EP0932511A1 - Trailing arm suspension with articulated axle mounting - Google Patents

Trailing arm suspension with articulated axle mounting

Info

Publication number
EP0932511A1
EP0932511A1 EP97911006A EP97911006A EP0932511A1 EP 0932511 A1 EP0932511 A1 EP 0932511A1 EP 97911006 A EP97911006 A EP 97911006A EP 97911006 A EP97911006 A EP 97911006A EP 0932511 A1 EP0932511 A1 EP 0932511A1
Authority
EP
European Patent Office
Prior art keywords
axle
connector
arms
collar
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP97911006A
Other languages
German (de)
French (fr)
Inventor
William C. Pierce
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Neway Anchorlok International Inc
Original Assignee
Neway Anchorlok International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neway Anchorlok International Inc filed Critical Neway Anchorlok International Inc
Publication of EP0932511A1 publication Critical patent/EP0932511A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B35/00Axle units; Parts thereof ; Arrangements for lubrication of axles
    • B60B35/02Dead axles, i.e. not transmitting torque
    • B60B35/04Dead axles, i.e. not transmitting torque straight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G9/00Resilient suspensions of a rigid axle or axle housing for two or more wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G9/00Resilient suspensions of a rigid axle or axle housing for two or more wheels
    • B60G9/003Resilient suspensions of a rigid axle or axle housing for two or more wheels the axle being rigidly connected to a trailing guiding device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2200/00Indexing codes relating to suspension types
    • B60G2200/30Rigid axle suspensions
    • B60G2200/31Rigid axle suspensions with two trailing arms rigidly connected to the axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/10Type of spring
    • B60G2202/15Fluid spring
    • B60G2202/152Pneumatic spring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/10Mounting of suspension elements
    • B60G2204/12Mounting of springs or dampers
    • B60G2204/128Damper mount on vehicle body or chassis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/10Mounting of suspension elements
    • B60G2204/14Mounting of suspension arms
    • B60G2204/148Mounting of suspension arms on the unsprung part of the vehicle, e.g. wheel knuckle or rigid axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/10Mounting of suspension elements
    • B60G2204/14Mounting of suspension arms
    • B60G2204/148Mounting of suspension arms on the unsprung part of the vehicle, e.g. wheel knuckle or rigid axle
    • B60G2204/1482Mounting of suspension arms on the unsprung part of the vehicle, e.g. wheel knuckle or rigid axle on rigid axle by elastic mount
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/40Auxiliary suspension parts; Adjustment of suspensions
    • B60G2204/41Elastic mounts, e.g. bushings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/40Auxiliary suspension parts; Adjustment of suspensions
    • B60G2204/43Fittings, brackets or knuckles
    • B60G2204/4306Bracket or knuckle for rigid axles, e.g. for clamping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/30Constructional features of rigid axles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/60Subframe construction
    • B60G2206/601Hanger bracket
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/80Manufacturing procedures
    • B60G2206/82Joining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/80Manufacturing procedures
    • B60G2206/82Joining
    • B60G2206/8201Joining by welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/80Manufacturing procedures
    • B60G2206/82Joining
    • B60G2206/8201Joining by welding
    • B60G2206/82012Pressure welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/80Manufacturing procedures
    • B60G2206/82Joining
    • B60G2206/8207Joining by screwing

