EP0927437B1 - Mobile radiotelephony planar antenna - Google Patents

Mobile radiotelephony planar antenna Download PDF

Info

Publication number
EP0927437B1
EP0927437B1 EP97942943A EP97942943A EP0927437B1 EP 0927437 B1 EP0927437 B1 EP 0927437B1 EP 97942943 A EP97942943 A EP 97942943A EP 97942943 A EP97942943 A EP 97942943A EP 0927437 B1 EP0927437 B1 EP 0927437B1
Authority
EP
European Patent Office
Prior art keywords
layer
conductive
layers
planar aerial
planar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97942943A
Other languages
German (de)
French (fr)
Other versions
EP0927437A1 (en
Inventor
Lutz Rothe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27216666&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0927437(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from DE1996138874 external-priority patent/DE19638874A1/en
Priority claimed from DE1997106571 external-priority patent/DE19706571A1/en
Priority claimed from DE1997106913 external-priority patent/DE19706913A1/en
Application filed by Individual filed Critical Individual
Publication of EP0927437A1 publication Critical patent/EP0927437A1/en
Application granted granted Critical
Publication of EP0927437B1 publication Critical patent/EP0927437B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/1271Supports; Mounting means for mounting on windscreens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0414Substantially flat resonant element parallel to ground plane, e.g. patch antenna in a stacked or folded configuration

Definitions

  • the invention relates to a planar antenna, in particular for Mobile radio, the planar antenna being two in one predefined Has spaced conductive layers.
  • the field of application of the invention relates primarily on the mobile radio area and here in particular on the E and D networks.
  • Known antenna solutions for the area of Mobile radio applications are based on linear antenna designs in Form of monopoly orders in shortened or unabridged Execution. These linear antennas are both external mountable on-board antennas as well as directly with the Terminal-coupled components known and with different directional factor and efficiency, where these components in the azimuth plane only are omnidirectional.
  • Known flat antenna solutions are based on areal, dipole-like configurations, their Directional diagram irregular and in connection with the respective Underlying the characteristics of a significant Have radiation field deformation.
  • the on the Radiation properties related to application are those inferior to the classic linear antennas. Likewise are targeted blanking properties of the Radiation diagram undetectable.
  • there are none Known solutions whose electromagnetic or Radiation properties based on asymmetrical and open waveguide techniques, especially the Microstrip technology, using self-supporting conductive Foil conductors or foil-like guide surfaces can be achieved.
  • a planar antenna is known from EP 0 176 311 A2, which has a ground plane that is medium to a dielectric The substrate layer is kept at a distance from the radiator element is.
  • the radiator element is made by means of a coaxial Waveguide fed and is by means of short-circuit connections electrically conductive on one side with the ground plane connected.
  • the radiator element is a geometrical partial surface the ground plane.
  • One is also known from EP 0 176 311 areal short circuit connection between ground level and Radiator element known.
  • the object of the present invention is an areal Radiator component with the property of the producibility of a linearly polarized and spatially broad sector radiation as well in the azimuthal as well as in the elevation plane as well as one pronounced attenuation and thus one Useful radiation only within a spatial hemisphere preferably in the spectral ranges between 890 MHz and 960 MHz or 1710 MHz and 1890 MHz.
  • the vibration conditions of the planar emitter can be advantageous using a simulation software for examination perform field problems of high frequency radiation. It should be noted that one for each spectral range Abundance of different vibration conditions depending on Emitter characteristics must be taken into account. There one full calculation taking this into account Boundary conditions is not possible is the specialist inevitably relies on simulation attempts, provided that he Planar emitter according to the invention for its conditions want to shape.
  • the vibration conditions of the planar radiator can also advantageously be influenced with diaphragms produced in the second layer by cutouts in the conductive layer.
  • the diaphragms form implemented capacities with distributed parameters, which in this form electrically extend the waveguide geometry or offer the possibility of geometric miniaturization.
  • the arrangement of the diaphragms is chosen symmetrically, since the condition of symmetry is the prerequisite for maintaining the preferred polarization of the electric field vector.
  • the diaphragm position there is the possibility of changing the direction of vibration of the field vectors primarily influenced by the diaphragms and thus of the resulting field profiles resulting from superposition.
  • the aperture position and contour primarily determine the increase or decrease of the capacitive or inductive components within the blind component balance. Since the apertures introduced fundamentally influence the complex waveguide properties, in addition to changing the spectral oscillation condition, this also gives the possibility of influencing the spectral bandwidth of the excited oscillation type.
  • the area of each aperture can be either circular, elliptical, rectangular, square, triangular, hexagonal or irregular.
  • the optimal shape of the diaphragms and their arrangement can usually only be determined empirically by simulation attempts.
  • the electromagnetic resonance-vibrating arrangement is excited or fed by means of a coaxial waveguide, the inner conductor of the waveguide being conductively connected to the second layer and the outer conductor of the waveguide being conductively connected to the first layer, and the inner conductor being axially symmetrical to the aperture boundary through a diaphragm within the first layer and is arranged without a galvanic connection to it.
  • this can be used as a carrier for the two serve conductive layers, in which case the Conductive connection outside of the dielectric takes place for what the dielectric on its outer edge linear or surface can be coated.
  • the planar emitter according to the invention forms an optimal one Antenna component or replacement component of the Vehicle external antenna with the possibility of mounting within the Passenger compartment.
  • the area of application relates further to general indoor applications by the Emitter component a spatially separated component of forms the respective end device and on the relevant room glazing is mounted inside and flat. It is too possible that the room glazing itself as dielectric Carrier of the conductive two layers is used.
  • the inventive radiator component or planar antenna is advantageously applicable in cases where the rear space located to the antenna aperture radiation-free or kept low in radiation and thus the electromagnetic Radiation exposure of the user should be minimized.
  • Radiator component a basic module for short or Medium-range transmission systems for communication, sensor or safety-related applications.
  • Figure 1 shows a low loss low dielectric Structural support 1 preferably made of Polypenco Q 200.5, polycarbonate or polystyrene, with a diameter of 93 mm and one Base height of 5 mm, which is closed on one side conductive layer 2, preferably consisting of copper or Aluminum with a layer thickness between 5 ⁇ m and 800 ⁇ m.
  • the Conductive layer is preferably by means of additive or subtractive techniques.
  • This layer 2 is a segment of a circle which is reduced by a chord section compared to the first layer 2, the chord 4 being perpendicular to the axis of symmetry 15 of the layers 2, 3 is arranged.
  • the two conductive layers 2 and 3 are conductively connected to one another over the length L1, the counting of the halved length L 1/2 in each case being perpendicular to the rectilinear boundary edge 4 or the axis of symmetry 15 begins.
  • the planar emitter is fed by means of a coaxial waveguide, the outer conductor of the waveguide, not shown, being connected to the conductive layer 2 in the area of the aperture 7 and the inner conductor of the waveguide, not shown, being led through the aperture 7 to the connection point 6 of the second layer 3 .
  • the wave impedance of the waveguide is preferably 50 ohms.
  • the electromagnetic diaphragm 7 is formed by a circular opening within the conductive layer 2 with the diameter of 3.2 times the inner conductor diameter of the coaxial waveguide.
  • the length of the solder 80 changes continuously in the range L1, as a result of which a defined spectral range can be received or transmitted.
  • Figures 3 and 4 show an embodiment of a Planar antenna for the frequency range between 1710 MHz and 1890 MHz.
  • the galvanic coupling of the inner conductor of the coupling coaxial Waveguide is made with the conductive plate 30 at the point 60.
  • the inner conductor by means of a dielectric Socket, preferably PTFE socket, centered between the conductive plates 20 and 30 through the aperture 70 within the conductive plate 20 out.
  • the PTFE socket is called Cylinder jacket with a length of 4.8 +/- 0.1 mm, whose Outside diameter with 1.4 - 0.1 mm and its inside diameter over a length of 3.8 - 0.1 mm with 1.4 mm as well as over a Measured length of 1 mm with an inner diameter of 2.2 mm become.
  • the outer conductor of the signal coupler coaxial The waveguide is with the surface parallel to the plate 30 arranged conductive plate 20 in the immediate vicinity the aperture 70 coupled.
  • FIGS. 5 and 6 Another embodiment of the invention for a Planar antenna for the frequency range between 890 MHz and 960 MHz show FIGS. 5 and 6.
  • the galvanic coupling of the inner conductor of the Coupling coaxial waveguide is done with the conductive Plate 30 'at point 60'.
  • the inner conductor is by means of a dielectric socket, preferably a PTFE socket, centrically between the conductive plates 20 ⁇ and 30 ⁇ as well as through the aperture 70 ⁇ within the conductive plate 20 ⁇ guided.
  • the PTFE bushing is used as the cylinder jacket Length of 4.8 +/- 0.1 mm executed, the outer diameter with 1.4-0.1 mm and its inside diameter over a length of 3.8-0.1 mm with 1.4 mm and over a length of 1 mm with a Inner diameter of 2.2 mm.
  • the outer conductor of the signal-coupling coaxial waveguide is with the Conductive plate arranged parallel to the surface of the plate 38 ' 20 ⁇ coupled in the immediate vicinity of the aperture 70 ⁇ .
  • FIGS. 7 to 9 Another exemplary embodiment is shown in FIGS. 7 to 9.
  • a low-loss and low dielectric structure carrier 11 preferably Polypenco Q 200.5, polycarbonate or polystyrene, with a diameter of 93 mm and a base height of 5 mm on one side closed conductive layer 12, preferably consisting of Copper or aluminum with a layer thickness between 5 mm and 800 um, by means of additive or subtractive techniques, preferably subtractive techniques.
  • a surface segment 13 with a conductive Layer preferably consisting of copper or aluminum Layer thickness between 5 .mu.m and 800 .mu.m, occupied, the generated conductive layer 13 on the straight extending boundary edge 14 of the conductive layer opposite outer edge 18 of the conductive Surface segment 13 according to Figure 9 conductive with the closed conductive surface 12 is connected.
  • the Power is supplied by contacting a coaxial Wave conduction by the point 16 according to FIG.
  • Inner conductor of the coaxial waveguide with the wave impedance of preferably 50 ohms with the surface segment 13 conductive is connected and the outer conductor of the coaxial waveguide with the opposite, closed and conductive full circular layer 12 is connected, the Inner conductor of the coaxial waveguide through a electromagnetic aperture 17 in the form of a circular Opening within the conductive layer 12 with the Diameter of 3.2 times the inner conductor diameter of the coaxial waveguide is guided.
  • Figure 10 shows a support cylinder 9 from a conductive material.
  • Figure 11 is an electrically conductive Connecting element 5 for connecting the points 50, 50 ⁇ according to the Figures 3 to 6 shown.
  • Figures 12 to 15 show different possible embodiments or edge forms of the invention Planar antenna, whereby the special choice of the angle ⁇ or ⁇ in Figures 14 and 15, the type of frequency response and the frequency range is adjustable. So the figure shows 12 that at an angle of ⁇ between 0 and 90 degrees a polygon, the borders 8 by means of punctiform Fasteners at points 50 conductive to each other in Connection can be.
  • FIGS. 14 and 15 show that the number and shape of the electromagnetic apertures 10 is also freely selectable.
  • FIGS. 16 and 17 each show a side view of the Planarantenna according to the invention, wherein the lateral edge of the dielectric carrier material L with strip-shaped Connecting elements 19 is occupied, so that at these points the two conductive layers 12 and 13 together in Are connected.
  • FIG. 17 shows a side view of the according to Figures 1 and 2 explained planar antenna, the two conductive layers 12 and 13 over a length of L1 are connected via the conductive connecting element 19.

