EP0915292B1 - Dispositif de mélange universel de deux fluides gazeux - Google Patents
Dispositif de mélange universel de deux fluides gazeux Download PDFInfo
- Publication number
- EP0915292B1 EP0915292B1 EP98402749A EP98402749A EP0915292B1 EP 0915292 B1 EP0915292 B1 EP 0915292B1 EP 98402749 A EP98402749 A EP 98402749A EP 98402749 A EP98402749 A EP 98402749A EP 0915292 B1 EP0915292 B1 EP 0915292B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- gas
- chamber
- pressure
- air
- nozzles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000012530 fluid Substances 0.000 title claims description 16
- 239000007789 gas Substances 0.000 claims abstract description 94
- 239000000203 mixture Substances 0.000 claims abstract description 49
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 claims abstract description 20
- 239000001294 propane Substances 0.000 claims abstract description 10
- 239000001273 butane Substances 0.000 claims abstract description 7
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 claims abstract description 7
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 claims abstract description 7
- 230000001360 synchronised effect Effects 0.000 claims abstract description 6
- 238000006073 displacement reaction Methods 0.000 claims abstract description 3
- 238000009434 installation Methods 0.000 claims description 21
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 14
- 239000002737 fuel gas Substances 0.000 claims description 12
- 239000003209 petroleum derivative Substances 0.000 claims description 10
- 238000011144 upstream manufacturing Methods 0.000 claims description 10
- 239000003345 natural gas Substances 0.000 claims description 7
- 238000010438 heat treatment Methods 0.000 claims description 6
- 230000003042 antagnostic effect Effects 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 230000001105 regulatory effect Effects 0.000 claims description 5
- 238000004891 communication Methods 0.000 claims description 3
- 239000011358 absorbing material Substances 0.000 claims description 2
- 230000008859 change Effects 0.000 claims description 2
- 239000000446 fuel Substances 0.000 abstract description 4
- 239000003915 liquefied petroleum gas Substances 0.000 description 26
- 230000033228 biological regulation Effects 0.000 description 13
- 210000003739 neck Anatomy 0.000 description 9
- 238000002485 combustion reaction Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 5
- 230000009471 action Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000009530 blood pressure measurement Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 238000009529 body temperature measurement Methods 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 239000006096 absorbing agent Substances 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- 239000005557 antagonist Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000009916 joint effect Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D14/00—Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
- F23D14/46—Details, e.g. noise reduction means
- F23D14/60—Devices for simultaneous control of gas and combustion air
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/10—Mixing gases with gases
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/30—Injector mixers
- B01F25/31—Injector mixers in conduits or tubes through which the main component flows
- B01F25/313—Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/30—Injector mixers
- B01F25/31—Injector mixers in conduits or tubes through which the main component flows
- B01F25/313—Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit
- B01F25/3132—Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit by using two or more injector devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/30—Injector mixers
- B01F25/31—Injector mixers in conduits or tubes through which the main component flows
- B01F25/313—Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit
- B01F25/3132—Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit by using two or more injector devices
- B01F25/31324—Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit by using two or more injector devices arranged concentrically
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F35/00—Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
- B01F35/71—Feed mechanisms
- B01F35/712—Feed mechanisms for feeding fluids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F35/00—Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
- B01F35/71—Feed mechanisms
- B01F35/717—Feed mechanisms characterised by the means for feeding the components to the mixer
- B01F35/7179—Feed mechanisms characterised by the means for feeding the components to the mixer using sprayers, nozzles or jets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F35/00—Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
- B01F35/71—Feed mechanisms
- B01F35/717—Feed mechanisms characterised by the means for feeding the components to the mixer
- B01F35/71805—Feed mechanisms characterised by the means for feeding the components to the mixer using valves, gates, orifices or openings
- B01F35/718051—Feed mechanisms characterised by the means for feeding the components to the mixer using valves, gates, orifices or openings being adjustable
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F35/00—Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
- B01F35/71—Feed mechanisms
- B01F35/717—Feed mechanisms characterised by the means for feeding the components to the mixer
- B01F35/7181—Feed mechanisms characterised by the means for feeding the components to the mixer using fans or turbines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F35/00—Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
- B01F35/80—Forming a predetermined ratio of the substances to be mixed
- B01F35/896—Forming a predetermined ratio of the substances to be mixed characterised by the build-up of the device
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D14/00—Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
- F23D14/46—Details, e.g. noise reduction means
- F23D14/62—Mixing devices; Mixing tubes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N1/00—Regulating fuel supply
- F23N1/02—Regulating fuel supply conjointly with air supply
- F23N1/027—Regulating fuel supply conjointly with air supply using mechanical means
Definitions
- the subject of the present invention is a universal mixing device for two gaseous fluids and its application to various types of supply installations in mixtures of air and combustible gas.
- combustible gases such as natural gas or liquefied petroleum gas (LPG) goes through processes of mixing with air.
- the mixtures are generally made at pressures close to the pressure atmospheric.
- the air / LPG mixture generators for example the air / propane mixers, we currently know two different techniques.
- the first, called high or medium pressure uses compressed air and LPG to a pressure of a few bar, and can deliver fairly high powers.
- the second, called low pressure uses atmospheric air and LPG under pressure of a few bars.
- Mixers intended for medium pressure distribution networks use compressed air and LPG at a pressure generally between 4 and 10 bar.
- Such known mixers include a first line for compressed air and a second line for LPG.
- the mixing ratio is obtained by means of pneumatic valves proportional. Each line is fitted with a control valve, the piloting is ensured by a pneumatic device which causes a reaction simultaneous of the two valves, whose sections and opening laws have been previously defined.
