EP0922675A1 - Preparation of hydrogen cyanide by the Andrussow-process - Google Patents

Preparation of hydrogen cyanide by the Andrussow-process Download PDF

Info

Publication number
EP0922675A1
EP0922675A1 EP98122730A EP98122730A EP0922675A1 EP 0922675 A1 EP0922675 A1 EP 0922675A1 EP 98122730 A EP98122730 A EP 98122730A EP 98122730 A EP98122730 A EP 98122730A EP 0922675 A1 EP0922675 A1 EP 0922675A1
Authority
EP
European Patent Office
Prior art keywords
oxygen
ammonia
heat
reaction
methane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP98122730A
Other languages
German (de)
French (fr)
Inventor
Lukas Dr. Von Hippel
Dietrich Dr. Arntz
Manfred Dr. Sauer
Rudolf Dr. Vanheertum
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Degussa GmbH
Degussa Huels AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Degussa GmbH, Degussa Huels AG filed Critical Degussa GmbH
Publication of EP0922675A1 publication Critical patent/EP0922675A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C3/00Cyanogen; Compounds thereof
    • C01C3/02Preparation, separation or purification of hydrogen cyanide
    • C01C3/0208Preparation in gaseous phase
    • C01C3/0212Preparation in gaseous phase from hydrocarbons and ammonia in the presence of oxygen, e.g. the Andrussow-process
    • C01C3/022Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C3/00Cyanogen; Compounds thereof
    • C01C3/02Preparation, separation or purification of hydrogen cyanide
    • C01C3/0208Preparation in gaseous phase
    • C01C3/0212Preparation in gaseous phase from hydrocarbons and ammonia in the presence of oxygen, e.g. the Andrussow-process

