EP0929065A2 - A modular approach to speech enhancement with an application to speech coding - Google Patents

A modular approach to speech enhancement with an application to speech coding Download PDF

Info

Publication number
EP0929065A2
EP0929065A2 EP99100141A EP99100141A EP0929065A2 EP 0929065 A2 EP0929065 A2 EP 0929065A2 EP 99100141 A EP99100141 A EP 99100141A EP 99100141 A EP99100141 A EP 99100141A EP 0929065 A2 EP0929065 A2 EP 0929065A2
Authority
EP
European Patent Office
Prior art keywords
speech
digitized
speech enhancement
coder
components
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP99100141A
Other languages
German (de)
French (fr)
Other versions
EP0929065A3 (en
Inventor
Anthony J. Accardi
Richard Vandervoort Cox
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AT&T Corp
Original Assignee
AT&T Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AT&T Corp filed Critical AT&T Corp
Publication of EP0929065A2 publication Critical patent/EP0929065A2/en
Publication of EP0929065A3 publication Critical patent/EP0929065A3/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques

Definitions

  • Speech enhancement is an effort to process the noisy speech for the benefit of the intended listener, be it a human, speech recognition module, or anything else. For a human listener, it is desirable to increase the perceptual quality and intelligibility of the perceived speech, so that the listener understands the communication with minimal effort and fatigue.
  • Speech enhancement can be broadly defined as the removal of additive noise from a corrupted speech signal in an attempt to increase the intelligibility or quality of speech. In most speech enhancement techniques, the noise and speech are generally assumed to be uncorrelated. Single channel speech enhancement is the simplest scenario, where only one version of the noisy speech is available, which is typically the result of recording someone speaking in a noisy environment with a single microphone.
  • FIG. 1 illustrates a speech enhancement setup for N noise sources for a single-channel system.
  • exact reconstruction of the clean speech signal is usually impossible in practice.
  • speech enhancement algorithms must strike a balance between the amount of noise they attempt to remove and the degree of distortion that is introduced as a side effect. Since any noise component at the microphone cannot in general be distinguished as coming from a specific noise source, the sum of the responses at the microphone from each noise source is denoted as a single additive noise term.
  • Speech enhancement has a number of potential applications.
  • a human listener observes the output of the speech enhancement directly, while in others speech enhancement is merely the first stage in a communications channel and might be used as a preprocessor for a speech coder or speech recognition module.
  • speech enhancement is merely the first stage in a communications channel and might be used as a preprocessor for a speech coder or speech recognition module.
  • speech enhancement module makes very different demands on the performance of the speech enhancement module, so any speech enhancement scheme ought to be developed with the intended application in mind.
  • many well-known speech enhancement processes perform very differently with different speakers and noise conditions, making robustness in design a primary concern. Implementation issues such as delay and computational complexity are also considered.
  • Speech can be modeled as the output of an acoustic filter (i.e., the vocal tract) where the frequency response of the filter carries the message. Humans constantly change properties of the vocal tract to convey messages by changing the frequency response of the vocal tract.
  • an acoustic filter i.e., the vocal tract
  • the input signal to the vocal tract is a mixture of harmonically related sinusoids and noise.
  • Pitch is the fundamental frequency of the sinusoids.
  • Force correspond to the resonant frequency(ies) of the vocal tract.
  • a speech coder works in the digital domain, typically deployed after an analog-to-digital (A/D) converter, to process a digitized speech input to the speech coder.
  • the speech coder breaks the speech into constituent parts on an interval-by-interval basis. Intervals are chosen based on the amount of compression or complexity of the digitized speech. The intervals are commonly referred to as frames or sub-frames.
  • the constituent parts include: (a) gain components to indicate the loudness of the speech; (b) spectrum components to indicate the frequency response of the vocal tract, where the spectrum components are typically represented by linear prediction coefficients ("LPCs") and/or cepstral coefficients; and (c) excitation signal components, which include a sinusoidal or periodic part, from which pitch is captured, and a noise-like part.
  • LPCs linear prediction coefficients
  • excitation signal components which include a sinusoidal or periodic part, from which pitch is captured, and a noise-like part.
  • gain is measured for an interval to normalize speech into a typical range. This is important to be able to run a fixed point processor on the speech.
  • LPCs linear prediction coefficients
  • FFT fast Fourier transform
  • the bandwidth of a telephone channel is limited to 3.5 kHz. Upper (higher-frequency) formants can be lost in coding.
  • the speech spectrum is flattened out by noise, and formants can be lost in coding.