Definitions

  • This invention relates to trailing arm suspensions for automotive vehicles.
  • the invention relates to a trailing arm suspension wherein an axle is mounted to the trailing arm for articulation with respect to the trailing arm.
  • WO 97/06022 published 20 February 1997, discloses an automotive suspension system in which an axle is mounted to an pair of axle bracket by squeezing wrapper bands around the axle to hold the axle in compression and thus retain the axle in the wrapper bands by frictional forces.
  • the axle brackets are secured to the trailing arm through a pair of bushed joints.
  • a trailing arm suspension for mounting ground-engaging wheels to a vehicle frame has an axle mounted to a trailing arm through an axle-beam connector.
  • the suspension comprising at least two arms adapted to be secured to opposite sides of the frame and at least one wheel-carrying axle mounted to the arms through an axle-mounting assembly.
  • Each of the axle- mounting assemblies comprises at least one beam-axle connector which is mounted to one of the arms at one end thereof through a bushed connection and is connected to the axle at another end thereof.
  • Each of the arms forms a collar which receives the axle.
  • An elastomeric layer is positioned between the axle and the collar for articulation between the axle and the collar.
  • the beam-axle connector is rigidly mounted to the axle at the other end thereof.
  • each beam-axle connector there are two beam-axle connectors, one on each side of each arm, and each beam-axle connector is connected to the arm and to the axle in the same manner.
  • each of the beam-axle connectors is identical and is symmetrical about a longitudinal axis.
  • Each beam-axle connector is generally triangular in two dimensional configuration and has a reinforcing gusset at an upper portion thereof and at a lower portion thereof.
  • each beam-axle connector further includes an arcuate plate at the other end thereof and through which the beam-axle connector is mounted to the axle.
  • the beam-axle connector is mounted to the axle through a hollow wrapper band which circumscribes the axle and is under tension sufficient to compress the axle at at least two sets of diametrically opposed and circumferentially spaced external surfaces of the axle and to prevent movement of the axle with respect to the wrapper band under ordinary service conditions.
  • the arcuate plate extends about 180° around the axle and mates with a second arcuate plate to form a hollow wrapper band which circumscribes the axle and is under tension sufficient to compress the axle at at least two sets of diametrically opposed and circumferentially spaced external surfaces of the axle and to prevent movement of the axle with respect to the wrapper band under ordinary service conditions.
  • the beam-axle connector is welded to the axle.
  • FIG. 1 is a side elevational view of a suspension system according to the invention attached to a vehicle frame;
  • FIG. 2 is a perspective view of the suspension system illustrated in FIG. 1;
  • FIG. 3 is a plan view taken along lines 3-3 of FIG. 2;
  • FIG. 4 is an enlarged cross-sectional view of the circled area labeled IV in FIG. 3;
  • FIG. 5 is a partial sectional view taken along lines 5-5 of FIG. 3;
  • FIG. 6 is a partial sectional view taken along lines 6-6 of FIG. 3;
  • FIG. 7 is an exploded view of the beam and axle connections of the suspension system illustrated in FIGS. 1-6;
  • FIG. 8 is a side elevational view, like FIG. 1, showing a modified form of the invention;
  • FIG. 9 is a side elevational view, like FIG. 1, showing use of the invention on a low-height suspension system;
  • FIG. 10 is a side elevational view of yet another embodiment of a suspension system according to the invention.
  • FIG. 11 is a perspective view of the suspension illustrated in FIG. 10.
  • the suspension system 12 comprises a trailing arm assembly including a frame bracket 16, a trailing arm 18, a beam extension 19 and an air spring 20.
  • the frame bracket 16 is rigidly secured to the frame 10 by welding and/or bolts in conventional fashion.
  • the trailing arm 18 is pivotably mounted to the frame bracket 16 through a pivot mounting 26 in conventional fashion.
  • a shock absorber 22 is mounted between the frame bracket 16 and the beam 18 to damp the pivotable movement of the beam 18 with respect to the frame 16.
  • the shock absorber 22 is mounted to the frame bracket 16 through a pivot mounting 30 and is pivotably mounted to the beam 18 through a pivot mounting 28.
  • a round axle 24 is secured to the beam 18 through a pair of beam-axle connectors 64 (only one of which is shown in FIG. 1) and a bolt 82.
  • the suspension system according to the invention includes two trailing arm assemblies, one on each side of the vehicle frame, although only one such assembly is shown in the drawings.
  • the other trailing arm assembly is a mirror image of the described assembly.
  • the trailing arm assemblies are joined by the axle 24.
  • the beam 18 has a top plate 32, a pair of side plates 34 and 36 and a bottom plate 38 all rigidly joined together, for example, by welding to form a rigid elongated beam which is rectangular in cross section.
  • An I beam can be used in lieu of a box beam.
  • Aligned openings 40 are provided in the side plates 54 and 36.
  • a sleeve 42 is provided at a rear end of the beam and is formed by arcuate plates 44 and 48 which are joined at edge surfaces 46 and 50, respectively.
  • a front end of the beam 18 has a cylindrical collar 52 having an opening 54 therethrough to receive the pivot mounting 26.
  • a bushing assembly 56 is mounted in the beam openings 40 and comprises an outer sleeve 58, a rubber bushing 60 and an inner sleeve 62, assembled together as a unit.
  • Sleeve 62 and rubber bushing 60 are bonded together and then pressed into sleeve 58.
  • the outer sleeve 58 and the inner sleeve 62, as well as the bushing 60 are slightly longer than the distance between the outside surfaces of the side plates 34 and 36.
  • the inner sleeve 62 is longer than the outer sleeve 58 and the bushing 60.
  • FIGS. 3 and 7 there are two beam -axle connectors 64 joined to the axle 24 at one end and to the beam 18 at the other end through the bushing assembly 56 on each trailing arm assembly.
  • Each of the beam-axle connectors 64 are identical in construction and are oriented in mirror image orientation on the axles. Only one of the beam-axle connectors 64 will be described.
  • the beam-axle connector 64 comprises a wrapper band 66 at one end formed by an arcuate plate 68 having an edge 70 and an arcuate plate 72 having an edge 74.
  • a triangular plate 76 is welded to the arcuate plate 72 at one side of the arcuate plate adjacent to the beam.
  • a through bore 78 extends through the triangular plate 76 at a forward apex end of the plate 76.
  • Triangular gusset plates 80 are mounted to the top and bottom of the triangular plate 76, preferably by welding, and are secured at the rear end thereof to the arcuate plate 72 along the axial length thereof at upper and lower portions thereof. As illustrated in FIG.
  • a bolt 82 extends through the through bores 78 on each of the beam-axle connectors 64 and through the bushing assembly 56, in particular, through the inner sleeve 62 to mount the beam- axle connector 64 to the beam 18.
  • a nut 84 is threaded onto the bolt 82.
  • wear washers 92 are provided between the triangular plates 76 and the sleeve 62 to provide a wear surface.