Definitions

  • the invention relates to the production of hydrocyanic acid the Andrussow process by reacting the educt gases Methane, ammonia and oxygen on a catalyst Hydrocyanic acid and water at elevated temperature.
  • the implementation is exothermic. Per mole of hydrocyanic acid produced an energy of 474 kJ is released.
  • the Andrussow process is described in Ullmann's Encyclopedia of Industrial Chemistry, Volume 8, Weinheim 1987, pages 161-162 described.
  • the reaction takes place at atmospheric pressure on a platinum catalyst at a temperature of over 1000 ° C.
  • the catalyst is, for example, that in the US patent US 3,360,335 described platinum catalyst suitable.
  • the hydrocyanic acid formed must be removed as soon as possible be cooled to temperatures below 800 ° C in order to achieve a to avoid thermal decomposition. With the conventional The Andrussow process does this in a heat exchanger generating steam, which in the further process is used.
  • a critical point in the Andrussow process is the fact that the feed gas mixture before it comes into contact with the catalyst at a temperature must be heated, in which the gas mixture in Explosion area.
  • the object of the present invention is to provide a Process for the production of hydrocyanic acid by reacting the Educt gases methane, ammonia and oxygen in one Catalyst, which is a better technical mastery the exothermic implementation enables and in simple and compact, modular reactors that are feasible can easily be connected to a larger system.
  • This task is accomplished by a generic method solved, which is characterized in that the at Implementation of released heat of reaction in the indirect Heat exchange according to the counterflow principle for heating the Educt gases to the required reaction temperature is used.
  • FIGS. 1 to 3 show for the procedure suitable reactors. They are special Embodiments of countercurrent reactors. The However, the inventive method is not to the reactors shown. Rather, there are others Countercurrent reactors conceivable, which are also successful can be used.
  • Figure 1 shows a reverse countercurrent reactor. It exists made of two coaxial tubes, for example gas-tight sintered alumina ceramic.
  • the inner tube 1 is on Provide the upper end with a catalyst bed 3.
  • the Outer tube 2 is closed at the upper end, the reactor head. If, for example, a feed gas mixture is inserted the inner tube, so it passes the catalyst at the top and then becomes ring-shaped Space between the inner and outer tube downwards redirected.
  • educt gas mixture and Catalyst to a temperature of at least 800 ° C be heated. This can be done through a around the outer tube lying around heating jacket or by direct heating the catalyst, e.g. by electricity, happen. After ignition the reaction heat released is sufficient for the implementation, to the starting gas mixture to the reaction temperature heat. Any excess heat of reaction can be neutralized by the fact that instead of pure oxygen Air is used as the oxygen-supplying gas. In this case, the atmospheric nitrogen serves as ballast gas Removal of heat of reaction. If necessary, the volume ratio from oxygen to nitrogen requirements adapted to the process and / or a removal of excess Heat of reaction from the educt gas mixture by cooling the Reactor head are provided.
  • FIG 2 shows an example of the interconnection of several Reactors according to Figure 1 to a larger production unit from 4 reactors.
  • the inner tubes are over the Manifold 5 with the starting gas mixture of methane, Ammonia, oxygen and optionally nitrogen provided.
  • the product gases from the annulus between Outer pipes and inner pipes are via the manifold 6 dissipated.
  • the upper part of the reactors is at Dissipation of the heat of reaction in a heat exchanger 9, the with a cooling medium, e.g. a heat exchanger oil through which Bus 7 is supplied.
  • Via manifold 8 will the heated cooling medium discharged.
  • FIG. 3 shows a further possible embodiment of a to be used for the method according to the invention Reactor.
  • the inner tube 1 is another tube 4 to led briefly under the catalyst bed. Because of this additional tube will oxygen, or air, from Methane and ammonia separately fed to the catalyst. The reduces the risk of explosion and thus increases the Operational reliability of the process significantly. Just before contact with the catalyst becomes oxygen-containing Gas stream mixed with the stream of methane and ammonia.
  • the reactor of Figure 1 was used to produce hydrocyanic acid used according to the Andrussow method.
  • the outer tube of the reactor had a diameter of 50 and that Inner tube of 35 mm.
  • the length of the reactor was 700 mm.
  • a 5 mm thick catalyst packing was used as the catalyst made of a fine wire mesh of a platinum / rhodium alloy corresponding to US Pat. No. 3,360,335 used.
  • the reactor tubes consisted of gas-tight aluminum oxide ceramics.
  • the reactor was powered by an electric heater preheated to 800 ° C.
  • In the inner tube 1 was from below a starting gas mixture of methane, ammonia and oxygen (from air) with a volume ratio of 1.5: 1: 1 introduced.
  • the mass flow of ammonia was 800 mmol / h.
  • the implementation ignited without problems.
  • To analyze the It was mixed with product gas by a scrubber Passed 25% sodium hydroxide solution and the cyanide content argentometric titration determined.
  • Example 1 was repeated, but that was Educt gas mixture in the annular space between the interior and External tube fed. The reaction ignited explosive. The reactor was destroyed.
  • the reactor according to FIG. 2 was used for the further examples used, the separate feeding and heating of Atmospheric oxygen on the one hand and methane and ammonia on the other enables.
  • the atmospheric oxygen became like in Figure 2 shown, fed to the innermost tube.
  • Example 1 The volume ratios of the different gases were like chosen in Example 1. There was a hydrocyanic acid yield of 64%, based on ammonia, determined.
  • Example 3 was repeated. To remove excess Heat became a heat exchanger on the head of the reactor appropriate.
  • the measured hydrocyanic acid yield was 65%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

A mixture of methane, ammonia and oxygen to be catalytically converted to hydrogen cyanide is heated to the required reaction temperature by means of an indirect heat exchanger using the heat given out by the reaction. The heat exchanger operates in counter-flow. Air is used as the source of oxygen and may be heated separately to the required reaction temperature. Nitrogen may also be added to the mixture as ballast gas to remove heat excess to requirements.

Description

Die Erfindung betrifft die Herstellung von Blausäure nach dem Andrussow-Verfahren durch Umsetzen der Eduktgase Methan, Ammoniak und Sauerstoff an einem Katalysator zu Blausäure und Wasser bei erhöhter Temperatur.The invention relates to the production of hydrocyanic acid the Andrussow process by reacting the educt gases Methane, ammonia and oxygen on a catalyst Hydrocyanic acid and water at elevated temperature.

Gemäß dem Andrussow-Verfahren werden Methan, Ammoniak und Sauerstoff nach der folgenden Reaktionsgleichung zu Blausäure und Wasser umgesetzt: CH4 + NH3 + 1,5O2 → HCN + 3H2O According to the Andrussow process, methane, ammonia and oxygen are converted into hydrocyanic acid and water using the following reaction equation: CH 4 + NH 3 + 1.5O 2 → HCN + 3H 2 O

Die Umsetzung ist exotherm. Pro erzeugtem Mol Blausäure wird eine Energie von 474 kJ freigesetzt.The implementation is exothermic. Per mole of hydrocyanic acid produced an energy of 474 kJ is released.