Landscapes

  • Waveguide Aerials (AREA)
  • Details Of Aerials (AREA)
  • Support Of Aerials (AREA)

Abstract

The invention relates to a planar antenna (1), in particular for mobile radio, the planar antenna (1) having two conductive layers arranged at a predefined distance from one another, the conductive layers being plates (2, 12, 20, 20'; 3, 13, 30, 30') or sheets which are plane-parallel with one another, the first layer (2, 12, 20, 20') having a surface that is symmetrical with respect to a symmetry axis (15) and the second layer (3, 13, 30, 30') being a subregion of the surface of the first layer, the second layer being formed by reducing, or respectively cutting off or leaving out a part of the first area along a straight line or chord (4, 14, 40, 40') extending at right angles to the symmetry axis (15), and the chord of the second layer forming a rectilinear edge, and the two layers being conductively connected to one another, the conductive connection being made by pointwise-arranged or strip-like connection elements (15, 19) on the border (8, 18) of the layers which is remote from the chord (4, 14, 40, 40').

Description

Die Erfindung betrifft eine Planarantenne, insbesondere für Mobilfunk, wobei die Planarantenne zwei in einem vordefinierten Abstand zueinander angeordnete leitfähige Schichten hat.The invention relates to a planar antenna, in particular for Mobile radio, the planar antenna being two in one predefined Has spaced conductive layers.

Das Anwendungsgebiet der Erfindung bezieht sich vordergründig auf den Mobilfunkbereich und hier insbesondere auf die E- und D-Netze.The field of application of the invention relates primarily on the mobile radio area and here in particular on the E and D networks.

Bekannte Antennenlösungen für den Bereich der Mobilfunkanwendungen beruhen auf Linearantennenkonzeptionen in Form von Monopolanordnungen in verkürzter oder unverkürzter Ausführung. Diese Linearantennen sind sowohl als extern montierbare Bordantennen als auch als unmittelbar mit dem Endgerät gekoppelte Komponenten bekannt sowie mit unterschiedlichem Richtfaktor und Wirkungsgrad behaftet, wobei diese Komponenten in der Azimutalebene ausschließlich rundstrahlend sind. Bekannte Flachantennenlösungen beruhen auf flächenhaft angeordneten, dipolähnlichen Konfigurationen, deren Richtdiagramm unregelmäßig und in Verbindung mit dem jeweiligen Untergrund die Merkmale einer signifikanten Strahlungsfelddeformation aufweisen. Die auf den Anwendungsbereich bezogenen Strahlungseigenschaften sind denen der klassischen Linearantennen deutlich unterlegen. Gleichfalls sind gezielte Ausblendungseigenschaften des Strahlungsdiagrammes nicht nachweisbar. Zudem sind keine Lösungen bekannt, deren elektromagnetische bzw. Strahlungseigenschaften auf der Basis unsymmetrischer und offener Wellenleitertechniken, insbesondere der Microstriptechnik, unter Verwendung selbsttragender leitfähiger Folienleiter oder folienähnlicher Leitflächen erzielt werden. Known antenna solutions for the area of Mobile radio applications are based on linear antenna designs in Form of monopoly orders in shortened or unabridged Execution. These linear antennas are both external mountable on-board antennas as well as directly with the Terminal-coupled components known and with different directional factor and efficiency, where these components in the azimuth plane only are omnidirectional. Known flat antenna solutions are based on areal, dipole-like configurations, their Directional diagram irregular and in connection with the respective Underlying the characteristics of a significant Have radiation field deformation. The on the Radiation properties related to application are those inferior to the classic linear antennas. Likewise are targeted blanking properties of the Radiation diagram undetectable. In addition, there are none Known solutions whose electromagnetic or Radiation properties based on asymmetrical and open waveguide techniques, especially the Microstrip technology, using self-supporting conductive Foil conductors or foil-like guide surfaces can be achieved.

Aus der EP 0 176 311 A2 ist eine planare Anteene bekannt, welche über eine Massebene verfügt, die mittel einer dielektrischen Substratschicht von dem Strahlerelement auf Abstand gehalten ist. Das Strahlerelement wird mittels eines koaxialen Wellenleiters gespeist und ist mittels Kurzschlußverbindungen an der einen Seite mit der Massefläöche elektrisch leitend verbunden. Das Strahlerelement ist eine geometrische Teilfläche der Masseebene. Aus der EP 0 176 311 ist zudem eine flächenhafte Kurzschlußverbindung zwischen Masseebene und Strahlerelement bekannt.A planar antenna is known from EP 0 176 311 A2, which has a ground plane that is medium to a dielectric The substrate layer is kept at a distance from the radiator element is. The radiator element is made by means of a coaxial Waveguide fed and is by means of short-circuit connections electrically conductive on one side with the ground plane connected. The radiator element is a geometrical partial surface the ground plane. One is also known from EP 0 176 311 areal short circuit connection between ground level and Radiator element known.

