EP0910927A1 - Process for coding and decoding stereophonic spectral values - Google Patents
Process for coding and decoding stereophonic spectral valuesInfo
- Publication number
- EP0910927A1 EP0910927A1 EP97925036A EP97925036A EP0910927A1 EP 0910927 A1 EP0910927 A1 EP 0910927A1 EP 97925036 A EP97925036 A EP 97925036A EP 97925036 A EP97925036 A EP 97925036A EP 0910927 A1 EP0910927 A1 EP 0910927A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- spectral values
- stereo
- coding
- stereo audio
- section
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 69
- 230000003595 spectral effect Effects 0.000 title claims abstract description 61
- 230000008569 process Effects 0.000 title abstract description 3
- 238000001228 spectrum Methods 0.000 claims description 7
- 230000003044 adaptive effect Effects 0.000 claims description 5
- 230000011664 signaling Effects 0.000 description 5
- 230000005236 sound signal Effects 0.000 description 5
- 230000009467 reduction Effects 0.000 description 4
- 230000008447 perception Effects 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000013139 quantization Methods 0.000 description 2
- 230000001427 coherent effect Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L19/00—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
- G10L19/008—Multichannel audio signal coding or decoding using interchannel correlation to reduce redundancy, e.g. joint-stereo, intensity-coding or matrixing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04S—STEREOPHONIC SYSTEMS
- H04S1/00—Two-channel systems
- H04S1/007—Two-channel systems in which the audio signals are in digital form
Definitions
- the present invention relates to encoding and decoding stereo audio spectral values, and more particularly to indicating the fact that stereo intensity encoding is active.
- Modern audio coding methods or decoding methods which operate according to the MPEG layer 3 standard, for example, are able to compress the data rate of digital audio signals by a factor of twelve, for example, without noticeably deteriorating the quality thereof.
- the redundancy and irrelevance of the two channels among one another is also used in the stereo case.
- the MS stereo method known to those skilled in the art essentially uses the redundancy of the two channels with one another, a sum of the two channels and a difference between the two channels being calculated, which then each transmit as modified channel data for the left and right channel become.
- the redundancy between the two channels removed in the encoder is added again in the decoder. This means that the MS stereo procedure is exactly reconstructive.
- the intensity stereo method primarily uses stereo irrelevance.
- stereo irrelevance it can be said that the spatial perception of the human hearing system depends on the frequency of the perceived audio signals. At lower frequencies, both the amount and phase information of both stereo signals are evaluated by the human auditory system, the perception of high-frequency components being based primarily on the analysis of the energy-time envelopes of both channels. The exact phase information of the signals in both channels is therefore not relevant for spatial perception. This property of the human ear is used to use the stereo irrelevance for further data reduction of audio signals by the intensity stereo method.
- the stereo intensity method cannot resolve precise location information at high frequencies, it is therefore possible to transmit a common energy envelope for both channels instead of two stereo channels L, R from an intensity limit frequency determined in the encoder.
- a common energy envelope for both channels instead of two stereo channels L, R from an intensity limit frequency determined in the encoder.
- roughly quantified direction information is also transmitted as side information.
- the bit savings can be up to 50%.
- the IS method in the decoder is not exactly reconstructive.
- mode_extension_bit indicates that the IS method is active at all in a block of stereo audio spectral values, each block having an associated one Mode_extension_bit.
- FIG. 1 shows a basic illustration of the known IS method.
- L ⁇ and R ⁇ here represent the stereo audio spectra values of channel L and channel R in any scale factor band.
- the use of the IS method is only permitted above a certain IS cutoff frequency, in order to avoid coding errors in the coded Introduce stereo audio spectral values. Therefore, the left and right channels must be coded separately in a range from 0 Hz to the IS cutoff frequency.
- the determination of the IS cutoff frequency as such is carried out in a separate algorithm which does not form part of this invention. From this limit frequency, the encoder encodes the sum signal of the left channel 10 and the right channel 12, which is formed at the summation point 14.
- scaling information 16 for channel L and scaling information 18 for channel R are also necessary for decoding.
- scale factors for the left and right channels are transmitted.
- the scaling information 16 and 18 are transmitted as side information in addition to the coded spectral values of the channel L and the channel R.
- a decoder supplies decoded audio signal values to a decoded channel L '20 or to a decoded channel R' 22, the scaling information 16 for channel R and the scaling information 18 for channel L with the decoded stereo audio spectral values of the respective channels an L multiplier 24 or an R multiplier 26 in order to decode the originally coded stereo audio spectral values again.
- the stereo audio spectral values for each channel are grouped into so-called scale factor bands. These bands are adapted to the perceptual properties of the hearing. Each of these bands can be amplified with an additional factor, the so-called scale factor, which is transmitted as side information for the respective channel and which represents part of the scaling information 16 and the scaling information 18 from FIG. 1. These factors shape an interference noise introduced by quantization in such a way that it is "masked" taking psychoacoustic considerations into account and thus becomes inaudible.