Das Andrussow-Verfahren wird in Ullmann's Encyclopedia of Industrial Chemistry, Volume 8, Weinheim 1987, Seiten 161-162 beschrieben. Die Umsetzung erfolgt bei Atmosphärendruck an einem Platinkatalysator bei einer Temperatur von über 1000°C. Als Katalysator ist zum Beispiel der in der US-Patentschrift US 3,360,335 beschriebene Platinkatalysator geeignet. Die gebildete Blausäure muß möglichst umgehend auf Temperaturen unter 800°C abgekühlt werden, um eine thermische Zersetzung zu vermeiden. Beim herkömmlichen Andrussow-Verfahren geschieht dies in einem Wärmetauscher unter Erzeugung von Dampf, welcher im weiteren Prozeß verwendet wird. Ein kritischer Punkt beim Andrussow-Verfahren ist die Tatsache, daß das Eduktgasgemisch bevor es mit dem Katalysator in Kontakt tritt auf eine Temperatur erwärmt werden muß, bei der das Gasgemisch sich im Explosionsbereich befindet.The Andrussow process is described in Ullmann's Encyclopedia of Industrial Chemistry, Volume 8, Weinheim 1987, pages 161-162 described. The reaction takes place at atmospheric pressure on a platinum catalyst at a temperature of over 1000 ° C. The catalyst is, for example, that in the US patent US 3,360,335 described platinum catalyst suitable. The hydrocyanic acid formed must be removed as soon as possible be cooled to temperatures below 800 ° C in order to achieve a to avoid thermal decomposition. With the conventional The Andrussow process does this in a heat exchanger generating steam, which in the further process is used. A critical point in the Andrussow process is the fact that the feed gas mixture before it comes into contact with the catalyst at a temperature must be heated, in which the gas mixture in Explosion area.

Aufgabe der vorliegenden Erfindung ist die Angabe eines Verfahrens zur Herstellung von Blausäure durch Umsetzen der Eduktgase Methan, Ammoniak und Sauerstoff an einem Katalysator, welches eine bessere technische Beherrschung der exothermen Umsetzung ermöglicht und in einfachen und kompakten, modularen Reaktoren durchführbar ist, die sich leicht zu einer größeren Anlage zusammenschalten lassen.The object of the present invention is to provide a Process for the production of hydrocyanic acid by reacting the Educt gases methane, ammonia and oxygen in one Catalyst, which is a better technical mastery the exothermic implementation enables and in simple and compact, modular reactors that are feasible can easily be connected to a larger system.

Diese Aufgabe wird durch ein gattungsgemäßes Verfahren gelöst, das dadurch gekennzeichnet ist, daß die bei der Umsetzung frei werdende Reaktionswärme im indirekten Wärmetausch nach dem Gegenstromprinzip zur Erwärmung der Eduktgase auf die erforderliche Reaktionstemperatur verwendet wird.This task is accomplished by a generic method solved, which is characterized in that the at Implementation of released heat of reaction in the indirect Heat exchange according to the counterflow principle for heating the Educt gases to the required reaction temperature is used.

Das erfindungsgemäße Verfahren wird an Hand der Figuren 1 bis 3 näher erläutert. Sie zeigen für das Verfahren geeignete Reaktoren. Es handelt sich um spezielle Ausführungsformen von Gegenstromreaktoren. Das erfindungsgemäße Verfahren ist jedoch nicht an die gezeigten Reaktoren gebunden. Vielmehr sind andere Gegenstromreaktoren denkbar, die ebenfalls mit Erfolg eingesetzt werden können.The method according to the invention is illustrated in FIGS. 1 to 3 explained in more detail. They show for the procedure suitable reactors. They are special Embodiments of countercurrent reactors. The However, the inventive method is not to the reactors shown. Rather, there are others Countercurrent reactors conceivable, which are also successful can be used.