  • Calculation of the LPC and the cepstral coefficients can be affected.
  • the excitation signal (or “residual signal”) components are determined after or separate from the gain components and the spectrum components by breaking the speech into a periodic part (the fundamental frequency) and a noise part.
  • the processor looks back one (pitch) period (1/F) of the fundamental frequency (F) of the vocal tract to take the pitch, and makes the noise part from white noise. A sinusoidal or periodic part and a noise-like part are thus obtained.
  • Speech enhancement is needed because the more the speech coder is based on a speech production model, the less able it is to render faithful reproductions of non-speech sounds that are passed through the speech coder. Noise does not fit traditional speech production models. Non-speech sounds sound peculiar and annoying. The noise itself may be considered annoying by many people. Speech enhancement has never been shown to improve intelligibility but has often been shown to improve the quality of uncoded speech.
  • speech enhancement was performed prior to speech coding, in a speech enhancement system separated from a speech coder/decoder, as shown in FIG. 2.
  • the speech enhancement module 6 is separated from the speech coder/decoder 8.
  • the speech enhancement module 6 receives input speech.
  • the speech enhancement module 6 enhances (e.g., removes noise from) the input speech and produces enhanced speech.
  • the speech coder/decoder 8 receives the already enhanced speech from the speech enhancement module 6.
  • the speech coder/decoder 8 generates output speech based on the already-enhanced speech.
  • the speech enhancement module 6 is not integral with the speech coder/decoder 8.
  • a system for enhancing and coding speech performs the steps of receiving digitized speech and enhancing the digitized speech to extract component parts of the digitized speech.
  • the digitized speech is enhanced differently for each of the component parts extracted.
  • an apparatus for enhancing and coding speech includes a speech coder that receives digitized speech.
  • a spectrum signal processor within the speech coder determines spectrum components of the digitized speech.
  • An excitation signal processor within the speech coder determines excitation signal components of the digitized speech.
  • a first speech enhancement system within the speech coder processes the spectrum components.
  • a second speech enhancement system within the speech coder processes the excitation signal components.
  • a speech enhancement system is integral with a speech coder such that differing speech enhancement processes are used for particular (e.g., gain, spectrum and excitation) components of the digitized speech while the speech is being coded.
  • Speech enhancement is performed within the speech coder using one speech enhancement system as a preprocessor for the LPC filter computer and a different speech enhancement system as a preprocessor for the speech signal from which the residual signal is computed.
  • the two speech enhancement processes are both within the speech coder.
  • the combined speech enhancement and speech coding method is applicable to both time-domain coders and frequency-domain coders.
  • FIG. 3 is a schematic view of an apparatus which integrates speech enhancement into a speech coder in accordance with the principles of the invention.
  • the apparatus illustrated in FIG. 3 includes a first speech enhancement system 10.
  • the first speech enhancement system 10 receives an input speech signal, which has been digitized.
  • An LPC analysis computer (LPC analyzer) 20 is coupled to the first speech enhancement system 10.
  • An LPC quantizer 30 is coupled to the LPC analysis computer 20.
  • An LPC synthesis filter (LPC synthesizer) 40 is coupled to the LPC quantizer 30.
  • a second speech enhancement system 50 receives the digitized input speech signal.
  • a first perceptual weighting filter 60 is coupled to the second speech enhancement system 50 and to the LPC analyzer 20.
  • a second perceptual weighting filter 70 is coupled to the LPC analyzer 20 and to the LPC synthesizer 40.
  • a subtractor 100 is coupled to the first perceptual weighting filter 60 and the second perceptual weighting filter 70.
  • the subtractor 100 produces an error signal based on the difference of two inputs.
  • An error minimization processor 90 is coupled to the subtractor 100.
  • An excitation generation processor 80 is coupled to the error minimization processor 90.
  • the LPC synthesis filter 40 is coupled to the excitation generation processor 80.
  • the first speech enhancement system 10 and the second speech enhancement system 50 are integral with the rest of the apparatus illustrated in FIG. 3.
  • the first speech enhancement system 10 and the second speech enhancement system 50 can be entirely different or can represent different "tunings" that give different amounts of enhancement using the same basic system.
  • the first speech enhancement system 10 enhances speech prior to computation of spectral parameters, which in this example is an LPC analysis.
  • the LPC analysis system 20 carries out the LPC spectral analysis.
  • the LPC analysis system 20 determines the best acoustic filter, which is represented as a sequence of LPC parameters.
  • the output LPC parameters of the LPC spectral analysis are used for two different purposes in this example.