- FIG. 2a shows a format of the encoded right channel R, which is used, for example, in an audio coding method MPEG layer 3. All further explanations regarding the intensity stereo coding also relate to the method according to the MPEG layer 3 standard.
- the individual scale factor bands 28, into which the stereo audio spectral values are grouped, are shown schematically in the first line in FIG. 2a.
- the same bandwidth of the scale factor bands drawn in FIG. 2a only serves for clarity of presentation and will not occur in practice due to the psychoacoustic properties of the auditory system.
- the third line of FIG. 2a contains part of the page information 34 for the right channel.
- This part of the side information 34 shown consists, on the one hand, of the scale factors skf for the area below the IS cut-off frequency and of direction information rinfo 36 for the area above the IS cut-off frequency 32.
- This directional information is also used in the intensity stereo method to ensure a rough spatial resolution of the IS-coded frequency range.
- This direction information rinfo 36 which is also called intensity positions (is_pos), is therefore transmitted in the right channel instead of the scale factors. It should be noted once again that below the IS cutoff frequency, the scale factors 34 corresponding to the scale factor bands 28 are still present in the right channel. The intensity positions 36 indicate the perceived stereo imaging position (the ratio from left to right) of the signal source within the respective scale factor bands 28. In each scale factor band 28 above the IS cutoff frequency, the decoded values of the transmitted stereo audio spectral values are scaled according to the MPEG Layer 3 method by the following scaling factors k L for the left channel and k R for the right channel:
- is_ratio tan (is_pos- ⁇ r / 12) (3)
- R ⁇ and L ⁇ represent the intensity stereo decoded stereo audio spectral values.
- the transition from the quantized sum spectral values not equal to zero to the zero values in the right channel can implicitly indicate the IS cut-off frequency to the decoder with the MPEG Layer 3 standard.
- the transmitted channel L is thus calculated as the sum of the left and the right channel
- the transmitted direction information can be determined using the following equation:
- nint [x] represents the function "next integer", where E L and E R are the energies in the respective scale factor bands of the left and right channels.
- the stereo audio spectral values are grouped into the scale factor bands, these bands being adapted to the perceptual properties of the hearing.
- these scale factor bands are now divided into exactly three regions. In order to Areas with the same signal statistics should now be grouped. This is advantageous for the redundancy reduction now taking place by means of the known Huffman coding.
- the non-backward-compatible NBC coding method which is currently in the standardization process, differs from the standard audio coding method MPEG Layer 3, among other things, in that not only exactly three regions from scale factor bands are allowed in the bitstream syntax for this method, but that so-called sections or "sections" can be present in any number and can have any number of scale factor bands.
- a section is now assigned a corresponding Huffman table from a plurality of such tables in analogy to the previously described method in MPEG Layer 3 to achieve a maximum redundancy reduction, which table is then to be used for decoding. In extreme cases, for example, a section consists of only a single scale factor band. In practice, however, this is unlikely to occur, since the page information required would then be much too large.
- the NBC method has a total of 16 Huffman coding table numbers that are transmitted as 4-bit values. This means that one of the twelve existing coding table numbers can be selected.
- the object of the present invention is to provide methods for coding or decoding stereo audio spectral values, in which information relevant to the coding or decoding is signaled with a minimal amount of side information. This object is achieved by a method for encoding stereo audio spectral values according to claim 1 and by a method for decoding stereo audio spectral values partially encoded in the intensity stereo method according to claim 2.
- the present invention is based on the recognition that additional coding table numbers which are not used to refer to coding tables can indicate other information relevant for a section.
- the "additional" code table numbers are the code table numbers that do not refer to code tables. Due to a 4-bit coding of twelve different coding table numbers, the numbers 13, 14 and 15 are, as it were, freely available for assignment with other information.
- two (no. 14 and no. 15) of the three (no. 13, no. 14 and no. 15) additional coding table numbers are used in order to, on the one hand, refer to an intensity which is present in a section. Coding and on the other hand to point out the mutual phase relationship of IS-coded stereo audio spectral values in two stereo channels.
- the additional unused coding table number 13 can be used to indicate adaptive Huffman coding.
- 2a shows a format of the data in the presence of stereo intensity coding for the right channel for the standard MPEG Layer 3
- 2b shows a format of the data in the presence of stereo intensity coding for the right channel for the MPEG-NBC method
- FIG. 3 is a schematic block diagram of a decoder that implements the present invention.
- a method for encoding stereo audio spectral values and the method for decoding stereo audio spectral values partially encoded in the intensity stereo method according to a first exemplary embodiment of the present invention use novel signaling of the presence of the intensity stereo encoding within a section.
- the first 12 coding table numbers correspond to actual coding tables.
- the last and the penultimate coding table number it is now signaled that the stereo intensity method is used within the section to which this coding table number is assigned.
- FIG. 2b shows a format of the data for the right channel R in the presence of stereo intensity coding, using the MPEG2-NBC method.