Figur 1 zeigt einen Umkehr-Gegenstromreaktor. Er besteht aus zwei koaxialen Rohren aus zum Beispiel gasdicht gesinterter Aluminiumoxidkeramik. Das Innenrohr 1 ist am oberen Ende mit einem Katalysatorbett 3 versehen. Das Außenrohr 2 ist am oberen Ende, dem Reaktorkopf, verschlossen. Wird zum Beispiel eine Eduktgasmischung von unten in das Innenrohr eingeführt, so passiert es den Katalaysator am oberen Ende und wird dann in den ringförmigen Zwischenraum zwischen Innen- und Außenrohr nach unten umgelenkt.Figure 1 shows a reverse countercurrent reactor. It exists made of two coaxial tubes, for example gas-tight sintered alumina ceramic. The inner tube 1 is on Provide the upper end with a catalyst bed 3. The Outer tube 2 is closed at the upper end, the reactor head. If, for example, a feed gas mixture is inserted the inner tube, so it passes the catalyst at the top and then becomes ring-shaped Space between the inner and outer tube downwards redirected.

Zum Starten der Umsetzung müssen Eduktgasmischung und Katalysator auf eine Temperatur von wenigstens 800°C erwärmt werden. Dies kann durch einen um das Außenrohr herumgelegten Heizmantel oder durch eine direkte Beheizung des Katalysators, z.B. durch Strom, geschehen. Nach Zünden der Umsetzung reicht die frei werdende Reaktionswärme aus, um das Eduktgasgemisch auf die Reaktionstemperatur zu erwärmen. Eventuell überschüssige Reaktionswärme kann dadurch neutralisiert werden, daß statt reinem Sauerstoff Luft als Sauerstoff lieferndes Gas verwendet wird. In diesem Fall dient der Luftstickstoff als Ballastgas zur Abfuhr von Reaktionswärme. Gegebenenfalls kann das Volumenverhältnis von Sauerstoff zu Stickstoff den Erfordernissen des Prozesses angepaßt und/oder eine Abfuhr überschüssiger Reaktionswärme aus dem Eduktgasgemisch durch Kühlen des Reaktorkopfes vorgesehen werden.To start the reaction, educt gas mixture and Catalyst to a temperature of at least 800 ° C be heated. This can be done through a around the outer tube lying around heating jacket or by direct heating the catalyst, e.g. by electricity, happen. After ignition the reaction heat released is sufficient for the implementation, to the starting gas mixture to the reaction temperature heat. Any excess heat of reaction can be neutralized by the fact that instead of pure oxygen Air is used as the oxygen-supplying gas. In In this case, the atmospheric nitrogen serves as ballast gas Removal of heat of reaction. If necessary, the volume ratio from oxygen to nitrogen requirements adapted to the process and / or a removal of excess Heat of reaction from the educt gas mixture by cooling the Reactor head are provided.

Durch den Wärmeaustausch zwischen Produktgasgemisch und den Eduktgasen im Gegenstrom weist der Reaktor am Gaseinlaß und am Gasauslaß sehr niedrige Temperaturen von unter 200°C auf.Through the heat exchange between the product gas mixture and the The reactor at the gas inlet and very low temperatures of less than 200 ° C at the gas outlet on.

Figur 2 zeigt beispielhaft die Zusammenschaltung mehrerer Reaktoren gemäß Figur 1 zu einer größeren Produktionseinheit aus 4 Reaktoren. Die Innenrohre werden über die Sammelleitung 5 mit dem Eduktgasgemisch aus Methan, Ammoniak, Sauerstoff und gegebenenfalls Stickstoff versorgt. Die Produktgase aus dem Ringraum zwischen Außenrohren und Innenrohren werden über die Sammelleitung 6 abgeführt. Der obere Teil der Reaktoren befindet sich zur Abführung der Reaktionswärme in einem Wärmetauscher 9, der mit einem Kühlmedium, z.B. einem Wärmetauscheröl, über die Sammelleitung 7 versorgt wird. Über Sammelleitung 8 wird das erwärmte Kühlmedium abgeführt. Durch die Konstruktion des Wärmetauschers muß gewährleistet werden, das jeder Reaktor in gleicher Weise gekühlt wird. Dies kann gegebenenfalls durch zusätzlich in den Wärmetauscher eingebaute Strömungsleitbleche gewährleistet werden.Figure 2 shows an example of the interconnection of several Reactors according to Figure 1 to a larger production unit from 4 reactors. The inner tubes are over the Manifold 5 with the starting gas mixture of methane, Ammonia, oxygen and optionally nitrogen provided. The product gases from the annulus between Outer pipes and inner pipes are via the manifold 6 dissipated. The upper part of the reactors is at Dissipation of the heat of reaction in a heat exchanger 9, the with a cooling medium, e.g. a heat exchanger oil through which Bus 7 is supplied. Via manifold 8 will the heated cooling medium discharged. By construction the heat exchanger must be ensured that everyone Reactor is cooled in the same way. This can if necessary by additionally in the heat exchanger built-in flow baffles can be guaranteed.