- Recent systems use slaves which, all keeping the previous architecture, can significantly improve the performance of this type of mixer in terms of accuracy on the PCS and dynamic.
- These servos use instant debit information delivered by turbine meters placed on each line, and those of a Wobbmeter which reacts to the report setpoint.
- An automaton associated with a calculator manages the various parameters.
- Air / LPG generators for low pressure applications generally use a battery of venturi nozzles whose unit flow allows arithmetic progression (for example: 10-20-40-80 m 3 / h) the combination of the different nozzles making it possible to achieve a regulation by discrete action.
- the mixture is obtained by suction of atmospheric air, by the induction effect of the jet of LPG which entrains the air in the nozzle.
- the operation in all or nothing mode of the different nozzles requires the use of buffer gasometers in order to "smooth" the resulting pressure in the network.
- the present invention aims to remedy the drawbacks of the prior art and to provide comfortably, simply and reliably, with dynamic important operation, the mixture of two gaseous fluids.
- a device for universal mixture of two gaseous fluids characterized in that it comprises an enclosure defining first and second concentric chambers, a first conduit opening into the first chamber to supply the latter with a first gas at medium pressure, a second conduit opening into the second chamber to supply the latter with a second medium gas pressure, a first sonic nozzle with a neck of variable section arranged in the first chamber and a second sonic nozzle with a neck of variable section arranged in the second chamber, in that the first sonic nozzle comprises a first hollow element of convergent-divergent revolution serving as a seat for a first cone-shaped valve and the second sonic nozzle includes a second hollow element of convergent-divergent revolution serving as a seat for a second wedge-shaped valve, in that the first valve defines a bore axial and at least partially delimits the first and second chambers, in that that the second sonic nozzle is disposed inside said axial bore, in
- Each of the first and second gases is introduced respectively into the first and second chamber at a pressure equal to or greater than 1.3 bar.
- first and second nozzles have valves, which are mechanically linked, and have precise and synchronized movements from a single actuator, a continuous variation of the air flows is generated and gas, the ratio of which is kept constant over the entire operating range thanks to the perfect homothety of the nozzles.
- the operating dynamics can for example, be of the order of 50: 1.
- the universal mixing device of two fluids further comprises a third chamber communicating by ports with the first chamber and a third section neck sonic nozzle variable arranged in the third bedroom;
- the third sonic nozzle includes a third hollow element of convergent-divergent revolution identical to said first hollow element of revolution but arranged in alignment axially opposite to it in a determined position with respect to the enclosure and serving as a seat for a third valve in the shape of a warhead whose shape and the dimensions are identical to those of the first valve;
- the third valve is mechanically linked to the first and second valves but is placed in opposition relative to these, so that the third sonic nozzle works from antagonistic to the first sonic nozzle and that the third sonic nozzle is in the open position when the first sonic nozzle is in closed position and vice versa
- the third chamber includes orifices arranged downstream of the third sonic nozzle so that the surplus of the first gas from the third sonic nozzle can be discharged from the enclosure.
- the first gas is introduced into the first chamber at a pressure greater than or equal to 150 millibar and the second gas is introduced into the second chamber at a pressure greater than or equal to 1.3 bar.
- each of the sonic nozzles is produced so modular and includes a removable valve allowing modification by modification of the taper of the valve the capacity or the mixing ratio of the mixing device.
- the fixed part of the sonic nozzles can itself be also made so as to be removable.
- a third antagonistic nozzle at the first nozzle ensures regulation automatic pressure of the first gas, whatever the positions of the mixer, and allows to operate on gases whose pressures are relatively low (a few tens of millibar to a few hundred millibar).
- the mixing device 100 comprises a cylindrical enclosure 110 to the interior of which two concentric coaxial chambers 111 are defined, 121.
- a lateral duct 112 for supplying combustion air flows into the outer chamber 111 while a lateral gas supply duct 122 fuel flows into interior chamber 121.
- a first sonic nozzle 130 with a neck of variable section is arranged in the first chamber 111, downstream of a perforated plate 113 used to straighten the air flow introduced through the duct 112 into the chamber 111.
- the nozzle 130 comprises a hollow convergent-divergent element of revolution 131 which serves as a seat for a valve 132 in the shape of a warhead.
- a second sonic nozzle 140 with a neck of variable section is disposed at inside the valve 132 of the first nozzle 130.
- the nozzle 140 comprises a hollow convergent-divergent element of revolution 141 which is integral with the enclosure 110 via a flange 116 and is placed in a bore of the valve 132 and in contact via a seal with this bore so as to allow the valve 132 to slide relative to the hollow element 131 and so watertight with respect to the hollow element 141.
- the hollow element 141 serves as a seat for a valve 142 in the form of a warhead whose upstream end 144 is threaded so as to be able to be made selectively integral with a thread formed in the valve 132.
- the valves 132 and 142 are thus joined together and connected to the downstream end of an axial rod control 145 itself connected by a coupling mechanism 146 with an actuator 150, which can be of pneumatic, electric or hydraulic.
- valves 132 and 142 in the form of a warhead makes the device Modular.
- the fixed hollow element 131 which is screwed into the tubular enclosure 110 can also be replaced easily.
- the upstream portion 133 of the valve 132 is in the form of a hollow cylinder and is engaged so that it can slide axially tightly in the bore a cylinder 123 which constitutes a boundary wall between the central chamber 121 fuel gas supply and the outer annular chamber 111 combustion air supply.
- the fuel gas introduced through the radial duct 122 in the chamber 121 can enter the hollow upstream part 133 of the valve 132 and reach the convergent-divergent space of the nozzle 140 through passages 143 provided in the valve 132.