- FIG. 2a or to the MPEG Layer 3 method, is that a user now has the flexibility to selectively insert or deactivate an intensity stereo coding of the stereo audio spectral values for each section even above the IS cut-off frequency 32 to switch off.
- the IS cut-off frequency is therefore no longer a correct cut-off frequency, since with the NBC method, the IS coding can also be switched off or on again above the IS cut-off frequency.
- the scale factors transmitted in a section with IS coding for the right channel now also represent the direction information 36 analogously to the prior art, these values themselves also being subjected to a difference and Huffman coding.
- the right channel as already mentioned, there are no stereo audio spectral values in the scale factor bands that are not IS-coded, but a zero spectrum.
- the left channel contains the sum signal of the left and right channels. However, the sum signal is normalized in such a way that its energy within the respective scale factor bands after IS decoding corresponds to the energy of the left channel. Therefore, the left channel can also be adopted unchanged in the decoding device if IS coding is used and does not have to be determined specifically by means of a re-scaling rule.
- the stereo audio spectral values of the right channel can now be calculated back from the stereo audio spectral values of the left channel using the direction information is_pos 36, which are present in the side information of the right channel.
- the stereo intensity method produces two coherent signals for the left or right channel, which differ only in their amplitude, ie intensity, depending on the direction information is_pos 36 (equations (4) and (5)).
- the stereo intensity coding is signaled by means of two "unreal" coding table numbers, a phase relationship of the two channels to one another can be included. If the channels have the same phase position, the back-calculation rule according to the invention to be carried out in the decoder is as follows:
- R ⁇ in the two previous equations denotes the back-calculated, i.e. decoded, stereo audio spectral values of the right channel
- sfb denotes the scale factor band 28 to which the direction information is_pos 36 are assigned
- L ⁇ denotes the stereo audio spectral values of the left channel, which are adopted unchanged in the decoder.
- Coding table number 15 now indicates whether the first retroactive accounting step should be used, while coding table number 14 indicates that the second retroactive accounting rule should be used, i.e. that the two channels are out of phase.
- a phase discriminator can be provided which, from a certain phase discriminator output value, which can be, for example, 90 °, determines that the signals are out of phase, the same being considered to be in phase with a phase difference of less than 90 °.
- a section which consists of at least one scale factor band exists, by means of the code table numbers 14 or 15, the phase relationship of the two channels to one another is determined.
- the side information caused by IS and phase signaling is 8 bits for a section, which is composed of four bits for the section length and four bits for the coding table number 14 or 15. If an audio signal is to be encoded which has frequent changes in the phase position in scale factor bands of its stereo audio spectral values, then according to the first exemplary embodiment a new section ("section") must be started each time the phase position is reversed from scale factor band to scale factor band.
- a signal with a frequently changing phase position therefore generates a large number of sections, since each section can only display either the in-phase or the out-of-phase of its stereo audio spectral values in the two channels due to the coding table number assigned to it.
- An unfavorable signal will therefore lead to a large number of sections and thus to a large amount of page information.
- a second exemplary embodiment of the present invention allows a phase-factor coding on a scale factor band basis in a section in which the intensity coding is active.
- this method according to the second exemplary embodiment of the present invention using an MS mask, which is described below, it is possible to encode phase factor by scale factor band without increasing the number of sections and without any additional expenditure.
- center-side method and the intensity stereo method are mutually exclusive in a scale factor band. These two methods are therefore orthogonal.
- MS coding of stereo audio spectral values is used in a bit stream
- a signaling bit in the side information will be set accordingly globally turn on the MS coding. Setting this bit means that an MS bit mask is transmitted, with which it is possible to selectively switch MS coding on or off for each scale factor band (scfbd).
- One bit is reserved in the MS bit mask for each scale factor band, which is why the length of the bit mask corresponds to the number of scale factor bands.
- the MS scale factor information is not necessary, since the MS coding must not be activated here.
- the MS bit mask can be used for other signaling in this area. It is therefore possible to display details of the IS coding using the MS bit mask.
- the information relating to the phase position of the channels is specified in a section by means of the coding table numbers 14 and 15 in IS coding.
- the coding table numbers also indicate that IS coding is active at all in a section.
- the MS bit mask is used in the second exemplary embodiment of the present invention to allow scale factor bands with different phase positions in one section.
- the MS bit mask is now used to indicate the phase relationship of the individual scale factor bands in this section in relation to the coding table number, which signals that IS coding is active in a section. If a bit in the MS bit mask for a scale factor band is not set (ie zero), the phase information indicated by the coding table number for the section in which the scale factor band is located is retained, while if a (ie one) bit is set in the MS bit mask for the scale factor band which is inverted by the phase table of the two channels indicated by the coding table number for the section in which the scale factor band is located. In principle, it is an EXCLUSIVE-OR link between the one indicated by the coding table number Phase position and the MS bit mask.