Aus der DE 195 04 577 A1 ist eine Mobilfunkantenne für Kraftfahrzeuge bekannt, die ebenfalls ein Strahlungselement aufweist, das mit dem Innenleiter einer koaxialen Vellenleitun in Verbindung ist. Die eine Seite des Strahlerelements ist über eine Kurzschlußverbindung mit einer Massefläche leitend in Verbindung. Aus dieser Druckschrift ist eine Planarantenne für den Mobilfunk gemäß Oberbegriff von Anspruch 1 bzw. Anspruch 3 bekannt. Aufgabe der vorliegenden Erfindung ist, eine flächenhafte Strahlerkomponente mit der Eigenschaft der Erzeugbarkeit einer linearpolarisierten und räumlich breiten Sektorstrahlung sowie in der Azimutal- als auch in der Elevationsebene sowie einer ausgeprägten Rückstrahlungsdämpfung und damit einer Nutzstrahlung ausschließlich innerhalb einer Raumhemisphäre vorzugsweise in den Spektralbereichen zwischen 890 MHz und 960 MHz bzw. 1710 MHz und 1890 MHz bereitzustellen.DE 195 04 577 A1 describes a mobile radio antenna for Motor vehicles known that also have a radiation element has that with the inner conductor of a coaxial Vellenleitun is connected. One side of the radiator element is over a short circuit connection with a ground plane in Connection. From this publication is a planar antenna for the Mobile radio according to the preamble of claim 1 or claim 3 known. The object of the present invention is an areal Radiator component with the property of the producibility of a linearly polarized and spatially broad sector radiation as well in the azimuthal as well as in the elevation plane as well as one pronounced attenuation and thus one Useful radiation only within a spatial hemisphere preferably in the spectral ranges between 890 MHz and 960 MHz or 1710 MHz and 1890 MHz.

Diese Aufgabe wird gemäß des kennzeichnenden Teils des Anspruchs 1 erfinderisch gelöst. Durch die leitfähigen Verbindungen der beiden Schichten wird eine Reduzierung der Baugröße um ungefähr den Faktor 2 erzielt, da vorteilhaft λ/2 Wellen empfangen werden können. Dadurch, daß sich der Abstand zwischen der geradlinigen Kante und der kurzgeschlossenen Berandung ändert, ist es möglich, in einem relativ breiten Spektralbereich zu empfangen und senden. Hierbei ist es vorteilhaft, wenn die erste Schicht kreisförmig ist und die zweite Schicht gegenüber der ersten um einen Sehnenabschnitt reduziert ist, wobei der Sehnenabschnitt die geradlinige Kante bildet. Hierbei können die leitfähigen Verbindungen an der der geradlinigen Kante abgewandten Berandungsseite entweder mittels punktförmiger oder streifenförmiger Verbindungselemente realisiert sein. Es ist jedoch auch vorteilhaft möglich, die Grundfläche der ersten Schicht elliptisch, dreiecksförmig, quadratisch oder hexagonal zu gestalten.This task is performed according to the characteristic part of the Claim 1 solved inventive. Through the conductive Connections of the two layers will reduce the Size achieved by approximately a factor of 2, since λ / 2 is advantageous Waves can be received. Because the distance between the straight edge and the shorted Border changes, it is possible in a relatively wide Receive and transmit spectral range. Here it is advantageous if the first layer is circular and the second layer opposite the first around a tendon section is reduced, the tendon section being the straight edge forms. Here, the conductive connections on the edge side facing away from the straight edge either by means of punctiform or strip-shaped connecting elements be realized. However, it is also advantageously possible Base area of the first layer elliptical, triangular, to be square or hexagonal.

Die Schwingungsbedingungen des Planarstrahlers lassen sich vorteilhaft mittels einer Simulationssoftware zur Untersuchung von Feldproblemen von Hochfrequenzstrahlung durchführen. Hierbei ist anzumerken, daß für jeden Spektralbereich eine Fülle von unterschiedlichen Schwingungsbedingungen je nach Strahlercharakteristik beachtet werden müssen. Da eine vollständige Berechnung unter Berücksichtigung dieser Randbedingungen nicht möglich ist, ist der Fachmann zwangsläufig auf Simulationsversuche angewiesen, sofern er den erfindungsgemäßen Planarstrahler für seine Verhältnisse gestalten möchte.The vibration conditions of the planar emitter can be advantageous using a simulation software for examination perform field problems of high frequency radiation. It should be noted that one for each spectral range Abundance of different vibration conditions depending on Emitter characteristics must be taken into account. There one full calculation taking this into account Boundary conditions is not possible is the specialist inevitably relies on simulation attempts, provided that he Planar emitter according to the invention for its conditions want to shape.

Die Schwingungsbedingungen des Planarstrahlers lassen sich vorteilhaft zudem mit in der zweiten Schicht durch Aussparungen der leitfähigen Schicht erzeugten Blenden beeinflussen. Die Blenden bilden in diesem Zusammenhang implementierte Kapazitäten mit verteilten Parametern, die in dieser Form die Wellenleitergeometrie elektrisch verlängern bzw. die Möglichkeit der geometrischen Miniaturisierung bieten. Die Anordnung der Blenden ist hierbei symmetrisch gewählt, da die Symmetriebedingung die Voraussetzung für die Erhaltung der Vorzugspolarisation des elektrischen Feldvektors darstellt. Hierbei ist mittels der Blendenposition die Möglichkeit der Änderung der Schwingungsrichtung der durch die Blenden primär beeinflußten Feldvektoren und damit der durch Superposition entstehenden resultierenden Feldprofile gegeben. Der Ort der Blendeneinbringung sowie in abhängiger Weise die Blendenkontur bestimmen den Grad der Beeinflussung der Leitungsströme, sowie den damit verbundenen elektrischen bzw. magnetischen Feldkomponenten. Insofern entscheiden Blendenposition und - kontur primär über die Anhebung oder Absenkung der kapazitiven bzw. induktiven Komponenten innerhalb der Blindkomponentenbilanz. Da die eingebrachten Blenden grundsätzlich die komplexen Wellenleitereigenschaften beeinflussen, ist hiermit neben der Änderung der spektralen Schwingungsbedingung die Möglichkeit der Beeinflussung der spektralen Bandbreite des angeregten Schwingungstyps gegeben. Die Fläche jeder Blende kann dabei entweder kreisförmig, elliptisch, rechteckig, quadratisch, dreieckig, hexagonal oder unregelmäßig sein. Die optimale Form der Blenden und deren Anordnung läßt sich wiederum meist nur durch Simulationsversuche empirisch feststellen.
Die Anregung bzw. Speisung der elektromagnetisch resonanzschwingenden Anordnung erfolgt mittels einer koaxialen Wellenleitung, wobei der Innenleiter der Wellenleitung mit der zweiten Schicht und der Außenleiter der Wellenleitung mit der ersten Schicht leitend verbunden ist, und der Innenleiter durch eine Blende innerhalb der ersten Schicht axialsymmetrisch zur Blendenberandung und ohne galvanischer Verbindung zu dieser angeordnet ist.
The vibration conditions of the planar radiator can also advantageously be influenced with diaphragms produced in the second layer by cutouts in the conductive layer. In this context, the diaphragms form implemented capacities with distributed parameters, which in this form electrically extend the waveguide geometry or offer the possibility of geometric miniaturization. The arrangement of the diaphragms is chosen symmetrically, since the condition of symmetry is the prerequisite for maintaining the preferred polarization of the electric field vector. Here, by means of the diaphragm position, there is the possibility of changing the direction of vibration of the field vectors primarily influenced by the diaphragms and thus of the resulting field profiles resulting from superposition. The location of the aperture insertion and, depending on the aperture contour, determine the degree of influence on the line currents and the associated electrical or magnetic field components. In this respect, the aperture position and contour primarily determine the increase or decrease of the capacitive or inductive components within the blind component balance. Since the apertures introduced fundamentally influence the complex waveguide properties, in addition to changing the spectral oscillation condition, this also gives the possibility of influencing the spectral bandwidth of the excited oscillation type. The area of each aperture can be either circular, elliptical, rectangular, square, triangular, hexagonal or irregular. The optimal shape of the diaphragms and their arrangement can usually only be determined empirically by simulation attempts.
The electromagnetic resonance-vibrating arrangement is excited or fed by means of a coaxial waveguide, the inner conductor of the waveguide being conductively connected to the second layer and the outer conductor of the waveguide being conductively connected to the first layer, and the inner conductor being axially symmetrical to the aperture boundary through a diaphragm within the first layer and is arranged without a galvanic connection to it.