- the enclosure 110 of the mixing device may have the form of a cuff with an outer cylindrical wall 114 and planar walls transverse end 115, 116 forming flanges.
- the downstream end wall 116 which is used in particular to support the fixed but removable part 141 of the nozzle 140, can be connected to the upstream flange 161 of an element defining a mixing and receiving on the one hand the flow of fuel gas from the divergent space of the internal sonic nozzle 140 and on the other hand the air flow coming from the divergent space annular of the external sonic nozzle 130.
- the internal wall of the downstream mixture 160 can be fitted with a sound absorbing material 163.
- sonic nozzles with a section neck are generally used on a gas supply line to ensure triple the gas expansion function, gas flow measurement and regulation of the gas flow or calorific power conveyed by a fuel gas.
- the device of FIG. 1 is not limited to the production of air-gas mixtures combustible, and can be applied to various pairs of gaseous fluids.
- interesting applications exist when the first gas introduced in the duct 112 is air and the second gas introduced in the duct 122 is a combustible gas such as natural gas or a petroleum gas, such as propane. butane or a mixture of propane and butane.
- the fuel gases are generally distributed between 1.3 and 4 bar for the natural gas and between 2 and 7 bar for LPG. In this case, it is not necessary to insert a booster between the fuel gas source and the gas inlet 122. In however, a source of compressed air at medium pressure is not always available. In the case where atmospheric air is applied via a fan whose discharge pressure is for example between 20 and 50mbar, a booster must be inserted between the fan and the air inlet 112, or implement a mixing device with three nozzles such as that which will be described later with reference to Figure 2.
- the nozzles 130, 140 have dimensions and shapes (in particular taper angle of valves 132, 142 and converging-diverging fixed parts 131, 141) which are defined beforehand to obtain an opening report which corresponds, in a first approach, to the desired mixing ratio. So at for example, in the case of an application to a propane air generator, the mixing ratio can be 30% LPG for 70% air. This report is determined taking into account the supply pressure conditions and the maximum power desired.
- the displacement of the two valves 132, 142 of the nozzles 130, 140 by the actuator 150 generates a continuous variation of the flow rates air and gas, the ratio of which is kept constant over the entire range of operation thanks to the perfect homothety of the two nozzles 130, 140. It is possible to thus obtain operating dynamics far superior to systems known, for example 50: 1.
- the gas mixing device according to the invention as described with reference in Figure 1, can be used for different applications.
- the mixer according to the invention can be integrated in a fuel air-gas mixture supply installation industrial process such as a multi-burner heat treatment furnace.
- burners are distributed spatially inside the oven. If these different burners are supplied from a conventional air-gas mixer, when the air changes the flow rate of one or more oven burners, the initial power, and therefore the quality of the mixture are affected.
- Figure 3 shows an example of installation incorporating a mixer according to the invention and which can be used, for example, to supply air-gas mixture to a industrial process such as a set of burners from the same oven, the different burners that can be adjusted to produce flames of shaped and very varied characteristics without affecting the quality of the air-gas mixture applied to different burners.
- a fan 12 On the air supply line 11, a fan 12 is associated with a low pressure switch 13, a pressure regulator 14 and organs 15 of pressure and temperature measurement.
- the regulated air flow is applied to the mixer 100, on the inlet 112 for introducing the first gaseous fluid (FIG. 1).
- the outlet of mixer 100 is fitted with a high pressure switch 9 and a safety solenoid valve 8.
- a module 7 allows the control of the position of the valves 132, 142 of the sonic nozzles 130, 140 of the mixer 100.
- the module 7 can in particular be equipped with a position sensor valves 132, 142.
- the pressure regulators 14, 26 regulate the supply pressures of the air and gas mixer 100, at desired values to obtain the mixture required.
- a PID (proportional-integral-derivative) type regulator that can be classic is integrated in module 7 to adjust the position of the valves 132, 142 from mixer 100 to the power required for the process.
- nozzles 132, 142 with a neck of variable section, operating in sonic regime, provides the output of these, in the downstream mixing chamber 160, of diffusers with high loss of filler, the forms of which provide turbulence and homogeneity of the mixture. This is carried out without affecting the flow rates and power of the installation.
- the mixing device of Figure 1 can also be used in the context an air / LPG generator, which produces a mixture of air and petroleum gases (butane, propane or mixture of butane and propane) in very precise proportions, in order to obtain a gas whose calorific value is predetermined at a value constant and can serve as a substitute gas for natural gas.
- an air / LPG generator which produces a mixture of air and petroleum gases (butane, propane or mixture of butane and propane) in very precise proportions, in order to obtain a gas whose calorific value is predetermined at a value constant and can serve as a substitute gas for natural gas.
- propane propane
- propane propane or mixture of butane and propane
- the mixer 100 of FIG. 1 can be used, for example example with additional elements such as those shown in the figure 3, to receive on the one hand compressed air on line 11 and on the other hand gas oil on line 21, and supply on line 31 an air / LPG mixture of predetermined characteristics, with a pressure which can be for example of 2 bar, or lower.
- the mixing ratio and the capacity of the installation are previously defined a priori, by the dimensions of the variable nozzles 130, 140, and the supply pressure available on lines 11 of air and 21 of LPG.
- Downstream pressure regulation is carried out using the control module 7 which acts on the position of the valves 132, 142 in the shape of a nozzle cone of mixer 100.
- the control module 7 can include a totally servo-controlled pneumatic, the two valves 132, 142 being made integral with a servomotor direct or pilot action type, depending on the precision or speed sought on the regulated pressure.