- phase relationships of the two stereo channels L and R calculated from the coding table number and MS bit mask in a scale factor band located in a section in which the IS coding is used are as follows:
- the described second exemplary embodiment of the present invention thus allows scale factor bands with stereo audio spectral values with different phase positions to occur in one section, as a result of which fewer sections than in the first exemplary embodiment have to be formed for coding. This means that less page information also has to be transmitted.
- the additional coding table numbers can also be used to display other information relevant for a section.
- Further information relevant to a section can, for example, indicate the use of an adaptive ven Huffman coding in one section.
- an adapted Huffman table can be generated depending on the signal statistics.
- the coding table number 13 instructs the coding device not to use any of the twelve fixed Huffman tables, but to use an adapted Huffman table which is not known a priori to the decoder. This is advantageous if the signal statistics in a section cannot be optimally coded, ie compressed, with one of the twelve fixed coding tables.
- the coding is no longer fixed to the twelve fixed Huffman tables, but can generate and use a table that is optimally adapted to the signal statistics.
- the information about the adaptive coding table is transmitted as additional page information.
- a decoding device requires this additional side information in order to calculate back from it the adapted Huffman table used in the coding, in order to be able to correctly decode the Huffman-coded stereo audio spectral values again.
- Audio spectral values partially coded using the intensity stereo method are each supplied to inverse quantizers 38 and 40, the inverse quantizers reversing the quantization introduced during coding.
- the dequantized stereo audio spectral values then arrive in an MS decoder 42.
- This MS decoder 42 reverses the middle-side coding introduced in the encoder.
- An IS decoder 44 now uses the previously described recalculation regulations (7) and (8) in order to obtain the original stereo audio spectral values again for the IS-coded scale factor bands.
- Respective reverse transformation devices for the left or right channel now convert the stereo audio spectral values into stereo audio time evaluate L (t), R (t).
- the inverse transformers 46 and 48 can be implemented by an inverse MDCT, for example.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Multimedia (AREA)
- Acoustics & Sound (AREA)
- Signal Processing (AREA)
- Computational Linguistics (AREA)
- Mathematical Physics (AREA)
- Health & Medical Sciences (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Human Computer Interaction (AREA)
- Compression, Expansion, Code Conversion, And Decoders (AREA)
- Stereo-Broadcasting Methods (AREA)
- Transmission Systems Not Characterized By The Medium Used For Transmission (AREA)
Abstract
Description
Claims
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19628292 | 1996-07-12 | ||
DE19628292A DE19628292B4 (en) | 1996-07-12 | 1996-07-12 | Method for coding and decoding stereo audio spectral values |
PCT/EP1997/002874 WO1998003036A1 (en) | 1996-07-12 | 1997-06-03 | Process for coding and decoding stereophonic spectral values |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0910927A1 true EP0910927A1 (en) | 1999-04-28 |
EP0910927B1 EP0910927B1 (en) | 2000-01-12 |
Family
ID=7799742
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP97925036A Expired - Lifetime EP0910927B1 (en) | 1996-07-12 | 1997-06-03 | Process for coding and decoding stereophonic spectral values |
Country Status (14)
Country | Link |
---|---|
US (1) | US6771777B1 (en) |
EP (1) | EP0910927B1 (en) |
JP (1) | JP3622982B2 (en) |
KR (1) | KR100316582B1 (en) |
AT (1) | ATE188832T1 (en) |
AU (1) | AU712196B2 (en) |
CA (1) | CA2260090C (en) |
DE (2) | DE19628292B4 (en) |
DK (1) | DK0910927T3 (en) |
ES (1) | ES2143868T3 (en) |
GR (1) | GR3032444T3 (en) |
NO (1) | NO317570B1 (en) |
PT (1) | PT910927E (en) |
WO (1) | WO1998003036A1 (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7016547B1 (en) | 2002-06-28 | 2006-03-21 | Microsoft Corporation | Adaptive entropy encoding/decoding for screen capture content |
US7143030B2 (en) | 2001-12-14 | 2006-11-28 | Microsoft Corporation | Parametric compression/decompression modes for quantization matrices for digital audio |
US7240001B2 (en) | 2001-12-14 | 2007-07-03 | Microsoft Corporation | Quality improvement techniques in an audio encoder |
US7299190B2 (en) | 2002-09-04 | 2007-11-20 | Microsoft Corporation | Quantization and inverse quantization for audio |