Die Art und Weise, wie die beiden Schichten entlang der der geradlinigen Kante abgewandten Berandung miteinander in Verbindung sind, ist frei wählbar. So ist es möglich, mittels leitfähiger Stifte die beiden Schichten miteinander zu verbinden. Dies ist besonders dann vorteilhaft, wenn kein Dielektrikum zwischen den beiden Schichten angeordnet ist und die beiden Schichten durch z.B. Kupferplatten gebildet sind. Die leitfähigen Verbindungsstifte dienen dann gleichsam als Abstandshalter.The way the two layers along the the straight edge facing away from each other in Connection is freely selectable. So it is possible by means of conductive pins the two layers together connect. This is particularly advantageous if none Dielectric is arranged between the two layers and the two layers by e.g. Copper plates are formed. The conductive connecting pins then serve as if Spacers.

Sofern ein Dielektrikum zwischen den beiden Schichten angeordnet ist, kann dieses als Träger für die beiden leitfähigen Schichten dienen, wobei dann vorteilhaft die leitfähige Verbindung außerhalb des Dielektrikums erfolgt, wozu das Dielektrikum an seiner Außenkante linienförmig oder flächenhaft beschichtet werden kann.Unless there is a dielectric between the two layers is arranged, this can be used as a carrier for the two serve conductive layers, in which case the Conductive connection outside of the dielectric takes place for what the dielectric on its outer edge linear or surface can be coated.

Die Form der Berandung, an der die beiden Schichten leitfähig miteinander verbunden sind, ist prinzipiell frei wählbar, jedoch ist auf die Einhaltung der Schwingungsbedingungen zu achten. Sofern die der geradlinigen Kante bzw. Sehne abgewandte Berandung zu der Sehne parallel verläuft, kann lediglich ein monochromatischer Frequenzverlauf erzielt werden. Daher ist es notwendig, diese Berandungskante nicht parallel zur geradlinigen Kante bzw. Sehne der zweiten Schicht auszubilden, sofern ein Frequenzspektrum bzw. -band gewünscht ist.The shape of the border on which the two layers are conductive are in principle freely selectable, however, compliance with the vibration conditions is required respect, think highly of. If the opposite of the straight edge or tendon Edges running parallel to the tendon can only be a monochromatic frequency response can be achieved. Therefore, it is necessary, this edge not parallel to to form a straight edge or chord of the second layer, if a frequency spectrum or band is desired.

Der erfindungsgemäße Planarstrahler bildet eine optimale Antennenkomponente bzw. Ersatzkomponente der Fahrzeugaußenantenne mit der Montagemöglichkeit innerhalb des Fahrgastraumes. Weitergehend bezieht sich der Anwendungsbereich auf allgemeine Innenraumanwendungen, indem die Strahlerkomponente eine räumlich abgesetzte Komponente vom jeweiligen Endgerät bildet und an der betreffenden Raumverglasung innenseitig und flächig montiert wird. Auch ist es möglich, daß die Raumverglasung selbst als dielektrischer Träger der leitenden zwei Schichten dient.The planar emitter according to the invention forms an optimal one Antenna component or replacement component of the Vehicle external antenna with the possibility of mounting within the Passenger compartment. The area of application relates further to general indoor applications by the Emitter component a spatially separated component of forms the respective end device and on the relevant room glazing is mounted inside and flat. It is too possible that the room glazing itself as dielectric Carrier of the conductive two layers is used.

Die erfinderische Strahlerkomponente bzw. Planarantenne ist vorteilhaft in den Fällen anwendbar, in denen der rückwärtig zur Antennenapertur gelegene Raum strahlungsfrei bzw. strahlungsarm gehalten und damit die elektromagnetische Strahlungsbelastung des Nutzers minimiert werden soll.The inventive radiator component or planar antenna is advantageously applicable in cases where the rear space located to the antenna aperture radiation-free or kept low in radiation and thus the electromagnetic Radiation exposure of the user should be minimized.

Darüber hinausgehend bildet die erfindungsgemäße Strahlerkomponente ein Basismodul für Kurz- oder Mittelstreckenübertragungssysteme für kommunikations-, sensor- oder sicherheitstechnische Anwendungen.In addition, the invention forms Radiator component a basic module for short or Medium-range transmission systems for communication, sensor or safety-related applications.

Nachfolgend wir die erfindungsgemäße Planarantenne anhand von Figuren näher erläutert.Below we the planar antenna according to the invention using Figures explained in more detail.

Es zeigen:

Figur 1:
Eine Draufsicht auf eine erste Schicht;
Figur 2:
Eine Draufsicht auf die zweite Schicht des Planarstrahlers mit darunterliegender erster Schicht (Fig.1), wobei die erste und zweite Schicht auf einer Länge von L1 miteinander leitfähig verbunden sind;
Figur 3:
Draufsicht auf eine weitere Ausführungsform einer erfindungsgemäßen Planarantenne mit punktuellen leitenden Verbindungen;
Figur 4:
Draufsicht auf die zur ersten Schicht gemäß der Figur 3 gehörenden zweiten Schicht;
Figur 5,6:
Ein weiteres Ausführungsbeispiel einer erfindungsgemäßen Planarantenne mit kreisförmigen Blenden in der zweiten Schicht;
Figuren 7 - 9:
Einen Planarstrahler mit kreisförmigem Dielektrikum und auf diesen aufgetragenen leitfähigen Beschichtungen;
Figur 10:
Abstandshalter bzw. Stützzylinder;
Figur 11:
Punktförmiges Verbindungselement;
Figuren 12 - 15:
Draufsichten auf verschiedene Ausführungsformen von Planarstrahlern;
Figur 16, Figur 17:
Seitenansichten von Planarstrahlern mit an der Außenkante des Dielektrikums aufgetragenen elektrisch leitenden Verbindungselementen.
Show it:
Figure 1:
A top view of a first layer;
Figure 2:
A plan view of the second layer of the planar emitter with the first layer underneath (FIG. 1), the first and second layers being conductively connected to one another over a length of L1;
Figure 3:
Top view of a further embodiment of a planar antenna according to the invention with selective conductive connections;
Figure 4:
Top view of the second layer belonging to the first layer according to FIG. 3;
Figure 5.6:
Another embodiment of a planar antenna according to the invention with circular apertures in the second layer;
Figures 7-9:
A planar emitter with a circular dielectric and conductive coatings applied to it;
Figure 10:
Spacers or support cylinders;
Figure 11:
Point connector;
Figures 12 - 15:
Top views of different embodiments of planar emitters;
Figure 16, Figure 17:
Side views of planar emitters with electrically conductive connecting elements applied to the outer edge of the dielectric.

Die Figur 1 zeigt einen verlustarmen niederdielektrischen Strukturträger 1 aus vorzugsweise Polypenco Q 200.5, Polycarbonat oder Polystyrol, mit einem Durchmesser von 93 mm sowie einer Basishöhe von 5 mm, welcher einseitig eine geschlossene leitfähige Schicht 2, vorzugsweise bestehend aus Kupfer oder Aluminium der Schichtdicke zwischen 5 um und 800 um. Die leitfähige Schicht ist vorzugsweise mittels additiver oder subtraktiver Techniken erzeugt.Figure 1 shows a low loss low dielectric Structural support 1 preferably made of Polypenco Q 200.5, polycarbonate or polystyrene, with a diameter of 93 mm and one Base height of 5 mm, which is closed on one side conductive layer 2, preferably consisting of copper or Aluminum with a layer thickness between 5 µm and 800 µm. The Conductive layer is preferably by means of additive or subtractive techniques.