- control module 7 can also include other types of regulation which combine PID type regulators and electric actuators, such as stepper motors or electro-pneumatic actuators.
- a mixer 100 according to the invention can also be incorporated into a air / LPG generator intended for low pressure applications, where no has no source of compressed air at a pressure higher than 1.3 bar.
- the mixer 100 has the configuration shown in FIG. 2 and includes an additional nozzle 170.
- conduits inlet 112, 122, the concentric chambers 111, 121 and the nozzles 130, 140 can be carried out similarly in the case of the embodiments of the Figures 1 and 2.
- the enclosure 110 is extends beyond the radial wall 115, by an enclosure portion 117, by example in the form of a cuff connected to the radial wall 115, which portion enclosure 117 defines a third chamber 181 which communicates through orifices 182 formed in the radial wall 115, with the first chamber 111.
- the nozzle additional sonic 170 with variable section neck is arranged in the chamber 181 and comprises a hollow convergent-divergent element of revolution 171, the geometric and dimensional characteristics are identical to those of the hollow element 131 of the nozzle 130, but which is arranged in axial alignment with opposite to the hollow element 131, in a determined position relative to the enclosure portion 117 extending the enclosure 110.
- the hollow element 171 serves as a seat a check valve 172 in the shape of a warhead whose shape and dimensions are identical to those of the first valve 132.
- the valve 172 is mechanically linked to the valves 132, 142 by the rod of control 145, but is placed in opposition to the valves 132, 142 of so that the sonic nozzle 170 operates in an antagonistic manner with respect to to the first sonic nozzle 130 and that the nozzle 170 is in the open position when the nozzle 130 is in the closed position (as shown in the figure 2) and vice versa.
- a flange-shaped end piece 174 is arranged radially by relative to the cylindrical wall of the enclosure portion 117, on the side opposite the wall 115, downstream of the nozzle 170 and comprises orifices 175 so that the surplus air from the nozzle 170 can be evacuated outside the enclosure 110, 117.
- the control rod 145 which provides the mechanical connection of the valves 172 and 132, 142, is extended by an additional rod 173, which passes through the valve 172 by being integral with it and also crosses in leaktight and sliding manner the end piece 174 to be connected to an actuator, not shown in FIG. 2, but which can be analogous to the actuator 150 of FIG. 1, and an example of which is shown in figure 4.
- a third nozzle 170 acting in an antagonistic manner relative to the first nozzle 130 makes it possible to use the mixer 100 according to the invention, in its configuration of FIG. 2, and with the elements complementary represented on figure 3, to constitute a generator / LPG in the context of a low pressure application, and in the event that a high pressure compressed air source is not available.
- the centrifugal fan 12 placed on the air line 14 uses a minimum pressure of 150 mbar which constitutes the lower limit for obtaining a sonic flow. It is naturally possible to provide a fan supplying air under a higher pressure, for example 300 mbar, but this increases consumption in electrical energy necessary for the operation of the fan.
- the petroleum gas supply pressure at the inlet pipe 122 may be of the order of a few hundred millibar.
- the control module 7 includes a valve position sensor 132, 142, 172 of variable sonic nozzles 130, 140, 170.
- means 15, 27 for measuring the temperature and the fluid pressure are provided upstream of the chambers 111, 121, means 9 for pressure measurement of the mixture of air and petroleum gas are provided downstream of the mixer 100 and regulating means act on the pressure regulator 26 from the gas supply source or on a valve positioning device 132, 142, 172 of the nozzles 130, 140, 170 to maintain a downstream pressure predetermined mixture of air and calorific value gas (PCS) predetermined.
- PCS calorific value gas
- Downstream pressure regulation can be done using circuits enslavement in a manner analogous to what has been described with reference to a air / LPG generator using a mixer with two nozzles 130, 140.
- a particular advantage, which results from the use of three nozzles 130, 140, 170 including two concentric nozzles 130, 140 resides in the fact that the air produced by fan 12 undergoes heating which is directly recoverable to promote the evaporation of LPG and avoid the condensation phenomena that we meet with conventional systems, and which leads to the implementation of heaters on both fluids to overcome this drawback.
- the disposition coaxial nozzles 130, 140 indeed promotes temperature exchanges between air and LPG.
- the permanent evacuation of the air supplied by the fan 12 through one or the other of the opposing nozzles 130, 170 allows the temperature upstream of the air nozzle 130 to remain stable over time.
- a mixer 100 of gaseous fluids with three nozzles 130, 140, 170, such as that shown in Figure 2, and can cooperate with external elements such as those shown in Figure 3, can still be implemented in the other installations such as for example a power supply installation air-gas mixture of a supply air boiler burner.
- This type of burner is generally used in boilers producing water hot for central heating with powers of a few tens of kW at several thousand kW.
- Boilers use network gas (natural gas) delivered at a pressure on the order of a few hundred millibar, for example 300 mbar, and supplied air by a fan at a pressure of a few tens of bars. These boilers operate in all or nothing or all or little mode, from fixed settings (small pace, great pace).
- a mixer with three nozzles 130, 140, 170, such as that shown in Figure 2 can be used advantageously, air being introduced via line 112 and the mains gas being introduced through line 122.
- the sum of the air flow rates of the first and third sonic nozzles 130, 170 antagonists is equal to the constant flow of the fan which corresponds to the flow at full opening of only one of the first and third sonic nozzles 130, 170, where it follows that for a given power of a nominal flow of the source gas supply, there is an automatic regulation of the air pressure.