  • the unquantized LPC parameters are used to compute coefficient values in the first perceptual weighting filter 60 and the second perceptual weighting filter 70.
  • the unquantized LPC values are also quantized in the LPC quantizer 30.
  • the LPC quantizer 30 produces the best estimate of the spectral information as a series of bits.
  • the quantized values produced by the LPC quantizer 30 are used as the filter coefficients in the LPC synthesis filter (LPC synthesizer) 40.
  • the LPC synthesizer 40 combines the excitation signal, indicating pulse amplitudes and locations, produced by the excitation generation processor 80 with the quantized values representing the best estimate of the spectral information that are output from the LPC quantizer 30.
  • the second speech enhancement system 50 is used in determining the excitation signal produced by the excitation generation processor 80.
  • the digitized speech signal is input to the second speech enhancement system 50.
  • the enhanced speech signal output from the second speech enhancement system 50 is perceptually weighted in the first perceptual weighting filter 60.
  • the first perceptual weighting filter 60 weights the speech with respect to perceptual quality to a listener.
  • the perceptual quality continually changes based on the acoustic filter (i.e., based on the frequency response of the vocal tract) represented by the output of the LPC analyzer 20.
  • the first perceptual weighting filter 60 thus operates in the psychophysical domain, in a "perceptual space" where mean square error differences are relevant to the coding distortion that a listener hears.
  • all possible excitation sequences are generated in the excitation generation processor 80.
  • the possible excitation sequences generated by excitation generator 80 are input to the LPC synthesizer 40.
  • the LPC synthesizer 40 generates possible coded output signals based on the quantized values representing the best estimate of the spectral information generated by LPC quantizer 30 and the possible excitation sequences generated by excitation generation processor 80.
  • the possible coded output signals from the LPC synthesizer 40 can be sent to a digital to analog (A/D) converter for further processing.
  • A/D digital to analog
  • the possible coded output signals from the LPC synthesizer 40 are passed through the second perceptual weighting filter 70.
  • the second perceptual weighting filter 70 has the same coefficients as the first perceptual weighting filter 60.
  • the first perceptual weighting filter 60 filters the enhanced speech signal whereas the second perceptual weighting filter 70 filters possible speech output signals.
  • the second perceptual weighting filter 70 tries all of the different possible excitation signals to get the best decoded speech.
  • the perceptually weighted possible output speech signals from the second perceptual weighting filter 70 and the perceptually weighted enhanced input speech signal from the first perceptual weighting filter 60 are input to the subtractor 100.
  • the subtractor 100 determines a signal representing a difference between perceptually weighted possible output speech signals from the second perceptual weighting filter 70 and the perceptually weighted enhanced input speech signal from the first perceptual weighting filter 60.
  • the subtractor 100 produces an error signal based on the signal representing such difference.
  • the output of the subtractor 100 is coupled to the error minimization processor 90.
  • the error minimization processor 90 selects the excitation signal that minimizes the error signal output from the subtractor 100 as the optimal excitation signal.
  • the quantized LPC values from LPC quantizer 30 and the optimal excitation signal from the error minimization processor 90 are the values that are transmitted to the speech decoder and can be used to re-synthesize the output speech signal.
  • the first speech enhancement system 10 and the second speech enhancement system 50 within the apparatus illustrated in FIG. 3 can (i) apply differing amounts of the same speech enhancement process, or (ii) apply different speech enhancement processes.
  • the principles of the invention can be applied to frequency-domain coders as well as time-domain coders, and are particularly useful in a cellular telephone environment, where bandwidth is limited. Because the bandwidth is limited, transmissions of cellular telephone calls use compression and often require speech enhancement. The noisy acoustic environment of a cellular telephone favors the use of a speech enhancement process. Generally, speech coders that use a great deal of compression need a lot of speech enhancement, while those using less compression need less speech enhancement.
  • the invention combines the strengths of multiple speech enhancement systems in order to generate a robust and flexible speech enhancement and coding process that exhibits better performance.
  • Experimental data indicate that a combination enhancement approach leads to a more robust and flexible system that shares the benefits of each constituent speech enhancement process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computational Linguistics (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Quality & Reliability (AREA)
  • Analogue/Digital Conversion (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

