiliary potential (VBIAS3') that is higher in terms of amount than the momentary potential (VR3') on the third surface element (154) and lower in terms of amount than the momentary potential (VK3') on the first surface element (156),
    S4) the surface elements (152 to 156) are developed with colour particles of the fourth colour (B) (step S4'),
    wherein positively charged colour particles of the fourth colour (B) are deposited on the fourth surface element (152) using a second auxiliary electrode (122) that has a second auxiliary potential (VBIAS4') that is higher in terms of amount than the momentary potential (VB4') on the fourth surface element (152) and lower in terms of amount than the momentary potential (VR4') on the third surface element (154),
    S6) the surface elements (152 to 156) are arranged close to a light source (88) having an approximately uniform light distribution (step S6'),
    wherein the first surface element (156) covered with colour particles and the fourth surface element (152) covered with colour particles are exposed substantially less than the non-covered third surface element (154),
    and wherein the momentary potential (VR6') on the third surface element (154) is reduced in terms of amount to a potential (VR6') that is lower in terms of amount than the momentary potential (VB6') on the fourth surface element (152),
    S7) the surface elements (152 to 156) are developed with colour particles of the third colour (R) (step S7'),
    wherein positively charged colour particles of the third colour (R) are deposited on the third surface element (154) using a third auxiliary electrode (124) that has a third auxiliary potential (VBIAS7') that is higher in terms of amount than the momentary potential (VR7') on the third surface element (154) and lower in terms of amount than the momentary potential (VB7') on the fourth surface element (152).
  8. Method according to claim 6 or 7, characterized in that the print image (140) contains at least one further image element of a further colour,
    the further image element is allocated to a further surface element of the photoconductor layer (74),
    the further surface element is charged to the starting potential (VA') (step S1'),
    the further surface element is exposed such given different exposure that, following the exposure, it has a further potential that is higher in terms of amount than the third potential (VR2') and is lower in terms of amount than the second potential (VW2') or, respectively, the first potential (VK2') (step S2'),
    in that, given repeated arranging of the surface elements (152 to 158) close to the light source (88) or, respectively, close to a respective light source, the non-covered further surface element is respectively considerably more exposed than surface elements covered with colour particles,
    wherein the potential on the further surface element is reduced in terms of amount, given the respective arranging,
    and in that the surface elements are developed with colour particles of the further colour,
    wherein positively charged colour particles of the further colour are deposited on the further surface element using a further auxiliary electrode that has a further auxiliary potential that is higher in terms of amount than the momentary potential on the further surface element and lower in terms of amount than the momentary potentials on the other surface elements.
  9. Method according to one of the claims 6 to 8, characterized in that the deposited colour particles of negative polarity are recharged to a positive polarity (step S8').
  10. Method according to one of the preceding claims, characterized in that the deposited colour particles are transferred onto the carrier (18) from the photoconductor layer (74), while essentially retaining their mutual positions.
  11. Method according to one of the claims 1 to 9, characterized in that the deposited colour particles are transferred onto an intermediate carrier, while essentially retaining their mutual positions,
    and in that the colour particles are transferred from the intermediate carrier onto the carrier (18), while essentially retaining their mutual positions.
  12. Electrophotographic printer (10), particularly for implementing the method according to one of the claims 1 to 11,
    having a light-sensitive layer system (60) that contains an electrode layer (72) carrying a predetermined reference potential and a photoconductor layer (74),
    having a charging means (78) for generating a starting potential (VA, VA') on the photoconductor layer (72),
    an exposure means (80) for the image-wise exposure of the photoconductor layer (72),
    a first developer station (82) for depositing colour particles of a first polarity and a first colour (K) onto the layer system (60),
    a second developer station (84) for depositing colour particles of the other polarity and a second colour (B) onto the layer system (60),
    at least one total exposure unit (88) for uniform exposure (60),
    and having at least one further exposure unit (90) for depositing colour particles of the other polarity and a further colour (R) onto the layer system (60),
    characterized by at least one potential increasing means (86) for the amount-wise increase of only the respectively lowest potential in terms of amount on the layer system (60), after deposition of colour particles.
  13. Printer according to claim 12, characterized by a recharging station (92) for charging the deposited colour particles of the first polarity to the other polarity,
    and/or a transfer means (70) for transferring the deposited colour particles from the layer system onto a carrier (18),
    and/or an erase means (94) for erasing a residual charge image on the layer system (60),
    and/or by a cleaning means (96) for cleaning the layer system (60).
EP97947694A 1996-10-17 1997-10-16 Multicolor electrophotographic printing device with bipolar toner Expired - Lifetime EP0932850B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19642892 1996-10-17
DE19642892 1996-10-17
PCT/DE1997/002413 WO1998018050A1 (en) 1996-10-17 1997-10-16 Multicolor electrophotographic printing device with bipolar toner