  • the inner sleeve 62 extends beyond the axial length of the outer sleeve 58 so that the beam-axle connectors 64 are free to articulate with respect to the beam 18 to accommodate roll and pitch forces at the axle 24 with respect to the frame 10.
  • Washers 93 are mounted on the bolt 82 between the head of the bolt 82 and the triangular plate 76 at one side of the beam and between the nut 84 and the triangular plate 76 at the other side of the beam.
  • the arcuate plates 68 and 72 surround the axle 24 and are joined together through welds 86 at the edges 70 and 74, respectively.
  • the arcuate plates 68 and 72 are squeezed around the axle 24 to maintain the axle in compression and to maintain the arcuate plates 68 and 72 in tension.
  • the arcuate plates are forced toward each other to put the axle 24 in compression before the welding operation.
  • the welds 86 are made while the compressive forces are applied to the axle 24 by the arcuate plates 68 and 72. As the weld joint cools, it contracts, thereby enhancing the compressive forces against the axle 24.
  • axle 24 is thus joined to the beam-axle connectors 64 through the wrapper bands 66 and are held essentially by friction between the wrapper band 66 and the axle 24 due to the high compressive loading on the axle 24 by the wrapper band 66.
  • the method of assembling the axle to wrapper bands is disclosed and claimed in WO 97/06022, the disclosure of which is incorporated herein by reference.
  • Various embodiments of wrapper bands are disclosed and claimed in this application. Any of the various round axle wrapper band connections disclosed in WO 97/06022 can be used in the invention of the present application. Further, any of the various multi-sided wrapper band connections disclosed in WO 97/06022 can be used with corresponding multi-sided axles in the present invention. Reference is now made to FIG.
  • the arcuate plates 44 and 48 form a collar which receives the axle 24.
  • An elastomer sheet 88 is positioned between the axle 24 and the arcuate plates 44 and 48.
  • the arcuate plates 44 and 48 are joined by a weld 90 or bolted flanges (not shown).
  • the elastomer sheet 88 can, for example, be made of a urethane or rubber sheet material of approximately 3/16ths inch thick and about 4 inches wide. The sheet is about as wide at the collar on the beam 18 but slightly shorter in length. Unlike the wrapper band 66, the collar on the beam 18 does not squeeze the axle 24.
  • the axle can articulate somewhat within the beam collar by virtue of the rubber sheet 88.
  • the axle is rigidly connected to the beam-axle connectors 64 through the wrapper bands 66.
  • the beam-axle connectors 64 are rigid in nature and are connected to the beam through the bushing assemblies 56.
  • the rubber bushing 60 is yieldable and thus will deform when torsional stresses are applied to the beam-axle connectors 64.
  • the axle can articulate with respect to the sleeve 42 of the beam 18 because of the rubber sheet 88 and also in view of the bushed connection 56 between the beam 18 and the axle beam connector 64.
  • the axle 24 can articulate with respect to the beam 18 but yet is rigidly heid in the beam-axle connectors 64.
  • the bushed connection between the beam-axle connectors and the beam also provides for a degree of tolerance in mounting the suspension to the frame. If there is a slight degree of misalignment between the axle and the frame, unreasonable stresses can be set up in a rigid axle connection, resulting in premature axle failure.
  • the bushed connection between the beam and the beam-axle connectors 64 provides a level of tolerance for slight misalignment in mounting of the suspension to the frame and minimizes stresses in the axle due to misalignment of the suspension to the frame.
  • the invention also provides for economies of scale in manufacturing.
  • the basic beam 18 is symmetrical about a horizontal axis and thus can be used on both sides of the suspension. Thus, there is less tooling and fewer inventory parts. The cost of the beam is thus lower.
  • the beam can also be used for different suspensions by simply adding on to the basic beam structure for different kinds of beams. These other suspensions are illustrated in FIGS. 8 and 9 to which reference is now made.
  • FIG. 8 shows a suspension system according to the invention where like numbers have been used to designate like parts.
  • a suspension system 12 has a beam 100 of substantially identical construction with the beam 18 except that it accommodates a square axle 104.
  • the axle 104 is joined to the beam through a beam- to-axle connector 106 through a bushed joint 108.
  • the construction of the axle-to- beam connector 106 is essentially the same as the beam-axle connector 64 except that it accommodates a square axle.
  • the beam-axle connector 106 has a wrapper band 107 which squeezes the axle 104 as the wrapper band is assembled onto the axle in a manner described in WO 97/06022.
  • the suspension in FIG. 8 accommodates a rubber spring 102 rather than an air spring as in the previous embodiment.
  • a beam 110 of substantially identical construction with the beam 18 is pivotably mounted to a frame bracket 16 in a pivotable mounting 26.
  • An axle 24 is mounted to a beam-axle connector 64 through a wrapper band 66 in a manner identical to the first embodiment described above.
  • a beam extension 112 is welded to the outer end of the beam 110 and supports an air spring 20 in a low-slung position for a low mounting height configuration.
  • a modified beam axle connector 122 comprises a triangular plate 129 which has an opening at a forward end thereof and has a bolt 82 extending therethrough for connecting the plate 129 to the trailing arm 18 through a bushed joint identical with that illustrated in FIG. 4 and described above.
  • the triangular plate 129 has an arcuate plate 124 mounted at a rear end thereof, an upper gusset plate 126 mounted to an upper portion thereof and a lower gusset plate 128 mounted a lower portions thereof. As illustrated in FIG. 10, the arcuate plate has a circumferential arc of about 90°. The edges of the arcuate plate 124 are welded to the axle 24 at weld bead 130 at an upper portion thereof and at weld bead 132 at a lower portion thereof. As in the previous embodiment, a beam axle connector 122 is provided on each side of the beam 18 and each of the beams 18 has two beam axle connectors.
  • the beam axle connectors illustrated in FIGS. 10 and 11 mount the axle 24 to the beam 18 through a pair of articulated joints, one of which is the bushed joint illustrated in FIG. 4 and the other of which is the connection between the axle 24 and the beam 18 through the sleeve 42 and the elastomeric sheet 88.
  • the axle-to-beam connector functions in the same manner in the embodiment shown in FIGS. 10 and 11 as in the embodiments shown in FIGS. 1-9.
  • the invention provides for articulation between the axles and beams to give flexibility to the beams to accommodate stresses due to roll of the axle. Further, the suspensions avoid the problem of tolerances and stresses of mounting brackets resulting from misalignment of the suspensions to the frame. Still further, the lateral motion of the axle with respect to the frame is accommodated in the suspension as a couple due to the two beam-to-axle suspension mountings. The couple will react to lateral motion and avoid the necessity of a track bar between the axie and the beam.