A speech coder separates input digitized speech into component parts on an interval by interval basis. The component parts include gain components, spectrum components and excitation signal components. A set of speech enhancement systems within the speech coder processes the component parts such that each component part has its own individual speech enhancement process. For example, one speech enhancement process can be applied for analyzing the spectrum components and another speech enhancement process can be used for analyzing the excitation signal components.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims the priority benefit of provisional U.S. application Ser. No. 60/071,051, filed January 9, 1998.
  • BACKGROUND OF THE INVENTION
  • There are many environments where noisy conditions interfere with speech, such as the inside of a car, a street, or a busy office. The severity of background noise varies from the gentle hum of a fan inside a computer to a cacophonous babble in a crowded cafe. This background noise not only directly interferes with a listener's ability to understand a speaker's speech, but can cause further unwanted distortions if the speech is encoded or otherwise processed. Speech enhancement is an effort to process the noisy speech for the benefit of the intended listener, be it a human, speech recognition module, or anything else. For a human listener, it is desirable to increase the perceptual quality and intelligibility of the perceived speech, so that the listener understands the communication with minimal effort and fatigue.
  • It is usually the case that for a given speech enhancement scheme, a tradeoff must be made between the amount of noise removed and the distortion introduced as a side effect. If too much noise is removed, the resulting distortion can result in listeners preferring the original noise scenario to the enhanced speech. Preferences are based on more than just the energy of the noise and distortion: unnatural sounding distortions become annoying to humans when just audible, while a certain elevated level of "natural sounding" background noise is well tolerated. Residual background noise also serves to perceptually mask slight distortions, making its removal even more troublesome.
  • Speech enhancement can be broadly defined as the removal of additive noise from a corrupted speech signal in an attempt to increase the intelligibility or quality of speech. In most speech enhancement techniques, the noise and speech are generally assumed to be uncorrelated. Single channel speech enhancement is the simplest scenario, where only one version of the noisy speech is available, which is typically the result of recording someone speaking in a noisy environment with a single microphone.
  • FIG. 1 illustrates a speech enhancement setup for N noise sources for a single-channel system. For the single channel case illustrated in FIG. 1, exact reconstruction of the clean speech signal is usually impossible in practice. So speech enhancement algorithms must strike a balance between the amount of noise they attempt to remove and the degree of distortion that is introduced as a side effect. Since any noise component at the microphone cannot in general be distinguished as coming from a specific noise source, the sum of the responses at the microphone from each noise source is denoted as a single additive noise term.
  • Speech enhancement has a number of potential applications. In some cases, a human listener observes the output of the speech enhancement directly, while in others speech enhancement is merely the first stage in a communications channel and might be used as a preprocessor for a speech coder or speech recognition module. Such a variety of different application scenarios places very different demands on the performance of the speech enhancement module, so any speech enhancement scheme ought to be developed with the intended application in mind. Additionally, many well-known speech enhancement processes perform very differently with different speakers and noise conditions, making robustness in design a primary concern. Implementation issues such as delay and computational complexity are also considered.
  • Speech can be modeled as the output of an acoustic filter (i.e., the vocal tract) where the frequency response of the filter carries the message. Humans constantly change properties of the vocal tract to convey messages by changing the frequency response of the vocal tract.
  • The input signal to the vocal tract is a mixture of harmonically related sinusoids and noise. "Pitch" is the fundamental frequency of the sinusoids. "Formants" correspond to the resonant frequency(ies) of the vocal tract.
  • A speech coder works in the digital domain, typically deployed after an analog-to-digital (A/D) converter, to process a digitized speech input to the speech coder. The speech coder breaks the speech into constituent parts on an interval-by-interval basis. Intervals are chosen based on the amount of compression or complexity of the digitized speech. The intervals are commonly referred to as frames or sub-frames. The constituent parts include: (a) gain components to indicate the loudness of the speech; (b) spectrum components to indicate the frequency response of the vocal tract, where the spectrum components are typically represented by linear prediction coefficients ("LPCs") and/or cepstral coefficients; and (c) excitation signal components, which include a sinusoidal or periodic part, from which pitch is captured, and a noise-like part.
  • To make the gain components, gain is measured for an interval to normalize speech into a typical range. This is important to be able to run a fixed point processor on the speech.
  • In the time domain, linear prediction coefficients (LPCs) are a weighted linear sum of previous data used to predict the next datum. Cepstral coefficients can be determined from the LPCs, and vice versa. Cepstral coefficients can also be determined using a fast Fourier transform (FFT).
  • The bandwidth of a telephone channel is limited to 3.5 kHz. Upper (higher-frequency) formants can be lost in coding.
  • Noise affects speech coding, and the spectrum analysis can be adversely affected. The speech spectrum is flattened out by noise, and formants can be lost in coding. Calculation of the LPC and the cepstral coefficients can be affected.
