EP0917905A1 - Dispositif et procédé de compression diphasique d'un gaz soluble dans un solvant - Google Patents

Dispositif et procédé de compression diphasique d'un gaz soluble dans un solvant Download PDF

Info

Publication number
EP0917905A1
EP0917905A1 EP98402507A EP98402507A EP0917905A1 EP 0917905 A1 EP0917905 A1 EP 0917905A1 EP 98402507 A EP98402507 A EP 98402507A EP 98402507 A EP98402507 A EP 98402507A EP 0917905 A1 EP0917905 A1 EP 0917905A1
Authority
EP
European Patent Office
Prior art keywords
phase
fluid
liquid
compression
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP98402507A
Other languages
German (de)
English (en)
Other versions
EP0917905B1 (fr
Inventor
Yves Charon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP0917905A1 publication Critical patent/EP0917905A1/fr
Application granted granted Critical
Publication of EP0917905B1 publication Critical patent/EP0917905B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D31/00Pumping liquids and elastic fluids at the same time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/232Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/29Mixing systems, i.e. flow charts or diagrams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/314Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/90Heating or cooling systems
    • B01F2035/98Cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids

Definitions

  • the present invention relates to a method and system for communicating energy to several fluids and simultaneously to mix them, one of the fluids being miscible in the other fluid (s).
  • the invention finds in particular its application for fluids which are present under an essentially gaseous form and which are miscible or soluble in a fluid essentially liquid.
  • the present invention allows in particular, through the same machine, both the compression of an acid gas and formation water from an oil deposit, and mixing them in an essentially liquid form, acid gases being particularly soluble in formation water.
  • the resulting liquid mixture can be sent to an area storage or reinjected into a production well or aquifer.
  • the invention applies in particular to the treatment of a natural gas containing gases acids, carbon dioxide and / or hydrogen sulfide which are generally at least in part separated from natural gas. When present in small quantities, these acid gases separated can be released directly or after incineration in the atmosphere.
  • the standards to fight against pollution being more and more restrictive, these discharges in the atmosphere are less and less tolerated, and it becomes necessary to find other solutions easy to implement, respecting these new standards, and this with minimum investment.
  • One solution is to inject the acid gases individually into a deposit in using centrifugal or reciprocating compressors.
  • Another way to do this is to inject the acid gases with another fluid, for example formation water available at the level of the deposit.
  • This solution presents in particular as an advantage of simultaneously eliminating the acid gases and the formation water considered to be two pollutants.
  • the fluid from the production wells is separated into an oil phase which is recovered, an aqueous phase and a gaseous phase circulating respectively in conduits 1 and 2.
  • the aqueous phase is stored in atmospheric tanks 3, while the phase gas containing the acid gases is treated in a unit 4 with amines so as to obtain a gas, without acid components, and a gas with a high content of acid components to a pressure close to atmospheric pressure.
  • the gas fraction rich in acid gases is sent to a compressor 5, and the formation water is sent to a pump monophasic 6.
  • the formation gas and water having separately acquired a level of given pressure are then mixed in a mixer 7.
  • the mixing is carried out at a high pressure to facilitate the dissolution of gases in water, the amount of acid gases dissolved increasing with the pressure level.
  • This mixture is in a form liquid, is then reinjected for example into an underground tank using a pump monophasic 8 adapted to pump liquid monophasic fluids.
  • a pump monophasic 8 adapted to pump liquid monophasic fluids.
  • the gas Upstream of the high pressure pump the gas must not only be completely dissolved in the liquid, but the NPSHA (Available height in relation to the vapor pressure of the gas) must be greater than NPSHR (Height required at the inlet of the pump in relation to the supply voltage steam).
  • the present invention proposes to remedy the drawbacks of the prior art, by adopting a new approach which in particular makes it possible to minimize the number commonly used equipment.
  • a two-phase compression device capable of communicate energy to several fluids, at least one of the fluids being soluble in at at least one other fluid, and also to simultaneously mix the fluids, so as to obtain at the outlet a fluid which is essentially or completely liquid.
  • the present invention relates to a two-phase compression device allowing energy to be communicated to several fluids, such as one essentially liquid and an essentially gaseous fluid, at least one of the fluids being miscible in at at least one other fluid, and making it possible to mix said fluids.
  • It is characterized in that it comprises at least one compression element two-phase suitable for mixing essentially liquid fluids and essentially gaseous and to communicate to each of them a given energy value, the mixture from said two-phase compression element being in liquid form or essentially liquid and at a given pressure level.
  • the two-phase compression device can include at least one input stage and / or at least one output stage, each of said stages comprising hydraulics adapted to pumping an essentially liquid fluid.
  • the compression device can be formed of at least two sections, the first section for obtaining a mixture Mi having a pressure level Pi and the second section making it possible to obtain from the mixture Mi a mixture Ms having a level of pressure Ps, a mixture evacuation pipe Mi and a fluid introduction pipe Mi in the second section, said two sections being separated by a sealing device and the hydraulics of the two sections being mounted "back to back" so as to minimize axial thrust forces.
  • the two-phase compression device may include a device arranged between two compression stages and suitable for at least mixing the fluid essentially liquid and essentially gaseous fluid, for example in the case where these two fluids are introduced on stages of different rank.
  • the compression device can also include a processing unit and / or mixing of fluids, said treatment and / or mixing unit being connected to the compression by fluid inlet and outlet pipes, before treatment and after treatment.
  • the processing unit includes a means of refrigeration inserted in the processing unit.
  • the processing unit may include a cooling circuit of at least one part of the two-phase mixture taken from the two-phase compression device and / or part of the liquid phase from the two-phase compression device.
  • the compression device includes, for example, means for determining parameters related to the fluid and / or its operation, means of calculation and data processing capable of modifying the speed of rotation of the two-phase compression and / or act on the efficiency of the refrigeration means and / or on the flow rate of the recycled fluid in the cooling circuit.
  • the invention also relates to a method used to communicate energy to several fluids, at least one of the fluids being miscible in at least one other fluid, and simultaneously carrying out the mixture of fluids, such as an essentially gaseous fluid and a essentially liquid fluid.
  • the essentially gaseous fluid and the fluid are sent essentially liquid at least to the same two-phase compression device adapted to communicate energy at least to each of the two fluids and, to carry out the mixing of the two fluids, to obtain an essentially liquid fluid at a pressure given.
  • the method may include a step of removing at least part of the mixing of fluids after passage through a number of stages m of the two-phase compression, a step of processing the removed part and a step of return after treatment to a stage of the compression device of rank higher than the row of the sampling stage.
  • the invention is particularly applicable for the simultaneous transfer of acid gases and formation water to an underground reservoir.
  • the present invention offers compared to the prior art as an advantage of simplify the devices necessary to achieve compression and mixing of several fluids, for example at least one essentially gaseous fluid and at least one fluid essentially liquid miscible with each other.
  • the method according to the invention can be applied in all fields where it is sought to communicate energy simultaneously to a gas phase and a liquid phase, the gas phase being soluble in the liquid phase, the pressure values of the phases may be different.
  • the example given below by way of illustration and in no way limitative relates to the transport of acid gases and water of formation, the acid gases being soluble in formation water.
  • the mixing and dissolution of the acid gases in the formation water is based on physical phenomena which will be recalled below.
  • the dissolution will be carried out gradually taking into account the time of diffusion between phases, and the approach to an equilibrium condition can, therefore, be activated by an increase in the contact surfaces between the acid gases and the water of training.
  • Figure 2 shows schematically an example of implementation of the adapted method when the formation water and the acid gases have a pressure level close to the inlet of the device two-phase compression, the difference between the pressure levels being sufficient low to allow their introduction into the same floor.
  • the pumping device 10 is connected by the conduit 11 to the device 12 which receives the acid gases from a source referenced 13 through line 14, and through line 16 water from training stored in a tank referenced 15.
  • the acid gases can come from a treatment unit such as that described in the applicant's patents FR 2,605,241 and FR 2,616,087. At the output of these units of treatment, the acid gases have a pressure which can vary between 0.5 and 1.5 MPa and a temperature between -30 ° C and -10 ° C. In the case of amine processing units, the pressure value is of the order of 0.1 MPa and the temperature between 10 and 40 ° C.
  • the device 12 is chosen to favor the at least partial dispersion of the gases acids in the form of bubbles in the liquid or at least partial of the liquid in the form droplets in the gas.
  • the two-phase pumping or compression device 10 is provided with at least an evacuation duct 17 for the essentially liquid mixture.
  • the pressure level of this mixing at the outlet of the compression device is sufficient to ensure its transfer to an aquifer or an underground reservoir referenced 18.
  • the initial pressure value of the acid gases and the formation water can be measured by pressure sensors 19a, 19b disposed respectively at the outlet the processing unit 13 and the storage tank 15.
  • the two-phase compression device 10 comprises at least one stage of pumping comprising an impeller and a rectifier referenced li and Ri in the figures following.
  • the hydraulics of the impellers and rectifiers have specific characteristics, suitable for communicating energy to a two-phase fluid comprising at least one gaseous phase and at least one liquid phase, the ratio of volume flows of these two phases which can vary from 0 to infinity, such as impellers helical-axial.
  • the layout and characteristics of these hydraulics are similar to those described in one of the applicant's patents FR 2,333,139, FR 2,471,501 and FR 2,665,224. Such a device also makes it possible to dissolve and mix the acid gases in the formation water to obtain an essentially liquid mixture or liquid.
  • the number of compression stages used will depend on the pressure level required output.
  • the two-phase compression device will be designed using impellers of an axial length shorter than that of the impellers usually used in the aforementioned applicant's devices as well as a greater number impellers in order to maintain the same overall performance (same pressure outlet for the same total axial length).
  • impellers of an axial length shorter than that of the impellers usually used in the aforementioned applicant's devices as well as a greater number impellers in order to maintain the same overall performance (same pressure outlet for the same total axial length).
  • we will increase the number of times the gas pockets and macro bubbles that have formed inside an impeller can be reduced at the interface between organs rotating and static (impeller-rectifier and rectifier-impeller), in the form of micro-bubbles, with a diameter varying between a micron and a millimeter.
  • FIG. 3 shows diagrammatically an example of a compression device 10 which comprises, in the present case, 4 compression stages E 1 to E 4 mounted in line.
  • Each stage Ei of the system comprises an impeller li, followed by a rectifier Ri, the impeller li being integral with the rotation shaft 30, the index i denoting the rank of the stage of two-phase compression, the stages being arranged in a casing 31.
  • the two-phase compression device 10 has an opening 33 communicating with the fluid introduction conduit 11 and an inlet part 34 disposed upstream of the first impeller I1.