Figur 3 zeigt eine weitere mögliche Ausführungsform eines für das erfindungsgemäße Verfahren zu verwendenden Reaktors. In das Innenrohr 1 ist ein weiteres Rohr 4 bis kurz unter das Katalysatorbett geführt. Durch dieses zusätzliche Rohr wird Sauerstoff, beziehungsweise Luft, von Methan und Ammoniak getrennt dem Katalysator zugeführt. Das vermindert die Explosionsgefahr und erhöht damit die Betriebssicherheit des Verfahrens erheblich. Erst kurz vor dem Kontakt mit dem Katalysator wird der sauerstoffhaltige Gasstrom dem Strom aus Methan und Ammoniak zugemischt.FIG. 3 shows a further possible embodiment of a to be used for the method according to the invention Reactor. In the inner tube 1 is another tube 4 to led briefly under the catalyst bed. Because of this additional tube will oxygen, or air, from Methane and ammonia separately fed to the catalyst. The reduces the risk of explosion and thus increases the Operational reliability of the process significantly. Just before contact with the catalyst becomes oxygen-containing Gas stream mixed with the stream of methane and ammonia.

Beispiel 1:Example 1:

Der Reaktor nach Figur 1 wurde zur Herstellung von Blausäure nach dem Andrussow-Verfahren eingesetzt. Das Außenrohr des Reaktors hatte einen Durchmesser von 50 und das Innenrohr von 35 mm. Die Länge des Reaktors betrug 700 mm. Als Katalysator wurde eine 5 mm dicke Katalysatorpackung aus einem feinen Drahtgeflecht einer Platin/Rhodium-Legierung entsprechend der US-Patentschrift US 3,360,335 verwendet.The reactor of Figure 1 was used to produce hydrocyanic acid used according to the Andrussow method. The outer tube of the reactor had a diameter of 50 and that Inner tube of 35 mm. The length of the reactor was 700 mm. A 5 mm thick catalyst packing was used as the catalyst made of a fine wire mesh of a platinum / rhodium alloy corresponding to US Pat. No. 3,360,335 used.

Die Reaktorrohre bestanden aus gasdichter Aluminiumoxidkeramik. Der Reaktor wurde durch eine elektrische Beheizung auf 800°C vorgewärmt. In das Innenrohr 1 wurde von unten ein Eduktgasgemisch aus Methan, Ammoniak und Sauerstoff (aus Luft) mit einem Volumenverhältnis von 1,5:1:1 eingeführt. Der Massenstrom von Ammoniak betrug 800 mmol/h.The reactor tubes consisted of gas-tight aluminum oxide ceramics. The reactor was powered by an electric heater preheated to 800 ° C. In the inner tube 1 was from below a starting gas mixture of methane, ammonia and oxygen (from air) with a volume ratio of 1.5: 1: 1 introduced. The mass flow of ammonia was 800 mmol / h.

Die Umsetzung zündete ohne Probleme. Zur Analyse des Produktgasgemisches wurde es durch einen Wäscher mit 25%iger Natronlauge geleitet und der Cyanidgehalt durch argentometrische Titration bestimmt.The implementation ignited without problems. To analyze the It was mixed with product gas by a scrubber Passed 25% sodium hydroxide solution and the cyanide content argentometric titration determined.

Es wurde eine Ausbeute an Blausäure von 58%, bezogen auf Ammoniak, ermittelt.There was a 58% yield of hydrocyanic acid, based on Ammonia.

