EP0917670B1 - Electrostatic colour printing apparatus - Google Patents

Electrostatic colour printing apparatus Download PDF

Info

Publication number
EP0917670B1
EP0917670B1 EP97938892A EP97938892A EP0917670B1 EP 0917670 B1 EP0917670 B1 EP 0917670B1 EP 97938892 A EP97938892 A EP 97938892A EP 97938892 A EP97938892 A EP 97938892A EP 0917670 B1 EP0917670 B1 EP 0917670B1
Authority
EP
European Patent Office
Prior art keywords
belt
sheet
transfer
image
printing apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97938892A
Other languages
German (de)
French (fr)
Other versions
EP0917670A1 (en
Inventor
Dirk Costrop
Leo Vackier
Robert Janssens
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xeikon Manufacturing NV
Original Assignee
Punch Graphix International NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Punch Graphix International NV filed Critical Punch Graphix International NV
Priority to EP97938892A priority Critical patent/EP0917670B1/en
Publication of EP0917670A1 publication Critical patent/EP0917670A1/en
Application granted granted Critical
Publication of EP0917670B1 publication Critical patent/EP0917670B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/01Apparatus for electrographic processes using a charge pattern for producing multicoloured copies
    • G03G15/0105Details of unit
    • G03G15/0131Details of unit for transferring a pattern to a second base
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/01Apparatus for electrographic processes using a charge pattern for producing multicoloured copies
    • G03G15/0142Structure of complete machines
    • G03G15/0147Structure of complete machines using a single reusable electrographic recording member
    • G03G15/0152Structure of complete machines using a single reusable electrographic recording member onto which the monocolour toner images are superposed before common transfer from the recording member
    • G03G15/0163Structure of complete machines using a single reusable electrographic recording member onto which the monocolour toner images are superposed before common transfer from the recording member primary transfer to the final recording medium