- FIG. 4 represents an alternative embodiment of the device for mixing gas previously described with reference to Figure 2.
- FIG. 4 is entirely modular. So the fixed parts 131, 171 of the nozzles 130. 170 are not formed in one piece with the enclosure 110 as according to the drawing in FIG. 2, but consist of pieces of separate revolutions which are removable and are positioned inside the tubular enclosure 110 thanks to threaded parts. Such a mounting type of the fixed part 131 of the nozzle 130 has moreover already been shown in FIG. 1 for the embodiment with two concentric nozzles.
- transverse plate 164 provided with perforations 165 and supporting on its front face a plate 166 made of porous material.
- the assembly 164, 166 which is removable, in being sandwiched between the flanges 116, 161, acts as a rectifier which regulates the flow of the mixture avoiding the formation of a vortex while also providing a sound absorbing function helping to reduce noise generated by the expansion of the gas.
- the set 164, 166 could also be applied to the embodiment of Figure 1 if necessary.
- a cuff 177 attached to the flange 174 comprises an air outlet duct 178 to the atmosphere, which is equipped with a material sound absorber 179 advantageously defining a channel whose portion located near the exit is conical and widens towards the exit.
- FIG. 4 also shows an example of an actuator 150 which incorporates a pneumatic type servo to act on an axial rod 176 connected to the additional rod 173.
- the pneumatic type actuator 150 shown in FIG. 4 comprises at by way of example a downstream chamber 154 which is in communication by a nozzle 153 with a source of gaseous fluid under pressure and is delimited on the one hand by a fixed rigid transverse plate 155 and on the other hand by a flexible membrane 151 supported by a rigid plate integral with the axial rod 176 and against which acts a spring 152.
- the control of the actuator 150 can naturally be more complex or be different in nature from that of a bondage pneumatic.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Accessories For Mixers (AREA)
- Gas Burners (AREA)
- Multiple-Way Valves (AREA)
Description
- les systèmes à action discrète pour lesquels le mélange air/gaz est pré-réglé à partir d'orifices dont la section de passage et la pression d'alimentation sont pré-définies de façon à obtenir la combustion recherchée, dans le cas d'un brûleur, ou un pouvoir calorifique supérieur (PCS) constant, dans le cas d'un générateur air/GPL. Ces dispositifs sont les plus utilisés notamment pour les brûleurs de chaudières de forte et moyenne puissance qui disposent de systèmes pré-réglés à une, deux ou trois allures ;
- les systèmes modulants dans lesquels le mélange air/gaz est maintenu constant par l'action conjointe de deux vannes à ouverture synchronisée, l'une sur le gaz, l'autre sur le registre d'air. Ces systèmes sont également pré-réglés, au moyen de dispositifs mécaniques à came, qui permettent d'ajuster pour chaque position de vanne le mélange désiré. On trouvera le même principe avec des générateurs air/GPL ;
- les systèmes modulants gérés par automates et calculateur lesquels, à partir d'une ou plusieurs informations (analyse de fumées, température d'un procédé, débit des gaz, etc.) agissent sur les vannes d'admission de gaz et d'air.
- inadaptation aux régimes variant rapidement en raison d'un temps de réponse relativement long dû aux deux vannes à gérer ;
- installations gourmandes en énergie (nécessité d'un, compresseur pour l'air, réchauffage des deux fluides afin d'éviter les phénomènes de recondensation) ;
- installations complexes, et de ce fait très coûteuses, nécessitant une main d'oeuvre spécialisée pour la maintenance et la mise au point.
- la figure 1 est une vue en coupe axiale d'un premier exemple de dispositif de mélange de gaz selon l'invention, à deux tuyères soniques,
- la figure 2 est une vue en coupe axiale d'un deuxième exemple de dispositif de mélange de gaz selon l'invention, à trois tuyères soniques,
- la figure 3 est une vue schématique d'un exemple d'installation d'un mélangeur selon l'invention, et
- la figure 4 est une vue en coupe axiale d'une variante du deuxième mode de réalisation à trois tuyères soniques.
Claims (13)
- Dispositif de mélange universel de deux fluides gazeux différents, caractérisé en ce qu'il comprend une enceinte (110) définissant des première et deuxième chambres (111, 121) concentriques ne communiquant pas entre elles, un premier conduit (112) débouchant dans la première chambre (111) pour alimenter celle-ci en un premier gaz à moyenne pression, un deuxième conduit (122) débouchant dans la deuxième chambre (121) pour alimenter celle-ci en un deuxième gaz à moyenne pression, une première tuyère sonique (130) à col de section variable disposée dans la première chambre (111) et une deuxième tuyère sonique (140) à col de section variable disposée dans la deuxième chambre (121), en ce que la première tuyère sonique (130) comprend un premier élément creux de révolution convergent-divergent (131) servant de siège à un premier clapet (132) en forme d'ogive et la deuxième tuyère sonique (140) comprend un deuxième élément creux de révolution convergent-divergent (141) servant de siège à un deuxième clapet (142) en forme d'ogive, en ce que le premier clapet (132) définit un alésage axial et délimite au moins partiellement les première et deuxième chambres (111, 121), en ce que la deuxième tuyère sonique (140) est disposée à l'intérieur dudit alésage axial, en ce que les premier et deuxième éléments creux de révolution convergent-divergent (131, 141) présentent une position déterminée par rapport à l'enceinte (110) tandis que les premier et deuxième clapets (132, 142) sont liés mécaniquement l'un à l'autre et associés à un actionneur unique (150) assurant un déplacement synchronisé des premier et deuxième clapets (132, 142), et en ce que le premier et le deuxième gaz ayant traversé les première et deuxième tuyères soniques (130, 140) coaxiales et homothétiques débouchent axialement dans une même chambre aval (160) où s'opère le mélange des premier et deuxième gaz selon un rapport de mélange prédéterminé conditionné par les dimensions des première et deuxième tuyères soniques (130, 140).