  • The excitation signal (or "residual signal") components are determined after or separate from the gain components and the spectrum components by breaking the speech into a periodic part (the fundamental frequency) and a noise part. The processor looks back one (pitch) period (1/F) of the fundamental frequency (F) of the vocal tract to take the pitch, and makes the noise part from white noise. A sinusoidal or periodic part and a noise-like part are thus obtained.
  • Speech enhancement is needed because the more the speech coder is based on a speech production model, the less able it is to render faithful reproductions of non-speech sounds that are passed through the speech coder. Noise does not fit traditional speech production models. Non-speech sounds sound peculiar and annoying. The noise itself may be considered annoying by many people. Speech enhancement has never been shown to improve intelligibility but has often been shown to improve the quality of uncoded speech.
  • According to previous practice, speech enhancement was performed prior to speech coding, in a speech enhancement system separated from a speech coder/decoder, as shown in FIG. 2. With reference to FIG. 2, the speech enhancement module 6 is separated from the speech coder/decoder 8. The speech enhancement module 6 receives input speech. The speech enhancement module 6 enhances (e.g., removes noise from) the input speech and produces enhanced speech.
  • The speech coder/decoder 8 receives the already enhanced speech from the speech enhancement module 6. The speech coder/decoder 8 generates output speech based on the already-enhanced speech. The speech enhancement module 6 is not integral with the speech coder/decoder 8.
  • Previous attempts at speech enhancement and coding first cleaned up the speech as a whole, and then coded it, setting the amount of enhancement via "tuning".
  • SUMMARY OF THE INVENTION
  • According to an exemplary embodiment of the invention, a system for enhancing and coding speech performs the steps of receiving digitized speech and enhancing the digitized speech to extract component parts of the digitized speech. The digitized speech is enhanced differently for each of the component parts extracted.
  • According to an aspect of the invention, an apparatus for enhancing and coding speech includes a speech coder that receives digitized speech. A spectrum signal processor within the speech coder determines spectrum components of the digitized speech. An excitation signal processor within the speech coder determines excitation signal components of the digitized speech. A first speech enhancement system within the speech coder processes the spectrum components. A second speech enhancement system within the speech coder processes the excitation signal components.
  • Other features and advantages of the invention will become apparent from the following detailed description, taken in conjunction with the accompanying drawings, which illustrate, by way of example, the features of the invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates a speech enhancement setup for N noise sources for a single-channel system;
  • FIG. 2 illustrates a conventional speech enhancement and coding system; and
  • FIG. 3 illustrates a speech enhancement and coding system in accordance with the principles of the invention.
  • DETAILED DESCRIPTION
  • Previous speech enhancement techniques were separated from, and removed noise prior to, speech coding. According to the principles of the invention, a speech enhancement system is integral with a speech coder such that differing speech enhancement processes are used for particular (e.g., gain, spectrum and excitation) components of the digitized speech while the speech is being coded.
  • Speech enhancement is performed within the speech coder using one speech enhancement system as a preprocessor for the LPC filter computer and a different speech enhancement system as a preprocessor for the speech signal from which the residual signal is computed. The two speech enhancement processes are both within the speech coder. The combined speech enhancement and speech coding method is applicable to both time-domain coders and frequency-domain coders.
  • FIG. 3 is a schematic view of an apparatus which integrates speech enhancement into a speech coder in accordance with the principles of the invention. The apparatus illustrated in FIG. 3 includes a first speech enhancement system 10. The first speech enhancement system 10 receives an input speech signal, which has been digitized. An LPC analysis computer (LPC analyzer) 20 is coupled to the first speech enhancement system 10. An LPC quantizer 30 is coupled to the LPC analysis computer 20. An LPC synthesis filter (LPC synthesizer) 40 is coupled to the LPC quantizer 30.
  • A second speech enhancement system 50 receives the digitized input speech signal. A first perceptual weighting filter 60 is coupled to the second speech enhancement system 50 and to the LPC analyzer 20. A second perceptual weighting filter 70 is coupled to the LPC analyzer 20 and to the LPC synthesizer 40.
  • A subtractor 100 is coupled to the first perceptual weighting filter 60 and the second perceptual weighting filter 70. The subtractor 100 produces an error signal based on the difference of two inputs. An error minimization processor 90 is coupled to the subtractor 100. An excitation generation processor 80 is coupled to the error minimization processor 90. The LPC synthesis filter 40 is coupled to the excitation generation processor 80.
  • The first speech enhancement system 10 and the second speech enhancement system 50 are integral with the rest of the apparatus illustrated in FIG. 3. The first speech enhancement system 10 and the second speech enhancement system 50 can be entirely different or can represent different "tunings" that give different amounts of enhancement using the same basic system.
  • The first speech enhancement system 10 enhances speech prior to computation of spectral parameters, which in this example is an LPC analysis. The LPC analysis system 20 carries out the LPC spectral analysis. The LPC analysis system 20 determines the best acoustic filter, which is represented as a sequence of LPC parameters. The output LPC parameters of the LPC spectral analysis are used for two different purposes in this example.
  • The unquantized LPC parameters are used to compute coefficient values in the first perceptual weighting filter 60 and the second perceptual weighting filter 70.