Definitions

  • the present invention relates to an electrostatographic colour printing apparatus in which successive, different colour toner images are transferred from a recording member in the form of an endless belt in superimposed registration on a receptor sheet.
  • a photoconductive member is charged to a substantially uniform potential to sensitize the surface thereof.
  • the charged portion of the photoconductive member is image-wise exposed. Exposure of the charged photoconductive member selectively dissipates the charge thereon in the irradiated areas.
  • an electrostatic latent image is recorded on the photoconductive member corresponding to the informational areas contained in the original document being reproduced.
  • the latent image is developed by bringing toner into contact therewith. This forms a developed toner image on the photoconductive member which is subsequently transferred to a receptor sheet. The receptor sheet is then heated to permanently affix the toner image thereto in image configuration.
  • Multicolour electrophotographic printing is substantially identical to black and white printing described hereinbefore. However, rather than forming a single latent image on the photoconductive surface, successive latent part images corresponding to different colours are recorded thereon. Each single colour electrostatic latent image is developed with toner of a colour complementary thereto. This process is repeated a plurality of cycles for differently coloured images and their respective complementarily coloured toner. Each single colour toner image is transferred to the copy sheet in superimposed registration with the prior toner image, thereby creating a multilayered toner image on the copy sheet. Thereafter, the multilayered toner image is permanently fixed to the receptor sheet creating a colour copy or print.
  • Superimposed registered toner images can be obtained in different ways.
  • the distinct charge images are developed on the photoconductive member itself, i.e. so-called add- on development, after which the transfer of the complete image to the receptor paper can occur in one step.
  • add- on development i.e. so-called add- on development
  • a disadvantage of this system is that only the very first part image on the photoconductive member can be formed without difficulties. For each subsequent part image, the exposure has to take account of the amount of toner already present on the photoconductive member, the toner has to be sufficiently transparent for the exposing wavelength, and the next magnet brushes shall not damage the former image.
  • the distinct charge images are developed with the appropriate toner while on the photoconductive member, without superimposition.
  • the different toner images are then accumulated in superimposition on an intermediate medium, which usually is a relatively soft material such as rubber in the form of a drum or belt. Transfer from this medium to the receptor paper occurs in one passage.
  • an intermediate medium usually is a relatively soft material such as rubber in the form of a drum or belt. Transfer from this medium to the receptor paper occurs in one passage.
  • Disadvantages of the system are that each toner image is transferred twice resulting in a reduced image quality, and that the machine becomes more complex.
  • Still another technique comprises developing the different part images on the photoconductive member without accumulation, and transferring the different developed toner images in superimposition on the receptor sheet.
  • the latter can be attached to a suitable carrier which revolves the sheet four times past the photoconductive member to pick up the corresponding toner image.
  • Disadvantages are the more complex paper path with increased risk for paper jam, the limitation of throughput as a consequence of the repeated passages (usually four) of the paper past the photoconductive member, and the limited assortment of receptor sheets that can be used.
  • Another serious disadvantage is formed by the presence of the receptor sheet carrier in the electrostatic field of the image transfer station. Each defect in such carrier causes a defect at the corresponding place of the receptor sheet.
  • a still further system is a copier system comprising developing stations for sequentially developing electrostatic latent images on the surface of a recording member in the form of an endless belt to form toner images on such belt, electrostatic transfer stations for sequentially transferring said toner images from the belt in superimposition onto a receptor sheet conveyed by a backing belt through such transfer stations while in contact with a recording belt section therein to form a multicolour image, and recording belt conveying means for conveying said belt in a folded path between said transfer stations to form an image buffer between adjacent transfer stations.
  • a machine embodying the described system is disclosed in US-A-4 751 549.
  • This copier comprises developing stations for sequentially developing electrostatic latent images on the surface of a recording member in the form of an endless belt to form toner images on such belt, and a transfer mechanism mounted adjacent to the belt to transfer the toner images into registration onto one side of a receptor sheet.
  • the transfer mechanism comprises register rollers disposed between adjacent transfer stations which remove the receptor sheet from contact with the belt and return it in registration with the next toner image on the belt at the next transfer station.
  • a disadvantage of this copier is its complex paper path, which increases the risk of paper jams: a receptor sheet makes a completely closed loop as it is being tacked to a register roller. Moreover, the complex handling of the receptor sheet is subject to misalignment and registration errors. Further, the copier can only handle receptor sheets with low paper weight, since the sheets are curved around the register rollers.
  • EP A1 0 258 863 Another apparatus operating with a photoconductive endless belt is disclosed in EP A1 0 258 863.
  • the different colour printing portions comprise erasing, charging, exposure, development and cleaning stations are placed between successive transfer stations.
  • a disadvantage of this machine is the uncontrolled path of the receptor sheet between successive stransfer stations so that registering of the distinct part images may be unsatisfactory.
  • Another disadvantage of this apparatus is that all electrophotographic sub-systems (as there are: erase, charge, exposure and cleaning) are needed for each colour, resulting in a more expensive system. All this complicates the constructive design of the machine and its servicing.
  • an electrostatographic colour printing apparatus which comprises :
  • receptor sheet stands for a sheet of paper, plastic, a laminate of both, and the like onto which the transferred image is received.
  • This sheet may be the end-product as such but it may also form an intermediate step in a reproduction process, e.g. it may be used, after a suitable treatment, as a so-called transfer element, e.g. as a printing plate for printing images by planographic printing techniques onto a final support.
  • colour is not strictly limited to the development of usual colour separation images by conventional magenta, cyan, yellow and black toners, but encompasses also the production of images by means of more than three colours, by means of different shades of one colour, e.g. different grey shades, the covering or coating of an image by an image-wise applied transparent, coloured, fluorescent or otherwise treated varnish, and the like.
  • the term "printing” stands in the first place for a printer which creates the output printing image by laying out the image in a series of horizontal scan lines, each line having a given number of pixels per inch.
  • An exposure station for exposing the recording may comprise a laser with a rotating mirror block, a LED array, a uniform light source and a plurality of individually controllable light valves, an arrangement with deformable micromirror devices, etc.
  • said term encompasses also an apparatus in which the exposure of the recording member occurs by the optical projection of an integral image, such as in a copier, see e.g. US A 4 751 549 mentioned hereinbefore.
  • recording member refers in the first place to an endless belt which is made of, or comprises a layer of an organic or inorganic photoconductor which can be uniformly electrostatically charged and next image-wise discharged by appropriate integral or scanning-wise exposure.
  • this term also encompasses an endless belt made of an organic film having no photoconductivity at all, and which is image-wise electrostatically charged by means of an ion radiation array. For that reason the term “electrostatographic" has been used in the statement of invention.
  • Suitable embodiments of a printing apparatus according to the invention are as follows.
  • the apparatus comprises belt conveying means for conveying said belt in a folded path between said transfer stations to form an image buffer between adjacent transfer stations.
  • This embodiment has the advantage that one exposure station only may be needed which may expose the distinct part images in succession on the recording belt.
  • Another advantage is that one erase station, one charging station and one cleaning station only are needed for erasing, charging and cleaning the photoconductor for the distinct part images.
  • the different images are developed in the appropriate colour and transported through the mentioned buffer zones until the moment for (simultaneous) progressive toner image transfer has arrived.
  • the developing stations can be mounted all between the exposure means and the first transfer station. This allows the mounting of such developing stations in grouped fashion which is interesting from the points of constructive design and servicing of the apparatus.
  • the same advantages count for the transfer stations which now, by the absence of the exposure stations within the loops of the recording belt, are more compact and thus easier to design.
  • this construction needs only one cleaning and one erasing station so that a compact installation may be obtained.
  • the printing apparatus is a duplex printer of a type which comprises image-forming means at either side of the path of a receptor sheet through the apparatus.
  • Still further embodiments of a printer according to the invention are as follows.
  • the mentioned directional means comprises two parallel belt guide rollers imparting a controlled linear path x to the belt section between such two guide rollers in each transfer station.
  • the diameter of such rollers is smaller than 50 mm, and suitably smaller than 25 mm.
  • the length x of the linear path is not larger than 120 mm.
  • the unsupported distance of a sheet between two successive transfer stations is not larger than the distance over which a sheet is in contact with an image transferring belt section in such station.
  • such unsupported distance is not larger than 70 mm.
  • Fig. 1 shows a diagrammatic representation of one embodiment of an electrophotographic duplex colour printer.
  • the printer comprises a lighttight housing 10 which has at its inside a stack 12 of sheets to be printed loaded on a platform 13 the height of which is adjusted in accordance with the size of the stack, and at the outside a platform 14 onto which the printed sheets are received.
  • a sheet to be printed is removed from stack 12 by a dispensing mechanism 15 which may be any mechanism known in the art such as a friction roller, a friction pad, a suction cup, or the like for removing the top sheet from stack 12.
  • a dispensing mechanism 15 which may be any mechanism known in the art such as a friction roller, a friction pad, a suction cup, or the like for removing the top sheet from stack 12.
  • the removed sheet is passed through an alignment station 16 which ensures the longitudinal and lateral alignment of the sheet, prior to its start from said station under the control of the imaging system. As the sheet leaves the alignment station, it follows a straight horizontal path 17 up to outlet 18 of the printer. The speed of the sheet, upon entering said path is determined by driven pressure roller pair 47.