Beispiel 2:Example 2:

Beispiel 1 wurde wiederholt, jedoch wurde das Eduktgasgemisch in den Ringraum zwischen Innen- und Außenrohr eingespeist. Die Zündung der Reaktion erfolgte explosionsartig. Der Reaktor wurde zerstört. Example 1 was repeated, but that was Educt gas mixture in the annular space between the interior and External tube fed. The reaction ignited explosive. The reactor was destroyed.

Beispiel 3:Example 3:

Für die weiteren Beispiele wurde der Reaktor nach Figur 2 verwendet, der die getrennte Zuführung und Aufheizung von Luftsauerstoff einerseits und Methan und Ammoniak andererseits ermöglicht. Der Luftsauerstoff wurde dabei wie in Figur 2 gezeigt, dem innersten Rohr zugeführt.The reactor according to FIG. 2 was used for the further examples used, the separate feeding and heating of Atmospheric oxygen on the one hand and methane and ammonia on the other enables. The atmospheric oxygen became like in Figure 2 shown, fed to the innermost tube.

Die Volumenverhältnisse der verschiedenen Gase wurden wie in Beispiel 1 gewählt. Es wurde eine Blausäure-Ausbeute von 64%, bezogen auf Ammoniak, bestimmt.The volume ratios of the different gases were like chosen in Example 1. There was a hydrocyanic acid yield of 64%, based on ammonia, determined.

Beispiel 4:Example 4:

Beispiel 3 wurde wiederholt, jedoch wurde die in das innerste Rohr des Reaktors eingeführte Luft mit zusätzlichem Stickstoff als Ballastgas angereichert. Die Volumenverhältnisse der einzelnen Gaskomponenten waren:

  • Methan : Ammoniak : Sauerstoff (aus Luft) : Stickstoff (aus Luft und zusätzlichem Stickstoff) = 1,5 : 1 : 1 : 8
  • Es wurde eine Ausbeute an Blausäure von 62%, bezogen auf Ammoniak, ermittelt.Example 3 was repeated, but the air introduced into the innermost tube of the reactor was enriched with additional nitrogen as ballast gas. The volume ratios of the individual gas components were:
  • Methane: ammonia: oxygen (from air): nitrogen (from air and additional nitrogen) = 1.5: 1: 1: 8
  • A yield of hydrocyanic acid of 62%, based on ammonia, was determined.

    Beispiel 5:Example 5:

    Beispiel 3 wurde wiederholt. Zur Abführung überschüssiger Wärme wurde auf dem Kopf des Reaktors ein Wärmetauscher angebracht.Example 3 was repeated. To remove excess Heat became a heat exchanger on the head of the reactor appropriate.

    Die gemessen Blausäure-Ausbeute betrug 65%.The measured hydrocyanic acid yield was 65%.

    Claims (5)

    Herstellung von Blausäure nach dem Andrussow-Verfahren durch Umsetzen der Eduktgase Methan, Ammoniak und Sauerstoff an einem Katalysator zu Blausäure und Wasser bei erhöhter Temperatur,
    dadurch gekennzeichnet,
    daß die bei der Reaktion frei werdende Reaktionswärme im indirekten Wärmetausch nach dem Gegenstromprinzip zur Erwärmung der Eduktgase auf die erforderliche Reaktionstemperatur verwendet wird.
    Production of hydrocyanic acid by the Andrussow process by converting the starting gases methane, ammonia and oxygen on a catalyst to hydrocyanic acid and water at elevated temperature,
    characterized,
    that the heat of reaction released in the reaction is used in indirect heat exchange according to the countercurrent principle to heat the reactant gases to the required reaction temperature.
    Verfahren nach Anspruch 1,
    dadurch gekennzeichnet,
    daß die Eduktgase als Gasgemisch auf die erforderliche Reaktionstemperatur erwärmt werden.
    Method according to claim 1,
    characterized,
    that the reactant gases are heated to the required reaction temperature as a gas mixture.
    Verfahren nach Anspruch 1,
    dadurch gekennzeichnet,
    daß Sauerstoff einerseits und Methan und Ammoniak andererseits getrennt auf die erforderliche Reaktionstemperatur erwärmt werden.
    Method according to claim 1,
    characterized,
    that oxygen on the one hand and methane and ammonia on the other hand are heated separately to the required reaction temperature.
    Verfahren nach Anspruch 2 oder 3,
    dadurch gekennzeichnet,
    daß der Sauerstoff in Form von Luftsauerstoff bereitgestellt wird.
    Method according to claim 2 or 3,
    characterized,
    that the oxygen is provided in the form of atmospheric oxygen.
    Verfahren nach Anspruch 4
    dadurch gekennzeichnet,
    daß zusätzlicher Stickstoff als Ballastgas dem Eduktgasgemisch beigemischt wird und/oder überschüssige Reaktionswärme aus dem Eduktgasgemisch entfernt wird.
    Method according to claim 4
    characterized,
    that additional nitrogen as ballast gas is added to the educt gas mixture and / or excess heat of reaction is removed from the educt gas mixture.
    EP98122730A 1997-12-11 1998-11-28 Preparation of hydrogen cyanide by the Andrussow-process Withdrawn EP0922675A1 (en)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE1997154988 DE19754988A1 (en) 1997-12-11 1997-12-11 Production of hydrocyanic acid by the Andrussow process
    DE19754988 1997-12-11