- Dispositif selon la revendication 1, caractérisé en ce qu'il comprend en outre à l'intérieur de l'enceinte (110) une troisième chambre (181) communiquant par des orifices (182) avec la première chambre (111), une troisième tuyère sonique (170) à col de section variable disposée dans la troisième chambre (181), en ce que la troisième tuyère sonique (170) comprend un troisième élément creux de révolution convergent-divergent (171) identique audit premier élément creux de révolution (131), mais disposé en alignement axial de façon opposée à celui-ci dans une position déterminée par rapport à l'enceinte (110) et servant de siège à un troisième clapet (172) en forme d'ogive dont la tonne et les dimensions sont identiques à celles du premier clapet (132), en ce que le troisième clapet (172) est lié mécaniquement aux premier et deuxième clapets (132, 142), mais est placé en opposition par rapport à ceux-ci, de telle sorte que la troisième tuyère sonique (170) fonctionne de manière antagoniste par rapport à la première tuyère sonique (130) et que la troisième tuyère sonique (170) soit en position d'ouverture lorsque la première tuyère sonique (130) est en position de fermeture et réciproquement, et en ce que la troisième chambre (181) comprend des orifices (175) disposés en aval de la troisième tuyère sonique (170) de telle sorte que le surplus du premier gaz issu de la troisième tuyère sonique (170) puisse être évacué de l'enceinte (110).
- Dispositif selon la revendication 1 ou 2, caractérisé en ce qu'il comprend en outre un redresseur d'écoulement (113) disposé dans la première chambre (111) en amont de la première tuyère sonique (130).
- Dispositif selon l'une quelconque des revendications 1 à 3, caractérisé en ce qu'il comprend en outre un élément (163, 166) en matériau absorbant phonique disposé dans la chambre de mélange aval (160).
- Dispositif selon l'une quelconque des revendications 1 à 4, caractérisé en ce que le premier gaz est constitué par de l'air et le deuxième gaz est constitué par un gaz combustible tel qu'un gaz naturel ou un gaz de pétrole tel que du propane, du butane ou un mélange de propane et de butane.
- Dispositif selon les revendications 1 et 5, caractérisé en ce que le premier gaz est introduit dans la première chambre (111) à une pression supérieure ou égale à 1,3 bar et le deuxième gaz est introduit dans la deuxième chambre (121) à une pression supérieure ou égale à 1,3 bar.
- Dispositif selon les revendications 2 et 5, caractérisé en ce que le premier gaz est introduit dans la première chambre (111) à une pression supérieure ou égale à 150 millibar et le deuxième gaz est introduit dans la deuxième chambre à une pression supérieure ou égale à 1,3 bar.
- Dispositif selon l'une quelconque des revendications 1 à 7, caractérisé en ce que chacune des tuyères soniques (130, 140, 170) est réalisée de façon modulaire et comprend un clapet démontable (132, 142, 172) permettant de modifier, par la modification de la conicité du clapet (132, 142, 172), la capacité ou le rapport de mélange du dispositif mélangeur.
- Installation d'alimentation en mélange air-gaz d'un processus industriel tel qu'un ensemble de fours de traitement thermique à brûleurs multiples, caractérisé en ce qu'elle comprend une source d'alimentation en air à moyenne pression comprenant un ventilateur (12) et un régulateur de pression (14) ; une source d'alimentation en gaz combustible comprenant une ligne d'alimentation en gaz à moyenne pression sur laquelle sont disposés un filtre (23), au moins une éléctrovanne de sécurité (24, 25) et un régulateur de pression (26) un dispositif (100) de mélange universel selon l'une quelconque des revendications 1 à 8, dont les première et deuxième chambres (111, 121) sont reliées respectivement à la source d'alimentation en air et à la source d'alimentation en gaz combustible, et une électrovanne de sécurité (8) disposée en sortie du dispositif (100) de mélange universel.
- Installation selon la revendication 9, caractérisée en ce qu'elle comprend au moins un moyen de commande agissant sur au moins l'un des régulateurs de pression (14, 26) pour changer le taux d'aération de la flamme par simple modification de la pression initialement fixée pour l'alimentation en air à moyenne pression ou l'alimentation en gaz à moyenne pression.
- Installation d'alimentation en mélange air-gaz d'un brûleur de chaudière à air soufflé, caractérisé en ce qu'elle comprend un dispositif de mélange universel (100) selon la revendication 2, une source d'alimentation en gaz à une pression de l'ordre de quelque centaines de millibar, qui est reliée à la deuxième chambre (121) du dispositif de mélange, une source d'alimentation en air à une pression de l'ordre de quelques dizaines de millibar, qui comprend un ventilateur (12) et est reliée à la première chambre (111) du dispositif de mélange, laquelle première chambre (111) est elle-même en communication avec la troisième chambre (181), de telle sorte que la somme des débits d'air des première et troisième tuyères soniques (130, 170) antagonistes est égale au débit constant du ventilateur qui correspond au débit à pleine ouverture d'une seule des première et troisième tuyères soniques (130, 170), d'où il résulte que pour une puissance donnée d'un débit nominal de la source d'alimentation en gaz, il est effectué une régulation automatique de la pression d'air.