  • a first image forming station 20 indicated in a dash-and-dot line for applying a colour image to the obverse side of the sheet and a second station 21 for applying a colour image to its reverse side.
  • An endless photoconductor belt 26 is guided over a plurality of idler rollers 27 to follow a path in the direction of arrow 22 to advance successive portions of the photoconductive surface sequentially through the various processing stations disposed about the path of movement thereof.
  • the belt suitably can be a polyethylene terephthalate support which is provided at the outside of its loop with a subbing layer onto which a photoconductive layer has been coated.
  • Means is provided (not shown) for driving the belt at a uniform speed and for controlling its lateral position.
  • a portion of photoconductive belt 26 passes through charging station 28.
  • a corona generating device electrostatically charges the belt to a relatively high, substantially uniform potential.
  • the belt is rotated to the exposure station 29, which will expose the photoconductive belt to successively record four latent colour separation images.
  • the exposure station includes a ROS (raster output scanner) 30 with a laser with a rotating polygon mirror block which creates the output printing image by laying out the image in a series of horizontal scan lines, each line having a given number of pixels per inch.
  • this station can as well comprise a linear LED array covering the width of the belt for performing the exposure.
  • the latent images are developed with magenta, cyan, yellow and black developer material, respectively. These developed images are transferred on the print sheet in superimposed registration with one another to form a multicolour image on the sheet.
  • the ROS receives its input signal from IPS (image processing system) 31.
  • This system is the electronic control device which prepares and manages the data inflow to scanner 30.
  • a user interface UI indicated by reference numeral 32, is in communication with the IPS and enables the operator to control the various operator adjustable functions.
  • IPS 31 receives its signal from input 34. This input can be the output of a RIS (raster input scanner) in case the apparatus is a so-called intelligent or digital copier.
  • the apparatus contains document illumination lamps, optics, a mechanical scanning drive; and a charge-coupled device.
  • the RIS captures the entire original document and converts it to a series of raster scan lines and measures a set of primary colour densities, i.e. red, green and blue densities at each point of the original document.
  • input 34 can as well receive an image signal resulting from an operator operating an image processing station.
  • belt 26 advances this image to the development station.
  • This station includes four individual developer units 35, 36, 37 and 38.
  • the developer units are of a type generally referred to in the art as "magnetic brush development units".
  • a magnetic brush development system employs a magnetizable developer material including magnetic carrier granules having toner particles adhering triboelectrically thereto.
  • the developer material is continually brought through a directional flux field to form a brush of developer material.
  • the developer particles are continually moving so as to provide the brush consistently with fresh developer material.
  • Development is achieved by bringing the brush of developer material into contact with the photoconductive surface.
  • Developer units 35, 36 and 37, respectively, apply toner particles of a specific colour which corresponds to the complement of the specific colour-separated electrostatic latent image recorded on the photoconductive surface.
  • the colour of each of the toner particles is adapted to absorb light within a preselected spectral region of the electromagnetic wave spectrum.
  • an electrostatic latent image formed by discharging the portions of charge on the photoconductive belt corresponding to the green regions of the original document will record the red and blue portions as areas of relatively high charge density on photoconductive belt 10, while the green areas will be reduced to a voltage level ineffective for development.
  • the charged areas are then made visible by having developer unit 35 apply green absorbing (magenta) toner particles onto the electrostatic latent image recorded on photoconductive belt 26.
  • a blue separation is developed by developer unit 36 with blue absorbing (yellow) toner particles, while the red separation is developed by developer unit 37 with red absorbing (cyan) toner particles.
  • Developer unit 38 contains black toner particles and may be used to develop the electrostatic latent image formed from black information or text, or to supplement the colour developments.
  • Each of the developer units is brought into and out of an operative state. In the operative state, the magnetic brush is closely adjacent to the photoconductive belt, whereas in the non-operative one, the magnetic brush is spaced therefrom.
  • the remaining developer units being in their non-operative one. This ensures that each electrostatic latent image is developed with toner particles of the appropriate colour without inter-mingling.
  • developer unit 35 has been shown in its operative state.
  • each unit comprises a toner hopper, such as hopper 39 shown for unit 35, for supplying fresh toner to the developer which becomes progressively depleted by the development of the electrostatic charge images.
  • the hopper may be directly fitted onto the developer unit but may also be connected therewith through a suitable tube.
  • the toner images are moved to toner image transfer stations 40, 41, 42 and 43 where they are transferred on a sheet of support material, such as plain paper or a transparent film.
  • a receptor sheet follows a rectilinear path 17 into contact with photoconductive belt 26.
  • the sheet is advanced in perfect synchronism with the movement of the belt. Advance of the sheet and transfer of a toner image from the belt to the sheet will be described in more detail with reference to Fig. 2 hereinafter.
  • the belt follows an upward course and is cleaned in a cleaning station 45 where a rotatable fibrous brush or the like is maintained in contact with the belt 26 to remove residual toner particles remaining after the transfer operation.
  • lamp 46 illuminates the belt to remove any residual charge remaining thereon prior to the start of the next cycle.
  • the transfer stations 40',41',42'and 43' and the developer units 35',36',37' and 38' of image forming station 21 are similar to those of station 20.
  • toner image transfer station 40 of Fig. 1 is shown on an enlarged scale.
  • Transfer station 40 comprises idler rollers 27 for causing photoconductive belt 26 to follow a short horizontal path 55 as shown.
  • Sheet 52 is in contact with the belt and moves synchronously therewith because the peripheral speed of sheet driving rollers 47 corresponds exactly with the linear speed of photoconductive belt 26. This synchronous movement may be obtained by different systems known in the art and needs therefore no further explanation. It is also possible to drive the sheet by rollers 47 until the sheet is firmly electrostatically engaged by the belt, and next opening the rollers.
  • the sheet is kept in firm contact with the belt as a consequence of electrostatic attraction forces resulting from the belt carrying an electrostatic charge image and from the charging of the sheet by transfer corona 53.
  • Reproducible pick-up of the leading edge of the sheet may be improved if desired by means such as air jets produced by nozzles 60 and 61 biasing the sheet in a direction towards the belt, by stationary guide members such as rigid fingers 50, flexible guide wires, or the like.
  • Such additional expedients may not be required for relatively stiff receptor sheets, e.g. paper sheets having a weight larger than 100 g/sq.m, but may be required for light-weight sheets which may tend to deflect too much from the belt on their travel from one to the next transfer station.
  • the corona station 53 may occasionally be preceded by one or more similar coronas to extend the range of electrostatic attraction, and to improve sheet pick-up.
  • a first, transfer corona generator 53 is located at a position ahead of the point of separation of the sheet from the belt and sprays ions on the rear side of the sheet so as to charge the sheet to a polarity opposite to that of the charge on the toner image on the photoconductive belt.
  • the sheet is charged to the proper magnitude and polarity for attracting and transferring the toner image from the photoconductive belt 26 thereto.
  • Suitable DC voltages for this generator are between 3000 and 9000 volts.
  • a brush-like electrode 54 may serve for discharging the sheet after the toner transfer.
  • This electrode can comprise a great plurality of individual, conductive fibres with a diameter down to 10 micrometer that are electrically grounded and thereby are capable of establishing an electric current path with the sheet, even if they remain separated therefrom over a distance up to 2 mm approximately.
  • conditioning corona generator 56 can spray ions on the front side of the sheet so as to apply a charge on the toner image on the sheet of a polarity equal to that of the charge on the transferred toner image. In this way, the charge on this side of the sheet is increased.
  • Corona generator 56 may be in principle any type of corona device suitable for carrying out the desired charging, but we have found that excellent results were obtained with an AC corona operating at a peak-to-peak voltage of 8 to 20 kV at a frequency of 50 to 10000 Hz, an offset to the AC high voltage wave being applied ranging between 0 and 2000 DC volts.
  • corona 56 requires the opposite side of the sheet to be grounded. This has been shown in the figure as occurring by means of block 57.
  • This block 57 can be a conventional AC or DC, or a combination of AC and DC corona, a grounded plate running parallel to the sheet, an electrically conductive brush such as brush 54, a roller or the like.
  • Horizontal section 55 of photoconductive belt 26 imparts a direction of movement to sheet 52 which is such that the sheet is properly directed towards the next transfer station 41, while unsupportedly bridging the gap between both stations in an almost linear way.
  • the gap g between two successive transfer stations in the present example amounted to 43 mm, i.e. the distance centre-to-centre between the second roller 27 of one station and the first one of the next station, whereas the pitch p which is the centre-to-centre distance between the first roller of the successive transfer stations amounted to 75.791 mm.
  • the supported sheet length x amounted to 32.791 mm, the roller diameter being 24 mm as mentioned already.
  • Fig. 3 shows a detail of the position of the distinct colour part images on photoconductive belt 26 whereas Fig. 4 shows the length of an image buffer path between two successive transfer stations.
  • belt 26 is shown carrying four colour part images, viz. K, C, M and Y as they have been exposed in succession on the charged belt by exposure station 29.
  • the length of an image plane is indicated by i, being the sum of length a of the proper image and of t being the space provided for test patches, register-marks, cutting lines, and the like.
  • the length of a colour plane is indicated by c , and is the sum of i and of distance s required for allowing the switching of the colour development stations, the transfer coronas, etc.
  • Fig. 4 shows in detail the belt loop 33 forming an image buffer between two successive transfer stations.
  • the length b of an image buffer (see dashed line 44) between points A and B, which both are the first contact points (in fact a transverse line) of a receptor sheet with successive sections of the belt in the transfer stations, is such that it equals the sum of the length c of a colour plane and of the pitch p which is the linear distance between point A and B (which is identic to the centre-to-centre distance of the corresponding rollers 27 described hereinbefore).