US7460990B2 (en) | 2004-01-23 | 2008-12-02 | Microsoft Corporation | Efficient coding of digital media spectral data using wide-sense perceptual similarity |
US7502743B2 (en) | 2002-09-04 | 2009-03-10 | Microsoft Corporation | Multi-channel audio encoding and decoding with multi-channel transform selection |
US7539612B2 (en) | 2005-07-15 | 2009-05-26 | Microsoft Corporation | Coding and decoding scale factor information |
US7562021B2 (en) | 2005-07-15 | 2009-07-14 | Microsoft Corporation | Modification of codewords in dictionary used for efficient coding of digital media spectral data |
US7630882B2 (en) | 2005-07-15 | 2009-12-08 | Microsoft Corporation | Frequency segmentation to obtain bands for efficient coding of digital media |
US7688894B2 (en) | 2003-09-07 | 2010-03-30 | Microsoft Corporation | Scan patterns for interlaced video content |
US7782954B2 (en) | 2003-09-07 | 2010-08-24 | Microsoft Corporation | Scan patterns for progressive video content |
US7831434B2 (en) | 2006-01-20 | 2010-11-09 | Microsoft Corporation | Complex-transform channel coding with extended-band frequency coding |
US7885819B2 (en) | 2007-06-29 | 2011-02-08 | Microsoft Corporation | Bitstream syntax for multi-process audio decoding |
US7953604B2 (en) | 2006-01-20 | 2011-05-31 | Microsoft Corporation | Shape and scale parameters for extended-band frequency coding |
US8069052B2 (en) | 2002-09-04 | 2011-11-29 | Microsoft Corporation | Quantization and inverse quantization for audio |
Families Citing this family (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6539357B1 (en) * | 1999-04-29 | 2003-03-25 | Agere Systems Inc. | Technique for parametric coding of a signal containing information |
US7099830B1 (en) | 2000-03-29 | 2006-08-29 | At&T Corp. | Effective deployment of temporal noise shaping (TNS) filters |
US6735561B1 (en) * | 2000-03-29 | 2004-05-11 | At&T Corp. | Effective deployment of temporal noise shaping (TNS) filters |
ATE387044T1 (en) * | 2000-07-07 | 2008-03-15 | Nokia Siemens Networks Oy | METHOD AND APPARATUS FOR PERCEPTUAL TONE CODING OF A MULTI-CHANNEL TONE SIGNAL USING CASCADED DISCRETE COSINE TRANSFORMATION OR MODIFIED DISCRETE COSINE TRANSFORMATION |
US8605911B2 (en) | 2001-07-10 | 2013-12-10 | Dolby International Ab | Efficient and scalable parametric stereo coding for low bitrate audio coding applications |
SE0202159D0 (en) | 2001-07-10 | 2002-07-09 | Coding Technologies Sweden Ab | Efficientand scalable parametric stereo coding for low bitrate applications |
EP1423847B1 (en) | 2001-11-29 | 2005-02-02 | Coding Technologies AB | Reconstruction of high frequency components |
US7433824B2 (en) * | 2002-09-04 | 2008-10-07 | Microsoft Corporation | Entropy coding by adapting coding between level and run-length/level modes |
ES2297083T3 (en) | 2002-09-04 | 2008-05-01 | Microsoft Corporation | ENTROPIC CODIFICATION BY ADAPTATION OF THE CODIFICATION BETWEEN MODES BY LENGTH OF EXECUTION AND BY LEVEL. |
SE0202770D0 (en) | 2002-09-18 | 2002-09-18 | Coding Technologies Sweden Ab | Method of reduction of aliasing is introduced by spectral envelope adjustment in real-valued filterbanks |
US7724827B2 (en) | 2003-09-07 | 2010-05-25 | Microsoft Corporation | Multi-layer run level encoding and decoding |
KR20050027179A (en) * | 2003-09-13 | 2005-03-18 | 삼성전자주식회사 | Method and apparatus for decoding audio data |
WO2006004048A1 (en) * | 2004-07-06 | 2006-01-12 | Matsushita Electric Industrial Co., Ltd. | Audio signal encoding device, audio signal decoding device, method thereof and program |
CN101151659B (en) * | 2005-03-30 | 2014-02-05 | 皇家飞利浦电子股份有限公司 | Multi-channel audio coder, device, method and decoder, device and method |
US7684981B2 (en) | 2005-07-15 | 2010-03-23 | Microsoft Corporation | Prediction of spectral coefficients in waveform coding and decoding |
KR100851970B1 (en) * | 2005-07-15 | 2008-08-12 | 삼성전자주식회사 | Method and apparatus for extracting ISCImportant Spectral Component of audio signal, and method and appartus for encoding/decoding audio signal with low bitrate using it |
US7599840B2 (en) * | 2005-07-15 | 2009-10-06 | Microsoft Corporation | Selectively using multiple entropy models in adaptive coding and decoding |
US7693709B2 (en) | 2005-07-15 | 2010-04-06 | Microsoft Corporation | Reordering coefficients for waveform coding or decoding |
US8599925B2 (en) * | 2005-08-12 | 2013-12-03 | Microsoft Corporation | Efficient coding and decoding of transform blocks |
US7933337B2 (en) | 2005-08-12 | 2011-04-26 | Microsoft Corporation | Prediction of transform coefficients for image compression |
US7565018B2 (en) * | 2005-08-12 | 2009-07-21 | Microsoft Corporation | Adaptive coding and decoding of wide-range coefficients |