Auf der der geschlossenen leitfähigen Schicht 2 abgewandten Seite des Strukturträgers 1 ist eine zweite leitfähige Schicht 3. Diese Schicht 2 ist ein Kreissegment, welches gegenüber der ersten Schicht 2 um einen Sehnenabschnitt reduziert ist, wobei die Sehne 4 rechtwinkelig zur Symmetrieachse 15 der Schichten 2, 3 angeordnet ist. Auf der der geradlinig verlaufenden Begrenzungskante bzw. Sehne 4 der leitfähigen Schicht 3 gegenüberliegenden Außenkante bzw. Begrenzungskante 8 sind die beiden leitenden Schichten 2 und 3 über die Länge L1 leitfähig miteinander verbunden, wobei die Zählung der halbierten Länge L1/2 jeweils an der senkrecht zur geradlinig verlaufenden Begrenzungskante 4 bzw. der Symmetrieachse 15 beginnt. Die Speisung des Planarstrahlers erfolgt mittels einer koaxialen Wellenleitung, wobei der Außenleiter des nicht dargestellten Wellenleiters mit der leitenden Schicht 2 im Bereich der Blende 7 in Verbindung ist und der Innenleiter des nicht dargestellten Wellenleiters durch die Blende 7 zum Anschlußpunkt 6 der zweiten Schicht 3 geführt ist. Die Wellenimpedanz der Wellenleitung beträgt vorzugsweise 50 Ohm. Die elektromagnetische Blende 7 ist durch eine kreisförmige Öffnung innerhalb der leitfähigen Schicht 2 mit dem Durchmesser des 3,2-fachen Innenleiterdurchmessers der koaxialen Wellenleitung gebildet. Die Länge des Lotes 80 ändert sich kontinuierlich im Bereich L1, wodurch ein definierter Spektralbereich empfangen bzw. gesendet werden kann.On the side of the structural carrier 1 facing away from the closed conductive layer 2 there is a second conductive layer 3. This layer 2 is a segment of a circle which is reduced by a chord section compared to the first layer 2, the chord 4 being perpendicular to the axis of symmetry 15 of the layers 2, 3 is arranged. On the outer edge or boundary edge 8 lying opposite the rectilinear boundary edge or chord 4 of the conductive layer 3, the two conductive layers 2 and 3 are conductively connected to one another over the length L1, the counting of the halved length L 1/2 in each case being perpendicular to the rectilinear boundary edge 4 or the axis of symmetry 15 begins. The planar emitter is fed by means of a coaxial waveguide, the outer conductor of the waveguide, not shown, being connected to the conductive layer 2 in the area of the aperture 7 and the inner conductor of the waveguide, not shown, being led through the aperture 7 to the connection point 6 of the second layer 3 . The wave impedance of the waveguide is preferably 50 ohms. The electromagnetic diaphragm 7 is formed by a circular opening within the conductive layer 2 with the diameter of 3.2 times the inner conductor diameter of the coaxial waveguide. The length of the solder 80 changes continuously in the range L1, as a result of which a defined spectral range can be received or transmitted.

Die Figuren 3 und 4 zeigen ein Ausführungsbeispiel einer Planarantenne für den Frequenzbereich zwischen 1710 MHz und 1890 MHz. Gemäß der Figur 3 wird eine leitfähige metallische Platte 20 mit kreisförmiger Berandung und dem Durchmesser von 90 mm über eine Distanz von 4,8 mm mit einer zweiten leitfähigen metallischen Platte 30, die als Kreisabschnitt ausgeführt ist, flächenparallel gekoppelt, wobei die Mittelpunkte sowohl der Vollkreisfläche als auch der Kreisabschnittsfläche auf einer identischen Symmetrieachse 15 angeordnet werden und gemäß der Figur 4 die leitfähige Platte 30 an fünf Punkten 50, wobei einer der fünf Punkte 50 der in der Ebene der Kreisabschnittsfläche verlaufenden Symmetrielinie 15 der Anordnung positioniert wird, mit der leitfähigen Platte 20 leitfähig gekoppelt wird, indem leitfähige Verbindungselemente 5 gemäß der Figur 11 an den in der Figur 3 gekennzeichneten Position zwischen der leitfähigen Platte 20 und der leitfähigen Platte 30 eingebracht werden. Die galvanische Kopplung des Innenleiters des koppelnden koaxialen Wellenleiters erfolgt mit der leitfähigen Platte 30 im Punkt 60. Hierbei wird der Innenleiter mittels einer dielektrischen Buchse, vorzugsweise PTFE-Buchse, zentrisch zwischen den leitfähigen Platten 20 und 30 durch die Blende 70 innerhalb der leitfähigen Platte 20 geführt. Die PTFE-Buchse wird hierbei als Zylindermantel der Länge von 4,8 +/- 0,1 mm ausgeführt, dessen Außendurchmesser mit 1,4 - 0,1 mm sowie dessen Innendurchmesser über einer Länge von 3,8 - 0,1 mm mit 1,4 mm sowie über eine Länge von 1 mm mit einem Innendurchmesser von 2,2 mm bemessen werden. Der Außenleiter des signalkoppelden koaxialen Wellenleiters wird mit der flächenparallel zur Platte 30 angeordneten leitfähigen Platte 20 in unmittelbarer Umgebung der Blende 70 gekoppelt.Figures 3 and 4 show an embodiment of a Planar antenna for the frequency range between 1710 MHz and 1890 MHz. According to Figure 3, a conductive metallic Plate 20 with a circular border and the diameter of 90 mm over a distance of 4.8 mm with a second conductive metallic plate 30, which as a circular section is executed, coupled in parallel, the Centers of both the full circle area and the Circular section surface on an identical axis of symmetry 15 be arranged and according to Figure 4, the conductive plate 30 at five points 50, one of the five points 50 of the in the plane of the circular section surface symmetry line 15 of the assembly is positioned with the conductive plate 20 is coupled by conductive Connecting elements 5 according to FIG. 11 to those in FIG. 3 marked position between the conductive plate 20 and the conductive plate 30 are introduced. The galvanic coupling of the inner conductor of the coupling coaxial Waveguide is made with the conductive plate 30 at the point 60. Here, the inner conductor by means of a dielectric Socket, preferably PTFE socket, centered between the conductive plates 20 and 30 through the aperture 70 within the conductive plate 20 out. The PTFE socket is called Cylinder jacket with a length of 4.8 +/- 0.1 mm, whose Outside diameter with 1.4 - 0.1 mm and its inside diameter over a length of 3.8 - 0.1 mm with 1.4 mm as well as over a Measured length of 1 mm with an inner diameter of 2.2 mm become. The outer conductor of the signal coupler coaxial The waveguide is with the surface parallel to the plate 30 arranged conductive plate 20 in the immediate vicinity the aperture 70 coupled.