  • b c + p.
  • the length of photoconductive belt 26 preferably is m times the length c of a colour plane, m being an integer. This is because regions of the belt where images are to be formed must be kept out of the seam of the belt, unless the throughput of the apparatus is seriously reduced.
  • rollers in the image transfer zones must be wobble-free in order not to generate transfer defects.
  • An alternative is to ensure that the locations of roller-dependent defects are the same in each part image, so that such defects are transferred in coinciding superimposed relationship whereby they are much less visible in the final colour image.
  • the theoretic circumference o of each roller shall be n times smaller than the length c of a colour plane, n being an integer.
  • theoretic circumference o of a roller in the transfer stations can best be z times smaller than the pitch p between two transfer stations, z being an integer.
  • the transmission ratio in the drive system of the printer must be such that for each colour plane the driving components are in exactly the same angular position.
  • the motor means driving the belt must be capable of producing a precise, vibration-free drive of the belt.
  • magenta development station 35 is switched to its inoperative state and after the trailing edge of the magenta image has passed yellow development station 36, this station is put in the operative state to start the development of the blue latent image. While the latter portion of the yellow latent image is being developed, the exposure of the red latent image at 29 starts already.
  • the electrostatic transfer devices of the transfer stations are energized, and as sheet 52 reaches toner transfer station 40 where at that moment the lastly formed toner image, viz. the black-and-white one, is ready to enter the station, toner image transfer can start.
  • the lastly formed toner image is the first to become transferred to sheet 52.
  • the firstly formed toner image viz. the magenta one, takes with its leading edge a position on the belt as indicated by the cross 62 and will thus be transferred last.
  • the other two toner images take positions with their leading edges as indicated approximately by crosses 63 and 64, respectively.
  • the timing of exposure of the four distinct images, the relative position of these images on the photoconductive belt and the lengths of the path of this belt between the successive transfer stations are such that as paper sheet 52 follows a linear path through these stations, the progressive simultaneous transfer of the distinct toner images to the paper sheet is such that a perfect registering of these images is obtained. It will be understood that, as known in the art, measuring of the position of register marks may be usefull for controlling via feedback loops the exposure system in order to occasionally correct or improve the positioning of the images on the belt.
  • Sheet 52 bearing a colour toner image on its obverse side produced as described hereinbefore, is now passed through image forming station 21 for applying a colour toner image to the reverse side of the sheet.
  • the production of the reverse side part images started in timed relationship to the obverse side ones, so that the positions of the images on both sheet sides correspond with each other.
  • the cross-over of the sheet from image forming station 20 to station 21 does not raise any problem since basically this transfer is the same as the transfer of the sheet from one to a next image transfer station.
  • a charge conditioning corona can be placed to make sure toner is not jumping on the transfer corona's of station 21.
  • the sheet electrostatically bearing the colour images is then received on endless belt 24 of buffer station 23 before entering fuser station 25.
  • buffer 23 The purpose of buffer 23 is as follows. Fuser station 25 operating to melt the toner images transferred to the sheets in order to affix them, it will be understood that this operation requires a certain minimum time since the temperature of the fuser is subject to an upper limit which must not be exceeded, unless the roller lifetime becomes unsatisfactory. In other words, the speed of fuser station 25 is limited.
  • the speed of the image formation stations 20 and 21, on the other hand, is in principle not limited for any particular reason. On the contrary, it is advantageous to use a high speed of image formation and image transfer, since the four colour separations of each colour image are written by exposure station 29 in succession, which means that the recording time of one colour image amounts to at least four times the recording time of one part image.
  • the fusing speed may be desirable to adjust the fusing speed independently from the image processing speed, i.e. the belt speed, for optaining optimum results. It should be noted that the image processing speed in the imaging stations is constant.
  • the length of buffer station 23 is sufficient for receiving the largest sheet size to be processed in the apparatus.
  • Buffer station 23 operating initially at the speed of the photoconductive belts of devices 20 and 21, the speed of this station is reduced to the processing speed of fuser station 25 as the trailing edge of the sheet has left device 21.
  • Fusing station 25 can be of known construction, and can be arranged for radiation or flash fusing, for fusing by convection and/or by pressure, etc. The fused sheet is finally received on platform 14.
  • a printing apparatus according to the present invention is not limited to the embodiment described hereinbefore.
  • One image forming station such as 20, need not necessarily operate with one exposure station, such as 29, but may include more than one exposure station, each such station co-operating with several developer units.
  • FIG. 5 An arrangement operating with two exposure stations and four developer units is shown in Fig. 5.
  • first exposure station 70 in the present example a LED array, for image-wise exposing photoconductive belt 26, which has been properly erased by lamp unit 68 and charged by electrostatic charging unit 69, and which is driven by means, not shown, in the direction of arrow 71.
  • the belt passes through two developer units 72 and 73, the first one being for instance, for developing a green part image and the second one a yellow station for developing a blue part image. Both units are switchable into and out of an operative state as described hereinbefore with reference to Fig. 1. Both developed toner images are transferred to a receptor sheet following a path through transfer stations 75 and 76, indicated by arrow 74. A loop 78 between both stations forms an image buffer as described hereinbefore.
  • a second exposure station 79 is provided for image-wise exposing the two other part images, such as the red and the black-and-white one.
  • the photoconductive belt has previously been cleaned by cleaner 80, and erased and charged by stations 81 and 82, respectively.
  • the red and black-and-white images exposed by station 79 are developed by corresponding developer units 83 and 84, and transferred to the receptor sheet in transfer stations 85 and 86.
  • the exposure stations 70 and 79, the developer units 72, 73, 83 and 84, and the transfer stations 75, 76, 85 and 86 are controlled in timed relationship so that, taking also into account the length of the image buffers on the belt between the different transfer stations, the four toner images are transferred onto each other in perfect coinciding superimposed relationship as the receptor sheet moves through the successive transfer stations.
  • Cleaner 87 cleans photoconductive belt 26 before it is erased and charged at 68 and 69.
  • the described arrangement can be followed by an identical one but located at the other side of the path of the receptor sheet, to operate in duplex. Then, the images on the receptor sheet can be fixed.
  • Fig. 6 diagramatically illustrates an embodiment of a duplex printer according to the invention which uses for each imaging device two photoconductive belts, and for each such belt two exposure units.
  • a receptor sheet removed by finger 111 from stack 112 is conveyed upwardly by conveyer 113 along two series 114, 115 of four transfer stations.
  • stations 114 a first photoconductive belt 116 running in loops as shown, is cleaned at 117, erased at 118 and electrostatically charged at 119 before being image-wise exposed at 122, e.g. by laser exposure.
  • Units 120 and 121 are two developing stations.
  • a second belt 123 is similarly exposed by unit 122' and developed by stations 124 and 125. The timing of operation of the exposure units is such that appropriate registering in superimposed relationship of the four toner images is obtained.
  • transfer stations 115 transfer the part images of two photoconductive belts, image-wise exposed each by two exposure stations and next developed.
  • the advantage of the vertical sheet transport in the described embodiment is a notable reduction in floor space of the machine. Another advantage is that gravity is working in the same way on both sides of the receptor sheet.
  • Fig. 7 shows an embodiment of the invention wherein a receptor sheet follows a curved instead of a straight path through the image transfer zone.
  • the illustration is diagrammatic only but it is clear that belt guide rollers 130 are disposed in such a way that they determine subpaths 131 for photoconductive belt 132 which, although individually straight, are mutually inclined. These subpaths determine for a sheet entering at the location of arrow 133 a path which has nearly the form of a polygon with rounded corners, the leading sheet edge entering each time in contact with a subsection of the belt approximately half its length, e.g. at a position approximately as indicated by cross 134. Incomplete contact of the receptor sheet with the toner image on the photoconductive belt in the first part of its stretch in a toner transfer area is not detrimental to image quality.
  • Fig. 8 shows that the sheet path determined by transfer stations 136 need not necessarily be slightly curved concavely as in Fig. 7, but can span an arc of 180 angular degrees or even more, so that a compact design of the apparatus becomes possible.
  • the respective stretches of the recording belt between the two guide rollers 137 of each transfer station can be concave as shown. This can be obtained by the use of vacuum boxes with concave top plate at the rear side of the belt.
  • substantially rectilinear sheet path in the image transfer zone i.e. between the first and the last transfer station.
  • substantially rectilinear sheet path means that the sum of the absolute values of the angles in the path is smaller than 360°, preferably smaller than 180°, and still more preferably smaller than 90°.
  • Still further embodiments of the invention are as follows.
  • Sheets fed from stack 12 as in Fig. 1 can occasionally be subjected to a drying operation prior to the toner image transfer, in order to get a sufficiently low moisture content, e.g. below 60 %.
  • a sufficiently low moisture content e.g. below 60 %.
  • Such paper conditioning means can be incorporated in alignment module 16.
  • the transport of a receptor sheet from a first image forming station to a second one in order to operate in duplex can also occur by sheet lifting means or a vacuum belt in the event of suchlike stations being located one on top of the other.
  • the fixing step has been described as occurring after the transfer of the two images in duplex printing. It is clear that one transferred image may be fixed before the second one becomes transferred.
  • the sheet supporting distance x , the diameter of the belt guiding rollers, the unsupported distance g, and the pitch p may be smaller than the values mentioned hereinbefore leading to an even better control of the sheet path and to a more compact machine. However, they may also be larger in the case of relatively stiff sheets and/or large printing widths requiring belt supporting rollers with a larger diameter to obtain sufficient stiffness.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Color Electrophotography (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Counters In Electrophotography And Two-Sided Copying (AREA)