  • the two-phase compression device may include a adapter, such as a volute 35, for transforming kinetic energy into potential energy to minimize energy losses at the outlet, connected to the conduit discharge 17 of the essentially liquid mixture.
  • a adapter such as a volute 35
  • the mixture thus produced M1 passes in the compression stages of higher rank in order to increase the pressure and intensify the mixture of acid gases in the formation water until reaching the total dissolution of acid gases.
  • the Ms mixture formed by the acid gases dissolved in the formation water is evacuated by a conduit 17 in an essentially liquid or liquid form at a pressure Ps and a temperature Ts.
  • the last or more pumping stages of the compression can include hydraulics suitable for single-phase fluids, such as radial impellers well known to those skilled in the art. Examples adaptations of the output and input stages of the compression device are shown by way of illustration and in no way limitative in FIGS. 4A and 4B.
  • FIGS. 4A and 4B schematize variants of the compression device where the characteristics of the input and / or output pumping stages are optimized and chosen according to the nature of the fluids.
  • the acid gases have a pressure significantly higher than water formation
  • the acid gases are introduced through a conduit 43 at a pressure level compression intermediate in the two-phase compression device 10, the device 12 no longer used. It then becomes advantageous to use, for the first stages of compression 40, adapted hydraulics (impellers, referenced 41 and rectifiers 42) when pumping a liquid, for example, radial wheels, as shown schematically in Figure 4A.
  • the outside diameter of the radial impellers, Dr can be greater than the outside diameter of the helical-axial impellers, Dm, in order to reduce the minimum number of single-phase stages.
  • Figure 5 shows schematically a variant of the two-phase compression device composed of two sections 50, 51 where the compression stages are mounted "back to back", the two sections being separated by a sealing device 52, for example, a sealing at labyrinths.
  • the mixture flows in section 30 in a direction opposite to that from section 31.
  • the section 50 comprises several stages of compression Ei (li, Ri) followed by a volute 54.
  • the mixture composed of acid gases and the formation water is sent to the first section 50 where it acquires a level of intermediate pressure Pi and where the at least partial dissolution of the acid gases is carried out.
  • the partial mixture Mi is discharged through a conduit 55 located downstream of a volute 54.
  • This Mi mixture from the first section 50 is then sent to the second section 51 of the compression device into which it is introduced by a conduit 56.
  • the mixture compressed through the compression stages of the second section 51 is evacuated by a volute 57 then a conduit 58 corresponding to the high pressure outlet of the compression device. Going into the second section of the device compression, the pressure of the mixture Mi rises to a level Ps sufficient to achieve almost complete dissolution of the acid gases in the formation water until a essentially liquid form Mj.
  • Such an arrangement has in particular the advantage of minimizing the efforts axial thrust acting on the shaft, in the case of high pressure applications.
  • FIG. 6 represents an arrangement adapted to the case where the formation water is at a pressure level Pe, lower than the pressure level Pg of the acid gases.
  • Water training is introduced by a low pressure input 60 into the first pumping stage while the acid gases are sent through a conduit 62 connected to a corresponding input 61 to a compression stage located downstream from the inlet stage.
  • the gases are introduced from preferably at the rectifier Ri of the pumping stage of rank i at the outlet of which the formation water has a pressure level Pe 'close to the inlet pressure level acid gases Pg.
  • FIG. 7 details an example of a device 70 for introducing acid gases arranged downstream of the inlet 61 having both the functions of facilitating the mixing of the gas and the liquid and channel the mixture towards the inlet of an impeller adapted to the compression of the two-phase mixture.
  • the device 70 is arranged between the impeller li of the pumping stage of row i consisting for example of a radial wheel and the two-phase compression stage E2 consisting a helical-axial wheel.
  • the device 70 similar to a stator stage separating two radial wheels and known to those skilled in the art, essentially comprises a diffuser 71 for the transformation of kinetic energy into potential energy and a return channel 72.
  • It also includes a part 73 comprising a passage 74 communicating with the conduit 62 for the introduction of acid gases and several channels 75, of very small diameter, drilled in the part 73. These channels open into the return channel 72 and can be regularly arranged in the radial plane.
  • the part 73 is supported directly by the casing 31.
  • the part 31 as well as all the internal parts of the device 70 constitute a cartridge mounted inside a cylindrical casing, not shown in the figure.
  • Such a construction method is known to those skilled in the art.
  • Acid gases are introduced into the two-phase compression device successively at the level of the external conduit 62, in the internal conduit 74 and finally in the return channel 72 through the channels 75.
  • the device allows an intimate mixture of gas and liquid, increasing efficiency with the number of channels.
  • FIG. 8 shows in detail an example of arrangement of the casing 31 of the compression 10 communicating with an auxiliary introduction conduit 80 for a fluid monophasic.
  • An opening 81 is made for example at the level of the rectifier Rj of the stage of row j of the compression device. Downstream of the opening 81, a device 82 pierced with channels 83 of very small diameter makes it possible to introduce the monophasic fluid and to diffuse it in the two-phase mixture from the impeller Ij.
  • the new mixture formed from the mixture two-phase and single-phase external fluid from the rectifier Rj is directed to the impeller Ij + 1 of the row compression stage (j + 1).
  • the impeller diameters of rows Ij and Ij + 1 are adapted to the change in volume flow rate due to the introduction of the fluid additional through conduit 80.
  • the treatment will consist, for example, of stabilizing the dissolution or of cooling the acid-water gas mixture, the temperature of which increased during the compression of the even makes the compression of the mixture, but also the exothermic nature of the dissolution reaction.
  • Other treatments and their associated devices may be imagined without departing from the scope of the invention.
  • Figure 9 shows schematically an exemplary embodiment where the compression device 10 of Figure 5 is associated with a processing unit 90 arranged in series.
  • the mixture Mi coming from the medium pressure outlet 55 is sent through a pipe 91 to the processing unit 90. Downstream of the processing unit 90, the mixture Mi is then sent via a conduit 92 to the medium pressure inlet 56 of the second part of the compression device.
  • the residence times to be observed will possibly be defined from tests preliminary performed under real operating conditions. It will thus be possible to predict the dissolution differences between the transient and equilibrium conditions, these differences can be expressed in time or in gas flow.
  • the treatment / cooling unit may be designed so as to cool the two-phase mixture and / or part of the liquid phase taken from this mixture or still the liquid from the two-phase compression device or part of this liquid.
  • FIGS. 10A and 10B schematize two exemplary embodiments of the treatment device comprising means for withdrawing and recycling the liquid.
  • the processing unit 90 comprises a static type mixer or dynamic 93 arranged on the duct 91, a pressure drop adjustment valve 94, a means 95 for extracting at least part of the liquid phase contained in the mixture biphasic circulating in the conduit 91, a conduit 96 and a pump 97 making it possible to send the liquid fraction extracted to be cooled, to a cooling device such as an exchanger 98 at the outlet of which the cooled liquid fraction is recycled via a line 99 to the mixer static 93 to be mixed with the fluid flowing in the conduit 91.
  • a cooling device such as an exchanger 98 at the outlet of which the cooled liquid fraction is recycled via a line 99 to the mixer static 93 to be mixed with the fluid flowing in the conduit 91.
  • the extraction means 95 are chosen to carry out the removal of at least one part of the liquid phase at a low point in the pipe.
  • the extraction means 95 will allow extracting a fraction of the liquid phase at the periphery of the pipe 91.
  • the pump 97 can be a single-phase pump of low head.
  • FIG. 10B schematizes another alternative embodiment where the removal of the liquid phase to be cooled is produced at high pressure on the liquid fluid coming from the compression.
  • the processing unit comprises the static or dynamic mixer 93 placed on the conduit 91, means 100 for extracting a fraction of liquid from the device compression and which are connected to the heat exchanger 98 by a conduit 101, a valve 102 allowing the regulation of the flow rate of liquid cooled in the heat exchanger 98, the cooled liquid being sent through a pipe 103 to the static mixer 93.
  • Recirculation of the cooled liquid to the pipe 91 is allowed during operation normal without the help of an additional pump due to the positive pressure difference between conduit 58 and conduit 55.
  • the processing unit 90 can be fitted with other conduits 91b allowing the addition of a fluid with the mixture Mi, for example of the additives mentioned above.
  • FIG. 11 schematizes an example of generalization of the use of a two-phase compression device comprising two machine bodies CM 1 and CM 2 , forming the two-phase compression device and which are connected together by a conduit 123, suitable for example when there are several sources of fluids at different pressure levels.
  • the second body CM 2 is associated with a processing device 116 according to an arrangement similar to that of FIG. 9.
  • the fluid is for example in a multiphase form.
  • the compression device is supplied by three sources of acid gases referenced respectively 110, 111 and 112 at pressures PG 3 , PG 2 and PG 1 , temperatures TG 3 , TG 2 and TG 1 and with for example PG 1 ⁇ PG 2 ⁇ PG 3 .
  • the acid gases G 1 (112) and G2 (111) are introduced into the first body CM 1 through conduits 113, 114 corresponding to different compression stages of the body, the ranks of which are determined according to the values of the pressures PG 1 and PG 2 .
  • the acid gases G 3 (110) are sent via a pipe 115 to the treatment device 116.
  • the liquid L 1, (117), is sent through a conduit 120 into the first body of CM 1 .
  • the conduit 120 is directly connected to the first stage of the body CM 1 while the acid gases G 1 and G 2 are sent to pumping stages of higher rank according to a diagram similar to that of Figure 6.
  • the liquid contained in the source L 2 (118) is sent directly to the second body CM 2 by a conduit 121, for example at its inlet stage.
  • the mixture of fluids and their pressure gain is effected, for example, as follows:
  • the pressure level PL 1 of the liquid L 1 increases until it reaches a pressure level substantially identical to that of the gas G 1 , PG 1 .
  • the acid gases G 1 are dissolved in the liquid L 1 at least partially, the mixture M obtained being at a pressure level P.
  • the acid gases G 2 having a pressure PG 2 are introduced into the stage at the outlet from which the mixture M has a substantially identical pressure level.
  • the mixture M ′ coming from the body CM 1 is introduced with the liquid L 2 having a pressure P L2 , through a conduit 123 in the second body CM 2 .
  • the mixture Mi which is at an intermediate pressure level Pi is sent through a conduit 124 to the treatment device 116 in which it is mixed at least in part with the gas G 3 .
  • the mixture M'i from the treatment device is then sent through a conduit 125 in the second part of the body CM 2 , passes through the different compression stages.
  • an essentially liquid fluid Ms is discharged at a pressure level Ps via the outlet 126, for example in an aquifer.
  • FIG. 12 a diagram of the manometric height is shown diagrammatically (in ordered) - output volume (on the abscissa) - parameterized in speed (N), performance of the two-phase compression device. On this diagram have been represented a desired operating point C, as well as two points, A and B, representing two cases of dysfunction.
  • the operating point is outside the range of desired operation, it will be possible to act on the rotation speed if the device has a variable speed drive, and possibly on the efficiency of the refrigeration or on the flow of recycled liquid depending on the design of the compression.
  • the operating point B diagrams the reverse case.
  • the compression device will preferably be equipped with a speed drive variable.
  • the speed regulation can be done automatically or manually.
  • the reduction in the number of devices is highly dependent on the application cases, mainly, the GLR and the pressure at the inlet of the compression device. Pressure inlet is approximately equal to the pressure downstream of the deacidification unit.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