Eine weitere Ausführungsform der Erfindung für eine Planarantenne für den Frequenzbereich zwischen 890 MHz und 960 MHz zeigen die Figuren 5 und 6. Entsprechend der Figur 1 wird eine leitfähige metallische Platte 20` mit kreisförmiger Berandung und dem Durchmesser von 90 mm über eine Distanz von 4,8 mm mit einer zweiten leitfähigen metallischen Platte 30`, die als Kreisabschnitt ausgeführt ist, flächenparallel gekoppelt, wobei die Mittelpunkte sowohl der Vollkreisfläche als auch der Kreisabschnittsfläche auf einer identischen Achse angeordnet werden und gemäß der Figur 6 die leitfähige Platte 30' in einer parallel zur Sehne verlaufenden Linie mit vier kreisförmigen Blenden 10 versehen wird und an drei Punkten 50`, wobei einer der drei Punkte 50` auf der in der Ebene der Kreisabschnittsfläche verlaufenden Symmetrielinie 15 der Anordnung positioniert wird, mit der leitfähigen Platte 20` leitfähig gekoppelt wird, indem leitfähige Verbindungselemente 5 gemäß der Figur 11 an den in der Figur 5 gekennzeichneten Position zwischen der leitfähigen Platte 20' und der leitfähigen Platte 30' eingebracht werden. Zwecks mechanischer Stabilisierung wird zwischen der leitfähigen Platte 20` und der leitfähigen Platte 30' ein auf der Symmetrielinie der Anordnung positionierter Stützzylinder 9 gemäß der Figur 10 mit dem Durchmesser von 6 mm eingeführt. Die galvanische Kopplung des Innenleiters des koppelnden koaxialen Wellenleiters erfolgt mit der leitfähigen Platte 30` im Punkt 60'. Hierbei wird der Innenleiter mittels einer dielektrischen Buchse, vorzugsweise PTFE-Buchse, zentrisch zwischen den leitfähigen Platten 20` und 30` zur sowie durch die Blende 70` innerhalb der leitfähigen Platte 20` geführt. Die PTFE-Buchse wird hierbei als Zylindermantel der Länge von 4.8+/-0.1 mm ausgeführt, dessen Außendurchmesser mit 1.4-0.1 mm sowie dessen Innendurchmesser über einer Länge von 3.8-0.1 mm mit 1.4 mm sowie über eine Länge von 1 mm mit einem Innendurchmesser von 2.2 mm bemessen werden. Der Außenleiter des signalkoppelnden koaxialen Wellenleiters wird mit der flächenparallel zur Platte 38' angeordneten leitfähigen Platte 20` in unmittelbarer Umgebung der Blende 70` gekoppelt.Another embodiment of the invention for a Planar antenna for the frequency range between 890 MHz and 960 MHz show FIGS. 5 and 6. Corresponding to FIG. 1 a conductive metallic plate 20` with circular Edge and the diameter of 90 mm over a distance of 4.8 mm with a second conductive metallic plate 30`, which is designed as a circular section, parallel to the surface coupled, the centers of both the full circle area as well as the circular section area on an identical axis be arranged and according to Figure 6, the conductive plate 30 'in a line parallel to the tendon with four circular apertures 10 is provided and at three points 50`, one of the three points 50` on the in the plane of Circular section surface running symmetry line 15 of the arrangement is positioned with the conductive plate 20` conductive is coupled by conductive connecting elements 5 according to 11 at the position marked in FIG. 5 between the conductive plate 20 'and the conductive plate 30 'are introduced. For the purpose of mechanical stabilization between the conductive plate 20 'and the conductive plate 30 'a positioned on the line of symmetry of the arrangement Support cylinder 9 according to Figure 10 with a diameter of 6 mm introduced. The galvanic coupling of the inner conductor of the Coupling coaxial waveguide is done with the conductive Plate 30 'at point 60'. Here, the inner conductor is by means of a dielectric socket, preferably a PTFE socket, centrically between the conductive plates 20` and 30` as well as through the aperture 70` within the conductive plate 20` guided. The PTFE bushing is used as the cylinder jacket Length of 4.8 +/- 0.1 mm executed, the outer diameter with 1.4-0.1 mm and its inside diameter over a length of 3.8-0.1 mm with 1.4 mm and over a length of 1 mm with a Inner diameter of 2.2 mm. The outer conductor of the signal-coupling coaxial waveguide is with the Conductive plate arranged parallel to the surface of the plate 38 ' 20` coupled in the immediate vicinity of the aperture 70`.

Ein weiteres Ausführungsbeispiel zeigen die Figuren 7 bis 9. Gemäß der Figuren 7 bis 9 wird auf einem verlustarmen und niederdielektrischen Strukturträger 11 vorzugsweise Polypenco Q 200.5, Polycarbonat oder Polystyrol, mit einem Durchmesser von 93 mm sowie einer Basishöhe von 5 mm einseitig eine geschlossene leitfähige Schicht 12, vorzugsweise bestehend aus Kupfer oder Aluminium der Schichtdicke zwischen 5 mm und 800 um, mittels additiver oder subtraktiver Techniken, vorzugsweise subtraktiver Techniken, erzeugt.Another exemplary embodiment is shown in FIGS. 7 to 9. According to FIGS. 7 to 9, a low-loss and low dielectric structure carrier 11 preferably Polypenco Q 200.5, polycarbonate or polystyrene, with a diameter of 93 mm and a base height of 5 mm on one side closed conductive layer 12, preferably consisting of Copper or aluminum with a layer thickness between 5 mm and 800 um, by means of additive or subtractive techniques, preferably subtractive techniques.

Auf der der geschlossenen und leitfähigen Fläche 12 gegenüberliegenden Seite des dielektrischen Trägers 11 wird gemäß der Figur 8 ein Flächensegment 13 mit einer leitfähigen Schicht, vorzugsweise bestehend aus Kupfer oder Aluminium der Schichtdicke zwischen 5 um und 800 um, belegt, wobei die erzeugte leitfähige Schicht 13 auf der der geradlinig verlaufenden Begrenzungskante 14 der leitfähigen Schicht gegenüberliegenden Außenkante 18 des leitfähigen Flächensegmentes 13 gemäß der Figur 9 leitfähig mit der geschlossenen leitfähigen Flache 12 verbunden wird. Die Speisung erfolgt mittels der Kontaktierung einer koaxialen Wellenleitung, indem im Punkt 16 gemäß der Figur 8 der Innenleiter der koaxialen Wellenleitung der Wellenimpedanz von vorzugsweise 50 Ohm mit dem Flächensegment 13 leitfähig verbunden wird und der Außenleiter der koaxialen Wellenleitung mit der gegenüberliegenden, geschlossenen und leitfähigen vollkreisflächigen Schicht 12 verbunden wird, wobei der Innenleiter der koaxialen Wellenleitung durch eine elektromagnetische Blende 17 in Form einer kreisförmigen Öffnung innerhalb der leitfähigen Schicht 12 mit dem Durchmesser des 3.2-fachen Innenleiterdurchmessers der koaxialen Wellenleitung geführt wird.On the closed and conductive surface 12 opposite side of the dielectric carrier 11 8 shows a surface segment 13 with a conductive Layer, preferably consisting of copper or aluminum Layer thickness between 5 .mu.m and 800 .mu.m, occupied, the generated conductive layer 13 on the straight extending boundary edge 14 of the conductive layer opposite outer edge 18 of the conductive Surface segment 13 according to Figure 9 conductive with the closed conductive surface 12 is connected. The Power is supplied by contacting a coaxial Wave conduction by the point 16 according to FIG. 8 Inner conductor of the coaxial waveguide with the wave impedance of preferably 50 ohms with the surface segment 13 conductive is connected and the outer conductor of the coaxial waveguide with the opposite, closed and conductive full circular layer 12 is connected, the Inner conductor of the coaxial waveguide through a electromagnetic aperture 17 in the form of a circular Opening within the conductive layer 12 with the Diameter of 3.2 times the inner conductor diameter of the coaxial waveguide is guided.

Die Figur 10 zeigt einen Stützzylinder 9 aus einem nicht leitenden Material. In Figur 11 ist ein elektrisch leitendes Verbindungselement 5 zur Verbindung der Punkte 50, 50` gemäß der Figuren 3 bis 6 dargestellt.Figure 10 shows a support cylinder 9 from a conductive material. In Figure 11 is an electrically conductive Connecting element 5 for connecting the points 50, 50` according to the Figures 3 to 6 shown.

