EP0932006A1 - Komibinierte Ofen und Lufttrennungsanlage und Verfahren zur Anwendung - Google Patents

Komibinierte Ofen und Lufttrennungsanlage und Verfahren zur Anwendung Download PDF

Info

Publication number
EP0932006A1
EP0932006A1 EP99400150A EP99400150A EP0932006A1 EP 0932006 A1 EP0932006 A1 EP 0932006A1 EP 99400150 A EP99400150 A EP 99400150A EP 99400150 A EP99400150 A EP 99400150A EP 0932006 A1 EP0932006 A1 EP 0932006A1
Authority
EP
European Patent Office
Prior art keywords
air
column
compressor
supplied
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP99400150A
Other languages
English (en)
French (fr)
Inventor
Alain Guillard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP0932006A1 publication Critical patent/EP0932006A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04018Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of main feed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04024Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of purified feed air, so-called boosted air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04109Arrangements of compressors and /or their drivers
    • F25J3/04115Arrangements of compressors and /or their drivers characterised by the type of prime driver, e.g. hot gas expander
    • F25J3/04121Steam turbine as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04109Arrangements of compressors and /or their drivers
    • F25J3/04115Arrangements of compressors and /or their drivers characterised by the type of prime driver, e.g. hot gas expander
    • F25J3/04133Electrical motor as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04109Arrangements of compressors and /or their drivers
    • F25J3/04145Mechanically coupling of different compressors of the air fractionation process to the same driver(s)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/0446Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the heat generated by mixing two different phases
    • F25J3/04466Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the heat generated by mixing two different phases for producing oxygen as a mixing column overhead gas by mixing gaseous air feed and liquid oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04527Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
    • F25J3/04551Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the metal production
    • F25J3/04557Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the metal production for pig iron or steel making, e.g. blast furnace, Corex
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04593The air gas consuming unit is also fed by an air stream
    • F25J3/04606Partially integrated air feed compression, i.e. independent MAC for the air fractionation unit plus additional air feed from the air gas consuming unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/04Processes or apparatus using separation by rectification in a dual pressure main column system
    • F25J2200/06Processes or apparatus using separation by rectification in a dual pressure main column system in a classical double column flow-sheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
    • F25J2205/62Purifying more than one feed stream in multiple adsorption vessels, e.g. for two feed streams at different pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/50Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/40Processes or apparatus involving steps for recycling of process streams the recycled stream being air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration
    • Y10S62/915Combustion