    Publications (1)

    Publication Number Publication Date
    EP0922675A1 true EP0922675A1 (en) 1999-06-16

    Family

    ID=7851505

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP98122730A Withdrawn EP0922675A1 (en) 1997-12-11 1998-11-28 Preparation of hydrogen cyanide by the Andrussow-process

    Country Status (4)

    Country Link
    EP (1) EP0922675A1 (en)
    JP (1) JPH11236215A (en)
    BR (1) BR9805332A (en)
    DE (1) DE19754988A1 (en)

    Cited By (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    WO2009111828A1 (en) * 2008-03-11 2009-09-17 Synergen Met Limited Method, apparatus and system for manufacture of a cyanide
    CN103864109A (en) * 2012-12-18 2014-06-18 因温斯特技术公司 System and method for recycling in andrussow process
    US10214484B2 (en) 2017-04-21 2019-02-26 Evonik Degussa Gmbh Method for preparing acrolein cyanohydrins
    CN109890499A (en) * 2016-12-08 2019-06-14 株式会社Ihi Annealing device

    Citations (5)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FR2457124A1 (en) * 1979-05-22 1980-12-19 Lummus Co APPARATUSES FOR IMPLEMENTING HIGH-PRESSURE EXOTHERMIC AND ENDOTHERMAL CATALYTIC GAS REACTIONS AND RELATED METHODS
    FR2554014A1 (en) * 1983-10-27 1985-05-03 Duponteil Gilbert Catalytic reactor with catalyst support consisting of two perforated plates spaced apart by pipes for cooling the reaction gases.
    EP0345925A1 (en) * 1988-04-13 1989-12-13 Mitsubishi Gas Chemical Company, Inc. Process and apparatus for producing hydrogen cyanide
    EP0752390A1 (en) * 1995-07-03 1997-01-08 Degussa Ag Process for the preparation of hydrogen cyanide
    WO1997009273A1 (en) * 1995-09-01 1997-03-13 Imperial Chemical Industries Plc Hydrogen cyanide process and apparatus therefor

    Family Cites Families (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    CH338429A (en) * 1955-02-14 1959-05-31 Lonza Ag Process and device for the production of hydrogen cyanide
    US3104945A (en) * 1961-07-19 1963-09-24 Du Pont Method of producing hydrogen cyanide

    Patent Citations (5)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FR2457124A1 (en) * 1979-05-22 1980-12-19 Lummus Co APPARATUSES FOR IMPLEMENTING HIGH-PRESSURE EXOTHERMIC AND ENDOTHERMAL CATALYTIC GAS REACTIONS AND RELATED METHODS
    FR2554014A1 (en) * 1983-10-27 1985-05-03 Duponteil Gilbert Catalytic reactor with catalyst support consisting of two perforated plates spaced apart by pipes for cooling the reaction gases.
    EP0345925A1 (en) * 1988-04-13 1989-12-13 Mitsubishi Gas Chemical Company, Inc. Process and apparatus for producing hydrogen cyanide
    EP0752390A1 (en) * 1995-07-03 1997-01-08 Degussa Ag Process for the preparation of hydrogen cyanide
    WO1997009273A1 (en) * 1995-09-01 1997-03-13 Imperial Chemical Industries Plc Hydrogen cyanide process and apparatus therefor