Die Figuren 12 bis 15 zeigen verschiedene mögliche Ausführungsformen bzw. Berandungsformen der erfindungsgemäßen Planarantenne, wobei durch die spezielle Wahl der Winkel ϕ bzw. ϕ` bei den Figuren 14 und 15 die Art des Frequenzverlaufes sowie des Frequenzbereiches einstellbar ist. So zeigt die Figur 12, daß bei einem Winkel von ϕ zwischen 0 und 90 Winkelgrad bei einem Polygon die Berandungen 8 mittels punktförmiger Verbindungselemente bei den Punkten 50 miteinander leitfähig in Verbindung sein können. Aus den Figuren 14 und 15 geht hervor, daß die Anzahl und Form der elektromagnetischen Blenden 10 ebenfalls frei wählbar ist.Figures 12 to 15 show different possible embodiments or edge forms of the invention Planar antenna, whereby the special choice of the angle ϕ or ϕ` in Figures 14 and 15, the type of frequency response and the frequency range is adjustable. So the figure shows 12 that at an angle of ϕ between 0 and 90 degrees a polygon, the borders 8 by means of punctiform Fasteners at points 50 conductive to each other in Connection can be. FIGS. 14 and 15 show that the number and shape of the electromagnetic apertures 10 is also freely selectable.

Die Figuren 16 und 17 zeigen jeweils eine Seitenansicht der erfindungsgemäßen Planarantenne, wobei der seitliche Rand des dielektrischen Trägermaterials L mit streifenförmigen Verbindungselementen 19 belegt ist, so daß an diesen Stellen die beiden leitfähigen Schichten 12 und 13 miteinander in Verbindung sind. Die Figur 17 zeigt eine Seitenansicht der gemäß der Figuren 1 und 2 erläuterten Planarantenne, wobei die beiden leitenden Schichten 12 und 13 über eine Länge von L1 über das leitfähige Verbindungselement 19 in Verbindung sind. FIGS. 16 and 17 each show a side view of the Planarantenna according to the invention, wherein the lateral edge of the dielectric carrier material L with strip-shaped Connecting elements 19 is occupied, so that at these points the two conductive layers 12 and 13 together in Are connected. FIG. 17 shows a side view of the according to Figures 1 and 2 explained planar antenna, the two conductive layers 12 and 13 over a length of L1 are connected via the conductive connecting element 19.

Bezugszeichenliste:Reference symbol list:

11
PlanarantennePlanar antenna
2,20,20'2.20.20 '
erste leitende Schichcfirst senior schichc
3,30,30'3.30.30 '
zweite leitende Schichtsecond conductive layer
4,40,40'4.40.40 '
Sehne bzw. BegrenzungskanteTendon or boundary edge
5,195.19
Verbindungselement bzw. KurzschlußelementeConnection element or short-circuit elements
6,60,60'6,60,60 '
Speisepunkt der zweiten leitenden SchichtFeed point of the second conductive layer
7,70,70'7,70,70 '
elektromagnetische Blende
(Durchmesser von 70 gleich 2,1 mm -0,1)
electromagnetic aperture
(Diameter of 70 equals 2.1 mm -0.1)
88th
Der Sehne 4 abgewandte BerandungThe tendon 4 facing away from the border
99
Stützzylinder (Durchmesser gleich 1,0 mm)Support cylinder (diameter equal to 1.0 mm)
1010th
Blenden in der zweiten leitenden SchichtApertures in the second conductive layer
1111
dielektrischer Trägerdielectric carrier
1212th
erste leitfähige Fläche (Fig.7-9)first conductive surface (Fig. 7-9)
1313
leitfähiges Flächensegment (Fig.7-9)conductive surface segment (Fig. 7-9)
1414
Sehne bzw. BegrenzungskanteTendon or boundary edge
1515
SymmetrieachseAxis of symmetry
1616
Speisepunkt des Flächensegments 13Feed point of the area segment 13
1717th
elektromagnetische Blendeelectromagnetic aperture
1818th
der Sehne 4 gegenüberliegende Außenkantethe tendon 4 opposite outer edge
8080
Lot auf der Sehne 4, 14, 40, 40'Plumb line 4, 14, 40, 40 '
50, 50'50, 50 '
Verbindungspunke (Durchmesser = 1,5 mm)Connection points (diameter = 1.5 mm)
AA
Abstand gleich 11,0 mmDistance equal to 11.0 mm
BB
Abstand gleich 15,0 mmDistance equal to 15.0 mm
RR
Radius gleich 45,0 mm -0,2Radius equal to 45.0 mm -0.2
R`R`
Radius gleich 42,0 mmRadius equal to 42.0 mm
R1R1
Radius gleich 7,0 mmRadius equal to 7.0 mm

Claims (16)

  1. Planar aerial (1), in particular for the mobile radio telephone service, wherein the planar aerial (1) has two conductive layers with predefined mutual spacing, wherein the conductive layers are plates (2, 12, 20, 20'; 3, 13, 30, 30') or foils having faces parallel to one another, and the first layer (2, 12, 20, 20') has a face which is symmetrical about an axis of symmetry (15) and the second layer (3, 13, 30, 30') is a portion of the face of the first layer, wherein the second layer is formed by reducing and cutting off or omitting a part of the first face along a straight line (4, 14, 40, 40') extending at right angles to the axis of symmetry (15), and the line of the second layer forms a rectilinear edge, and the two layers are conductively connected to one another, the conductive connection being made by means of connecting elements (5, 19) arranged at points or in the form of strips, at the margin (8, 18) of the layers turned away from the line (4, 14, 40, 40') or directly adjoining it, characterised in that the first layer (2, 12, 20, 20') and the second layer (3, 13, 30, 30') are formed with a circular margin and the circular margins of the two layers are congruent, the second layer being reduced in relation to the area of the first layer by a chordal portion, the chord corresponding to the line (4, 14, 40, 40').
  2. Planar aerial (1) according to claim 1, characterised in that apertures (10) are arranged parallel to the line (4, 14, 40, 40'), the apertures (10) being formed by openings or windows in the second layer.
  3. Planar aerial (1), in particular for the mobile radio telephone service, wherein the planar aerial (1) has two conductive layers with predefined mutual spacing, wherein the conductive layers are plates (2, 12, 20, 20'; 3, 13, 30, 30') or foils having faces parallel to one another, and the first layer (2, 12, 20, 20') has a face which is symmetrical about an axis of symmetry (15) and the second layer (3, 13, 30, 30') is a portion of the face of the first layer, wherein the second layer is formed by reducing and cutting off or omitting a part of the first face along a straight line (4, 14, 40, 40') extending at right angles to the axis of symmetry (15), and the line of the second layer forms a rectilinear edge, and the two layers are conductively connected to one another, the conductive connection being made by means of connecting elements (5, 19) arranged at points or in the form of strips, at the margin (8, 18) of the layers turned away from the line (4, 14, 40, 40') or directly adjoining it, characterised in that apertures (10) are arranged parallel to the line (4, 14, 40, 40'), the apertures (10) being formed by openings or windows in the second layer.
  4. Planar aerial (1) according to claim 3, characterised in that the first layer is circular, elliptical, triangular, square or hexagonal.
  5. Planar aerial (1) according to one of claims 2 to 4, characterised in that the area of each aperture (10) is either circular, elliptical, rectangular, square, triangular, hexagonal or irregular.
  6. Planar aerial (1) according to one of the preceding claims, characterised in that the planar aerial (1) is excited or supplied by a coaxial waveguide, the internal conductor of the waveguide being conductively connected to the second layer and the external conductor of the waveguide to the first layer, the internal conductor being arranged axially symmetrically to the aperture margin and without a galvanic connection thereto through an aperture (7, 17, 70, 70') within the first layer.
  7. Planar aerial (1) according to one of the preceding claims, characterised in that the conductive connection between the two conductive layers is made by closed conductive materials (19) having an extensive, preferably strip-shaped configuration.
  8. Planar aerial (1) according to one of the preceding claims, characterised in that the layers are kept apart by non-conductive elements (9).
  9. Planar aerial (1) according to one of the preceding claims, characterised in that a dielectric (11) is between the two layers.
  10. Planar aerial (1) according to one of the preceding claims, characterised in that the planar aerial (1) consists of a dielectric plate-shaped carrier (11) which is coated in a structured and conductive manner and of which the coatings form the conductive layers (12, 13).
  11. Planar aerial (1) according to one of claims 9 or 10, characterised in that the conductive connection between the two conductive layers is made by a closed conductive coating along the contacting length over the entire height of the dielectric carrier (11).
  12. Planar aerial (1) according to one of the preceding claims, characterised in that the margins (8, 18) of the two layers connected to one another so as to be conductive in portions or at points are superimposed in an aligned manner.
  13. Planar aerial (1) according to one of the preceding claims, characterised in that the margins (8, 18) of the two layers, connected to one another so as to be conductive in part, are straight at least in portions and are symmetrical about the axis of symmetry (15).
  14. Planar aerial (1) according to one of the preceding claims, characterised in that the margin (8, 18) of the dielectric carrier (11) extends in the region of the conductive connection (5, 19) of the two conductive layers and the arrangement of the through-connection extends - rectilinearly parallel to the margin, the two half lengths being at an angle ϕ to one another, excluding the angular values of 0 angular degrees and 90 to 359 angular degrees, measured between a half length and the axis of symmetry (15) of the planar aerial (1).
  15. Planar aerial (1) according to one of the preceding claims, characterised in that the area of the second layer is a cut out segment or a portion of the area of the first layer.
  16. Planar aerial (1) according to one of the preceding claims, characterised in that the length of the perpendicular (20) to the straight line or chord (4, 40, 40') of the second layer changes between the straight line or chord (4, 40, 40') and the margin (8, 18) turned away from the straight line or chord (4, 40, 40') starting from the axis of symmetry (15) in such a way that the planar aerial (1) can receive or transmit more than one frequency.
EP97942943A 1996-09-23 1997-09-17 Mobile radiotelephony planar antenna Expired - Lifetime EP0927437B1 (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
DE1996138874 DE19638874A1 (en) 1996-09-23 1996-09-23 Mobile telephone planar antenna
DE19638874 1996-09-23
DE1997106571 DE19706571A1 (en) 1997-02-19 1997-02-19 Planar antenna for mobile radio
DE19706571 1997-02-19
DE19706913 1997-02-20
DE1997106913 DE19706913A1 (en) 1997-02-19 1997-02-20 Mobile radio E-planar antenna
PCT/EP1997/005094 WO1998013896A1 (en) 1996-09-23 1997-09-17 Mobile radiotelephony planar antenna