US8190425B2 (en) * | 2006-01-20 | 2012-05-29 | Microsoft Corporation | Complex cross-correlation parameters for multi-channel audio |
US8184710B2 (en) | 2007-02-21 | 2012-05-22 | Microsoft Corporation | Adaptive truncation of transform coefficient data in a transform-based digital media codec |
US7774205B2 (en) | 2007-06-15 | 2010-08-10 | Microsoft Corporation | Coding of sparse digital media spectral data |
US7761290B2 (en) | 2007-06-15 | 2010-07-20 | Microsoft Corporation | Flexible frequency and time partitioning in perceptual transform coding of audio |
US8046214B2 (en) * | 2007-06-22 | 2011-10-25 | Microsoft Corporation | Low complexity decoder for complex transform coding of multi-channel sound |
US8249883B2 (en) | 2007-10-26 | 2012-08-21 | Microsoft Corporation | Channel extension coding for multi-channel source |
KR101444102B1 (en) | 2008-02-20 | 2014-09-26 | 삼성전자주식회사 | Method and apparatus for encoding/decoding stereo audio |
US8179974B2 (en) | 2008-05-02 | 2012-05-15 | Microsoft Corporation | Multi-level representation of reordered transform coefficients |
US8406307B2 (en) | 2008-08-22 | 2013-03-26 | Microsoft Corporation | Entropy coding/decoding of hierarchically organized data |
JP6061121B2 (en) * | 2011-07-01 | 2017-01-18 | ソニー株式会社 | Audio encoding apparatus, audio encoding method, and program |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3310480C2 (en) * | 1983-03-23 | 1986-02-13 | Seitzer, Dieter, Prof. Dr.-Ing., 8520 Erlangen | Digital coding process for audio signals |
JPS59188764A (en) * | 1983-04-11 | 1984-10-26 | Hitachi Ltd | Memory device |
DE3943879B4 (en) * | 1989-04-17 | 2008-07-17 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Digital coding method |
JP3131249B2 (en) | 1991-08-23 | 2001-01-31 | 日本放送協会 | Mixed audio signal receiver |
CA2090052C (en) | 1992-03-02 | 1998-11-24 | Anibal Joao De Sousa Ferreira | Method and apparatus for the perceptual coding of audio signals |
EP0559348A3 (en) * | 1992-03-02 | 1993-11-03 | AT&T Corp. | Rate control loop processor for perceptual encoder/decoder |
DE4236989C2 (en) * | 1992-11-02 | 1994-11-17 | Fraunhofer Ges Forschung | Method for transmitting and / or storing digital signals of multiple channels |
JP3292522B2 (en) | 1992-11-25 | 2002-06-17 | 京セラ株式会社 | Mobile phone |
JP3150475B2 (en) * | 1993-02-19 | 2001-03-26 | 松下電器産業株式会社 | Quantization method |
US5581653A (en) * | 1993-08-31 | 1996-12-03 | Dolby Laboratories Licensing Corporation | Low bit-rate high-resolution spectral envelope coding for audio encoder and decoder |
DE4331367C2 (en) * | 1993-09-15 | 1996-04-18 | Lewin Martin | Inner sleeve for sealing pipe joints in pipes |
DE4331376C1 (en) * | 1993-09-15 | 1994-11-10 | Fraunhofer Ges Forschung | Method for determining the type of encoding to selected for the encoding of at least two signals |
US5488665A (en) | 1993-11-23 | 1996-01-30 | At&T Corp. | Multi-channel perceptual audio compression system with encoding mode switching among matrixed channels |
JP3435674B2 (en) | 1994-05-06 | 2003-08-11 | 日本電信電話株式会社 | Signal encoding and decoding methods, and encoder and decoder using the same |
DE19638997B4 (en) * | 1995-09-22 | 2009-12-10 | Samsung Electronics Co., Ltd., Suwon | Digital audio coding method and digital audio coding device |
-
1996
- 1996-07-12 DE DE19628292A patent/DE19628292B4/en not_active Expired - Lifetime
-
1997
- 1997-06-03 AT AT97925036T patent/ATE188832T1/en active
- 1997-06-03 PT PT97925036T patent/PT910927E/en unknown
- 1997-06-03 DK DK97925036T patent/DK0910927T3/en active
- 1997-06-03 DE DE59701014T patent/DE59701014D1/en not_active Expired - Lifetime
- 1997-06-03 EP EP97925036A patent/EP0910927B1/en not_active Expired - Lifetime
- 1997-06-03 US US09/214,656 patent/US6771777B1/en not_active Expired - Lifetime
- 1997-06-03 AU AU30318/97A patent/AU712196B2/en not_active Expired
- 1997-06-03 ES ES97925036T patent/ES2143868T3/en not_active Expired - Lifetime
- 1997-06-03 CA CA002260090A patent/CA2260090C/en not_active Expired - Lifetime
- 1997-06-03 JP JP50553798A patent/JP3622982B2/en not_active Expired - Lifetime
- 1997-06-03 KR KR1019980710868A patent/KR100316582B1/en not_active IP Right Cessation
- 1997-06-03 WO PCT/EP1997/002874 patent/WO1998003036A1/en active IP Right Grant
-
1999
- 1999-01-11 NO NO19990106A patent/NO317570B1/en not_active IP Right Cessation
-
2000
- 2000-01-20 GR GR20000400139T patent/GR3032444T3/en unknown
Non-Patent Citations (1)
Title |
---|
See references of WO9803036A1 * |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7143030B2 (en) | 2001-12-14 | 2006-11-28 | Microsoft Corporation | Parametric compression/decompression modes for quantization matrices for digital audio |
US7155383B2 (en) | 2001-12-14 | 2006-12-26 | Microsoft Corporation | Quantization matrices for jointly coded channels of audio |