La presente invention a pour objet un dispositif et un procédé de compression diphasique permettant de communiquer de l'énergie à plusieurs fluides, tel qu'un fluide essentiellement liquide et un fluide essentiellement gazeux, au moins un des fluides étant miscible dans au moins un autre fluide, et permettant d'effectuer le mélange desdits fluides. Le dispositif comporte un élément de compression diphasique (10) qui est adapté à réaliser le mélange des fluides issues des sources (13,15) par les conduits (14,16) et à communiquer à chacun d'eux une valeur d'énergie donnée pour obtenir en sortie (17) un mélange sous une forme essentiellement liquide à un niveau de pression Ps donnée. <IMAGE>

Description

La présente invention concerne un procédé et un système pour communiquer de l'énergie à plusieurs fluides et simultanément pour réaliser leur mélange, un des fluides étant miscible dans le ou les autres fluides.
L'invention trouve notamment son application pour des fluides qui se présentent sous une forme essentiellement gazeuse et qui sont miscibles ou solubles dans un fluide essentiellement liquide.
La présente invention permet notamment, au travers d'une même machine, à la fois la compression d'un gaz acide et d'une eau de formation provenant d'un gisement pétrolier, et leur mélange sous une forme essentiellement liquide, les gaz acides étant particulièrement solubles dans l'eau de formation. Le mélange liquide obtenu peut être envoyé vers une zone de stockage ou encore réinjecté dans un puits de production ou une nappe aquifère.
L'invention s'applique en particulier au traitement d'un gaz naturel contenant des gaz acides, dioxyde de carbone et/ou hydrogène sulfuré qui sont généralement au moins en partie séparés du gaz naturel. Lorsqu'ils se présentent en faible quantité, ces gaz acides séparés peuvent être rejetés directement ou après incinération dans l'atmosphère. Toutefois, les normes pour lutter contre la pollution étant de plus en plus contraignantes, ces rejets dans l'atmosphère sont de moins en moins tolérés, et il devient nécessaire de trouver d'autres solutions faciles à mettre en oeuvre, respectant ces nouvelles normes, et ceci avec un minimum d'investissements.
L'art antérieur décrit diverses solutions pour éliminer les gaz acides.
Une solution consiste à injecter individuellement les gaz acides dans un gisement en utilisant des compresseurs centrifuges ou alternatifs.
Une autre manière de procéder consiste à injecter les gaz acides avec un autre fluide, par exemple de l'eau de formation disponible au niveau du gisement. Cette solution présente notamment comme avantage d'éliminer simultanément les gaz acides et l'eau de formation considérés comme deux polluants.
Le procédé de réinjection d'eau de formation et de gaz acides de la société Pan Canadian Limited, dont les étapes essentielles sont résumées ci-après et décrites à la figure 1, est basé sur ce principe.
Le fluide issu des puits de production, est séparé en une phase huile qui est récupérée, une phase aqueuse et une phase gazeuse circulant respectivement dans des conduits 1 et 2. La phase aqueuse est stockée dans des réservoirs atmosphériques 3, alors que la phase gazeuse comportant les gaz acides est traitée dans une unité 4 aux amines de manière à obtenir un gaz, sans composants acides, et un gaz à forte teneur en composants acides à une pression voisine de la pression atmosphérique. La fraction gazeuse riche en gaz acides est envoyée vers un compresseur 5, et l'eau de formation est envoyée vers une pompe monophasique 6. Le gaz et l'eau de formation ayant séparément acquis un niveau de pression donné, sont ensuite mélangés dans un mélangeur 7. Le mélange est réalisé à une pression élevée pour faciliter la dissolution des gaz dans l'eau, la quantité de gaz acides dissoute augmentant avec le niveau de pression. Ce mélange se présentant sous une forme liquide, est alors réinjecté par exemple dans un réservoir souterrain à l'aide d'une pompe monophasique 8 adaptée à pomper des fluides monophasiques liquides. En amont de la pompe haute pression le gaz doit être non seulement entièrement dissous dans le liquide, mais le NPSHA (Hauteur disponible par rapport à la tension de vapeur du gaz) doit être supérieur au NPSHR (Hauteur requise à l'entrée de la pompe par rapport à la tension de vapeur).
Dans le cas d'applications à pression de réinjection élevée et pour des fluides de production à forte teneur en gaz, le mélange d'eau et de gaz est effectué par étapes successives et séparées de pompage, de compression et de mélange.
Ce procédé nécessite un équipement qui présente l'inconvénient d'être lourd et coûteux, utilisant à la fois des compresseurs et des pompes monophasiques, ainsi que de nombreux échangeurs de chaleur. De plus, la dissolution des gaz acides dans l'eau n'étant pas instantanée, il est nécessaire d'utiliser des mélangeurs statiques ou dynamiques afin d'obtenir une parfaite dissolution du gaz dans le liquide en amont des pompes monophasiques augmentant encore la complexité des matériels, le coût et l'encombrement d'un tel système.
La présente invention propose de remédier aux inconvénients de l'art antérieur, en adoptant une nouvelle approche qui permet notamment de minimiser le nombre d'équipements habituellement utilisés.
Selon l'invention on utilise un dispositif de compression diphasique capable de communiquer de l'énergie à plusieurs fluides, au moins un des fluides étant soluble dans au moins un autre fluide, et aussi de réaliser simultanément le mélange des fluides, de façon à obtenir en sortie un fluide se présentant sous une forme essentiellement ou complètement liquide.
La présente invention a pour objet un dispositif de compression diphasique permettant de communiquer de l'énergie à plusieurs fluides, tel qu'un fluide essentiellement liquide et un fluide essentiellement gazeux, au moins un des fluides étant miscible dans au moins un autre fluide, et permettant d'effectuer le mélange desdits fluides.
Il est caractérisé en ce qu'il comporte au moins un élément de compression diphasique adapté à réaliser le mélange des fluides essentiellement liquides et essentiellement gazeux et à communiquer à chacun d'eux une valeur d'énergie donnée, le mélange issu dudit élément de compression diphasique étant sous une forme liquide ou essentiellement liquide et à un niveau de pression donné.
Selon un mode de réalisation le dispositif de compression diphasique peut comporter au moins un étage d'entrée et/ou au moins un étage de sortie, chacun desdits étages comprenant des hydrauliques adaptées au pompage d'un fluide essentiellement liquide.
Le dispositif de compression peut être formé d'au moins deux sections, la première section permettant d'obtenir un mélange Mi ayant un niveau de pression Pi et la seconde section permettant d'obtenir à partir du mélange Mi un mélange Ms ayant un niveau de pression Ps, un conduit d'évacuation du mélange Mi et un conduit d'introduction du fluide Mi dans la seconde section, lesdites deux sections étant séparées par un dispositif d'étanchéité et les hydrauliques des deux sections étant montées « dos à dos » de manière à minimiser les efforts de poussée axiale.
Le dispositif de compression diphasique peut comporter un dispositif disposé entre deux étages de compression et adapté pour réaliser au moins le mélange du fluide essentiellement liquide et du fluide essentiellement gazeux, par exemple dans le cas où ces deux fluides sont introduits à des étages de rang différents.
Le dispositif de compression peut aussi comprendre une unité de traitement et/ou de mélange des fluides, ladite unité de traitement et/ou de mélange étant reliée au dispositif de compression par des conduits d'arrivée et d'évacuation des fluides, avant traitement et après traitement.
Dans certains cas de réalisation, l'unité de traitement comporte un moyen de réfrigération inséré dans l'unité de traitement.
L'unité de traitement peut comporter un circuit de refroidissement d'au moins une partie du mélange diphasique prélevé à partir du dispositif de compression diphasique et/ou d'une partie de la phase liquide issue du dispositif de compression diphasique.
Le dispositif de compression comporte par exemple des moyens pour déterminer des paramètres liés au fluide et/ou à son fonctionnement, des moyens de calcul et de traitement de données capables de modifier la vitesse de rotation du dispositif de compression diphasique et/ou d'agir sur l'efficacité du moyen de réfrigération et/ou sur le débit du fluide recyclé au niveau du circuit de refroidissement.
L'invention a aussi pour objet un procédé utilisé pour communiquer de l'énergie à plusieurs fluides, au moins un des fluides étant miscible dans au moins un autre fluide, et simultanément à réaliser le mélange de fluides, tel qu'un fluide essentiellement gazeux et un fluide essentiellement liquide.
Il est caractérisé en ce que l'on envoie le fluide essentiellement gazeux et le fluide essentiellement liquide au moins vers un même dispositif de compression diphasique adapté à communiquer de l'énergie au moins à chacun des deux fluides et, à réaliser le mélange des deux fluides, pour obtenir en sortie un fluide essentiellement liquide à une pression donnée.
Selon le procédé on détermine par exemple la différence de pression entre les fluides à mélanger avant leur introduction dans le dispositif de compression diphasique, et
  • si la valeur de cette différence est inférieure à une valeur fixée, on envoie les deux fluides à un même étage de compression diphasique du dispositif de compression,
  • si la valeur de cette différence est supérieure à une valeur fixée, on envoie le fluide de plus basse pression à un étage du dispositif de compression de rang i et le fluide de plus haute pression à un étage de rang supérieur i+n, le nombre n étant déterminé en fonction de la différence de pression,
Le procédé peut comporter une étape de prélèvement d'au moins une partie du mélange des fluides après passage dans un nombre d'étages m du dispositif de compression diphasique, une étape de traitement de la partie prélevée et une étape de renvoi après traitement vers un étage du dispositif de compression de rang supérieur au rang de l'étage de prélèvement.
Il est aussi possible de réfrigérer le fluide et/ou un fluide tel qu'une partie du mélange diphasique prélevé ou au moins une partie de la phase liquide extraite du mélange diphasique prélevé ou au moins une partie du liquide issue du dispositif de compression diphasique, le fluide réfrigéré pouvant éventuellement être recyclé.