Definitions

  • the present invention relates to combined installations comprising at least one oven, typically a metal processing oven, supplied with compressed air, and at least one air distillation apparatus producing oxygen to enrich the air supplied to the oven, as well as the processes for implementing such combined installations.
  • document EP-A-0 531 182 provides for a separation complete air supply a) blast furnace, b) column medium pressure and c) of the mixing column using separate compression means to, in particular, allow production, in the mixing column, impure oxygen at high pressures or low, in an expensive arrangement in terms of investment and operating rotating machines and considering no synergy between these last.
  • the object of the present invention is to provide an installation combined and a method of implementing such an installation combined with extremely deep integration and allowing operating costs significantly reduced while offering flexibility in the selection of ranges Operating.
  • the method of implementing a combined installation is of the type comprising at least one oven supplied with air by at least one blower supplying air at a first pressure P 1 and oxygen by at least one air distillation apparatus comprising at least one medium pressure column supplied with air at least partially by the blower of the oven, and a mixing column supplying oxygen to the oven, and in which the column of the mixture is supplied with air by a compressor supplying air at a pressure P 2 greater than P 1 .
  • the column medium pressure is supplied only by compressed air supplied by the blower from the oven.
  • the middle column pressure is also supplied by compressed air supplied by at least one compressor stage on the same shaft line as the compressor feeding the mixing column.
  • the present invention also relates to a combined installation comprising at least one oven, at least one blower delivering in a line main compressed air connected to the oven, at least one distillation apparatus of air comprising at least one medium pressure column and one mixture having an oxygen outlet line opening into a downstream part from the main compressed air line, a bypass line from the line main compressed air supplying air to at least the middle column pressure, and at least one air compressor supplying pressurized air to at least the mixing column.
  • the distillation apparatus exploits part of the flow air from the differentiable blower due to the subsequent reinjection of oxygen in this air flow while making the most of the possibilities offered by the mixing column by selecting by choice of compressor - and inter-column liquid pump - the optimal oxygen pressure for reinjection into the blower wind.
  • Figures 1 and 2 are two embodiments of a combined installation according to the invention.
  • a treatment furnace of metal in this case a blast furnace F
  • an air distillation apparatus partner comprising essentially, in the examples shown, a line LE main exchange, a double DC column with a medium column pressure MP and a low pressure column BP, and a mixing column CM.
  • the oven F is supplied with air by a blower S discharging into a main compressed air line A with a large volume of air (typically greater than 100,000 Nm 3 / h) under a medium pressure P 1 not exceeding 5, 8 x 10 5 Pa, typically between 3 x 10 5 Pa and 5.5 x 10 5 Pa.
  • Line A can also supply, simultaneously or alternately, another metal treatment oven, for example an electric oven with the AOD process.
  • the medium pressure column MP is supplied, in a tank, with air substantially at the pressure P 1 for supplying the blower F by a line D derived from the main line A and successively passing through a cooling device R, a purification device E 1 , typically of the adsorption type, then the main exchange line LE.
  • the mixing column CM is, for its part, supplied with tank, air under pressure P 2 by a line L supplied with air under pressure by a dedicated compressor C driven by a motor M, the air supplied by this compressor C being purified in a second purification device E 2 , also typically of the adsorption type, before crossing the LE exchange line.
  • the pressure P 2 is chosen to be slightly higher than the pressure P 1 in line A to take account of the pressure drops in the air distillation apparatus, in the hot air / oxygen mixing devices downstream of line A and to optimize the regulation of this oxygen injection.
  • P 2 - P 1 is between 0.3 x 10 5 Pa and 4 x 10 5 Pa, advantageously between 0.5 x 10 5 Pa and 1.5 x 10 5 Pa.
  • part of the air flow in line D is diverted to the low pressure column BP by being turbinated in a turbine t serving in particular for keeping the apparatus cold.
  • the motor M for driving the compressor C supplying the mixing column CM is for example an electric motor advantageously exploiting the electrical energy produced on site by a cogeneration installation, or a turbine exploiting a pressurized fluid available on the site.
  • the turbine t is advantageously coupled to a booster c to overpress a compressed fluid from the installation, typically the flow of purified air in line L, in order to optimize the investment for the dedicated compressor C and / or the power supplied. by the motor M.
  • a line l is provided, provided with an expansion member, between the downstream parts of the lines D and L for send, at least temporarily, part of the flow in line L to the medium pressure column MP, thus complementing the flow taken in line A of the blower.
  • the compressor C delivering in line L compresses a flow of air derived, in a bypass line B, from line D supplying the medium pressure column MP, downstream of the purification device E 1 .
  • an additional air flow substantially at the pressure P 1 , is introduced into this line D, upstream of the cooling device R, by a line G coming from an upstream stage (here second stage EC 2 ) of a line of compressors GC on the same shaft line of which is mounted the compressor C supplying the mixing column CM.
  • the compressor line EC i - C is advantageously driven by a turbine T expanding a pressurized fluid F l available on the site, typically water vapor.
  • the pressure at the outlet of the compressor C can be chosen to be higher than the pressure required P2 for the mixing column, the air at the outlet of this compressor C can be turbinated up to the pressure P 2 in the turbine t which can thus be used to drive a booster c used to boost one of the fluids entering or leaving the distillation apparatus, for example, as shown in Figure 2, the impure nitrogen in the line N to assist in the recovery of this impure nitrogen, for example by introducing it as ballast into the combustion chamber of a gas turbine group exploiting a combustible gas transformed from a waste gas from the furnace F.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Separation By Low-Temperature Treatments (AREA)
EP99400150A 1998-01-23 1999-01-22 Komibinierte Ofen und Lufttrennungsanlage und Verfahren zur Anwendung Withdrawn EP0932006A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9800722A FR2774157B1 (fr) 1998-01-23 1998-01-23 Installation combinee d'un four et d'un appareil de distillation d'air et procede de mise en oeuvre
FR9800722 1998-01-23

Publications (1)

Publication Number Publication Date
EP0932006A1 true EP0932006A1 (de) 1999-07-28

Family

ID=9522092

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99400150A Withdrawn EP0932006A1 (de) 1998-01-23 1999-01-22 Komibinierte Ofen und Lufttrennungsanlage und Verfahren zur Anwendung

Country Status (7)

Country Link
US (1) US6089040A (de)
EP (1) EP0932006A1 (de)
KR (1) KR19990068069A (de)
AR (1) AR014472A1 (de)
BR (1) BR9917544A (de)
CA (1) CA2259797A1 (de)
FR (1) FR2774157B1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6250916B1 (en) 1997-04-15 2001-06-26 American Air Liquide, Inc. Heat recovery apparatus and methods of use
US7645319B2 (en) 2004-02-27 2010-01-12 L'air Liquide Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for renovating a combined blast furnace and air/gas separation unit system

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2814178B1 (fr) * 2000-09-18 2002-10-18 Air Liquide Alimentation en air enrichi en oxygene d'une unite de production de metal non-ferreux
US6568207B1 (en) * 2002-01-18 2003-05-27 L'air Liquide-Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Integrated process and installation for the separation of air fed by compressed air from several compressors
FR2864214B1 (fr) 2003-12-22 2017-04-21 Air Liquide Appareil de separation d'air, appareil integre de separation d'air et de production d'un metal et procede de demarrage d'un tel appareil de separation d'air
US20090100864A1 (en) * 2007-07-06 2009-04-23 Den Held Paul Anton Process to compress air and its use in an air separation process and systems using said processes
US20100146982A1 (en) * 2007-12-06 2010-06-17 Air Products And Chemicals, Inc. Blast furnace iron production with integrated power generation
US8133298B2 (en) 2007-12-06 2012-03-13 Air Products And Chemicals, Inc. Blast furnace iron production with integrated power generation
RU2647275C1 (ru) * 2016-12-15 2018-03-15 Межрегиональное общественное учреждение "Институт инженерной физики" Способ управления пневматическим приводом криогенной арматуры