Abstract

A trailing arm suspension for mounting ground-engaging wheels to a vehicle frame has an axle mounted to a trailing arm through an axle-beam connector. The suspension comprises at least two arms adapted to be pivotally mounted to opposite sides of the frame and at least one wheel-carrying axle mounted to the arms through an axle-mounting assembly. Each of the axle-mounting assemblies comprises a pair of beam-axle connectors which are mounted to one of the arms at one end thereof through a bushed connection and are rigidly connected to the axle at another end thereof through compression mounting or by welding. Each of the arms forms a collar which receives the axle. An elastomeric layer is positioned between the axle and the collar for articulation between the axle and the collar. Each of the beam-axle connectors is identical and is symmetrical about a longitudinal axis. Each beam-axle connector is generally triangular in two dimensional configuration and has a reinforcing gusset at an upper portion thereof and at a lower portion thereof. Each beam-axle connector further includes an arcuate plate at the other end thereof and through which the beam-axle connector is mounted to the axle. The compression mounting includes a hollow wrapper band which circumscribes the axle and is under tension sufficient to compress the axle at at least two sets of diametrically opposed and circumferentially spaced external surfaces of the axle and to prevent movement of the axle with respect to the wrapper band under ordinary service conditions.

Description

TRAILING ARM SUSPENSION WITH ARTICULATED AXLE MOUNTING
Field of the Invention
This invention relates to trailing arm suspensions for automotive vehicles. In one of its aspects, the invention relates to a trailing arm suspension wherein an axle is mounted to the trailing arm for articulation with respect to the trailing arm.
State of the Prior Art
WO 97/06022, published 20 February 1997, discloses an automotive suspension system in which an axle is mounted to an pair of axle bracket by squeezing wrapper bands around the axle to hold the axle in compression and thus retain the axle in the wrapper bands by frictional forces. The axle brackets are secured to the trailing arm through a pair of bushed joints.
Summary of the Invention In accordance with the invention, a trailing arm suspension for mounting ground-engaging wheels to a vehicle frame has an axle mounted to a trailing arm through an axle-beam connector. The suspension comprising at least two arms adapted to be secured to opposite sides of the frame and at least one wheel-carrying axle mounted to the arms through an axle-mounting assembly. Each of the axle- mounting assemblies comprises at least one beam-axle connector which is mounted to one of the arms at one end thereof through a bushed connection and is connected to the axle at another end thereof. Each of the arms forms a collar which receives the axle. An elastomeric layer is positioned between the axle and the collar for articulation between the axle and the collar. Preferably, the beam-axle connector is rigidly mounted to the axle at the other end thereof.
In a preferred embodiment of the invention, there are two beam-axle connectors, one on each side of each arm, and each beam-axle connector is connected to the arm and to the axle in the same manner. Further, each of the beam-axle connectors is identical and is symmetrical about a longitudinal axis. Each beam-axle connector is generally triangular in two dimensional configuration and has a reinforcing gusset at an upper portion thereof and at a lower portion thereof. Preferably, each beam-axle connector further includes an arcuate plate at the other end thereof and through which the beam-axle connector is mounted to the axle.
In one embodiment, the beam-axle connector is mounted to the axle through a hollow wrapper band which circumscribes the axle and is under tension sufficient to compress the axle at at least two sets of diametrically opposed and circumferentially spaced external surfaces of the axle and to prevent movement of the axle with respect to the wrapper band under ordinary service conditions. To this end, the arcuate plate extends about 180° around the axle and mates with a second arcuate plate to form a hollow wrapper band which circumscribes the axle and is under tension sufficient to compress the axle at at least two sets of diametrically opposed and circumferentially spaced external surfaces of the axle and to prevent movement of the axle with respect to the wrapper band under ordinary service conditions.
In another embodiment of the invention, the beam-axle connector is welded to the axle.
Description of the Drawings
The invention will now be described with reference to the accompanying drawings in which: FIG. 1 is a side elevational view of a suspension system according to the invention attached to a vehicle frame;
FIG. 2 is a perspective view of the suspension system illustrated in FIG. 1; FIG. 3 is a plan view taken along lines 3-3 of FIG. 2;
FIG. 4 is an enlarged cross-sectional view of the circled area labeled IV in FIG. 3;
FIG. 5 is a partial sectional view taken along lines 5-5 of FIG. 3;
FIG. 6 is a partial sectional view taken along lines 6-6 of FIG. 3;
FIG. 7 is an exploded view of the beam and axle connections of the suspension system illustrated in FIGS. 1-6; FIG. 8 is a side elevational view, like FIG. 1, showing a modified form of the invention;
FIG. 9 is a side elevational view, like FIG. 1, showing use of the invention on a low-height suspension system; FIG. 10 is a side elevational view of yet another embodiment of a suspension system according to the invention; and
FIG. 11 is a perspective view of the suspension illustrated in FIG. 10.