Il est aussi possible de réguler la vitesse de rotation du dispositif de compression et/ou de contrôler l'efficacité de l'étape de réfrigération et/ou de contrôler le débit de fluide recyclé.
L'invention s'applique particulièrement bien pour le transfert simultané de gaz acides et d'eau de formation vers un réservoir souterrain.
Ainsi la présente invention offre par rapport à l'art antérieur comme avantage de simplifier les dispositifs nécessaires pour réaliser la compression et le mélange de plusieurs fluides, par exemple au moins un fluide essentiellement gazeux et au moins un fluide essentiellement liquide miscibles l'un dans l'autre.
Le procédé selon l'invention peut s'appliquer dans tous les domaines où l'on cherche à communiquer de l'énergie simultanément à une phase gazeuse et à une phase liquide, la phase gazeuse étant soluble dans la phase liquide, les valeurs de pression des phases pouvant être différentes.
D'autres avantages et caractéristiques de l'invention apparaítront mieux à la lecture de la description donnée ci-après à titre d'exemples de réalisation, dans le cadre d'applications nullement limitatives, au transfert de gaz acides et d'eau de formation, vers un réservoir souterrain ou une nappe aquifère, en se référant aux dessins annexés où :
  • la figure 1 schématise le procédé de la société Pan Canadian selon l'art antérieur,
  • la figure 2 montre un dispositif de compression diphasique adapté pour mettre en oeuvre le procédé selon l'invention,
  • la figure 3 schématise un exemple d'agencement d'étages de compression diphasique,
  • les figures 4A et 4B représentent deux variantes de réalisation pour les étages d'entrée et de sortie du dispositif de pompage monophasique et de compression diphasique combinés,
  • la figure 5 montre une autre variante pour le système de la figure 3,
  • les figures 6, 7 et 8 schématisent une variante du procédé adaptée à des fluides de différentes pressions et leur mode d'introduction dans le dispositif de compression diphasique,
  • la figure 9 schématise une variante de réalisation où il est possible d'effectuer un traitement du mélange des deux fluides au cours de l'opération de compression,
  • les figures 10A et 10B représentent deux dispositifs de recyclage du liquide au travers de l'unité de réfrigération,
  • la figure 11 représente une généralisation du principe selon l'invention appliqué pour plusieurs fluides liquides et gazeux présentant des valeurs de pression différentes avant l'entrée du dispositif, et
  • la figure 12 représente un schéma possible de régulation du dispositif de compression.
De manière à mieux faire comprendre le dispositif selon l'invention, l'exemple donné ci-après à titre illustratif et nullement limitatif concerne le transport de gaz acides et d'une eau de formation, les gaz acides étant solubles dans l'eau de formation.
Le mélange et la dissolution des gaz acides dans l'eau de formation repose sur des phénomènes physiques que l'on va rappeler ci-après.
Dans les conditions d'équilibre, la dissolution d'un gaz acide dans de l'eau, par exemple de l'eau de formation, varie avec la pression et la température. Le taux de dissolution exprimé en unités de volume de gaz par unité de volume de liquide dans les conditions normales de pression et de température s'accroít respectivement lorsque la pression augmente et lorsque la température diminue.
La dissolution va s'effectuer progressivement en tenant compte du temps de diffusion entre les phases, et l'approche vers une condition d'équilibre peut, par conséquent, être activée par une augmentation des surfaces de contact entre les gaz acides et l'eau de formation.
Dans le cas d'une compression diphasique à l'aide d'une pompe de type rotodynamique, l'atteinte des conditions d'équilibre sera facilitée par la formation de bulles ayant de faibles dimensions. Ces bulles se présentent à la jonction entre les parties fixes et les parties tournantes de la pompe, lieu où s'exercent de grandes forces de cisaillement.
Cette approche vers l'équilibre est toutefois ralentie par la coalescence des bulles pouvant apparaítre au niveau des impulseurs et/ou des redresseurs du dispositif de compression diphasique. Pour des performances sensiblement égales, (hauteur manométrique et longueur axiale), on aura avantage à augmenter le nombre des cellules de compression (impulseurs et/ou redresseurs) et à diminuer leur longueur axiale, de manière à accroítre le nombre de fois où la taille des bulles peut être réduite.
La figure 2 schématise un exemple de mise en oeuvre du procédé adapté lorsque l'eau de formation et les gaz acides ont un niveau de pression voisin en entrée du dispositif de compression diphasique, la différence entre les niveaux de pression étant suffisamment faible pour permettre leur introduction dans un même étage.
Le dispositif de pompage 10 est relié par le conduit 11 au dispositif 12 qui reçoit les gaz acides issus d'une source référencée 13 par le conduit 14, et par le conduit 16 l'eau de formation stockée dans un réservoir référencé 15.
Les gaz acides peuvent provenir d'une unité de traitement telle que celle décrite dans les brevets du demandeur FR 2.605.241 et FR 2.616.087. En sortie de ces unités de traitement, les gaz acides possèdent une pression pouvant varier entre 0,5 et 1,5 MPa et une température comprise entre -30°C et -10°C. Dans le cas d'unités de traitement aux amines, la valeur de pression est de l'ordre de 0,1 MPa et la température comprise entre 10 et 40 °C.
Le dispositif 12 est choisi pour favoriser la dispersion au moins partielle des gaz acides sous la forme de bulles dans le liquide ou au moins partielle du liquide sous la forme de gouttelettes dans le gaz .
Le dispositif de pompage ou de compression diphasique 10 est pourvu d'au moins un conduit d'évacuation 17 du mélange essentiellement liquide. Le niveau de pression de ce mélange en sortie du dispositif de compression est suffisant pour assurer son transfert vers une nappe aquifère ou un réservoir souterrain référencé 18.
La valeur de pression initiale que possèdent les gaz acides et l'eau de formation, peut être mesurée par des capteurs de pression 19a, 19b disposés respectivement en sortie de l'unité de traitement 13 et du réservoir de stockage 15.
Le dispositif de compression diphasique 10 comporte au moins un étage de pompage comprenant un impulseur et un redresseur référencés li et Ri sur les figures suivantes. Les hydrauliques des impulseurs et des redresseurs présentent des caractéristiques spécifiques, adaptées pour communiquer de l'énergie à un fluide diphasique comportant au moins une phase gazeuse et au moins une phase liquide, le rapport des débits volumiques de ces deux phases pouvant varier de 0 à l'infini, tels que des impulseurs hélico-axiaux. L'agencement et les caractéristiques de ces hydrauliques sont semblables à celles décrites dans l'un des brevets du demandeur FR 2.333.139, FR 2.471.501 et FR 2.665.224. Un tel dispositif permet aussi de dissoudre et mélanger les gaz acides dans l'eau de formation pour obtenir un mélange essentiellement liquide ou liquide.
Le nombre d'étages de compression utilisé sera fonction du niveau de pression requis en sortie.
De préférence, on concevra le dispositif de compression diphasique en utilisant des impulseurs d'une longueur axiale inférieure à celle des impulseurs habituellement utilisés dans les dispositifs du demandeur prémentionnés ainsi qu'un plus grand nombre d'impulseurs de façon à conserver une même performance globale (même pression de sortie pour une même longueur axiale totale). Comme il a été expliqué ci-dessus, on augmentera ainsi le nombre de fois où les poches de gaz et les macro-bulles qui se sont formées à l'intérieur d'un impulseur peuvent être réduites, à l'interface entre les organes tournants et statiques (impulseur-redresseur et redresseur-impulseur), sous la forme de micro-bulles, d'un diamètre variant entre le micron et le millimètre.
Sans sortir du cadre de l'invention, il est possible pour des raisons technologiques de réaliser le dispositif de compression en plusieurs corps de machine de compression ou pompage, chacun de ces corps étant constitué d'une ou de plusieurs sections et chacune des sections comportant un ou plusieurs étages de compression ou de pompage. Un exemple d'un tel dispositif en plusieurs corps est donné à la figure 11.
La figure 3 schématise un exemple de dispositif de compression 10 qui comprend, dans le cas présent, 4 étages de compression E1 à E4 montés en ligne.
Chaque étage Ei du système comporte un impulseur li, suivi d'un redresseur Ri, l'impulseur li étant solidaire de l'arbre de rotation 30, l'indice i désignant le rang de l'étage de compression diphasique, les étages étant disposés dans un carter 31.
Le dispositif de compression diphasique 10 comporte une ouverture 33 communiquant avec le conduit d'introduction des fluides 11 et une pièce d'entrée 34 disposée en amont du premier impulseur I1.
Au niveau de sa sortie le dispositif de compression diphasique peut comporter une pièce adaptatrice, telle qu'une volute 35, permettant de transformer l'énergie cinétique en énergie potentielle pour minimiser les pertes d'énergie en sortie, reliée au conduit d'évacuation 17 du mélange essentiellement liquide.
Les gaz acides et l'eau de formation introduits à une pression P0 et une température T0 par l'ouverture 33, puis la pièce d'entrée 34, sont comprimés dans le premier étage (I1, R1). En sortie de cet étage, une partie des gaz acides se retrouve dissoute dans l'eau de formation dans une proportion proche de celle fixée par les conditions d'équilibre de dissolution à la sortie de l'étage E1, à une pression P1 et une température T1. Le mélange ainsi produit M1 passe dans les étages de compression de rang supérieur afin d'accroítre la pression et intensifier le mélange des gaz acides dans l'eau de formation jusqu'à atteindre la dissolution totale des gaz acides. En sortie du dispositif de compression diphasique, le mélange Ms formé par les gaz acides dissous dans l'eau de formation est évacué par un conduit 17 sous une forme essentiellement liquide ou liquide à une pression Ps et une température Ts.
Avantageusement le ou les derniers étages de pompage du dispositif de compression peuvent comprendre des hydrauliques adaptées à des fluides monophasiques, tels que des impulseurs radiaux bien connus de l'Homme du métier. Des exemples d'adaptations des étages de sortie et d'entrée du dispositif de compression sont représentés à titre illustratif et nullement limitatif sur les figures 4A et 4B.