  • The unquantized LPC values are also quantized in the LPC quantizer 30. The LPC quantizer 30 produces the best estimate of the spectral information as a series of bits. The quantized values produced by the LPC quantizer 30 are used as the filter coefficients in the LPC synthesis filter (LPC synthesizer) 40. The LPC synthesizer 40 combines the excitation signal, indicating pulse amplitudes and locations, produced by the excitation generation processor 80 with the quantized values representing the best estimate of the spectral information that are output from the LPC quantizer 30.
  • The second speech enhancement system 50 is used in determining the excitation signal produced by the excitation generation processor 80. The digitized speech signal is input to the second speech enhancement system 50. The enhanced speech signal output from the second speech enhancement system 50 is perceptually weighted in the first perceptual weighting filter 60. The first perceptual weighting filter 60 weights the speech with respect to perceptual quality to a listener. The perceptual quality continually changes based on the acoustic filter (i.e., based on the frequency response of the vocal tract) represented by the output of the LPC analyzer 20. The first perceptual weighting filter 60 thus operates in the psychophysical domain, in a "perceptual space" where mean square error differences are relevant to the coding distortion that a listener hears.
  • According to the exemplary embodiment of the invention illustrated in FIG. 3, all possible excitation sequences are generated in the excitation generation processor 80. The possible excitation sequences generated by excitation generator 80 are input to the LPC synthesizer 40. The LPC synthesizer 40 generates possible coded output signals based on the quantized values representing the best estimate of the spectral information generated by LPC quantizer 30 and the possible excitation sequences generated by excitation generation processor 80. The possible coded output signals from the LPC synthesizer 40 can be sent to a digital to analog (A/D) converter for further processing.
  • The possible coded output signals from the LPC synthesizer 40 are passed through the second perceptual weighting filter 70. The second perceptual weighting filter 70 has the same coefficients as the first perceptual weighting filter 60. The first perceptual weighting filter 60 filters the enhanced speech signal whereas the second perceptual weighting filter 70 filters possible speech output signals. The second perceptual weighting filter 70 tries all of the different possible excitation signals to get the best decoded speech.
  • The perceptually weighted possible output speech signals from the second perceptual weighting filter 70 and the perceptually weighted enhanced input speech signal from the first perceptual weighting filter 60 are input to the subtractor 100. The subtractor 100 determines a signal representing a difference between perceptually weighted possible output speech signals from the second perceptual weighting filter 70 and the perceptually weighted enhanced input speech signal from the first perceptual weighting filter 60. The subtractor 100 produces an error signal based on the signal representing such difference.
  • The output of the subtractor 100 is coupled to the error minimization processor 90. The error minimization processor 90 selects the excitation signal that minimizes the error signal output from the subtractor 100 as the optimal excitation signal. The quantized LPC values from LPC quantizer 30 and the optimal excitation signal from the error minimization processor 90 are the values that are transmitted to the speech decoder and can be used to re-synthesize the output speech signal.
  • The first speech enhancement system 10 and the second speech enhancement system 50 within the apparatus illustrated in FIG. 3 can (i) apply differing amounts of the same speech enhancement process, or (ii) apply different speech enhancement processes.
  • The principles of the invention can be applied to frequency-domain coders as well as time-domain coders, and are particularly useful in a cellular telephone environment, where bandwidth is limited. Because the bandwidth is limited, transmissions of cellular telephone calls use compression and often require speech enhancement. The noisy acoustic environment of a cellular telephone favors the use of a speech enhancement process. Generally, speech coders that use a great deal of compression need a lot of speech enhancement, while those using less compression need less speech enhancement.
  • Examples of recent speech enhancement schemes which can be used as the first and second speech enhancement systems 10, 50 are described in the article by E. J. Diethorn, "A Low-Complexity, Background-Noise Reduction Preprocessor for Speech Encoders," presented at IEEE Workshop on Speech Coding for Telecommunications, Pocono Manor Inn, Pocono Manor, Pennsylvania, 1997; and in the article by T. V. Ramabadran, J. P. Ashley, and M. J. McLaughlin, "Background Noise Suppression for Speech Enhancement and Coding," presented at IEEE Workshop on Speech Coding for Telecommunications, Pocono Manor Inn, Pocono Manor, Pennsylvania, 1997. The latter article describes the enhancement system prescribed for use in the Interim Standard 127 (IS-127) promulgated by the Telecommunications Industry Association (TIA).
  • The invention combines the strengths of multiple speech enhancement systems in order to generate a robust and flexible speech enhancement and coding process that exhibits better performance. Experimental data indicate that a combination enhancement approach leads to a more robust and flexible system that shares the benefits of each constituent speech enhancement process.
  • While several particular forms of the invention have been illustrated and described, it will also be apparent that various modifications can be made without departing from the spirit and scope of the invention. Where technical features mentioned in any claim are followed by reference signs, those reference signs have been included for the sole purpose of increasing the intelligibility of the claims and accordingly, such reference signs do not have any limiting effect on the scope of each element identified by way of example by such reference signs.