US7240001B2 (en) | 2001-12-14 | 2007-07-03 | Microsoft Corporation | Quality improvement techniques in an audio encoder |
US7249016B2 (en) | 2001-12-14 | 2007-07-24 | Microsoft Corporation | Quantization matrices using normalized-block pattern of digital audio |
US7930171B2 (en) | 2001-12-14 | 2011-04-19 | Microsoft Corporation | Multi-channel audio encoding/decoding with parametric compression/decompression and weight factors |
US7016547B1 (en) | 2002-06-28 | 2006-03-21 | Microsoft Corporation | Adaptive entropy encoding/decoding for screen capture content |
US7218790B2 (en) | 2002-06-28 | 2007-05-15 | Microsoft Corporation | Adaptive entropy encoding/decoding for screen capture content |
US7340103B2 (en) | 2002-06-28 | 2008-03-04 | Microsoft Corporation | Adaptive entropy encoding/decoding for screen capture content |
US7801735B2 (en) | 2002-09-04 | 2010-09-21 | Microsoft Corporation | Compressing and decompressing weight factors using temporal prediction for audio data |
US8069052B2 (en) | 2002-09-04 | 2011-11-29 | Microsoft Corporation | Quantization and inverse quantization for audio |
US7299190B2 (en) | 2002-09-04 | 2007-11-20 | Microsoft Corporation | Quantization and inverse quantization for audio |
US7502743B2 (en) | 2002-09-04 | 2009-03-10 | Microsoft Corporation | Multi-channel audio encoding and decoding with multi-channel transform selection |
US7782954B2 (en) | 2003-09-07 | 2010-08-24 | Microsoft Corporation | Scan patterns for progressive video content |
US7688894B2 (en) | 2003-09-07 | 2010-03-30 | Microsoft Corporation | Scan patterns for interlaced video content |
US7460990B2 (en) | 2004-01-23 | 2008-12-02 | Microsoft Corporation | Efficient coding of digital media spectral data using wide-sense perceptual similarity |
US7630882B2 (en) | 2005-07-15 | 2009-12-08 | Microsoft Corporation | Frequency segmentation to obtain bands for efficient coding of digital media |
US7562021B2 (en) | 2005-07-15 | 2009-07-14 | Microsoft Corporation | Modification of codewords in dictionary used for efficient coding of digital media spectral data |
US7539612B2 (en) | 2005-07-15 | 2009-05-26 | Microsoft Corporation | Coding and decoding scale factor information |
US7831434B2 (en) | 2006-01-20 | 2010-11-09 | Microsoft Corporation | Complex-transform channel coding with extended-band frequency coding |
US7953604B2 (en) | 2006-01-20 | 2011-05-31 | Microsoft Corporation | Shape and scale parameters for extended-band frequency coding |
US7885819B2 (en) | 2007-06-29 | 2011-02-08 | Microsoft Corporation | Bitstream syntax for multi-process audio decoding |
US9741354B2 (en) | 2007-06-29 | 2017-08-22 | Microsoft Technology Licensing, Llc | Bitstream syntax for multi-process audio decoding |
Also Published As
Publication number | Publication date |
---|---|
DE19628292B4 (en) | 2007-08-02 |
DE59701014D1 (en) | 2000-02-17 |
KR100316582B1 (en) | 2002-02-28 |
ES2143868T3 (en) | 2000-05-16 |
CA2260090C (en) | 2000-10-17 |
DE19628292A1 (en) | 1998-01-15 |
KR20000022435A (en) | 2000-04-25 |
AU3031897A (en) | 1998-02-09 |
US6771777B1 (en) | 2004-08-03 |
DK0910927T3 (en) | 2000-05-08 |
CA2260090A1 (en) | 1998-01-22 |
JP3622982B2 (en) | 2005-02-23 |
EP0910927B1 (en) | 2000-01-12 |
JP2000505266A (en) | 2000-04-25 |
WO1998003036A1 (en) | 1998-01-22 |
PT910927E (en) | 2000-04-28 |
GR3032444T3 (en) | 2000-05-31 |
ATE188832T1 (en) | 2000-01-15 |
NO990106L (en) | 1999-03-10 |
NO990106D0 (en) | 1999-01-11 |
NO317570B1 (en) | 2004-11-15 |
AU712196B2 (en) | 1999-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE19628292B4 (en) | Method for coding and decoding stereo audio spectral values | |
EP0910928B1 (en) | Coding and decoding of audio signals by using intensity stereo and prediction processes | |
DE69927505T2 (en) | METHOD FOR INSERTING ADDITIONAL DATA INTO AN AUDIO DATA STREAM | |
DE69210064T2 (en) | Subband encoder and transmitter using this encoder | |
DE19747132C2 (en) | Methods and devices for encoding audio signals and methods and devices for decoding a bit stream | |
EP0931386B1 (en) | Method for signalling a noise substitution during audio signal coding | |
DE69705642T2 (en) | AUDIO ENCODING METHOD WITH VARIABLE CODE LENGTH USING A MULTIPLE NUMBER OF SUBBAND BIT DISTRIBUTION MODES | |
EP0954909B1 (en) | Method for coding an audio signal | |
DE4135070C1 (en) | ||
DE19742655C2 (en) | Method and device for coding a discrete-time stereo signal | |
DE4222623C2 (en) | Process for the transmission or storage of digitized sound signals | |
EP0611516B1 (en) | Process for reducing data in the transmission and/or storage of digital signals from several dependent channels | |
DE4217276C1 (en) | ||