- Générateur d'un mélange d'air et de gaz de pétrole dont le pouvoir calorifique (PCS) est prédéterminé à une valeur constante, caractérisé en ce qu'il comprend un dispositif de mélange universel (100) selon la revendication 1, une source d'alimentation en gaz de pétrole à une pression de l'ordre de quelques bar, qui est munie d'un régulateur de pression (26) et est reliée à la deuxième chambre (121) du dispositif de mélange, une source d'alimentation en air à une pression de l'ordre de quelques bar, qui est munie d'un régulateur de pression (14) et est reliée à la première chambre (111) du dispositif de mélange (100), un capteur (7) de la position des premier et deuxième clapets (132, 142) des première et deuxième tuyères soniques (130, 140), des moyens (15, 27) de mesure de la température et de la pression de fluide en amont des première et deuxième chambres (111, 121), des moyens (9) de mesure de la pression du mélange d'air et de gaz de pétrole en aval du dispositif de mélange (100), et des moyens de régulation agissant sur le régulateur de pression (26) de la source d'alimentation en gaz ou sur un dispositif de positionnement des premier et deuxième clapets (132, 142) des première et deuxième tuyères (130, 140), pour maintenir une pression aval prédéterminée du mélange d'air et de gaz de pouvoir calorifique (PCS) prédéterminé.
- Générateur d'un mélange d'air et de gaz de pétrole dont le pouvoir calorifique (PCS) est prédéterminé à une valeur constante, caractérisé en ce qu'il comprend un dispositif de mélange universel (100) selon la revendication 2, une source d'alimentation en gaz de pétrole à une pression de l'ordre d'au moins quelques centaines de millibar, qui est munie d'un régulateur de pression (26) et est reliée à la deuxième chambre (121) du dispositif de mélange, une source d'alimentation en air à une pression de l'ordre d'au moins 150 millibar, qui est munie d'un régulateur de pression (14) et est reliée à la première chambre (111) du dispositif de mélange (100), elle-même en communication avec la troisième chambre (181) du dispositif de mélange (100), un capteur (7) de la position des premier, deuxième et troisième clapets (132, 142, 172) des première, deuxième et troisième tuyères soniques (130, 140, 170), des moyens (15, 27) de mesure de la température et de la pression de fluide en amont des première et deuxième chambres (111, 121), des moyens (9) de mesure de la pression du mélange d'air et de gaz de pétrole en aval du dispositif de mélange (100), et des moyens de régulation agissant sur le régulateur de pression (26) de la source d'alimentation en gaz ou sur un dispositif de positionnement des premier, deuxième et troisième clapets (132, 142, 172) des première, deuxième et troisième tuyères (130, 140, 170) pour maintenir une pression aval prédéterminée du mélange d'air et de gaz de pouvoir calorifique (PCS) prédéterminé.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9714025A FR2770789B1 (fr) | 1997-11-07 | 1997-11-07 | Dispositif de melange universel de deux fluides gazeux |
FR9714025 | 1997-11-07 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0915292A1 EP0915292A1 (fr) | 1999-05-12 |
EP0915292B1 true EP0915292B1 (fr) | 2003-09-03 |
Family
ID=9513164
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP98402749A Expired - Lifetime EP0915292B1 (fr) | 1997-11-07 | 1998-11-05 | Dispositif de mélange universel de deux fluides gazeux |
Country Status (6)
Country | Link |
---|---|
US (1) | US6065956A (fr) |
EP (1) | EP0915292B1 (fr) |
AT (1) | ATE249007T1 (fr) |
CA (1) | CA2251398C (fr) |
DE (1) | DE69817730T2 (fr) |
FR (1) | FR2770789B1 (fr) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10005033B4 (de) * | 1999-06-25 | 2005-07-21 | Andre Teltzrow | Verfahren zur leistungsabhängigen Steuerung einer Heizung und Heizungssystem |
FR2981863B1 (fr) * | 2011-10-26 | 2015-01-02 | Gdf Suez | Dispositif de regulation d'un melange gazeux |
US8946922B1 (en) * | 2012-02-10 | 2015-02-03 | Johnny C. Johnson | Reverse flow hydroelectric generator |
CN103322571B (zh) * | 2012-03-20 | 2015-10-07 | 浙江威航厨房设备有限公司 | 一种燃烧器的风气联动比例调节控制系统 |
KR20160147482A (ko) * | 2015-06-15 | 2016-12-23 | 삼성전자주식회사 | 가스 혼합부를 갖는 반도체 소자 제조 설비 |
CN105605250B (zh) * | 2016-01-14 | 2017-10-27 | 李少锋 | 一种燃气节能增压阀 |
GB2561235B (en) * | 2017-04-07 | 2022-02-23 | Oil & Gas Measurement Ltd | Smart entrainment atomisation mixing system |
CN109442405B (zh) * | 2018-12-26 | 2023-12-05 | 广州威茨热能技术有限公司 | 一种空燃比例混合器 |
CN111207226A (zh) * | 2020-02-25 | 2020-05-29 | 广东长青(集团)股份有限公司 | 综合切换阀及恒温器 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2341131A1 (fr) * | 1976-02-13 | 1977-09-09 | Gaz De France | Appareil pour la regulation et le comptage des debits de gaz |
FR2514163B1 (fr) * | 1981-10-07 | 1985-08-23 | Gaz De France | Appareil regulateur-compteur de debits de gaz |
JPS608456A (ja) * | 1983-06-27 | 1985-01-17 | Nissan Motor Co Ltd | 内燃機関の燃料供給装置 |
US4976607A (en) * | 1986-07-09 | 1990-12-11 | Fuel Tech, Inc. | Burner apparatus for providing adjustable flame geometry |
US4793798A (en) * | 1986-08-08 | 1988-12-27 | Sabin Darrel B | Burner apparatus |