Description of the Preferred Embodiments Referring now to the drawings and to FIG. 1 in particular, there is shown a portion of a frame 10 of a vehicle which has its forward direction to the left as viewed in FIG. 1 and a suspension system 12 according to the invention secured to the underside of the frame 10. The suspension system 12 comprises a trailing arm assembly including a frame bracket 16, a trailing arm 18, a beam extension 19 and an air spring 20. The frame bracket 16 is rigidly secured to the frame 10 by welding and/or bolts in conventional fashion. The trailing arm 18 is pivotably mounted to the frame bracket 16 through a pivot mounting 26 in conventional fashion. A shock absorber 22 is mounted between the frame bracket 16 and the beam 18 to damp the pivotable movement of the beam 18 with respect to the frame 16. The shock absorber 22 is mounted to the frame bracket 16 through a pivot mounting 30 and is pivotably mounted to the beam 18 through a pivot mounting 28. A round axle 24 is secured to the beam 18 through a pair of beam-axle connectors 64 (only one of which is shown in FIG. 1) and a bolt 82.
The suspension system according to the invention includes two trailing arm assemblies, one on each side of the vehicle frame, although only one such assembly is shown in the drawings. The other trailing arm assembly is a mirror image of the described assembly. The trailing arm assemblies are joined by the axle 24.
Referring now to FIGS. 2, 3, 4 and 7, the beam 18 has a top plate 32, a pair of side plates 34 and 36 and a bottom plate 38 all rigidly joined together, for example, by welding to form a rigid elongated beam which is rectangular in cross section. An I beam can be used in lieu of a box beam. Aligned openings 40 are provided in the side plates 54 and 36. A sleeve 42 is provided at a rear end of the beam and is formed by arcuate plates 44 and 48 which are joined at edge surfaces 46 and 50, respectively. As shown in FIG. 7, a front end of the beam 18 has a cylindrical collar 52 having an opening 54 therethrough to receive the pivot mounting 26.
Referring once again to FIG. 4, a bushing assembly 56 is mounted in the beam openings 40 and comprises an outer sleeve 58, a rubber bushing 60 and an inner sleeve 62, assembled together as a unit. Sleeve 62 and rubber bushing 60 are bonded together and then pressed into sleeve 58. As illustrated in FIG. 4, the outer sleeve 58 and the inner sleeve 62, as well as the bushing 60, are slightly longer than the distance between the outside surfaces of the side plates 34 and 36. The inner sleeve 62 is longer than the outer sleeve 58 and the bushing 60.
Turning now to FIGS. 3 and 7, there are two beam -axle connectors 64 joined to the axle 24 at one end and to the beam 18 at the other end through the bushing assembly 56 on each trailing arm assembly. Each of the beam-axle connectors 64 are identical in construction and are oriented in mirror image orientation on the axles. Only one of the beam-axle connectors 64 will be described.
In FIG. 7, the beam-axle connector 64 comprises a wrapper band 66 at one end formed by an arcuate plate 68 having an edge 70 and an arcuate plate 72 having an edge 74. A triangular plate 76 is welded to the arcuate plate 72 at one side of the arcuate plate adjacent to the beam. A through bore 78 extends through the triangular plate 76 at a forward apex end of the plate 76. Triangular gusset plates 80 are mounted to the top and bottom of the triangular plate 76, preferably by welding, and are secured at the rear end thereof to the arcuate plate 72 along the axial length thereof at upper and lower portions thereof. As illustrated in FIG. 4, a bolt 82 extends through the through bores 78 on each of the beam-axle connectors 64 and through the bushing assembly 56, in particular, through the inner sleeve 62 to mount the beam- axle connector 64 to the beam 18. To this end, a nut 84 is threaded onto the bolt 82. As shown in FIG. 4, wear washers 92 are provided between the triangular plates 76 and the sleeve 62 to provide a wear surface. As also illustrated in FIG. 4, the inner sleeve 62 extends beyond the axial length of the outer sleeve 58 so that the beam-axle connectors 64 are free to articulate with respect to the beam 18 to accommodate roll and pitch forces at the axle 24 with respect to the frame 10. Washers 93 are mounted on the bolt 82 between the head of the bolt 82 and the triangular plate 76 at one side of the beam and between the nut 84 and the triangular plate 76 at the other side of the beam.
As shown in FIG. 5, the arcuate plates 68 and 72 surround the axle 24 and are joined together through welds 86 at the edges 70 and 74, respectively. The arcuate plates 68 and 72 are squeezed around the axle 24 to maintain the axle in compression and to maintain the arcuate plates 68 and 72 in tension. The arcuate plates are forced toward each other to put the axle 24 in compression before the welding operation. The welds 86 are made while the compressive forces are applied to the axle 24 by the arcuate plates 68 and 72. As the weld joint cools, it contracts, thereby enhancing the compressive forces against the axle 24. The axle 24 is thus joined to the beam-axle connectors 64 through the wrapper bands 66 and are held essentially by friction between the wrapper band 66 and the axle 24 due to the high compressive loading on the axle 24 by the wrapper band 66. The method of assembling the axle to wrapper bands is disclosed and claimed in WO 97/06022, the disclosure of which is incorporated herein by reference. Various embodiments of wrapper bands are disclosed and claimed in this application. Any of the various round axle wrapper band connections disclosed in WO 97/06022 can be used in the invention of the present application. Further, any of the various multi-sided wrapper band connections disclosed in WO 97/06022 can be used with corresponding multi-sided axles in the present invention. Reference is now made to FIG. 6 for a description of the relationship between the beam and the axle at the trailing end of the beam. The arcuate plates 44 and 48 form a collar which receives the axle 24. An elastomer sheet 88 is positioned between the axle 24 and the arcuate plates 44 and 48. The arcuate plates 44 and 48 are joined by a weld 90 or bolted flanges (not shown). The elastomer