Les figures 4A et 4B schématisent des variantes du dispositif de compression où les caractéristiques des étages de pompage en entrée et/ou en sortie sont optimisées et choisies selon la nature des fluides.
Dans le cas où les gaz acides présentent une pression nettement supérieure à l'eau de formation, les gaz acides sont introduits par un conduit 43 à un niveau de pression intermédiaire de compression dans le dispositif de compression diphasique 10, le dispositif 12 n'étant plus utilisé. Il devient alors avantageux d'utiliser, pour les premiers étages de compression 40, des hydrauliques (impulseurs, référencés 41 et redresseurs 42) adaptées au pompage d'un liquide, par exemple, des roues radiales, comme représenté schématiquement sur la figure 4A.
Dans le cas où les gaz acides sont entièrement dissous dans l'eau de formation en amont de la sortie du dispositif de compression diphasique 10, il est avantageux d'utiliser pour les derniers étages de compression, des hydrauliques (impulseurs, référencés 45 et redresseurs) adaptées au pompage d'un liquide, par exemple des roues radiales, comme représenté schématiquement sur la figure 4B.
Dans les deux cas, le diamètre extérieur des impulseurs radiaux, Dr, pourra être supérieur au diamètre extérieur des impulseurs hélico-axiaux, Dm, afin de réduire au minimum le nombre d'étages monophasiques.
L'adaptation mécanique-hydraulique entre un étage de pompage de type polyphasique et un étage de pompage de type monophasique (phase liquide ou gazeuse) sera réalisée comme il est montré par la figure 7 dans le cas d'un impulseur hélico-axial en aval d'un impulseur radial.
La figure 5 schématise une variante du dispositif de compression diphasique composé de deux sections 50, 51 où les étages de compression sont montés «dos à dos», les deux sections étant séparées par un dispositif d'étanchéité 52, par exemple, une étanchéité à labyrinthes. Le mélange circule dans la section 30 dans un sens opposé à celui de la section 31.
Selon cette variante de réalisation, la section 50 comporte plusieurs étages de compression Ei (li, Ri) suivis d'une volute 54. Le mélange composé des gaz acides et de l'eau de formation est envoyé dans la première section 50 où il acquiert un niveau de pression intermédiaire Pi et où la dissolution au moins partielle des gaz acides est réalisée. Le mélange partiel Mi est évacué par un conduit 55 situé en aval d'une volute 54.
Ce mélange Mi issu de la première section 50 est ensuite envoyé vers la seconde section 51 du dispositif de compression dans lequel il est introduit par un conduit 56. Le mélange comprimé au travers des étages de compression de la deuxième section 51 est évacué par une volute 57 puis un conduit 58 correspondant à la sortie haute pression du dispositif de compression. En passant dans la deuxième section du dispositif de compression, la pression du mélange Mi s'élève jusqu'à un niveau Ps suffisant pour réaliser la dissolution quasiment totale des gaz acides dans l'eau de formation jusqu'à obtenir une forme essentiellement liquide Mj.
Un tel agencement présente notamment comme avantage de minimiser les efforts de poussée axiale s'exerçant sur l'arbre, dans le cas d'applications à haute pression.
Lorsque les gaz acides et l'eau de formation possèdent en entrée du dispositif de compression diphasique des niveaux de pression assez éloignés, il est préférable de les introduire à des étages séparés du dispositif de compression, de façon à éviter des pertes en énergie. Les figures 6, 7 et 8 représentent différents exemples de réalisation.
La figure 6 représente un agencement adapté au cas où l'eau de formation est à un niveau de pression Pe, inférieur au niveau de pression Pg des gaz acides. L'eau de formation est introduite par une entrée basse pression 60 dans le premier étage de pompage alors que les gaz acides sont envoyés par un conduit 62 relié à une entrée 61 correspondant à un étage de compression situé en aval de l'étage d'entrée. Les gaz sont introduits de préférence au niveau du redresseur Ri de l'étage de pompage de rang i en sortie duquel l'eau de formation possède un niveau de pression Pe' voisin du niveau de pression d'entrée des gaz acides Pg.
La figure 7 détaille un exemple de dispositif 70 d'introduction des gaz acides disposé en aval de l'entrée 61 ayant à la fois pour fonctions de faciliter le mélange du gaz et du liquide et de canaliser le mélange en direction de l'entrée d'un impulseur adapté à la compression du mélange diphasique.
Le dispositif 70 est disposé entre l'impulseur li de l'étage de pompage de rang i constitué par exemple d'une roue radiale et l'étage de compression diphasique E2 constitué d'une roue hélico-axiale.
Le dispositif 70, semblable à un étage statorique séparant deux roues radiales et connu de l'Homme du métier, comprend essentiellement un diffuseur 71 pour la transformation de l'énergie cinétique en énergie potentielle et un canal de retour 72.
Il comporte aussi une partie 73 comprenant un passage 74 communiquant avec le conduit d'introduction 62 des gaz acides et plusieurs canaux 75, de très faible diamètre, percés dans la pièce 73. Ces canaux débouchent dans le canal de retour 72 et peuvent être disposés régulièrement dans le plan radial.
Dans le cas d'un corps à joint horizontal, la pièce 73 est supportée directement par le carter 31.
Dans le cas d'un corps à joint vertical, la pièce 31 ainsi que toutes les pièces internes du dispositif 70 constituent une cartouche montée à l'intérieur d'un carter cylindrique, non représenté sur la figure. Un tel mode de construction est connu de l'Homme du métier.
Les gaz acides sont introduits dans le dispositif de compression diphasique successivement au niveau du conduit extérieur 62, dans le conduit intérieur 74 et finalement dans le canal de retour 72 au travers des canaux 75.
Le dispositif permet un mélange intime du gaz et du liquide, l'efficacité augmentant avec le nombre des canaux.
Dans certains cas d'application il peut être avantageux d'introduire un fluide (gaz ou liquide) au niveau d'un étage quelconque de compression diphasique.
La figure 8 montre en détail un exemple d'agencement du carter 31 du dispositif de compression 10 communiquant avec un conduit d'introduction auxiliaire 80 d'un fluide monophasique.
Une ouverture 81 est pratiquée par exemple au niveau du redresseur Rj de l'étage de rang j du dispositif de compression. En aval de l'ouverture 81, un dispositif 82 percé de canaux 83 de très faible diamètre permet d'introduire le fluide monophasique et de le diffuser dans le mélange diphasique issu de l'impulseur Ij. Le nouveau mélange formé du mélange diphasique et du fluide extérieur monophasique issu du redresseur Rj est dirigé vers l'impulseur Ij+1 de l'étage de compression de rang (j+1). Les diamètres des impulseurs de rangs Ij et Ij+1 sont adaptés au changement de débit volumique dû à l'introduction du fluide supplémentaire au travers du conduit 80.
Il est aussi possible d'utiliser cet agencement pour introduire des additifs utilisés dans le domaine pétrolier tels que des additifs anticorrosion, anti-hydrates ou des tensioactifs.
Au cours de la compression diphasique, il peut s'avérer avantageux de réaliser un traitement du mélange gaz acides-eau de formation pour activer la dissolution.
Le traitement consistera par exemple à stabiliser la dissolution ou encore à refroidir le mélange gaz acide-eau dont la température s'est élevée au cours de la compression du fait même de la compression du mélange, mais également du caractère exothermique de la réaction de dissolution. D'autres traitements et leurs dispositifs associés peuvent être imaginés sans sortir du cadre de l'invention.
La figure 9 schématise un exemple de réalisation où le dispositif de compression 10 de la figure 5 est associé à une unité de traitement 90 disposée en série .
Le mélange Mi issu de la sortie moyenne pression 55 est envoyé par un conduit 91 vers l'unité de traitement 90. En aval de l'unité de traitement 90, le mélange Mi est ensuite envoyé par un conduit 92 vers l'entrée moyenne pression 56 de la deuxième partie du dispositif de compression.
Par le simple fait de l'écoulement du mélange diphasique et du temps de résidence dans les conduits 55, 91, 92 et 56 ainsi que dans l'unité de traitement, il est possible de s'approcher des conditions de dissolution définies en condition d'équilibre. En conséquence, les diamètres et longueurs des tuyauteries situées de part et d'autre de l'unité de traitement 90 pourront être calculés de façon à ajuster ce temps de résidence.
Les temps de résidence à observer seront éventuellement définis à partir d'essais préliminaires réalisés dans des conditions de fonctionnement réel. Il sera ainsi possible de prédire les écarts de dissolution entre les conditions transitoires et à l'équilibre, ces écarts pouvant être exprimés en durée temporelle ou en débit de gaz.
L'unité de traitement pourra comprendre un système de réfrigération. La réfrigération du mélange présentera de nombreux avantages:
  • elle augmentera la capacité du liquide à dissoudre le gaz dans les conditions d'équilibre,
  • elle permettra de s'approcher des conditions d'équilibre, compte tenu du temps de résidence dans le système de réfrigération,
  • elle permettra une augmentation de la densité du mélange, paramètre favorable à la compression d'un mélange diphasique,
  • elle permettra une réduction du rapport des débits volumiques de gaz et de liquide, paramètre également favorable à la compression d'un mélange diphasique.
L'unité de traitement/refroidissement pourra être conçue de façon à refroidir le mélange diphasique et/ou une partie de la phase liquide prélevée à partir de ce mélange ou encore le liquide issu du dispositif de compression diphasique ou une partie de ce liquide. Les figures 10A et 10B schématisent deux exemples de réalisation du dispositif de traitement comportant des moyens de prélèvement et de recyclage du liquide.
Sur la figure 10A, l'unité de traitement 90 comporte un mélangeur de type statique ou dynamique 93 disposé sur le conduit 91, une vanne de réglage des pertes de charge 94, un moyen 95 d'extraction d'au moins une partie de la phase liquide contenue dans le mélange diphasique circulant dans le conduit 91, un conduit 96 et une pompe 97 permettant d'envoyer la fraction liquide extraite à refroidir, vers un dispositif de refroidissement tel qu'un échangeur 98 en sortie duquel la fraction liquide refroidie est recyclée par un conduit 99 au mélangeur statique 93 pour être mélangé avec le fluide circulant dans le conduit 91.