US5088916A (en) * | 1987-05-28 | 1992-02-18 | Eiken Kougyo Kabushiki Kaisha | Gas-air ratio control valve device for gas burners |
NL8702191A (nl) * | 1987-09-15 | 1989-04-03 | Flameco Eclipse Bv | Gasbrander. |
CA2099894C (fr) * | 1992-07-10 | 1998-11-03 | Wayne C. Gensler | Appareil et methode pour melanger les gaz |
-
1997
- 1997-11-07 FR FR9714025A patent/FR2770789B1/fr not_active Expired - Lifetime
-
1998
- 1998-11-05 EP EP98402749A patent/EP0915292B1/fr not_active Expired - Lifetime
- 1998-11-05 DE DE69817730T patent/DE69817730T2/de not_active Expired - Lifetime
- 1998-11-05 AT AT98402749T patent/ATE249007T1/de active
- 1998-11-06 US US09/187,079 patent/US6065956A/en not_active Expired - Fee Related
- 1998-11-06 CA CA002251398A patent/CA2251398C/fr not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
DE69817730T2 (de) | 2004-07-08 |
CA2251398A1 (fr) | 1999-05-07 |
EP0915292A1 (fr) | 1999-05-12 |
FR2770789A1 (fr) | 1999-05-14 |
CA2251398C (fr) | 2006-10-24 |
US6065956A (en) | 2000-05-23 |
ATE249007T1 (de) | 2003-09-15 |
DE69817730D1 (de) | 2003-10-09 |
FR2770789B1 (fr) | 2000-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0915292B1 (fr) | Dispositif de mélange universel de deux fluides gazeux | |
US11029023B2 (en) | System and method for generating flame effect | |
CA2619921C (fr) | Injecteur de carburant a deux etages | |
FR2716526A1 (fr) | Système de combustion de turbine à gaz et procédé de commande de combustion . | |
FR2867513A1 (fr) | Systeme d'injection de carburant a regulation de pression | |
EP2771616B1 (fr) | Dispositif de régulation d'un mélange gazeux | |
CA2707274A1 (fr) | Dispositif et procede pour stabiliser la pression et le debit d'un melange gazeux alimentant un bruleur cylindrique a combustion de surface | |
EP0964206B1 (fr) | Chambre de combustion de turbine à gaz à géométrie variable | |
CA1123285A (fr) | Procede de combustion d'un combustible liquide et bruleur pour sa mise en oeuvre | |
FR2921461A1 (fr) | Dispositif de regulation des debits de gaz alimentant un bruleur equipe d'un tel dispositif | |
FR2998634A1 (fr) | Vanne a obturateur spherique, notamment pour turbine a gaz | |
CA2204591A1 (fr) | Systeme d'injection a geometrie variable adoptant un debit d'air en fonction du regime moteur | |
EP0370863B1 (fr) | Perfectionnements aux dispositifs pour commander et régler l'alimentation en gaz du brûleur d'une chaudière ou analogue | |
FR2708085A1 (fr) | Dispositifs d'injection et de régulation pour brûleurs atmosphériques à gaz fonctionnant à faible pression nominale. | |
EP0967437B1 (fr) | Amélioration aux appareils à combustion comportant plusieurs conduits de transport de comburant | |
EP4184059A1 (fr) | Chaudière à combustible comprenant un dispositif de diminution de pression pour l'allumage de la flamme | |
WO2005059415A1 (fr) | Syteme de division d’un flux de gaz principal en plusieurs flux de gaz complementaires | |
FR2760517A3 (fr) | Electrovanne d'interception pour appareils de cuisson a gaz | |
FR2875289A1 (fr) | Procede pour la regulation du rapport air/gaz d'un bruleur et bruleur mettant en oeuvre ce procede | |
US962457A (en) | Burner for liquid fuel. | |
FR2491146A1 (fr) | Dispositif de reglage du debit du carburant pour divers types de moteurs a turbine a gaz | |
EP0162761B1 (fr) | Brûleur à ventelles à alimentation équilibrée en air secondaire | |
BE545332A (fr) | ||
BE426665A (fr) | ||
BE472579A (fr) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT DE IT |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 19990901 |
|
AKX | Designation fees paid |
Free format text: AT DE IT |
|
17Q | First examination report despatched |
Effective date: 20010509 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT DE IT |
|
REF | Corresponds to: |
Ref document number: 69817730 Country of ref document: DE Date of ref document: 20031009 Kind code of ref document: P |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20040604 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 69817730 Country of ref document: DE Representative=s name: BOCKHORNI & KOLLEGEN, DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 69817730 Country of ref document: DE Representative=s name: BOCKHORNI & KOLLEGEN PATENT- UND RECHTSANWAELT, DE Effective date: 20111028 Ref country code: DE Ref legal event code: R081 Ref document number: 69817730 Country of ref document: DE Owner name: GDF SUEZ S.A., FR Free format text: FORMER OWNER: GAZ DE FRANCE, PARIS, FR Effective date: 20111028 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: PC Ref document number: 249007 Country of ref document: AT Kind code of ref document: T Owner name: GDF SUEZ, FR Effective date: 20130328 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20171019 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20171020 Year of fee payment: 20 Ref country code: AT Payment date: 20171020 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 69817730 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK07 Ref document number: 249007 Country of ref document: AT Kind code of ref document: T Effective date: 20181105 |