sheet 88 can, for example, be made of a urethane or rubber sheet material of approximately 3/16ths inch thick and about 4 inches wide. The sheet is about as wide at the collar on the beam 18 but slightly shorter in length. Unlike the wrapper band 66, the collar on the beam 18 does not squeeze the axle 24. Rather, the axle can articulate somewhat within the beam collar by virtue of the rubber sheet 88. Thus, the axle is rigidly connected to the beam-axle connectors 64 through the wrapper bands 66. The beam-axle connectors 64 are rigid in nature and are connected to the beam through the bushing assemblies 56. The rubber bushing 60 is yieldable and thus will deform when torsional stresses are applied to the beam-axle connectors 64. Thus, the axle can articulate with respect to the sleeve 42 of the beam 18 because of the rubber sheet 88 and also in view of the bushed connection 56 between the beam 18 and the axle beam connector 64. Thus, the axle 24 can articulate with respect to the beam 18 but yet is rigidly heid in the beam-axle connectors 64. This suspension avoids stress risers between the axle and the axle bracket, yet the axle can articulate with respect to the beam. The bushed connection between the beam-axle connectors and the beam also provides for a degree of tolerance in mounting the suspension to the frame. If there is a slight degree of misalignment between the axle and the frame, unreasonable stresses can be set up in a rigid axle connection, resulting in premature axle failure. The bushed connection between the beam and the beam-axle connectors 64 provides a level of tolerance for slight misalignment in mounting of the suspension to the frame and minimizes stresses in the axle due to misalignment of the suspension to the frame.
The invention also provides for economies of scale in manufacturing. The basic beam 18 is symmetrical about a horizontal axis and thus can be used on both sides of the suspension. Thus, there is less tooling and fewer inventory parts. The cost of the beam is thus lower.
The beam can also be used for different suspensions by simply adding on to the basic beam structure for different kinds of beams. These other suspensions are illustrated in FIGS. 8 and 9 to which reference is now made.
FIG. 8 shows a suspension system according to the invention where like numbers have been used to designate like parts. In FIG. 8, a suspension system 12 has a beam 100 of substantially identical construction with the beam 18 except that it accommodates a square axle 104. The axle 104 is joined to the beam through a beam- to-axle connector 106 through a bushed joint 108. The construction of the axle-to- beam connector 106 is essentially the same as the beam-axle connector 64 except that it accommodates a square axle. The beam-axle connector 106 has a wrapper band 107 which squeezes the axle 104 as the wrapper band is assembled onto the axle in a manner described in WO 97/06022. The suspension in FIG. 8 accommodates a rubber spring 102 rather than an air spring as in the previous embodiment.
Turning now to FIG. 9, another embodiment of the invention is shown and like numerals are used to designate like parts. A beam 110 of substantially identical construction with the beam 18 is pivotably mounted to a frame bracket 16 in a pivotable mounting 26. An axle 24 is mounted to a beam-axle connector 64 through a wrapper band 66 in a manner identical to the first embodiment described above. In this embodiment, a beam extension 112 is welded to the outer end of the beam 110 and supports an air spring 20 in a low-slung position for a low mounting height configuration.
Referring now to FIGS. 10 and 11, there is shown an alternate embodiment of the invention where like numerals are used to designate like parts. In this form of the invention, the beam axle connector is modified somewhat and is welded to the axle 24 rather than squeezed onto the axle as in the previous embodiments. More particularly, a modified beam axle connector 122 comprises a triangular plate 129 which has an opening at a forward end thereof and has a bolt 82 extending therethrough for connecting the plate 129 to the trailing arm 18 through a bushed joint identical with that illustrated in FIG. 4 and described above. The triangular plate 129 has an arcuate plate 124 mounted at a rear end thereof, an upper gusset plate 126 mounted to an upper portion thereof and a lower gusset plate 128 mounted a lower portions thereof. As illustrated in FIG. 10, the arcuate plate has a circumferential arc of about 90°. The edges of the arcuate plate 124 are welded to the axle 24 at weld bead 130 at an upper portion thereof and at weld bead 132 at a lower portion thereof. As in the previous embodiment, a beam axle connector 122 is provided on each side of the beam 18 and each of the beams 18 has two beam axle connectors.
The beam axle connectors illustrated in FIGS. 10 and 11 mount the axle 24 to the beam 18 through a pair of articulated joints, one of which is the bushed joint illustrated in FIG. 4 and the other of which is the connection between the axle 24 and the beam 18 through the sleeve 42 and the elastomeric sheet 88. To this extent, the axle-to-beam connector functions in the same manner in the embodiment shown in FIGS. 10 and 11 as in the embodiments shown in FIGS. 1-9.
The invention provides for articulation between the axles and beams to give flexibility to the beams to accommodate stresses due to roll of the axle. Further, the suspensions avoid the problem of tolerances and stresses of mounting brackets resulting from misalignment of the suspensions to the frame. Still further, the lateral motion of the axle with respect to the frame is accommodated in the suspension as a couple due to the two beam-to-axle suspension mountings. The couple will react to lateral motion and avoid the necessity of a track bar between the axie and the beam.
Reasonable variation and modification are possible within the scope of the foregoing disclosure and drawings without departing from the spirit of the invention.