Claims (17)

  1. An apparatus for enhancing and coding speech, comprising:
    a speech coder that receives digitized speech;
    a spectrum signal processor within the speech coder determining spectrum components of the digitized speech;
    an excitation signal processor within the speech coder determining excitation signal components of the digitized speech;
    a first speech enhancement system within the speech coder processing the spectrum components; and
    a second speech enhancement system within the speech coder processing the excitation signal components.
  2. The apparatus of claim 1, wherein:
       the spectrum components are represented by linear prediction coefficients.
  3. The apparatus of claim 1, wherein:
       the spectrum components are represented by cepstral coefficients.
  4. The apparatus of claim 1, wherein:
       the excitation signal components include a periodic part, from which pitch is captured, and a noise-like part.
  5. A method for enhancing and coding speech, comprising the steps of:
    receiving digitized speech; and
    enhancing the digitized speech to extract component parts of the digitized speech;
    wherein the digitized speech is enhanced differently for each of the component parts.
  6. The method of claim 5, further comprising the step of:
       applying one or more speech enhancement processes to extract the component parts.
  7. The method of claim 5, further comprising the steps of:
    applying a first amount of a speech enhancement process to extract a first set of component parts; and
    applying a second amount of the speech enhancement process to extract a second set of component parts.
  8. The method of claim 5, further comprising the step of:
       applying differing speech enhancement processes to a first set of component parts and a second set of component parts.
  9. The method of claim 5, further comprising the step of:
       determining spectrum components of the digitized speech.
  10. The method of claim 9, wherein:
       the spectrum components are represented by linear prediction coefficients.
  11. The method of claim 9, wherein:
       the spectrum components are represented by cepstral coefficients.
  12. The method of claim 5, further comprising the step of:
       determining excitation signal components, the excitation signal components including a periodic part, from which pitch is captured, and a noise-like part.
  13. A method for enhancing and coding speech, comprising the steps of:
    receiving digitized speech;
    performing a first speech enhancement process as part of a spectrum analysis of the digitized speech;
    performing a second speech enhancement process as part of a residual processing of the digitized speech; and
    producing encoded speech based on the resulting outputs from the first speech enhancement process and the second speech enhancement process.
  14. A speech coder, comprising:
    a first means for enhancing and extracting a first set of features characterizing a digital speech signal; and
    a second means for enhancing and extracting a second set of features characterizing the digital speech signal.
  15. The speech coder of claim 14, wherein:
       the first means and the second means apply differing amounts of the same speech enhancement process.
  16. The speech coder of claim 14, wherein:
       the first means and the second means apply different speech enhancement processes.
  17. The speech coder of claim 14, wherein:
    the first means is used in a spectrum analysis of the digital speech signal, and
    the second means is used in residual processing of the digital speech signal.
EP99100141A 1998-01-09 1999-01-08 A modular approach to speech enhancement with an application to speech coding Withdrawn EP0929065A3 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12041298P 1998-01-09 1998-01-09
US120412 1998-01-09