Description

    BACKGROUND OF THE INVENTION Field of the invention.
  • The present invention relates to an electrostatographic colour printing apparatus in which successive, different colour toner images are transferred from a recording member in the form of an endless belt in superimposed registration on a receptor sheet.
  • Description of the prior art.
  • In an electrophotographic black-and-white printing machine, a photoconductive member is charged to a substantially uniform potential to sensitize the surface thereof. The charged portion of the photoconductive member is image-wise exposed. Exposure of the charged photoconductive member selectively dissipates the charge thereon in the irradiated areas. As a result, an electrostatic latent image is recorded on the photoconductive member corresponding to the informational areas contained in the original document being reproduced. After the electrostatic latent image is recorded on the photoconductive member, the latent image is developed by bringing toner into contact therewith. This forms a developed toner image on the photoconductive member which is subsequently transferred to a receptor sheet. The receptor sheet is then heated to permanently affix the toner image thereto in image configuration.
  • Multicolour electrophotographic printing is substantially identical to black and white printing described hereinbefore. However, rather than forming a single latent image on the photoconductive surface, successive latent part images corresponding to different colours are recorded thereon. Each single colour electrostatic latent image is developed with toner of a colour complementary thereto. This process is repeated a plurality of cycles for differently coloured images and their respective complementarily coloured toner. Each single colour toner image is transferred to the copy sheet in superimposed registration with the prior toner image, thereby creating a multilayered toner image on the copy sheet. Thereafter, the multilayered toner image is permanently fixed to the receptor sheet creating a colour copy or print.
  • Superimposed registered toner images can be obtained in different ways.
  • According to one technique, the distinct charge images are developed on the photoconductive member itself, i.e. so-called add- on development, after which the transfer of the complete image to the receptor paper can occur in one step. A disadvantage of this system is that only the very first part image on the photoconductive member can be formed without difficulties. For each subsequent part image, the exposure has to take account of the amount of toner already present on the photoconductive member, the toner has to be sufficiently transparent for the exposing wavelength, and the next magnet brushes shall not damage the former image.
  • According to another technique the distinct charge images are developed with the appropriate toner while on the photoconductive member, without superimposition. The different toner images are then accumulated in superimposition on an intermediate medium, which usually is a relatively soft material such as rubber in the form of a drum or belt. Transfer from this medium to the receptor paper occurs in one passage. Disadvantages of the system are that each toner image is transferred twice resulting in a reduced image quality, and that the machine becomes more complex.
  • Still another technique comprises developing the different part images on the photoconductive member without accumulation, and transferring the different developed toner images in superimposition on the receptor sheet. The latter can be attached to a suitable carrier which revolves the sheet four times past the photoconductive member to pick up the corresponding toner image. Disadvantages are the more complex paper path with increased risk for paper jam, the limitation of throughput as a consequence of the repeated passages (usually four) of the paper past the photoconductive member, and the limited assortment of receptor sheets that can be used.
  • Another serious disadvantage is formed by the presence of the receptor sheet carrier in the electrostatic field of the image transfer station. Each defect in such carrier causes a defect at the corresponding place of the receptor sheet.
  • A still further system is a copier system comprising developing stations for sequentially developing electrostatic latent images on the surface of a recording member in the form of an endless belt to form toner images on such belt, electrostatic transfer stations for sequentially transferring said toner images from the belt in superimposition onto a receptor sheet conveyed by a backing belt through such transfer stations while in contact with a recording belt section therein to form a multicolour image, and recording belt conveying means for conveying said belt in a folded path between said transfer stations to form an image buffer between adjacent transfer stations. A machine embodying the described system is disclosed in US-A-4 751 549. While this machine is interesting from the point of simplicity of the path followed by the receptor sheet, so that paper jam is unlikely to occur, one problem is formed by the precision of the drive of the receptor sheet synchronously with the photoconductive belt. Further, this system is hampered by the same defect as the one described hereinbefore, viz. the presence of the carrier for the receptor sheet in the electrostatic field of the transfer stations. Also, the transfer belt runs in contact with the photoconductive surface of the recording belt, and this notably reduces the lifetime and consequently requires timely replacement of the transfer and/or recording belt.
  • Another copier system is disclosed in US-A-4 251 154. This copier comprises developing stations for sequentially developing electrostatic latent images on the surface of a recording member in the form of an endless belt to form toner images on such belt, and a transfer mechanism mounted adjacent to the belt to transfer the toner images into registration onto one side of a receptor sheet. The transfer mechanism comprises register rollers disposed between adjacent transfer stations which remove the receptor sheet from contact with the belt and return it in registration with the next toner image on the belt at the next transfer station. A disadvantage of this copier is its complex paper path, which increases the risk of paper jams: a receptor sheet makes a completely closed loop as it is being tacked to a register roller. Moreover, the complex handling of the receptor sheet is subject to misalignment and registration errors. Further, the copier can only handle receptor sheets with low paper weight, since the sheets are curved around the register rollers.
  • Another apparatus operating with a photoconductive endless belt is disclosed in EP A1 0 258 863. In this apparatus the different colour printing portions comprise erasing, charging, exposure, development and cleaning stations are placed between successive transfer stations.
  • A disadvantage of this machine is the uncontrolled path of the receptor sheet between successive stransfer stations so that registering of the distinct part images may be unsatisfactory. Another disadvantage of this apparatus is that all electrophotographic sub-systems (as there are: erase, charge, exposure and cleaning) are needed for each colour, resulting in a more expensive system. All this complicates the constructive design of the machine and its servicing.
  • SUMMARY OF THE INVENTION. Objects of the invention.
  • It is one object of the present invention to provide an electrophotographic colour printing apparatus of the type referred to, which affords a simple and secure path for the receptor sheet, so that a high registering accuracy and a very small jam rate may be obtained.
  • It is another object of the invention to provide an apparatus of the type referred to which is suitable for duplex printing.
  • It is a further object to provide a colour printing apparatus which allows the use of receptor sheets with a broad paper weight range, viz. a range at least extending from 60 to 500 g/sq.m.
  • It is a still further object of the invention to provide a printing apparatus which needs less run-in receptor sheets.
  • Statement of the invention.
  • In accordance with the present invention, an electrostatographic colour printing apparatus which comprises :
    • exposure means for forming successive electrostatic images on the surface of a recording member in the form of an endless belt,
    • developing stations for sequentially developing such electrostatic latent images to form toner images on said belt, and
    • electrostatic transfer stations for sequentially transferring said toner images from said belt in superposition onto a receptor sheet fed through such transfer stations while in contact with a belt section therein to form a multicolour image, is characterised in that the transport of said receptor sheet through said transfer stations occurs by frictional contact of said sheet with the corresponding belt sections in said stations under the influence of electrostatic attraction forces, in the absence of a moving backing belt, that said transfer stations are mounted thus close to each other and that they comprise directional means imparting a direction of motion to the corresponding operative section of the endless belt which is such that a receptor sheet leaving such transfer station is conveyed into appropriate contact with the corresponding belt section of the next transfer station, and that at least two of said developing stations are mounted between the exposure means and the first transfer station.
  • In some cases, such as with very light-weight receptor sheets, i.e. sheets with a weight less than 60 g.m-2, or sheets tending to curl, it may be desirable to further improve control of the reproducible pick-up of the leading edge of a sheet by the recording belt. This can occur by means of nozzles producing air jets directed to the rear side of a receptor sheet. Further, stationary guide members in the form of fingers, flexible wires or the like can be provided to perform such control.
  • The term "receptor sheet" as used further in the present specification stands for a sheet of paper, plastic, a laminate of both, and the like onto which the transferred image is received. This sheet may be the end-product as such but it may also form an intermediate step in a reproduction process, e.g. it may be used, after a suitable treatment, as a so-called transfer element, e.g. as a printing plate for printing images by planographic printing techniques onto a final support.
  • The term "colour" is not strictly limited to the development of usual colour separation images by conventional magenta, cyan, yellow and black toners, but encompasses also the production of images by means of more than three colours, by means of different shades of one colour, e.g. different grey shades, the covering or coating of an image by an image-wise applied transparent, coloured, fluorescent or otherwise treated varnish, and the like.
  • The term "printing" stands in the first place for a printer which creates the output printing image by laying out the image in a series of horizontal scan lines, each line having a given number of pixels per inch. An exposure station for exposing the recording may comprise a laser with a rotating mirror block, a LED array, a uniform light source and a plurality of individually controllable light valves, an arrangement with deformable micromirror devices, etc. However, said term encompasses also an apparatus in which the exposure of the recording member occurs by the optical projection of an integral image, such as in a copier, see e.g. US A 4 751 549 mentioned hereinbefore.
  • The term "recording member" refers in the first place to an endless belt which is made of, or comprises a layer of an organic or inorganic photoconductor which can be uniformly electrostatically charged and next image-wise discharged by appropriate integral or scanning-wise exposure. However, this term also encompasses an endless belt made of an organic film having no photoconductivity at all, and which is image-wise electrostatically charged by means of an ion radiation array. For that reason the term "electrostatographic" has been used in the statement of invention.
  • Suitable embodiments of a printing apparatus according to the invention are as follows.
  • The apparatus comprises belt conveying means for conveying said belt in a folded path between said transfer stations to form an image buffer between adjacent transfer stations. This embodiment has the advantage that one exposure station only may be needed which may expose the distinct part images in succession on the recording belt. Another advantage is that one erase station, one charging station and one cleaning station only are needed for erasing, charging and cleaning the photoconductor for the distinct part images.
  • The different images are developed in the appropriate colour and transported through the mentioned buffer zones until the moment for (simultaneous) progressive toner image transfer has arrived.
  • The developing stations can be mounted all between the exposure means and the first transfer station. This allows the mounting of such developing stations in grouped fashion which is interesting from the points of constructive design and servicing of the apparatus. The same advantages count for the transfer stations which now, by the absence of the exposure stations within the loops of the recording belt, are more compact and thus easier to design.
  • Furthermore, this construction needs only one cleaning and one erasing station so that a compact installation may be obtained.
  • These considerations are even more important if the printing apparatus according to the invention is a duplex printer of a type which comprises image-forming means at either side of the path of a receptor sheet through the apparatus.
  • Still further embodiments of a printer according to the invention are as follows.
  • The mentioned directional means comprises two parallel belt guide rollers imparting a controlled linear path x to the belt section between such two guide rollers in each transfer station.
  • The diameter of such rollers is smaller than 50 mm, and suitably smaller than 25 mm.
  • The length x of the linear path is not larger than 120 mm.
  • The unsupported distance of a sheet between two successive transfer stations is not larger than the distance over which a sheet is in contact with an image transferring belt section in such station. Suitably, such unsupported distance is not larger than 70 mm.
  • BRIEF DESCRIPTION OF THE DRAWINGS.
  • The invention will be described hereinafter by way of example with reference to the accompanying drawings wherein :
    • Fig. 1 is a diagrammatic view of an embodiment of a duplex colour printer in accordance with the present invention, operating with one exposure station for each sheet side,
    • Fig. 2 is a detail of Fig. 1 showing one embodiment of a toner image transfer station,
    • Fig. 3 is a schematic view showing colour part images formed on a photoconductive recording belt,
    • Fig. 4 is a schematic view of an image buffer,
    • Fig. 5 is a diagrammatic view of an embodiment of an image forming station operating with two exposure stations,
    • Fig. 6 is a diagrammatic view of an embodiment of a duplex printer operating with different recording belts and different exposure stations,
    • Fig. 7 is a diagrammatic view of a colour image transfer arrangement in which the receptor sheet follows a curved path, and
    • Fig. 8 is an arrangement in which a receptor sheet is made to follow a path concavely curved over 180 angular degrees.