Claims

CLAIMSThe embodiments for which an exclusive property or privilege is claimed are defined as follows:
1. In a vehicle suspension for mounting ground-engaging wheels to a vehicle frame, the suspension comprising at least two arms adapted to be secured to opposite sides of the frame; at least one wheel-carrying axle mounted to the arms through an axle-mounting assembly, characterized in that: each of the axle-mounting assemblies comprises at least one beam-axle connector which is mounted to one of the arms at one end thereof through a bushed connection and is connected to the axle at another end thereof; and each of the arms forms a collar which receives the axle; and an elastomeric layer between the axle and the collar for articulation between the axle and the collar.
2. A vehicle suspension according to claim 1 wherein the beam-axle connector is rigidly mounted to the axle at the other end thereof.
3. A vehicle suspension according to either of claims 1 or 2 wherein there are two beam-axle connectors, one on each side of each arm, and each beam-axle connector is connected to the arm and to the axle in the same manner.
4. A vehicle suspension according to claim 3 wherein each of the beam- axle connectors is identical and is symmetrical about a longitudinal axis.
5. A vehicle suspension according to any of claims 1-4 wherein each beam-axle connector is generally triangular in two dimensional configuration and has a reinforcing gusset at an upper portion thereof and at a lower portion thereof.
6. A vehicle suspension according to any of claims 1-5 wherein each beam-axle connector further includes an arcuate plate at the other end thereof and through which the beam-axle connector is mounted to the axle.
7. A vehicle suspension according to any one of claims 1-6 wherein the beam-axle connector is mounted to the axle through a hollow wrapper band which circumscribes the axle and is under tension sufficient to compress the axle at at least two sets of diametrically opposed and circumferentially spaced external surfaces of the axle and to prevent movement of the axle with respect to the wrapper band under ordinary service conditions.
8. A vehicle suspension according to claim 6 wherein the arcuate plate extends about 180° around the axle and mates with a second arcuate plate to form a hollow wrapper band which circumscribes the axle and is under tension sufficient to compress the axle at at least two sets of diametrically opposed and circumferentially spaced external surfaces of the axle and to prevent movement of the axle with respect to the wrapper band under ordinary service conditions.
9. A vehicle suspension according to any of claims 1-6 wherein the beam- axle connector is welded to the axle.
10. In a vehicle having a suspension for mounting ground-engaging wheels to a vehicle frame, the suspension comprising at least two arms secured to opposite sides of the frame; at least one wheel-carrying axle mounted to the arms through an axle-mounting assembly, characterized in that: each of the axle-mounting assemblies comprises at least one beam-axle connector which is mounted to one of the arms at one end thereof through a bushed connection and is connected to the axle at another end thereof; and each of the arms forms a collar at a trailing end thereof and the axle is received in the collar; and an elastomeric layer between the axle and the collar for articulation between the axle and the collar.
11. A vehicle according to claim 10 wherein the beam-axle connector is rigidly mounted to the axle at the other end thereof.
12. A vehicle according to either of claims 10 or 11 wherein there are two beam-axle connectors, one on each side of each arm, and each beam-axle connector is connected to the arm and to the axle in the same manner.
13. A vehicle according to claim 12 wherein each of the beam-axle connectors is identical and is symmetrical about a longitudinal axis.
14. A vehicle according to any of claims 10-13 wherein each beam-axle connector is generally triangular in two dimensional configuration and has a reinforcing gusset at an upper portion and a lower portion thereof.
15. A vehicle according to any of claims 10-14 wherein each beam-axle connector further includes an arcuate plate at the other end thereof and through which the beam-axle connector is mounted to the axle.
16. A vehicle according to any one of claims 10-15 wherein the beam-axle connector is mounted to the axle through a hollow wrapper band which circumscribes the axle and is under tension sufficient to compress the axle at at least two sets of diametrically opposed and circumferentially spaced external surfaces of the axle and to prevent movement of the axle with respect to the wrapper band under ordinary service conditions.
17. A vehicle according to claim 15 wherein the arcuate plate extends about 180° around the axle and mates with a second arcuate plate to form a hollow wrapper band which circumscribes the axle and is under tension to compress the axle at at least two sets of diametrically opposed and circumferentially spaced surfaces of the axle and to prevent movement of the axle with respect to the wrapper band under ordinary service conditions.
18. A vehicle according to any of claims 10-15 wherein the beam-axle connector is welded to the axle.
19. The invention defined in any of the preceding claims wherein the axle is substantially round in cross section.
20. The invention defined in any of the preceding claims wherein the axle is polygonal in cross section.
EP97911006A 1996-10-23 1997-10-21 Trailing arm suspension with articulated axle mounting Withdrawn EP0932511A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US2959996P 1996-10-23 1996-10-23
US29599P 1996-10-23
PCT/US1997/018733 WO1998017487A1 (en) 1996-10-23 1997-10-21 Trailing arm suspension with articulated axle mounting

Publications (1)

Publication Number Publication Date
EP0932511A1 true EP0932511A1 (en) 1999-08-04

Family

ID=21849884

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97911006A Withdrawn EP0932511A1 (en) 1996-10-23 1997-10-21 Trailing arm suspension with articulated axle mounting

Country Status (11)