Lorsque le fluide se présente sous la forme d'un écoulement stratifié dans le conduit 91, les moyens d'extraction 95 sont choisis pour réaliser le prélèvement d'au moins une partie de la phase liquide en un point bas de la conduite.
Pour des fluides en écoulement annulaire les moyens d'extraction 95 permettront d'extraire une fraction de la phase liquide à la périphérie de la conduite 91.
La pompe 97 peut être une pompe monophasique de faible hauteur manométrique.
La figure 10B schématise une autre variante de réalisation où le prélèvement de la phase liquide à refroidir est réalisé à haute pression sur le fluide liquide issu du dispositif de compression.
L'unité de traitement comporte le mélangeur statique ou dynamique 93 disposé sur le conduit 91, des moyens d'extraction 100 d'une fraction de liquide issu du dispositif de compression et qui sont reliés à l'échangeur de chaleur 98 par un conduit 101, une vanne 102 permettant le réglage du débit de liquide refroidi dans l'échangeur de chaleur 98, le liquide refroidi étant envoyé par un conduit 103 vers le mélangeur statique 93.
La partie de la phase liquide non prélevée et correspondant sensiblement au débit du liquide circulant dans le conduit 11 est évacuée par un conduit 104.
La recirculation du liquide refroidi vers le conduit 91 est permise en fonctionnement normal sans l'aide d'une pompe supplémentaire du fait de la différence de pression positive entre le conduit 58 et le conduit 55.
De tels agencements (figures 10A et 10B) permettront notamment :
  • une plus grande efficacité et une réduction en volume de l'échangeur opérant à une pression élevée ou moyennement élevée,
  • un accroissement du débit de liquide dans la zone de recyclage favorable à la dissolution du gaz dans le liquide.
L'unité de traitement 90 pourra être équipée d'autres conduits 91b permettant l'ajout d'un fluide au mélange Mi, par exemple des additifs cités précédemment.
La figure 11 schématise un exemple de généralisation de l'utilisation d'un dispositif de compression diphasique comportant deux corps de machine CM1 et CM2, formant le dispositif de compression diphasique et qui sont reliés entre eux par un conduit 123, adapté par exemple lorsque l'on est en présence de plusieurs sources de fluides à des niveaux de pression différents.
Sur cet exemple le deuxième corps CM2 est associé à un dispositif de traitement 116 selon un agencement similaire à celui de la figure 9.
En sortie du corps CM1 le fluide se présente par exemple sous une forme polyphasique.
Sur la figure 11, le dispositif de compression est alimenté par trois sources de gaz acides référencées respectivement 110, 111 et 112 à des pressions PG3, PG2 et PG1, des températures TG3, TG2 et TG1 et avec par exemple PG1<PG2<PG3.
Les gaz acides G1 (112) et G2 (111) sont introduits dans le premier corps CM1 par des conduits 113, 114 correspondants à des étages de compression du corps différents, dont les rangs sont déterminés selon les valeurs des pressions PG1 et PG2.
Les gaz acides G3 (110) sont envoyés par un conduit 115 vers le dispositif de traitement 116.
Deux sources de liquide L1 et L2 à des pressions respectivement PL1 et PL2 et des températures TL1 et TL2 sont également représentées sur cette figure.
Le liquide L1, (117), est envoyé par un conduit 120 dans le premier corps de CM1. En faisant comme hypothèse que PL1<PG1 le conduit 120 est relié directement au premier étage du corps CM1 alors que les gaz acides G1 et G2 sont envoyés à des étages de pompage de rang supérieur selon un schéma voisin de celui de la figure 6.
Le liquide contenu dans la source L2 (118), est envoyé directement dans le second corps CM2 par un conduit 121, par exemple au niveau de son étage d'entrée.
En suivant la distribution des fluides donnée ci-dessus, le mélange des fluides et leur gain en pression s'effectuent par exemple de la manière suivante:
Le niveau de pression PL1 du liquide L1 augmente jusqu'à atteindre un niveau de pression sensiblement identique à celle du gaz G1, PG1. A l'intérieur de la première partie du corps CM1, les gaz acides G1 sont dissous dans le liquide L1 au moins partiellement, le mélange M obtenu étant à un niveau de pression P. Les gaz acides G2 ayant une pression PG2 sont introduits dans l'étage en sortie duquel le mélange M possède un niveau de pression sensiblement identique. Ces trois fluides se mélangent en passant à travers les différents étages de compression du corps CM1, le mélange polyphasique M' résultant étant évacué par un conduit 122 à un niveau de pression P'.
Le mélange M' issu du corps CM1 est introduit avec le liquide L2 ayant une pression PL2, par un conduit 123 dans le deuxième corps CM2.
En sortie de la première partie du second corps, on envoie le mélange Mi qui se trouve à un niveau de pression intermédiaire Pi par un conduit 124 vers le dispositif de traitement 116 dans lequel il est mélangé au moins en partie avec le gaz G3.
Le mélange M'i issu du dispositif de traitement est ensuite envoyé par un conduit 125 dans la deuxième partie du corps CM2 , passe à travers les différents étages de compression. En sortie du corps CM2 on évacue un fluide Ms essentiellement liquide à un niveau de pression Ps par la sortie 126 par exemple dans une nappe aquifère.
Selon une autre manière d'opérer, ii sera possible de rattraper des écarts sur les paramètres de fonctionnement du dispositif de compression diphasique à partir de différentes mesures sur le dispositif de compression diphasique.
Sur la figure 12, on a schématisé dans un diagramme hauteur manométrique (en ordonnée) - volume de sortie (en abscisse) - paramétré en vitesse (N), les performances hydrauliques du dispositif de compression diphasique. Sur ce diagramme ont été représentés un point de fonctionnement souhaité C, ainsi que deux points, A et B, représentant deux cas de dysfonctionnement.
En équipant le dispositif de compression diphasique d'un système de mesures appropriées tels que des capteurs de pression, de température, de débit, de densité (ou taux de vide), et un dispositif de contrôle et de calcul tel qu'un micro-contrôleur relié à tous ces éléments, il est possible :
  • de mesurer différents paramètres :
    • les valeurs de débit de la phase gazeuse et de la phase liquide avant leur entrée dans le dispositif de compression diphasique Qg et QI, pour chacun de mesurer les valeurs de la température et de pression associées Tg et Tl, Pg et PI,
    • en sortie du dispositif de compression des valeurs liées au liquide telles que sa pression Pm, sa température Tm, son débit Qm et sa densité ρm,
  • de mémoriser les paramètres caractéristiques des fluides gazeux et liquides en entrée du dispositif de compression par exemple la densité pour le fluide liquide, ρl, et la masse molaire Mg et le facteur isentropique γg pour le fluide gazeux,
  • à partir de ces différentes mesures, des données précédemment mentionnées et d'un traitement des données approprié, de déterminer le point de fonctionnement du dispositif de compression et la courbe de vitesse correspondante, et
  • en comparaison avec une valeur déterminée de vérifier que ce point de fonctionnement appartient à un domaine permis de fonctionnement ou un domaine optimal de fonctionnement.
Dans le cas où le point de fonctionnement se trouve en dehors du domaine de fonctionnement souhaité, il sera possible d'agir sur la vitesse de rotation si le dispositif possède un entraínement à vitesse variable, et éventuellement sur l'efficacité du système de réfrigération ou encore sur le débit de liquide recyclé selon la conception du système de compression.
Par exemple, si le point A traduit une dissolution trop rapide avec un débit en aval trop faible et une pression en aval trop importante, pour remédier à ce problème il sera possible d'agir en réduisant la vitesse de rotation du dispositif de compression diphasique pour amener le point de fonctionnement A vers le point de fonctionnement souhaité C.
Le point de fonctionnement B schématise le cas inverse.
Le dispositif de compression sera de préférence équipé d'un entraínement à vitesse variable. La régulation en vitesse pourra s'effectuer automatiquement ou manuellement.
Exemple comparatif
Le dispositif de compression et de mélange diphasique présente en comparaison d'un système de compression monophasique et de mélange de nombreux avantages dont une forte réduction du nombre des équipements, se traduisant par :
  • une plus grande sécurité en présence de gaz nocifs tels l'hydrogène sulfuré H2S,
  • une réduction des coûts dans un environnement corrosif et / ou soumis à une forte pression.
La réduction du nombre des équipements dépend fortement des cas d'applications, principalement, le GLR et la pression à l'entrée du dispositif de compression. La pression d'entrée est approximativement égale à la pression en aval de l'unité de déacidification.
Une étude comparative entre des systèmes de compression diphasique et monophasique (compresseur et pompe) a été réalisée sur les bases suivantes :
  • une pompe diphasique comportant 13 étages de compression. La pression de refoulement est déterminée par le dispositif de compression diphasique. Les mêmes conditions de pression sont utilisées pour les deux types de compression,
  • deux valeurs de hauteur manométrique monophasique de 150 m et 300 m par étage de compression diphasique. La hauteur manométrique de compression diphasique est obtenue par le produit de la hauteur monophasique et de l'efficacité diphasique, cette dernière étant une fonction du GLR et du rapport des densités des phases,
  • un débit liquide de 200 m3/Heure et un débit de gaz qui varie entre des valeurs correspondant à un GLR de 1 et un GLR de 15,
  • une pression de 1 MPa abs en sortie d'un procédé de traitement par solvant physique et de 0,1 MPa abs en sortie d'un procédé de traitement par solvant chimique.
Le tableau ci-dessous représente dans les conditions de l'étude, le nombre de sections de compression et par conséquent le nombre d'unités de refroidissement (également le nombre de ballons en amont des sections de compression) requis par une compression monophasique lorsqu'une unité de refroidissement au maximum est requise par la compression diphasique.
GLR du fluide à l'entrée du dispositif de compression diphasique : 1 4 9 15
CAS I
Traitement par solvant physique
Hauteur manométrique par impulseur diphasique: 150 m
2 2 1 1
CAS II
Traitement par solvant physique
Hauteur manométrique par impulseur diphasique: 300 m
3 3 2 2
CAS III
Traitement par solvant chimique
Hauteur manométrique par impulseur diphasique: 150 m
5 5 5 4