    Detailed description of the invention.
  • Fig. 1 shows a diagrammatic representation of one embodiment of an electrophotographic duplex colour printer.
  • The printer comprises a lighttight housing 10 which has at its inside a stack 12 of sheets to be printed loaded on a platform 13 the height of which is adjusted in accordance with the size of the stack, and at the outside a platform 14 onto which the printed sheets are received.
  • A sheet to be printed is removed from stack 12 by a dispensing mechanism 15 which may be any mechanism known in the art such as a friction roller, a friction pad, a suction cup, or the like for removing the top sheet from stack 12.
  • The removed sheet is passed through an alignment station 16 which ensures the longitudinal and lateral alignment of the sheet, prior to its start from said station under the control of the imaging system. As the sheet leaves the alignment station, it follows a straight horizontal path 17 up to outlet 18 of the printer. The speed of the sheet, upon entering said path is determined by driven pressure roller pair 47.
  • The following processing stations are located along path 17. A first image forming station 20 indicated in a dash-and-dot line for applying a colour image to the obverse side of the sheet and a second station 21 for applying a colour image to its reverse side. A buffer station 23 with an endless belt 24 for transporting the sheet to fuser station 25 while allowing the speed of the sheet to change because the speed of fusing may be different from that of the speed of image formation.
  • Both image forming stations 20 and 21 being similar to each other, only station 20 will be described in more detail hereinafter.
  • An endless photoconductor belt 26 is guided over a plurality of idler rollers 27 to follow a path in the direction of arrow 22 to advance successive portions of the photoconductive surface sequentially through the various processing stations disposed about the path of movement thereof. The belt suitably can be a polyethylene terephthalate support which is provided at the outside of its loop with a subbing layer onto which a photoconductive layer has been coated. Means is provided (not shown) for driving the belt at a uniform speed and for controlling its lateral position.
  • Initially, a portion of photoconductive belt 26 passes through charging station 28. At the charging station, a corona generating device electrostatically charges the belt to a relatively high, substantially uniform potential. Next, the belt is rotated to the exposure station 29, which will expose the photoconductive belt to successively record four latent colour separation images. The exposure station includes a ROS (raster output scanner) 30 with a laser with a rotating polygon mirror block which creates the output printing image by laying out the image in a series of horizontal scan lines, each line having a given number of pixels per inch. However, this station can as well comprise a linear LED array covering the width of the belt for performing the exposure.
  • The latent images are developed with magenta, cyan, yellow and black developer material, respectively. These developed images are transferred on the print sheet in superimposed registration with one another to form a multicolour image on the sheet. The ROS receives its input signal from IPS (image processing system) 31. This system is the electronic control device which prepares and manages the data inflow to scanner 30. A user interface UI, indicated by reference numeral 32, is in communication with the IPS and enables the operator to control the various operator adjustable functions. IPS 31 receives its signal from input 34. This input can be the output of a RIS (raster input scanner) in case the apparatus is a so-called intelligent or digital copier. In such case, the apparatus contains document illumination lamps, optics, a mechanical scanning drive; and a charge-coupled device. The RIS captures the entire original document and converts it to a series of raster scan lines and measures a set of primary colour densities, i.e. red, green and blue densities at each point of the original document. However, input 34 can as well receive an image signal resulting from an operator operating an image processing station.
  • After an electrostatic latent image has been recorded on photoconductive belt 26, belt 26 advances this image to the development station. This station includes four individual developer units 35, 36, 37 and 38.
  • The developer units are of a type generally referred to in the art as "magnetic brush development units". Typically, a magnetic brush development system employs a magnetizable developer material including magnetic carrier granules having toner particles adhering triboelectrically thereto. The developer material is continually brought through a directional flux field to form a brush of developer material. The developer particles are continually moving so as to provide the brush consistently with fresh developer material. Development is achieved by bringing the brush of developer material into contact with the photoconductive surface. Developer units 35, 36 and 37, respectively, apply toner particles of a specific colour which corresponds to the complement of the specific colour-separated electrostatic latent image recorded on the photoconductive surface. The colour of each of the toner particles is adapted to absorb light within a preselected spectral region of the electromagnetic wave spectrum. For example, an electrostatic latent image formed by discharging the portions of charge on the photoconductive belt corresponding to the green regions of the original document will record the red and blue portions as areas of relatively high charge density on photoconductive belt 10, while the green areas will be reduced to a voltage level ineffective for development. The charged areas are then made visible by having developer unit 35 apply green absorbing (magenta) toner particles onto the electrostatic latent image recorded on photoconductive belt 26. Similarly, a blue separation is developed by developer unit 36 with blue absorbing (yellow) toner particles, while the red separation is developed by developer unit 37 with red absorbing (cyan) toner particles. Developer unit 38 contains black toner particles and may be used to develop the electrostatic latent image formed from black information or text, or to supplement the colour developments. Each of the developer units is brought into and out of an operative state. In the operative state, the magnetic brush is closely adjacent to the photoconductive belt, whereas in the non-operative one, the magnetic brush is spaced therefrom. During development of each electrostatic latent image only one developer unit is in the operative state, the remaining developer units being in their non-operative one. This ensures that each electrostatic latent image is developed with toner particles of the appropriate colour without inter-mingling. In Fig. 1, developer unit 35 has been shown in its operative state. This may be obtained by translation of the complete developer unit, but it is also possible to keep the unit as such stationary but to only slightly alter the position of the magnetic brush. Finally, each unit comprises a toner hopper, such as hopper 39 shown for unit 35, for supplying fresh toner to the developer which becomes progressively depleted by the development of the electrostatic charge images. The hopper may be directly fitted onto the developer unit but may also be connected therewith through a suitable tube.
  • After their development, the toner images are moved to toner image transfer stations 40, 41, 42 and 43 where they are transferred on a sheet of support material, such as plain paper or a transparent film. At a transfer station, a receptor sheet follows a rectilinear path 17 into contact with photoconductive belt 26. The sheet is advanced in perfect synchronism with the movement of the belt. Advance of the sheet and transfer of a toner image from the belt to the sheet will be described in more detail with reference to Fig. 2 hereinafter. After transfer of the four toner images, the belt follows an upward course and is cleaned in a cleaning station 45 where a rotatable fibrous brush or the like is maintained in contact with the belt 26 to remove residual toner particles remaining after the transfer operation. Thereafter, lamp 46 illuminates the belt to remove any residual charge remaining thereon prior to the start of the next cycle.
  • The transfer stations 40',41',42'and 43' and the developer units 35',36',37' and 38' of image forming station 21 are similar to those of station 20.
  • Referring to Fig. 2, toner image transfer station 40 of Fig. 1 is shown on an enlarged scale.
  • Transfer station 40 comprises idler rollers 27 for causing photoconductive belt 26 to follow a short horizontal path 55 as shown. The diameter of rollers 27 amounted to 24 mm in the present example, so that the radius of curvature of the upwardly deflected belt 26 at the right-hand roller amounted to only 12 mm. Sheet 52 is in contact with the belt and moves synchronously therewith because the peripheral speed of sheet driving rollers 47 corresponds exactly with the linear speed of photoconductive belt 26. This synchronous movement may be obtained by different systems known in the art and needs therefore no further explanation. It is also possible to drive the sheet by rollers 47 until the sheet is firmly electrostatically engaged by the belt, and next opening the rollers. The sheet is kept in firm contact with the belt as a consequence of electrostatic attraction forces resulting from the belt carrying an electrostatic charge image and from the charging of the sheet by transfer corona 53. Reproducible pick-up of the leading edge of the sheet may be improved if desired by means such as air jets produced by nozzles 60 and 61 biasing the sheet in a direction towards the belt, by stationary guide members such as rigid fingers 50, flexible guide wires, or the like. Such additional expedients may not be required for relatively stiff receptor sheets, e.g. paper sheets having a weight larger than 100 g/sq.m, but may be required for light-weight sheets which may tend to deflect too much from the belt on their travel from one to the next transfer station. Further, it is clear that the corona station 53 may occasionally be preceded by one or more similar coronas to extend the range of electrostatic attraction, and to improve sheet pick-up.
  • A first, transfer corona generator 53 is located at a position ahead of the point of separation of the sheet from the belt and sprays ions on the rear side of the sheet so as to charge the sheet to a polarity opposite to that of the charge on the toner image on the photoconductive belt. Thus, the sheet is charged to the proper magnitude and polarity for attracting and transferring the toner image from the photoconductive belt 26 thereto. Suitable DC voltages for this generator are between 3000 and 9000 volts.
  • A brush-like electrode 54 may serve for discharging the sheet after the toner transfer. This electrode can comprise a great plurality of individual, conductive fibres with a diameter down to 10 micrometer that are electrically grounded and thereby are capable of establishing an electric current path with the sheet, even if they remain separated therefrom over a distance up to 2 mm approximately.
  • After the toner image has been transferred to the sheet and the sheet became separated from photoconductive belt 26 a second, conditioning corona generator 56 can spray ions on the front side of the sheet so as to apply a charge on the toner image on the sheet of a polarity equal to that of the charge on the transferred toner image. In this way, the charge on this side of the sheet is increased. Corona generator 56 may be in principle any type of corona device suitable for carrying out the desired charging, but we have found that excellent results were obtained with an AC corona operating at a peak-to-peak voltage of 8 to 20 kV at a frequency of 50 to 10000 Hz, an offset to the AC high voltage wave being applied ranging between 0 and 2000 DC volts.
  • The proper operation of corona 56 requires the opposite side of the sheet to be grounded. This has been shown in the figure as occurring by means of block 57. This block 57 can be a conventional AC or DC, or a combination of AC and DC corona, a grounded plate running parallel to the sheet, an electrically conductive brush such as brush 54, a roller or the like.
  • Horizontal section 55 of photoconductive belt 26 imparts a direction of movement to sheet 52 which is such that the sheet is properly directed towards the next transfer station 41, while unsupportedly bridging the gap between both stations in an almost linear way. The gap g between two successive transfer stations in the present example amounted to 43 mm, i.e. the distance centre-to-centre between the second roller 27 of one station and the first one of the next station, whereas the pitch p which is the centre-to-centre distance between the first roller of the successive transfer stations amounted to 75.791 mm. The supported sheet length x amounted to 32.791 mm, the roller diameter being 24 mm as mentioned already.
  • It is important to keep the gap g small for secure receptor sheet transport and corresponding accurate image registering.
  • It has been shown that it is possible to transfer four or even more colour part images in superimposition on the receptor sheet with a register error smaller than 75 micrometer as we have found.
  • Fig. 3 shows a detail of the position of the distinct colour part images on photoconductive belt 26 whereas Fig. 4 shows the length of an image buffer path between two successive transfer stations. Referring to Fig. 3, belt 26 is shown carrying four colour part images, viz. K, C, M and Y as they have been exposed in succession on the charged belt by exposure station 29. The length of an image plane is indicated by i, being the sum of length a of the proper image and of t being the space provided for test patches, register-marks, cutting lines, and the like. The length of a colour plane is indicated by c, and is the sum of i and of distance s required for allowing the switching of the colour development stations, the transfer coronas, etc.
  • Fig. 4 shows in detail the belt loop 33 forming an image buffer between two successive transfer stations. The length b of an image buffer (see dashed line 44) between points A and B, which both are the first contact points (in fact a transverse line) of a receptor sheet with successive sections of the belt in the transfer stations, is such that it equals the sum of the length c of a colour plane and of the pitch p which is the linear distance between point A and B (which is identic to the centre-to-centre distance of the corresponding rollers 27 described hereinbefore).
    Thus : b = c + p.
  • Further important points of the image transfer are as follows. The length of photoconductive belt 26 preferably is m times the length c of a colour plane, m being an integer. This is because regions of the belt where images are to be formed must be kept out of the seam of the belt, unless the throughput of the apparatus is seriously reduced.
  • All rollers in the image transfer zones must be wobble-free in order not to generate transfer defects. An alternative is to ensure that the locations of roller-dependent defects are the same in each part image, so that such defects are transferred in coinciding superimposed relationship whereby they are much less visible in the final colour image.