EP1926082A1 (en) | Process for scaleable encoding of stereo signals | |
DE4430864C2 (en) | Method for unnoticed transmission and / or storage of additional information within a source-coded, data-reduced audio signal | |
DE19742201C1 (en) | Method of encoding time discrete audio signals, esp. for studio use | |
DE19747119C2 (en) | Methods and devices for coding or decoding an audio signal or a bit stream | |
DE10113322C2 (en) | Process for encoding audio data | |
DE19840853B4 (en) | Methods and devices for encoding an audio signal | |
DE19617654C1 (en) | Stereo or multi=channel sound signal coding method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19990105 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: JOHNSTON, JAMES Inventor name: HERRE, JUERGEN Inventor name: GERHAEUSER, HEINZ Inventor name: BRANDENBURG, KARLHEINZ Inventor name: TEICHMANN, BODO Inventor name: DIETZ, MARTIN Inventor name: GBUR, UWE |
|
17Q | First examination report despatched |
Effective date: 19990601 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
ITF | It: translation for a ep patent filed | ||
REF | Corresponds to: |
Ref document number: 188832 Country of ref document: AT Date of ref document: 20000115 Kind code of ref document: T |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
ET | Fr: translation filed | ||
REF | Corresponds to: |
Ref document number: 59701014 Country of ref document: DE Date of ref document: 20000217 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: GERMAN |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20000313 |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 20000131 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2143868 Country of ref document: ES Kind code of ref document: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFA Owner name: AT & T LABORATORIES/RESEARCH Free format text: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V.#LEONRODSTRASSE 54#80636 MUENCHEN (DE) $ AT & T LABORATORIES/RESEARCH#180 PARK AVENUE#FLORHAM PARK, NJ 07932 (US) $ LUCENT TECHNOLOGIES#BELL LABORATORIES, 600 MOUNTAIN AVENUE#MURRAY HILL, NJ 07974-0636 (US) -TRANSFER TO- AT & T LABORATORIES/RESEARCH#180 PARK AVENUE#FLORHAM PARK, NJ 07932 (US) $ LUCENT TECHNOLOGIES#BELL LABORATORIES, 600 MOUNTAIN AVENUE#MURRAY HILL, NJ 07974-0636 (US) $ FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V.#HANSASTRASSE 27 C#80686 MUENCHEN (DE) |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R039 Ref document number: 59701014 Country of ref document: DE Ref country code: DE Ref legal event code: R008 Ref document number: 59701014 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 59701014 Country of ref document: DE Ref country code: DE Ref legal event code: R040 Ref document number: 59701014 Country of ref document: DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20160622 Year of fee payment: 20 Ref country code: CH Payment date: 20160621 Year of fee payment: 20 Ref country code: ES Payment date: 20160622 Year of fee payment: 20 Ref country code: GR Payment date: 20160621 Year of fee payment: 20 Ref country code: GB Payment date: 20160628 Year of fee payment: 20 Ref country code: IE Payment date: 20160621 Year of fee payment: 20 Ref country code: MC Payment date: 20160621 Year of fee payment: 20 Ref country code: LU Payment date: 20160622 Year of fee payment: 20 Ref country code: FI Payment date: 20160620 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20160620 Year of fee payment: 20 Ref country code: BE Payment date: 20160621 Year of fee payment: 20 Ref country code: PT Payment date: 20160525 Year of fee payment: 20 Ref country code: FR Payment date: 20160621 Year of fee payment: 20 Ref country code: SE Payment date: 20160621 Year of fee payment: 20 Ref country code: DK Payment date: 20160622 Year of fee payment: 20 Ref country code: NL Payment date: 20160621 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20160621 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 59701014 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EUP Effective date: 20170603 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MK Effective date: 20170602 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20170602 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK07 Ref document number: 188832 Country of ref document: AT Kind code of ref document: T Effective date: 20170603 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MK9A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20170602 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20170614 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20170603 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20180508 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20170604 |