Claims (14)

  1. Dispositif de compression diphasique permettant de communiquer de l'énergie à plusieurs fluides, tel qu'un fluide essentiellement liquide et un fluide essentiellement gazeux, au moins un des fluides étant miscible dans au moins un autre fluide, et permettant d'effectuer le mélange desdits fluides, caractérisé en ce qu'il comporte au moins un élément de compression diphasique (CM1, CM2, 10) adapté à réaliser le mélange des fluides essentiellement liquides et essentiellement gazeux et à communiquer à chacun d'eux une valeur d'énergie donnée, le mélange issu dudit élément de compression diphasique étant sous une forme liquide ou essentiellement liquide et à un niveau de pression Ps donné.
  2. Dispositif de compression diphasique selon la revendication 1, caractérisé en ce qu'il comporte au moins un étage d'entrée et/ou au moins un étage de sortie, chacun desdits étages comprenant des hydrauliques adaptées au pompage d'un fluide essentiellement liquide.
  3. Dispositif de compression diphasique selon la revendication 1, caractérisé en ce qu'il comporte au moins deux sections (50, 51), la première section (50) permettant d'obtenir un mélange Mi ayant un niveau de pression Pi et la seconde section (51) permettant d'obtenir à partir du mélange Mi un mélange Ms ayant un niveau de pression Ps, un conduit (55) d'évacuation du mélange Mi et un conduit (56) d'introduction d'un fluide Mi dans la seconde partie, lesdites deux sections (50, 51) étant séparées par un dispositif d'étanchéité (52) et les hydrauliques des deux sections (50, 51) étant montées « dos à dos » de manière à minimiser les efforts de poussée axiale.
  4. Dispositif de compression diphasique selon l'une des revendications précédentes, caractérisé en ce qu'il comporte une unité (90, 116) de traitement et/ou de mélange des fluides, ladite unité (90, 116) de traitement et/ou de mélange étant reliée au dispositif de compression (10) par des conduits d'arrivée et d'évacuation des fluides (91, 92 ; 124, 125).
  5. Dispositif de compression diphasique selon la revendication 4, caractérisé en ce qu'il comporte un moyen de réfrigération (98) dans l'unité de traitement (90).
  6. Dispositif de compression selon la revendication 4, caractérisé en ce qu'il comporte un circuit (93, 94, 95, 96, 97, 98, 99; 92, 93, 98, 100, 101, 102, 103) de refroidissement d'au moins une partie du mélange diphasique prélevé à partir du dispositif de compression et/ou d'une partie de la phase liquide issue du dispositif de compression diphasique (10).
  7. Dispositif de compression selon l'une des revendications précédentes, caractérisé en ce qu'il comporte des moyens de détermination de paramètres liés au fluide et/ou fonctionnement du dispositif de compression, des moyens de calcul et de traitement de données capables de modifier la vitesse de rotation du dispositif de compression diphasique et/ou d'agir sur l'efficacité du moyen de réfrigération et/ou sur le débit du fluide recyclé dans le circuit de refroidissement.
  8. Dispositif de compression selon l'une des revendications précédentes, caractérisé en ce qu'il comporte un dispositif (70) disposé entre un étage de pompage et un étage de compression diphasique, ledit dispositif (70) étant adapté pour introduire un fluide essentiellement gazeux et le mélanger au fluide liquide issu de l'étage de pompage.
  9. Dispositif de compression selon l'une des revendications précédentes, caractérisé en ce qu'il comporte un dispositif (80, 81, 82) disposé au moins au niveau d'un redresseur Ri d'un étage de compression Ei(li, Ri), pour introduire un fluide essentiellement gazeux ou essentiellement liquide dans le fluide diphasique issu de l'impulseur li.
  10. Procédé permettant de communiquer de l'énergie à plusieurs fluides, au moins un des fluides étant miscible dans au moins un autre fluide, et simultanément à réaliser le mélange desdits fluides, tel qu'un fluide essentiellement gazeux et un fluide essentiellement liquide, caractérisé en ce que l'on envoie le fluide essentiellement gazeux et le fluide essentiellement liquide au moins vers un même dispositif de compression diphasique (CM1, CM2, 10) adapté à communiquer de l'énergie au moins à chacun des deux fluides et, à réaliser le mélange des deux fluides, pour obtenir en sortie un fluide essentiellement liquide à une pression donnée Ps.
  11. Procédé selon la revendication 10, caractérisé en ce qu'il comporte une étape de prélèvement d'au moins une partie du mélange des fluides après passage dans un nombre d'étages m du dispositif de compression diphasique, une étape de traitement de la partie prélevée et une étape de renvoi après traitement vers un étage du dispositif de compression de rang supérieur au rang de l'étage de prélèvement.
  12. Procédé selon l'une des revendications 10 à 11, caractérisé en ce que l'on réfrigère le fluide et/ou un fluide tel qu'une partie du mélange diphasique prélevé et/ou une partie de la phase liquide extraite du mélange diphasique prélevé ou au moins une partie du liquide issu du dispositif de compression diphasique et on recycle le fluide réfrigéré vers le fluide extrait du dispositif de compression diphasique.
  13. Procédé selon l'une des revendications 10 à 12, caractérisé en ce que l'on régule la vitesse de rotation du dispositif de compression et/ou l'on contrôle l'efficacité de l'étape de réfrigération et/ou on contrôle le débit de fluide réfrigéré recyclé.
  14. Application du dispositif de compression diphasique selon l'une des revendications de 1 à 9 et du procédé selon une des revendications de 10 à 13 pour le transfert simultané de gaz acides et de l'eau de formation vers un réservoir souterrain.
EP98402507A 1997-11-19 1998-10-08 Procédé et dispositif de compression diphasique pour le traitement d'un effluent pétrolier Expired - Lifetime EP0917905B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9714604A FR2771024B1 (fr) 1997-11-19 1997-11-19 Dispositif et procede de compression diphasique d'un gaz soluble dans un solvant
FR9714604 1997-11-19

Publications (2)

Publication Number Publication Date
EP0917905A1 true EP0917905A1 (fr) 1999-05-26
EP0917905B1 EP0917905B1 (fr) 2004-01-07

Family

ID=9513620

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98402507A Expired - Lifetime EP0917905B1 (fr) 1997-11-19 1998-10-08 Procédé et dispositif de compression diphasique pour le traitement d'un effluent pétrolier

Country Status (6)