Country Link
EP (1) EP0932511A1 (en)
JP (1) JP2001502633A (en)
KR (1) KR20000052788A (en)
CN (1) CN1235577A (en)
AR (1) AR008896A1 (en)
AU (1) AU716456B2 (en)
CA (1) CA2268135A1 (en)
DE (1) DE932511T1 (en)
ID (1) ID19640A (en)
WO (1) WO1998017487A1 (en)
ZA (1) ZA979444B (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000046052A1 (en) * 1999-02-04 2000-08-10 Holland Neway International, Inc. Trailing arm suspension with brake assembly mounting bracket
WO2000071290A1 (en) * 1999-05-21 2000-11-30 Holland Neway International, Inc. Axle/adapter assembly for vehicle suspension and suspension incorporating same
GB0021716D0 (en) 2000-09-05 2000-10-18 Meritor Heavy Vehicle Sys Ltd Vehicle suspension axle wrap
GB0021718D0 (en) 2000-09-05 2000-10-18 Meritor Heavy Vehicle Sys Ltd Vehicle suspension beam
JP4274398B2 (en) * 2000-11-13 2009-06-03 株式会社小松製作所 Suspension device
US6557875B2 (en) * 2001-03-21 2003-05-06 Dana Corporation Vehicle suspension
US6827360B2 (en) 2002-10-24 2004-12-07 Arvinmeritor Technology, Llc One-piece trailing arm section
GB2396140C (en) 2002-12-13 2011-06-23 Meritor Heavy Vehicle Sys Ltd A suspension trailing arm and method of making a suspension trailing arm
TWI243111B (en) * 2003-03-06 2005-11-11 Mitsubishi Motors Corp Suspension supporting apparatus
DE102005038274C5 (en) * 2005-08-12 2018-01-11 Saf-Holland Gmbh wheel suspension arm
DE102006049390B4 (en) 2006-10-19 2012-09-13 Saf-Holland Gmbh Device for connecting a support arm with an axle body
NL1034756C1 (en) * 2007-07-20 2009-01-21 Weweler Nv Wheel axle suspension for use in vehicle e.g. lorry, has trailing arm for attaching axle of wheel of vehicle, which is wider in contact region formed corresponding to outer contour of axle, and clamped with axle
US8490989B2 (en) * 2009-10-26 2013-07-23 Hendrickson Usa, L.L.C. Heavy-duty axle-to-beam connection
BR112012020061B1 (en) 2010-02-12 2020-10-13 Volvo Group North America, Llc vehicle and method for improving vehicle rolling characteristics
US7954833B1 (en) * 2010-05-21 2011-06-07 Saf-Holland, Inc. Trailing beam assembly
DE102013203848A1 (en) * 2013-03-07 2014-09-11 Zf Friedrichshafen Ag Drive axle for an industrial truck
DE102013107050A1 (en) * 2013-07-04 2015-01-08 Kögel Trailer GmbH & Co. KG Axle for a commercial vehicle, bogie and commercial vehicle with such an axle
FR3018762B1 (en) 2014-03-18 2017-12-01 Renault Sas REAR STRUCTURE OF MOTOR VEHICLE
DE102014218316A1 (en) * 2014-09-12 2016-03-17 Saf-Holland Gmbh handlebar unit
CN105584642B (en) * 2014-11-14 2018-06-26 江西昌河航空工业有限公司 A kind of air cushion platform for carrying helicopter and steadily moving
DE102014225151A1 (en) * 2014-12-08 2016-06-09 Zf Friedrichshafen Ag Axle
CN113396071B (en) * 2019-01-31 2024-04-09 DRiV汽车公司 Single suspension module
KR102291663B1 (en) * 2019-12-04 2021-08-20 주식회사 진우에스엠씨 Torsion beam axle rear suspension with in-wheel motor
CN112227285A (en) * 2020-10-15 2021-01-15 无锡柏鹏科技有限公司 High-strength large arm actuating mechanism

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2367817A (en) * 1939-09-13 1945-01-23 Firestone Tire & Rubber Co Vehicle suspension
US2865652A (en) * 1957-02-14 1958-12-23 Youngstown Steel Car Corp Stabilizer coupling for air cushion suspension
DE1265596B (en) * 1964-12-23 1968-04-04 Opel Adam Ag Rear axle assembly for motor vehicles
DE7728344U1 (en) * 1977-09-14 1978-05-24 Bergische Achsenfabrik Fr. Kotz & Soehne, 5276 Wiehl Handlebar and stabilizer arrangement for wheel axles of road vehicles
US4293145A (en) * 1978-02-28 1981-10-06 Taylor Glenn E Auxiliary lift axle wheel assembly
US4310171A (en) * 1980-06-11 1982-01-12 General Motors Corporation Vehicle axle attachment
US4497504A (en) * 1983-05-16 1985-02-05 Duff James M Axle alignment bushing
AU666572B2 (en) * 1992-10-19 1996-02-15 Hendrickson International Corporation Axle suspension systems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9817487A1 *

Also Published As

Publication number Publication date
AU4824497A (en) 1998-05-15
ZA979444B (en) 1998-05-12
ID19640A (en) 1998-07-23
WO1998017487A1 (en) 1998-04-30
JP2001502633A (en) 2001-02-27
AR008896A1 (en) 2000-02-23
DE932511T1 (en) 2000-03-09
CA2268135A1 (en) 1998-04-30
KR20000052788A (en) 2000-08-25
CN1235577A (en) 1999-11-17
AU716456B2 (en) 2000-02-24

Similar Documents

Publication Publication Date Title
AU716456B2 (en) Trailing arm suspension with articulated axle mounting
US5366237A (en) Axle suspension systems
US6491314B2 (en) Trailing arm suspension with wrapper compression axle mounting and articulated axle mounting
AU631071B2 (en) Lightweight beam suspension system
US5203585A (en) Split-beam suspension system
US7322591B2 (en) Suspension apparatus for a vehicle and vehicle including same
US6808192B1 (en) Trailing arm suspension
US10807430B2 (en) Axle/suspension systems
WO1998017487B1 (en) Trailing arm suspension with articulated axle mounting
GB2249763A (en) Tandem wheel and axle suspension
CA2392480C (en) Trailing arm suspension
CA2360561A1 (en) Trailing arm suspension with brake assembly mounting bracket
MXPA99003692A (en) Trailing arm suspension with articulated axle mounting
KR200206928Y1 (en) Lower control arm of car suspension
EP1348580B1 (en) Independent suspension for a wheel of a commercial vehicle
MXPA93006307A (en) Axle suspension system for overhead vehicles
NZ260280A (en) Vehicle axle rigidly attached to swing beam by passing through beam side walls so as to minimise distortion of axle cross-section
CA1060911A (en) Suspension system for rigid axle on a motor vehicle
KR19980040693U (en) Ball joint mounting structure of automobile suspension

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980910

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

ITCL It: translation for ep claims filed

Representative=s name: MODIANO & ASSOCIATI S.R.L.

EL Fr: translation of claims filed
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

DET De: translation of patent claims
17Q First examination report despatched

Effective date: 20011029

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 20020618