  • The desired coincidence of roller dependent defects can be obtained as follows.
  • The theoretic circumference o of each roller shall be n times smaller than the length c of a colour plane, n being an integer. The term "theoretic circumference of each roller" as used in the present description means the diameter measured on the neutral fibre of the photoconductive belt surrounding the roller, or in other words : o = 2π (r + 0.5 d), r being the radius of the roller and d the thickness of the belt.
  • Further, the theoretic circumference o of a roller in the transfer stations can best be z times smaller than the pitch p between two transfer stations, z being an integer.
  • Finally, the transmission ratio in the drive system of the printer must be such that for each colour plane the driving components are in exactly the same angular position. Thereby defects in gear wheels, in the case of gear or timing belt drives, or in pulleys, in the case of flat belt drives, will be reproduced in superimposed relationship in the different part images.
  • It will also be clear that, independently of the above, the motor means driving the belt must be capable of producing a precise, vibration-free drive of the belt.
  • The operation of the printer described hereinbefore is as follows.
  • The green latent image being exposed by station 29 on photoconductive belt 26, this image is progressively developed by magenta toner station 35 being in its operative state as the belt moves therethrough. Upon completion of the end of the exposure of the green image and of occasionally a colour wedge, register marks and the like, the blue image becomes exposed. During the blue exposure, the developed magenta image is transported past inactive stations 36, 37 and 38 while toner transfer stations 40 to 43 still are inoperative too.
  • As the development of the green latent image is finished, magenta development station 35 is switched to its inoperative state and after the trailing edge of the magenta image has passed yellow development station 36, this station is put in the operative state to start the development of the blue latent image. While the latter portion of the yellow latent image is being developed, the exposure of the red latent image at 29 starts already.
  • The described processes of imagewise exposure and colour development continue until the four colour separation images have been formed in successive spaced relationship on the photoconductive belt.
  • A sheet 52 which has been taken from stack 12 and kept in readiness in aligner 16, is then advanced by rollers 47. The electrostatic transfer devices of the transfer stations are energized, and as sheet 52 reaches toner transfer station 40 where at that moment the lastly formed toner image, viz. the black-and-white one, is ready to enter the station, toner image transfer can start. Thus, the lastly formed toner image is the first to become transferred to sheet 52. The firstly formed toner image, viz. the magenta one, takes with its leading edge a position on the belt as indicated by the cross 62 and will thus be transferred last. The other two toner images take positions with their leading edges as indicated approximately by crosses 63 and 64, respectively.
  • The timing of exposure of the four distinct images, the relative position of these images on the photoconductive belt and the lengths of the path of this belt between the successive transfer stations are such that as paper sheet 52 follows a linear path through these stations, the progressive simultaneous transfer of the distinct toner images to the paper sheet is such that a perfect registering of these images is obtained. It will be understood that, as known in the art, measuring of the position of register marks may be usefull for controlling via feedback loops the exposure system in order to occasionally correct or improve the positioning of the images on the belt.
  • Sheet 52 bearing a colour toner image on its obverse side produced as described hereinbefore, is now passed through image forming station 21 for applying a colour toner image to the reverse side of the sheet. The production of the reverse side part images started in timed relationship to the obverse side ones, so that the positions of the images on both sheet sides correspond with each other. The cross-over of the sheet from image forming station 20 to station 21 does not raise any problem since basically this transfer is the same as the transfer of the sheet from one to a next image transfer station.
  • In the cross-over, a charge conditioning corona can be placed to make sure toner is not jumping on the transfer corona's of station 21.
  • The sheet electrostatically bearing the colour images is then received on endless belt 24 of buffer station 23 before entering fuser station 25.
  • The purpose of buffer 23 is as follows. Fuser station 25 operating to melt the toner images transferred to the sheets in order to affix them, it will be understood that this operation requires a certain minimum time since the temperature of the fuser is subject to an upper limit which must not be exceeded, unless the roller lifetime becomes unsatisfactory. In other words, the speed of fuser station 25 is limited. The speed of the image formation stations 20 and 21, on the other hand, is in principle not limited for any particular reason. On the contrary, it is advantageous to use a high speed of image formation and image transfer, since the four colour separations of each colour image are written by exposure station 29 in succession, which means that the recording time of one colour image amounts to at least four times the recording time of one part image. All this means a relatively high speed of the photoconductive belts, and thus of the synchronously moving sheets, as compared with a maximum usable travelling speed through the fuser station. In the apparatus according to the present embodiment, the speed of the two photoconductive belts amounted to 295 mm.s-1, whereas the fusing speed was 100 mm.s-1 or less.
  • Further, it may be desirable to adjust the fusing speed independently from the image processing speed, i.e. the belt speed, for optaining optimum results. It should be noted that the image processing speed in the imaging stations is constant.
  • The length of buffer station 23 is sufficient for receiving the largest sheet size to be processed in the apparatus.
  • Buffer station 23 operating initially at the speed of the photoconductive belts of devices 20 and 21, the speed of this station is reduced to the processing speed of fuser station 25 as the trailing edge of the sheet has left device 21.
  • Fusing station 25 can be of known construction, and can be arranged for radiation or flash fusing, for fusing by convection and/or by pressure, etc. The fused sheet is finally received on platform 14.
  • A printing apparatus according to the present invention is not limited to the embodiment described hereinbefore.
  • One image forming station, such as 20, need not necessarily operate with one exposure station, such as 29, but may include more than one exposure station, each such station co-operating with several developer units.
  • An arrangement operating with two exposure stations and four developer units is shown in Fig. 5.
  • It comprises a first exposure station 70, in the present example a LED array, for image-wise exposing photoconductive belt 26, which has been properly erased by lamp unit 68 and charged by electrostatic charging unit 69, and which is driven by means, not shown, in the direction of arrow 71. The belt passes through two developer units 72 and 73, the first one being for instance, for developing a green part image and the second one a yellow station for developing a blue part image. Both units are switchable into and out of an operative state as described hereinbefore with reference to Fig. 1. Both developed toner images are transferred to a receptor sheet following a path through transfer stations 75 and 76, indicated by arrow 74. A loop 78 between both stations forms an image buffer as described hereinbefore.
  • A second exposure station 79 is provided for image-wise exposing the two other part images, such as the red and the black-and-white one. The photoconductive belt has previously been cleaned by cleaner 80, and erased and charged by stations 81 and 82, respectively. The red and black-and-white images exposed by station 79 are developed by corresponding developer units 83 and 84, and transferred to the receptor sheet in transfer stations 85 and 86.
  • The exposure stations 70 and 79, the developer units 72, 73, 83 and 84, and the transfer stations 75, 76, 85 and 86 are controlled in timed relationship so that, taking also into account the length of the image buffers on the belt between the different transfer stations, the four toner images are transferred onto each other in perfect coinciding superimposed relationship as the receptor sheet moves through the successive transfer stations.
  • Cleaner 87 cleans photoconductive belt 26 before it is erased and charged at 68 and 69.
  • The described arrangement can be followed by an identical one but located at the other side of the path of the receptor sheet, to operate in duplex. Then, the images on the receptor sheet can be fixed.
  • Fig. 6 diagramatically illustrates an embodiment of a duplex printer according to the invention which uses for each imaging device two photoconductive belts, and for each such belt two exposure units. Thus, a receptor sheet removed by finger 111 from stack 112 is conveyed upwardly by conveyer 113 along two series 114, 115 of four transfer stations. Referring to stations 114, a first photoconductive belt 116 running in loops as shown, is cleaned at 117, erased at 118 and electrostatically charged at 119 before being image-wise exposed at 122, e.g. by laser exposure. Units 120 and 121 are two developing stations. A second belt 123 is similarly exposed by unit 122' and developed by stations 124 and 125. The timing of operation of the exposure units is such that appropriate registering in superimposed relationship of the four toner images is obtained.
  • The same conditions apply to the upper half of the apparatus where transfer stations 115 transfer the part images of two photoconductive belts, image-wise exposed each by two exposure stations and next developed. The advantage of the vertical sheet transport in the described embodiment is a notable reduction in floor space of the machine. Another advantage is that gravity is working in the same way on both sides of the receptor sheet.
  • Fig. 7 shows an embodiment of the invention wherein a receptor sheet follows a curved instead of a straight path through the image transfer zone. The illustration is diagrammatic only but it is clear that belt guide rollers 130 are disposed in such a way that they determine subpaths 131 for photoconductive belt 132 which, although individually straight, are mutually inclined. These subpaths determine for a sheet entering at the location of arrow 133 a path which has nearly the form of a polygon with rounded corners, the leading sheet edge entering each time in contact with a subsection of the belt approximately half its length, e.g. at a position approximately as indicated by cross 134. Incomplete contact of the receptor sheet with the toner image on the photoconductive belt in the first part of its stretch in a toner transfer area is not detrimental to image quality.
  • Fig. 8 shows that the sheet path determined by transfer stations 136 need not necessarily be slightly curved concavely as in Fig. 7, but can span an arc of 180 angular degrees or even more, so that a compact design of the apparatus becomes possible. The respective stretches of the recording belt between the two guide rollers 137 of each transfer station can be concave as shown. This can be obtained by the use of vacuum boxes with concave top plate at the rear side of the belt.
  • However, a substantially rectilinear sheet path in the image transfer zone, i.e. between the first and the last transfer station, is preferred. The term "substantially rectilinear" sheet path means that the sum of the absolute values of the angles in the path is smaller than 360°, preferably smaller than 180°, and still more preferably smaller than 90°.
  • Still further embodiments of the invention are as follows.
  • Sheets fed from stack 12 as in Fig. 1 can occasionally be subjected to a drying operation prior to the toner image transfer, in order to get a sufficiently low moisture content, e.g. below 60 %. We have found that a high(er) moisture content is unfavourable for back transfer of toner to the photoconductor. Such paper conditioning means can be incorporated in alignment module 16.
  • The reversal of a receptor sheet in a duplex printer which comprises one image forming station only, need not necessarily occur about a transverse axis but can occur along a longitudinal axis as well.
  • The transport of a receptor sheet from a first image forming station to a second one in order to operate in duplex, can also occur by sheet lifting means or a vacuum belt in the event of suchlike stations being located one on top of the other.
  • The fixing step has been described as occurring after the transfer of the two images in duplex printing. It is clear that one transferred image may be fixed before the second one becomes transferred.
  • The sheet supporting distance x, the diameter of the belt guiding rollers, the unsupported distance g, and the pitch p may be smaller than the values mentioned hereinbefore leading to an even better control of the sheet path and to a more compact machine. However, they may also be larger in the case of relatively stiff sheets and/or large printing widths requiring belt supporting rollers with a larger diameter to obtain sufficient stiffness.
  • Parts list :
  • 10
    housing
    12
    sheet stack
    13, 14
    platform
    15
    dispenser
    16
    aligner
    17
    sheet path
    18
    outlet
    20, 21
    image forming station
    23
    buffer station
    24
    transport belt
    25
    fuser
    26
    photoconductive belt
    27
    idler rollers
    28
    charging station
    30
    ROS
    31
    IPS
    32
    UI
    34
    input
    35, 36, 37, 38
    developer unit
    39
    hopper
    40, 41, 42, 43
    image transfer station
    44
    image buffer
    45
    cleaning station
    46
    lamp
    47
    driving rollers
    50
    guides
    52
    sheet
    53
    corona
    54
    brush
    56
    corona
    57
    grounding
    60, 61
    air jets
    62, 63, 64
    sheet positions
    68
    lamp
    69
    charging station
    70
    exposure station
    72, 73
    developer units
    75, 76
    transfer units
    78
    loop
    79
    exposure station
    80
    cleaner
    81, 82
    charging stations
    83, 84
    developer units
    85, 86
    transfer station
    87
    cleaner
    111
    finger
    112
    stack
    113
    conveyer
    114, 115
    transfer station
    116
    photoconductive belt
    117
    cleaner
    118
    erasing unit
    119
    charging station
    120, 121
    developing units
    122, 122'
    exposure units
    123
    photoconductive belt
    124, 125
    exposure units
    130
    belt guide rollers
    131
    belt sections
    132
    belt
    133
    entry path
    136
    transfer coronas
    137
    belt guide rollers
    g
    gap (unsupported sheet length)
    p
    pitch
    x
    supported sheet length
    i
    length of an image plane
    a
    length of an image
    t
    space for test patches
    c
    length of a colour plane
    s
    length for switching
    k,n,m,z
    integers
    o
    circumference of a roller
    d
    thickness of belt