Publications (2)

Publication Number Publication Date
EP0927437A1 EP0927437A1 (en) 1999-07-07
EP0927437B1 true EP0927437B1 (en) 2000-08-30

Family

ID=27216666

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97942943A Expired - Lifetime EP0927437B1 (en) 1996-09-23 1997-09-17 Mobile radiotelephony planar antenna

Country Status (7)

Country Link
US (1) US6342855B1 (en)
EP (1) EP0927437B1 (en)
JP (1) JP2001502480A (en)
AT (1) ATE196037T1 (en)
AU (1) AU4459497A (en)
DE (2) DE19781026D2 (en)
WO (1) WO1998013896A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002171111A (en) * 2000-12-04 2002-06-14 Anten Corp Portable radio and antenna for it
KR100626667B1 (en) 2002-08-28 2006-09-22 한국전자통신연구원 Planar Inverted F Antenna
EP2068703A4 (en) * 2006-09-21 2011-07-20 Noninvasive Medical Technologies Inc Apparatus and method for non-invasive thoracic radio interrogation
EP2070154A4 (en) * 2006-09-21 2012-05-09 Noninvasive Medical Technologies Inc Antenna for thoracic radio interrogation
WO2008105837A2 (en) * 2006-09-21 2008-09-04 Noninvasive Medical Technologies, Inc. Method of processing thoracic reflected radio interrogation signals
DE102006062633A1 (en) * 2006-12-27 2008-07-03 Sumitomo Electric Bordnetze Gmbh Electromagnetic radiation receiving and/or transmitting device for on-board electrical system, has segments of linear two-core foil flat conductors and base segments, whose length is formed proportional to predetermined wavelength
JP2013114632A (en) * 2011-11-30 2013-06-10 Nitta Ind Corp Information storage medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0176311A2 (en) * 1984-09-17 1986-04-02 Matsushita Electric Industrial Co., Ltd. Small antenna
DE19504577A1 (en) * 1995-02-11 1996-08-14 Fuba Automotive Gmbh Flat aerial for GHz frequency range for vehicle mobile radio or quasi-stationary aerial

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4160976A (en) * 1977-12-12 1979-07-10 Motorola, Inc. Broadband microstrip disc antenna
JPH01246904A (en) * 1988-03-28 1989-10-02 Kokusai Electric Co Ltd Small-sized antenna
US5041838A (en) * 1990-03-06 1991-08-20 Liimatainen William J Cellular telephone antenna
KR920022585A (en) 1991-05-14 1992-12-19 오오가 노리오 Planar antenna
FR2711845B1 (en) 1993-10-28 1995-11-24 France Telecom Planar antenna and method for producing such an antenna.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0176311A2 (en) * 1984-09-17 1986-04-02 Matsushita Electric Industrial Co., Ltd. Small antenna
DE19504577A1 (en) * 1995-02-11 1996-08-14 Fuba Automotive Gmbh Flat aerial for GHz frequency range for vehicle mobile radio or quasi-stationary aerial

Also Published As

Publication number Publication date
DE19781026D2 (en) 2000-05-11
AU4459497A (en) 1998-04-17
WO1998013896A1 (en) 1998-04-02
DE59702294D1 (en) 2000-10-05
US6342855B1 (en) 2002-01-29
ATE196037T1 (en) 2000-09-15
EP0927437A1 (en) 1999-07-07
JP2001502480A (en) 2001-02-20

Similar Documents

Publication Publication Date Title
EP0965152B1 (en) Resonant antenna
EP0952625B1 (en) Antenna for several radio communications services
DE3820229C1 (en)
EP3244483B1 (en) Screened casing for use in hf applications
DE60000346T2 (en) Metal panel antenna
DE112019000636T5 (en) Antenna device, window glass for a vehicle, and window glass structure
DE60315787T2 (en) Vehicle-mounted antenna
EP0927437B1 (en) Mobile radiotelephony planar antenna
DE69833070T2 (en) Group antennas with a large bandwidth
EP1769564B1 (en) Device and method for transmitting/receiving electromagnetic hf signals
DE60019412T2 (en) ANTENNA WITH VERTICAL POLARIZATION
EP1606853B1 (en) Antenna coupler and mount for mobile radio terminals
DE202019101043U1 (en) Phase shifter module arrangement for use in a mobile radio antenna
DE102022125890A1 (en) WIDE SLOT COPLANAR ANTENNA STRUCTURE
DE10313498A1 (en) Antenna coupler for mobile radiotelephone service devices sets up electromagnetic coupling of high-frequency signals via an external antenna like a car aerial
WO2006103128A1 (en) Antenna array with high-density integration
DE112022001761T5 (en) ANTENNA DEVICE AND COMMUNICATION DEVICE
EP3707775B1 (en) Coupling and decoupling device between a circuit carrier and a waveguide
DE19758218A1 (en) Dual band hybrid radiator for mobile radio, esp. mobile navigation using GPS signals
EP0489934B1 (en) Flat antenna
DE102021203543B3 (en) Antenna device for a mobile radio device
DE19758217A1 (en) Dual hybrid antenna for mobile radio, esp. mobile navigation. Applications using GPS signals
DE112022004337T5 (en) Connection terminal and antenna device
EP0966774A1 (en) Mobile radio sector emitter
DE19830194A1 (en) Dual band radiator system for mobile GSM, DCS networks for motor vehicles has 2 circular conducting foils/plates parallel to/coaxial wrt. each other with electrical, mechanical connections

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990316

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19990820

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20000830

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20000830

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000830

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 20000830

REF Corresponds to:

Ref document number: 196037

Country of ref document: AT

Date of ref document: 20000915

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000917

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000917

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20000831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000930

REF Corresponds to:

Ref document number: 59702294

Country of ref document: DE

Date of ref document: 20001005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 20001030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20001130

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20001130

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20001130

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
BERE Be: lapsed

Owner name: ROTHE LUTZ

Effective date: 20000930

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010930

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020904

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030917

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20030917

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20060330

Year of fee payment: 9

Ref country code: DE

Payment date: 20060330

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060531

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20060531

REG Reference to a national code

Ref country code: FR

Ref legal event code: D3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070403

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070531