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4022030A (en) * 1971-02-01 1977-05-10 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Thermal cycle for the compression of a fluid by the expansion of another fluid
EP0531182A1 (de) * 1991-08-07 1993-03-10 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Verfahren und Einrichtung zur Luftdestillation und die Verwendung bei der Zuführung von Gas in Stahlwerken
US5244489A (en) * 1991-06-12 1993-09-14 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for supplying a blast furnace with air enriched in oxygen, and corresponding installation for the reduction of iron ore
EP0636845A1 (de) * 1993-04-30 1995-02-01 The BOC Group plc Lufttrenung
EP0717249A2 (de) * 1994-12-16 1996-06-19 The BOC Group plc Lufttrennung

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9208647D0 (en) * 1992-04-22 1992-06-10 Boc Group Plc Air separation
US5582036A (en) * 1995-08-30 1996-12-10 Praxair Technology, Inc. Cryogenic air separation blast furnace system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4022030A (en) * 1971-02-01 1977-05-10 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Thermal cycle for the compression of a fluid by the expansion of another fluid
US5244489A (en) * 1991-06-12 1993-09-14 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for supplying a blast furnace with air enriched in oxygen, and corresponding installation for the reduction of iron ore
EP0531182A1 (de) * 1991-08-07 1993-03-10 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Verfahren und Einrichtung zur Luftdestillation und die Verwendung bei der Zuführung von Gas in Stahlwerken
EP0636845A1 (de) * 1993-04-30 1995-02-01 The BOC Group plc Lufttrenung
EP0717249A2 (de) * 1994-12-16 1996-06-19 The BOC Group plc Lufttrennung

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6250916B1 (en) 1997-04-15 2001-06-26 American Air Liquide, Inc. Heat recovery apparatus and methods of use
US7645319B2 (en) 2004-02-27 2010-01-12 L'air Liquide Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for renovating a combined blast furnace and air/gas separation unit system

Also Published As

Publication number Publication date
FR2774157B1 (fr) 2000-05-05
AR014472A1 (es) 2001-02-28
KR19990068069A (ko) 1999-08-25
FR2774157A1 (fr) 1999-07-30
BR9917544A (pt) 2002-07-02
CA2259797A1 (en) 1999-07-23
US6089040A (en) 2000-07-18

Similar Documents

Publication Publication Date Title
BE1006334A3 (fr) Procede d'alimentation d'un haut-fourneau en air enrichi en oxygene, et installation de reduction de minerai de fer correspondante.
US5459994A (en) Gas turbine-air separation plant combination
FR2819583A1 (fr) Procede integre de separation d'air et de generation d'energie et installation pour la mise en oeuvre d'un tel procede
EP0568431B1 (de) Gasturbine kombiniert mit Lufttrennungsanlage
FR2819584A1 (fr) Procede integre de separation d'air et de generation d'energie et installation pour la mise en oeuvre d'un tel procede
EP1102953B1 (de) Anlage zur erzeugung von niederspannugsstrom mit einer anlage, die in einer luftzerlegungsanlage integriert ist
EP0932006A1 (de) Komibinierte Ofen und Lufttrennungsanlage und Verfahren zur Anwendung
FR2711778A1 (fr) Procédé et installation de production d'oxygène et/ou d'azote sous pression.
EP0932005A1 (de) Komibinierte Ofen und Lufttrennungsanlage und Verfahren zur Anwendung
EP0532429B1 (de) Verfahren zum Kühlen eines Gases in einer Vorrichtung zur Nutzung von Luft und eine Vorrichtung zur Durchführung des Verfahrens
CA2557287C (fr) Procede de renovation d'une installation combinee d'un haut-fourneau et d'une unite de separation de gaz de l'air
CA2284167C (fr) Installation combinee d'un four et d'un appareil de distillation d'air et procede de mise en oeuvre
EP1709378A1 (de) Lufttrennvorrichtung, integrierte lufttrennung und metallerzeugungsvorrichtung sowie verfahren zum starten solch einer lufttrennvorrichtung
EP1409937B1 (de) Verfahren zur dampferzeugung und luftzerlegung
EP1651915B1 (de) Verfahren und system zur versorgung einer lufttrenneinheit mittels einer gasturbine
EP1697690A2 (de) Verfahren und anlage zur anreicherung eines gasstroms mit einer seiner komponenten
FR2827186A1 (fr) Procede et installation de distillation d'air et de production de vapeur d'eau
JPH08326554A (ja) 石炭ガス化ガスタービン発電設備及びその窒素供給方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE ES FI IT

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20000128

AKX Designation fees paid

Free format text: BE DE ES FI IT

17Q First examination report despatched

Effective date: 20020214

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: L'AIR LIQUIDE, S.A. A DIRECTOIRE ET CONSEIL DE SUR

APBN Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2E

APBR Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3E

APAA Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOS REFN

APAF Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNE

APBT Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9E

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'E

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'E

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20090801