Claims (15)

  1. Electrostatographic colour printing apparatus which comprises:
    - exposure means (29,29') for forming successive electrostatic latent images on the surface of a recording member in the form of an endless belt (26,26'),
    - developing stations (35, 36, 37, 38, 35', 36', 37', 38') for sequentially developing said electrostatic latent images to form toner images on said belt, and
    - a transfer zone having electrostatic transfer stations (40, 41, 42, 43, 40', 41', 42', 43') for sequentially transferring said toner images from said belt in superposition onto a receptor sheet fed through such transfer stations while in contact with a contacting belt section therein to form a multicolour image, each of said transfer stations having such a contacting belt section for contacting said receptor sheet,
    wherein at least two of said developing stations are mounted between the exposure means and the first transfer station, with respect to the moving direction of the endless belt,
    characterised in that
    - the transport of said receptor sheet through said transfer stations occurs by frictional contact of said sheet with said contacting belt sections under the influence of electrostatic attraction forces, in the absence of a moving backing belt,
    - said transfer stations (40, 41, 42, 43, 40', 41', 42', 43') comprise directional means for imparting a direction of motion to said contacting sections of the endless belt (26,26'), such that a receptor sheet leaving such transfer station unsupportedly bridges a gap between the transfer station and the next transfer station and is conveyed into appropriate contact with the contacting belt section of the next transfer station for transferring the next toner image.
  2. Printing apparatus according to claim 1, wherein the path followed by said receptor sheet in the transfer zone is substantially rectilinear.
  3. Printing apparatus according to any one of claims 1 to 2, wherein all of said developing stations are arranged between said exposure means and said first transfer station.
  4. Printing apparatus according to claim 3, which comprises one exposure, one cleaning, and one erasing station.
  5. Printing apparatus according to any one of claims 1 to 4, wherein all said means and stations are provided in twofold for printing a duplex image.
  6. Printing apparatus according to any one of claims 1 to 5, wherein said directional means comprises two parallel belt guide rollers (27) imparting a controlled linear path x to the belt section between such two guide rollers in each transfer station.
  7. Printing apparatus according to claim 6, wherein the diameter of said rollers is smaller than 50 mm.
  8. Printing apparatus according to claim 6, wherein the length x of said sheet path is not larger than 120 mm.
  9. Printing apparatus according to any one of claims 1 to 8, wherein the unsupported distance g of a sheet between two successive transfer stations is not larger than the distance x over which a sheet is in contact with an image transferring belt section in such station.
  10. Printing apparatus according to claim 9, wherein said unsupported distance g is not larger than 70 mm.
  11. Printing apparatus according to any one of claims 1 to 10, comprising means exerting pressure on the side of the receptor sheet remote of the recording belt to improve the reproducible pick-up of the leading edge of a sheet by the belt.
  12. Printing apparatus according to claim 11, wherein said means is formed by nozzles (60, 61) producing an air jet.
  13. Printing apparatus according to claim 11, wherein said means is formed by stationary guide members (50).
  14. Printing apparatus according to any one of claims 1 to 13, characterised in that it comprises belt conveying means (27) for conveying said belt in a folded path between said transfer stations to form a complete image buffer (33, 33') between adjacent transfer stations.
  15. Printing apparatus according to any one of claims 1 to 14, wherein said recording belt has a photoconductive recording surface.
EP97938892A 1996-08-09 1997-08-07 Electrostatic colour printing apparatus Expired - Lifetime EP0917670B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP97938892A EP0917670B1 (en) 1996-08-09 1997-08-07 Electrostatic colour printing apparatus

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
EP96202251 1996-08-09
EP96202251 1996-08-09
EP96203561 1996-12-16
EP96203561 1996-12-16
PCT/EP1997/004331 WO1998007073A1 (en) 1996-08-09 1997-08-07 Electrostatic colour printing apparatus
EP97938892A EP0917670B1 (en) 1996-08-09 1997-08-07 Electrostatic colour printing apparatus

Publications (2)

Publication Number Publication Date
EP0917670A1 EP0917670A1 (en) 1999-05-26
EP0917670B1 true EP0917670B1 (en) 2006-04-26

Family

ID=26143077

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97938892A Expired - Lifetime EP0917670B1 (en) 1996-08-09 1997-08-07 Electrostatic colour printing apparatus

Country Status (4)

Country Link
EP (1) EP0917670B1 (en)
JP (1) JP2000516350A (en)
DE (1) DE69735764T2 (en)
WO (1) WO1998007073A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0973071A3 (en) * 1998-07-14 2000-07-05 Xeikon Nv Method of using an image forming apparatus
US6032014A (en) * 1998-07-14 2000-02-29 Xeikon Nv Method of using an image forming apparatus
EP0973072B1 (en) * 1998-07-14 2004-08-04 Xeikon International N.V. Apparatus for forming multiple toner images in register with each other on a substrate
DE69919087T2 (en) * 1998-07-14 2005-09-08 Xeikon International N.V. Device for the accurate generation of multiple toner images on a substrate

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4251154A (en) * 1979-04-09 1981-02-17 Eastman Kodak Company Electrophotographic color copier
JPH0762771B2 (en) * 1986-09-01 1995-07-05 株式会社日立製作所 Electrophotography method
JPH0727295B2 (en) * 1990-02-28 1995-03-29 株式会社日立製作所 Color image forming device

Also Published As

Publication number Publication date
WO1998007073A1 (en) 1998-02-19
DE69735764T2 (en) 2007-05-10
EP0917670A1 (en) 1999-05-26
DE69735764D1 (en) 2006-06-01
JP2000516350A (en) 2000-12-05

Similar Documents

Publication Publication Date Title
US5455668A (en) Electrostatographic single-pass multiple-station printer for forming an image on a web
US5160946A (en) Image registration system
JP4342619B2 (en) Method for controlling printing process in printing apparatus
CA1133574A (en) High speed color apparatus
US5848339A (en) Electrostatic color printing apparatus wherein the receptor sheet is transported by a recording belt
US4188110A (en) Photoconductive belt supporting apparatus
US4905052A (en) Sheet transport velocity mismatch compensation apparatus
EP0917670B1 (en) Electrostatic colour printing apparatus
JPH04234064A (en) Encoder roll
US6137981A (en) Apparatus for forming multiple toner images in register with each other on a substrate
EP0677792B1 (en) Electrostatographic copying or printing apparatus
US5357318A (en) Color image forming apparatus with interchangeable charging and transferring devices
EP0004736B1 (en) An apparatus for line-to-line recording of different color component images
EP0848301B1 (en) Sheet joggler system
US5999785A (en) Simplex printing with duplex printer
US6021302A (en) Device for electrostatically transferring color toner images onto an electrically grounded receptor sheet
JPH0736246A (en) Color electrophotographic device
EP0917671A1 (en) Device for electrostatically transferring toner image
JP3036144B2 (en) Electrophotographic equipment
JPH0784430A (en) Color electrophotographic device
EP0973072B1 (en) Apparatus for forming multiple toner images in register with each other on a substrate
EP0883036A2 (en) Electrostatographic printing apparatus with endless recording belt
JP2024151436A (en) Image forming device
JP5978675B2 (en) Image forming apparatus
JPH05216381A (en) Electric coupling device to reference potential of electric conductor layer of light receiving body

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990309

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE FR GB NL

17Q First examination report despatched

Effective date: 19990823

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: XEIKON NV

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: XEIKON INTERNATIONAL N.V.

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PUNCH GRAPHIX INTERNATIONAL N.V.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060426

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060426

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69735764

Country of ref document: DE

Date of ref document: 20060601

Kind code of ref document: P

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070129

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130821

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20130821

Year of fee payment: 17

Ref country code: FR

Payment date: 20130823

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69735764

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140807

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69735764

Country of ref document: DE

Effective date: 20150303

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140807

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140901