Publications (2)

Publication Number Publication Date
EP0932850A1 EP0932850A1 (en) 1999-08-04
EP0932850B1 true EP0932850B1 (en) 2002-07-24

Family

ID=7809040

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97947694A Expired - Lifetime EP0932850B1 (en) 1996-10-17 1997-10-16 Multicolor electrophotographic printing device with bipolar toner

Country Status (4)

Country Link
US (1) US6278855B1 (en)
EP (1) EP0932850B1 (en)
DE (2) DE19781177D2 (en)
WO (1) WO1998018050A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060242350A1 (en) * 2005-04-22 2006-10-26 Worley Eugene R Sr Opto-couplers for communication bus interfaces using low efficiency silicon based LEDs

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4078929A (en) 1976-11-26 1978-03-14 Xerox Corporation Method for two-color development of a xerographic charge pattern
JPS58147755A (en) 1982-02-26 1983-09-02 Toshiba Corp Method and device for forming multicolor image
US5049949A (en) * 1989-06-29 1991-09-17 Xerox Corporation Extension of tri-level xerography to black plus 2 colors
US5122843A (en) * 1990-02-15 1992-06-16 Minolta Camera Kabushiki Kaisha Image forming apparatus having developing devices which use different size toner particles
US5155541A (en) * 1991-07-26 1992-10-13 Xerox Corporation Single pass digital printer with black, white and 2-color capability
US5347303A (en) * 1993-01-04 1994-09-13 Xerox Corporation Full color xerographic printing system with dual wavelength, single optical system ROS and dual layer photoreceptor
DE4408978C2 (en) * 1993-03-17 1999-02-18 Hitachi Ltd Electrophotographic process and electrophotographic apparatus for image formation
US5837408A (en) * 1997-08-20 1998-11-17 Xerox Corporation Xerocolography tandem architectures for high speed color printing
US5978628A (en) * 1998-12-04 1999-11-02 Xerox Corporation Highlight color read printing using additive toners
US5999783A (en) * 1998-12-17 1999-12-07 Xerox Corporation Multiple charging of a toner image for transfer

Also Published As

Publication number Publication date
US6278855B1 (en) 2001-08-21
EP0932850A1 (en) 1999-08-04
WO1998018050A1 (en) 1998-04-30
DE19781177D2 (en) 1999-12-23
DE59707809D1 (en) 2002-08-29

Similar Documents

Publication Publication Date Title
DE3530733C2 (en)
DE2755783B2 (en) Multicolor electrostatic copier with recording drums
DE2500520A1 (en) METHOD OF MAKING COLOR COPIES
DE3329714A1 (en) WORK UNIT AND MULTICOLOR IMAGE DEVICE THEREFORE
DE2408999A1 (en) COLOR FORM AND METHOD OF CALIBRATING AN ELECTROPHOTOGRAPHIC MULTICOLOR COPIER
DE2451166A1 (en) METHOD AND DEVICE FOR ELECTROSTATIC MULTICOLOR PRINTING
DE2826583A1 (en) METHOD AND DEVICE FOR ELECTROPHOTOGRAPHIC IMAGE GENERATION
DE60023243T2 (en) Method for producing uniform gloss
EP0026452A2 (en) Device for the production of charge patterns on a photoconductive image carrier
DE60030519T2 (en) Method for suppression of phantom images
DE19536583C2 (en) Device for forming color images
DE3424783A1 (en) ELECTROPHOTOGRAPHIC DEVICE
EP0932850B1 (en) Multicolor electrophotographic printing device with bipolar toner
DE69819391T2 (en) Control of electrical bias to avoid interference in an electrostatographic printing system
EP0932852B1 (en) Method of multicolor electrophotographic printing with unipolar toner
DE2811056A1 (en) IMAGE GENERATION PROCESS
EP0967529B1 (en) Process for printing on both sides of a belt-shaped final image carrier
EP0890142B1 (en) Electrophotographic printing process for printing a substrate
DE2061333C3 (en) Multicolor electrophotographic copier
DE2450145A1 (en) THERMALLY INSENSITIVE CONTROL DEVICE FOR A PARTICLE CONCENTRATION
DE4408978A1 (en) Method and device for generating images
DE2734631C3 (en) Electrophotographic multi-color pre-printing process and device for printing technology
DE112008000291B4 (en) Method for producing printed images lying next to one another on a printing substrate with the aid of an electrophotographic printing device
DE1952943C3 (en) Electrophotographic process and apparatus for making a multicolor copy
DE2250062A1 (en) ELECTROPHOTOGRAPHIC COPYING METHOD AND COPYING MACHINE

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990517

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 20011023

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59707809

Country of ref document: DE

Date of ref document: 20020829

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020927

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030425

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20081021

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20081028

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091016

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20121219

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59707809

Country of ref document: DE

Effective date: 20140501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140501