    Non-Patent Citations (2)

    * Cited by examiner, † Cited by third party
    Title
    CHEMICAL ABSTRACTS, vol. 121, no. 14, 3 October 1994, Columbus, Ohio, US; abstract no. 160254, GRIN, G. I. ET AL: "Effect of nitrogen additions on yield of hydrogen cyanide forming during oxidative ammonolysis of methane" XP000665201 *
    ZH. PRIKL. KHIM. (S.-PETERBURG) (1993), 66(9), 2025-30 CODEN: ZPKHAB;ISSN: 0044-4618 *

    Cited By (5)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    WO2009111828A1 (en) * 2008-03-11 2009-09-17 Synergen Met Limited Method, apparatus and system for manufacture of a cyanide
    US10843931B2 (en) 2008-03-11 2020-11-24 Synergen Met Limited Method, apparatus and system for manufacture of a cyanide
    CN103864109A (en) * 2012-12-18 2014-06-18 因温斯特技术公司 System and method for recycling in andrussow process
    CN109890499A (en) * 2016-12-08 2019-06-14 株式会社Ihi Annealing device
    US10214484B2 (en) 2017-04-21 2019-02-26 Evonik Degussa Gmbh Method for preparing acrolein cyanohydrins

    Also Published As

    Publication number Publication date
    JPH11236215A (en) 1999-08-31
    BR9805332A (en) 1999-11-09
    DE19754988A1 (en) 1999-06-17

    Similar Documents

    Publication Publication Date Title
    EP0848990B1 (en) Reactor for carrying out endothermal catalytic reactions
    DE69309010T2 (en) Process for the production of a carbon dioxide-rich gas
    DE60215372T2 (en) METHOD AND APPARATUS FOR INCREASING OIL EFFORT BY GAS INJECTION
    DE68913249T2 (en) Hydrocarbon reforming device.
    DE69702581T2 (en) Steam reforming process
    MY101681A (en) Autothermal production of synthesis gas.
    EP1172333A1 (en) Process for the preparation of hydrogen cyanide
    DE3922446A1 (en) METHOD AND REACTOR FOR REFORMING HYDROCARBON (DE)
    DE3244252C2 (en)
    EP0330751A2 (en) Process for producing a synthesis gas containing hydrogen and carbon monoxide, and apparatus therefor
    DE3133764C2 (en) Process for the production of hydrogen and nitrogen-containing gases
    EP1001910B1 (en) Method for producing nitric acid and device for carrying out said method
    US4988431A (en) Process for performing catalytic reactions
    DE60116459T2 (en) Process for the preparation of a mixture containing hydrogen and carbon monoxide
    US3425803A (en) Nitric acid tail gas purification
    EP0922675A1 (en) Preparation of hydrogen cyanide by the Andrussow-process
    DE102008002258A1 (en) Process for the preparation of hydrogen cyanide on a cyclically guided as a transport fluidized bed particulate heat exchanger
    DE69516669T2 (en) PRODUCTION OF NO FROM N2O
    DE69702154T2 (en) Method and device for cracking ammonia in a gas containing hydrogen sulfide
    DE69806436D1 (en) Method and device for producing ammonia
    DE102007059542A1 (en) Process and apparatus for disposal of exhaust gases
    EP0941965A1 (en) Process for the preparation of hydrogen cyanide
    DE2447221C3 (en) Process for the destruction of hydrogen cyanide gas
    DE10237744A1 (en) Reactor system used in fuel cell-operated vehicles for producing hydrogen from hydrocarbons or hydrocarbon derivatives by autothermal reformation has temperature-controlled start-up burner for burning hydrocarbons with air
    DE902251C (en) Process for obtaining a gas rich in hydrogen and carbon oxide

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): BE DE FR GB IT NL

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: DEGUSSA-HUELS AKTIENGESELLSCHAFT

    RAP3 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: DEGUSSA-HUELS AKTIENGESELLSCHAFT

    17P Request for examination filed

    Effective date: 19990727

    AKX Designation fees paid

    Free format text: BE DE FR GB IT NL

    17Q First examination report despatched

    Effective date: 20000208

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

    18D Application deemed to be withdrawn

    Effective date: 20000620