Country Link
US (2) US6210126B1 (fr)
EP (1) EP0917905B1 (fr)
CA (1) CA2252022C (fr)
DK (1) DK0917905T3 (fr)
FR (1) FR2771024B1 (fr)
NO (1) NO318666B1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001050024A1 (fr) * 1999-12-31 2001-07-12 Shell Internationale Research Maatschappij B.V. Procede et systeme pour optimiser les performances d'un accelerateur de flux rotodynamique multiphase
US8225872B2 (en) 2006-10-19 2012-07-24 Schlumberger Technology Corporation Gas handling in a well environment
FR3069290A1 (fr) * 2017-07-19 2019-01-25 Yves Charron Machine rotodynamique comprenant des impulseurs helico radio axiaux avec controle du glissement interfacial
FR3102685A1 (fr) 2019-11-06 2021-05-07 IFP Energies Nouvelles Procédé d’oligomérisation d’oléfines dans un réacteur d’oligomérisation
FR3117127A1 (fr) 2020-12-07 2022-06-10 IFP Energies Nouvelles Procédé d’hydrotraitement d’un flux liquide comprenant des hydrocarbures avec un flux gazeux comprenant de l’hydrogène
FR3126423A1 (fr) 2021-08-26 2023-03-03 IFP Energies Nouvelles Procédé d’hydroconversion de charges hydrocarbonées

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2792678B1 (fr) 1999-04-23 2001-06-15 Inst Francais Du Petrole Procede de recuperation assistee d'hydrocarbures par injection combinee d'une phase aqueuse et de gaz au moins partiellement miscible a l'eau
TW531592B (en) * 1999-09-09 2003-05-11 Sanyo Electric Co Multiple stage high pressure compressor
JP2009008065A (ja) * 2007-06-29 2009-01-15 Hitachi Ltd 圧縮機
NO328277B1 (no) 2008-04-21 2010-01-18 Statoil Asa Gasskompresjonssystem
EP2386767B1 (fr) * 2010-05-11 2021-01-06 Sulzer Management AG Pompe hélico-axiale et procédé pour supporter un rotor dans une pompe hélico-axiale
IT1401868B1 (it) * 2010-08-31 2013-08-28 Nuova Pignone S R L Turbomacchina con stadio a flusso misto e metodo.

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2407554A1 (fr) * 1977-10-27 1979-05-25 Babcock Brown Boveri Reaktor Procede et appareil d'injection de gaz dans du liquide, notamment dans un refrigerant de reacteur nucleaire
FR2424472A1 (fr) * 1978-02-24 1979-11-23 Inst Francais Du Petrole Methode et dispositif pour transporter simultanement dans un meme conduit les constituants d'un fluide diphasique
FR2534644A1 (fr) * 1982-10-13 1984-04-20 Inst Francais Du Petrole Methode et dispositif d'ejection gaz-liquide servant a produire un ecoulement diphasique
FR2724200A1 (fr) * 1994-09-02 1996-03-08 Technicatome Station de pompage sous-marine a grande profondeur pour melange petrolier
US5628616A (en) * 1994-12-19 1997-05-13 Camco International Inc. Downhole pumping system for recovering liquids and gas
EP0781929A1 (fr) * 1995-12-28 1997-07-02 Institut Francais Du Petrole Dispositif de pompage ou de compression d'un fluide polyphasique à aubage en tandem

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2903248A (en) * 1956-12-10 1959-09-08 Leander H Walker System of mixing liquiform ingredients
DE3345233C2 (de) * 1983-12-14 1985-10-31 Joh. Heinrich Bornemann GmbH & Co KG, 3063 Obernkirchen Exzenterschneckenpumpe zum Fördern von Flüssigkeiten aus Bohrlöchern, insbesondere aus Erdöl-Bohrlöchern
CA2107933C (fr) * 1993-10-07 1998-01-06 Denis Cote Pompe avec plusieurs stages de pompage distincts pour pomper plusieurs liquides
US5722820A (en) * 1996-05-28 1998-03-03 Robbins & Myers, Inc. Progressing cavity pump having less compressive fit near the discharge
US5820354A (en) * 1996-11-08 1998-10-13 Robbins & Myers, Inc. Cascaded progressing cavity pump system
US5807087A (en) * 1997-03-21 1998-09-15 Tarby, Inc. Stator assembly for a progressing cavity pump

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2407554A1 (fr) * 1977-10-27 1979-05-25 Babcock Brown Boveri Reaktor Procede et appareil d'injection de gaz dans du liquide, notamment dans un refrigerant de reacteur nucleaire
FR2424472A1 (fr) * 1978-02-24 1979-11-23 Inst Francais Du Petrole Methode et dispositif pour transporter simultanement dans un meme conduit les constituants d'un fluide diphasique
FR2534644A1 (fr) * 1982-10-13 1984-04-20 Inst Francais Du Petrole Methode et dispositif d'ejection gaz-liquide servant a produire un ecoulement diphasique
FR2724200A1 (fr) * 1994-09-02 1996-03-08 Technicatome Station de pompage sous-marine a grande profondeur pour melange petrolier
US5628616A (en) * 1994-12-19 1997-05-13 Camco International Inc. Downhole pumping system for recovering liquids and gas
EP0781929A1 (fr) * 1995-12-28 1997-07-02 Institut Francais Du Petrole Dispositif de pompage ou de compression d'un fluide polyphasique à aubage en tandem

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001050024A1 (fr) * 1999-12-31 2001-07-12 Shell Internationale Research Maatschappij B.V. Procede et systeme pour optimiser les performances d'un accelerateur de flux rotodynamique multiphase
US6773235B2 (en) 1999-12-31 2004-08-10 Shell Oil Company Rotodynamic multi-phase flow booster pump
US8225872B2 (en) 2006-10-19 2012-07-24 Schlumberger Technology Corporation Gas handling in a well environment
FR3069290A1 (fr) * 2017-07-19 2019-01-25 Yves Charron Machine rotodynamique comprenant des impulseurs helico radio axiaux avec controle du glissement interfacial
FR3102685A1 (fr) 2019-11-06 2021-05-07 IFP Energies Nouvelles Procédé d’oligomérisation d’oléfines dans un réacteur d’oligomérisation
WO2021089255A1 (fr) 2019-11-06 2021-05-14 IFP Energies Nouvelles Procédé d'oligomérisation d'oléfines dans un réacteur d'oligomérisation
FR3117127A1 (fr) 2020-12-07 2022-06-10 IFP Energies Nouvelles Procédé d’hydrotraitement d’un flux liquide comprenant des hydrocarbures avec un flux gazeux comprenant de l’hydrogène
FR3126423A1 (fr) 2021-08-26 2023-03-03 IFP Energies Nouvelles Procédé d’hydroconversion de charges hydrocarbonées

Also Published As

Publication number Publication date
NO985364L (no) 1999-05-20
FR2771024B1 (fr) 1999-12-31
US6210126B1 (en) 2001-04-03
US20010005483A1 (en) 2001-06-28
CA2252022A1 (fr) 1999-05-19
US6305911B2 (en) 2001-10-23
CA2252022C (fr) 2008-01-22
NO318666B1 (no) 2005-04-25
DK0917905T3 (da) 2004-02-16
NO985364D0 (no) 1998-11-18
FR2771024A1 (fr) 1999-05-21
EP0917905B1 (fr) 2004-01-07

Similar Documents

Publication Publication Date Title
EP0917905B1 (fr) Procédé et dispositif de compression diphasique pour le traitement d&#39;un effluent pétrolier
EP1941208B1 (fr) Procede d&#39;oxy-combustion permettant la capture de la totalite du dioxyde de carbone produit
WO2012160311A2 (fr) Dispositif pour le stockage et la restitution de fluides et méthode pour stocker et restituer un gaz comprimé dans un tel dispositif
EP0178962B1 (fr) Procédé et dispositif de compression et de transport d&#39;un gaz contenant une fraction liquide
EP2198123A2 (fr) Dispositif de separation liquide/gaz horizontal et procede de separation, notamment des phases liquide et gazeuse d&#39;un petrole brut
CA2230092C (fr) Procede de desacidification avec production de gaz acides en phase liquide
WO1996018445A1 (fr) Procede et installation de separation de composes lourds et legers, par extraction par un fluide supercritique et nanofiltration
CA1256016A (fr) Procede de desaeration d&#39;eau
WO2008142344A1 (fr) Dispositif de separation liquide/gaz et procede de separation liquide/gaz, notamment les phases liquide et gazeuse d&#39;un petrole brut
CA2282872C (fr) Methode de conduite d&#39;un dispositif de transport d&#39;hydrocarbures entre des moyens de production et une unite de traitement
EP0920902B1 (fr) Dispositif et methode de traitement d&#39;un fluide par compression diphasique et fractionnement
EP0089986B1 (fr) Extraction des gisements petroliferes avec la reinjection de materiaux separes
CA2296979C (fr) Systeme comportant une unite de compression monophasique associee a une unite de compression polyphasique
FR2523636A1 (fr) Procede et installation de lixiviation in situ de minerai
EP4076698A1 (fr) Procédé de dégazage d&#39;un fluide
CA2153190A1 (fr) Methode et dispositif de pompage a jets sequentiels
RU2622059C1 (ru) Способ добычи нефти путем воздействия на нефтяной пласт
EP1505250B1 (fr) Utilisation d&#39;une turbine diphasique dans un procédé d&#39;hydrotraitement
FR2970659B1 (fr) Procede et dispositif d&#39;extraction de molecules
EP1191989A1 (fr) Dispositif de fractionnement de melanges
FR3013756A1 (fr) Methode d&#39;evacuation de liquides accumules dans un puits.
FR2950686A1 (fr) Procede de traitement d&#39;un effluent gazeux et installation de traitement associee.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DK GB NL

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19991126

AKX Designation fees paid

Free format text: DK GB NL

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

17Q First examination report despatched

Effective date: 20020610

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RTI1 Title (correction)

Free format text: PROCESS AND DEVICE FOR DIPHASIC COMPRESSION FOR THE TREATMENT OF OIL PRODUCTS

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DK GB NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040107

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20041008

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20071029

Year of fee payment: 10

Ref country code: DK

Payment date: 20071025

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20071018

Year of fee payment: 10

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20081008

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20090501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081008