Publications (2)

Publication Number Publication Date
EP0929065A2 true EP0929065A2 (en) 1999-07-14
EP0929065A3 EP0929065A3 (en) 1999-12-22

Family

ID=22390111

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99100141A Withdrawn EP0929065A3 (en) 1998-01-09 1999-01-08 A modular approach to speech enhancement with an application to speech coding

Country Status (1)

Country Link
EP (1) EP0929065A3 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017177782A1 (en) * 2016-04-15 2017-10-19 腾讯科技(深圳)有限公司 Voice signal cascade processing method and terminal, and computer readable storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08130513A (en) * 1994-10-28 1996-05-21 Fujitsu Ltd Voice coding and decoding system
EP0732687A2 (en) * 1995-03-13 1996-09-18 Matsushita Electric Industrial Co., Ltd. Apparatus for expanding speech bandwidth
EP0742548A2 (en) * 1995-05-12 1996-11-13 Mitsubishi Denki Kabushiki Kaisha Speech coding apparatus and method using a filter for enhancing signal quality

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08130513A (en) * 1994-10-28 1996-05-21 Fujitsu Ltd Voice coding and decoding system
EP0732687A2 (en) * 1995-03-13 1996-09-18 Matsushita Electric Industrial Co., Ltd. Apparatus for expanding speech bandwidth
EP0742548A2 (en) * 1995-05-12 1996-11-13 Mitsubishi Denki Kabushiki Kaisha Speech coding apparatus and method using a filter for enhancing signal quality

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1996, no. 09, 30 September 1996 (1996-09-30) & JP 08 130513 A (FUJITSU), 21 May 1996 (1996-05-21) & US 5 717 724 A (YAMAZAKI ET AL.) 10 February 1998 (1998-02-10) *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017177782A1 (en) * 2016-04-15 2017-10-19 腾讯科技(深圳)有限公司 Voice signal cascade processing method and terminal, and computer readable storage medium
EP3444819A4 (en) * 2016-04-15 2019-04-24 Tencent Technology (Shenzhen) Company Limited Voice signal cascade processing method and terminal, and computer readable storage medium
US11605394B2 (en) 2016-04-15 2023-03-14 Tencent Technology (Shenzhen) Company Limited Speech signal cascade processing method, terminal, and computer-readable storage medium

Also Published As

Publication number Publication date
EP0929065A3 (en) 1999-12-22

Similar Documents

Publication Publication Date Title
US6182033B1 (en) Modular approach to speech enhancement with an application to speech coding
US8554550B2 (en) Systems, methods, and apparatus for context processing using multi resolution analysis
US7680653B2 (en) Background noise reduction in sinusoidal based speech coding systems
EP0993670B1 (en) Method and apparatus for speech enhancement in a speech communication system
US20060031066A1 (en) Isolating speech signals utilizing neural networks
US6182035B1 (en) Method and apparatus for detecting voice activity
WO2001056021A1 (en) System and method for modifying speech signals
EP1386313B1 (en) Speech enhancement device
US7392180B1 (en) System and method of coding sound signals using sound enhancement
EP0929065A2 (en) A modular approach to speech enhancement with an application to speech coding
GB2343822A (en) Using LSP to alter frequency characteristics of speech
KR20060109418A (en) A preprocessing method and a preprocessor using a perceptual weighting filter
Hayashi et al. A subtractive-type speech enhancement using the perceptual frequency-weighting function
Aoki et al. Enhancing the naturalness of synthesized speech by using the random fractalness of vowel source signals
Loizou et al. A MULTI-BAND SPECTRAL SUBTRACTION METHOD FOR SPEECH ENHANCEMENT

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FI FR GB IT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20000517

AKX Designation fees paid

Free format text: DE FI FR GB IT SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 20011126