EP0904394A1 - Chicken embryo lethal orphan (celo) virus - Google Patents

Chicken embryo lethal orphan (celo) virus

Info

Publication number
EP0904394A1
EP0904394A1 EP97919383A EP97919383A EP0904394A1 EP 0904394 A1 EP0904394 A1 EP 0904394A1 EP 97919383 A EP97919383 A EP 97919383A EP 97919383 A EP97919383 A EP 97919383A EP 0904394 A1 EP0904394 A1 EP 0904394A1
Authority
EP
European Patent Office
Prior art keywords
dna
celo
virus
celo virus
plasmid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP97919383A
Other languages
German (de)
French (fr)
Inventor
Adam Baker
Matthew Cotten
Susanna Chiocca
Robert Kurzbauer
Gotthold Schaffner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boehringer Ingelheim International GmbH
Original Assignee
Boehringer Ingelheim International GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boehringer Ingelheim International GmbH filed Critical Boehringer Ingelheim International GmbH
Publication of EP0904394A1 publication Critical patent/EP0904394A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/525Virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/10011Adenoviridae
    • C12N2710/10211Aviadenovirus, e.g. fowl adenovirus A
    • C12N2710/10222New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/10011Adenoviridae
    • C12N2710/10211Aviadenovirus, e.g. fowl adenovirus A
    • C12N2710/10241Use of virus, viral particle or viral elements as a vector
    • C12N2710/10243Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector

Definitions

  • the invention relates to adenoviruses.
  • the large family of adenoviruses is divided into adenoviruses that infect mammals (the mastadenoviridae) and adenoviruses that infect birds (the aviadenoviridae) according to their host.
  • the CELO virus (“Chicken Embryo Lethal Orphan”; review by McFerran, et al., 1977; McCracken and Adair, 1993) was identified as an infectious agent in 1957 (Yates and Fry, 1957).
  • the CELO virus is classified as poultry adenovirus type 1 (FAV-1) and initially aroused interest due to its property of being tumorigenic in baby hamsters.
  • the FAV-1 adenoviruses can be isolated from healthy chickens and do not cause disease when experimentally reintroduced into chickens (Cowen, et al., 1978). Isolation from diseased birds is likely the result of adenovirus replication in a host that has a weakened immune system due to other factors.
  • CELO virus The general structural organization of CELO virus is with an icosahedral capsid of 70-80 nm, made up of hexon and penton structures, similar to that of mammalian adenoviruses (Laver, et al., 1971).
  • the CELO virus genome is a linear, double-stranded DNA molecule, the DNA being condensed within the virion by virus-encoded core proteins (Laver, et al., 1971; Li, et al., 1984b).
  • the CELO virus genome has covalently bound terminal proteins (Li, et al., 1983), and the genome has inverted terminal repeats (ITRs) when also shorter than the mammalian ITRs (Aleström, et al., 1982b; Sheppard and Trist, 1992).
  • ITRs inverted terminal repeats
  • the CELO virus encodes a protease with 61-69% homology to the mammalian adenovirus proteases (Cai and Weber, 1993).
  • CELO virus has a larger genome, with a sequence homology to Ad5 (Aleström, et al., 1982a) that can only be determined in two short regions of the CELO virus genome (by hybridization).
  • Ad5 Ad5
  • the CELO virion has been reported to have two fibers of different lengths at each vertex.
  • the CELO virus cannot complement the E1A functions of Ad5, and the replication of CELO virus is not facilitated by the activity of Ad5El (Li, et al., 1984c).
  • CELO virus In the context of the present invention, a complete sequence analysis of the CELO virus was carried out; on the one hand because it is useful for understanding the biology of adenoviruses to elucidate the genomic organization of an adenovirus that is far from the generally studied mammalian adenoviruses. Since probably the transmission and
  • CELO virus genome has 43.8 kb, which is more than 8 kb longer than the human subtypes Ad2 and Ad5.
  • the genes for the main structural proteins are both present on the one hand, and on the other hand they are also located at the corresponding locations in the genome.
  • the Early Region 2 genes (E2; DNA binding protein, DNA polymerase and terminal protein) are also present.
  • E2 DNA binding protein, DNA polymerase and terminal protein
  • CELO virus lacks sequences which are homologous to the regions E1, E3 and E4 of the mammalian adenoviruses.
  • CELO virus genome There is approximately 5 kb at the left end and 15 kb at the right end of the CELO virus genome, where there is little or no homology with the mastadenovirus genomes. These new sequences contain a number of open reading frames and are believed to code for functions that replace the missing E1, E3 and possibly E4 regions.
  • Genome available in the form of fragments (approx. 24 kb in total).
  • the sequence obtained in the context of the present invention is complete and has the advantage that it was obtained from a single isolate.
  • the complete sequence of the CELO virus is shown in the sequence listing (in the sequence listing "complementary" means that the respective open reading frames are in reverse order). It shows a large number of striking differences between Ad2 and the CELO virus.
  • the CELO virus pattern also indicates (in the first 6,000 bp and in the last 13,000 bp) all unassigned open reading frames that start with a methionine and that code for more than 99 amino acid residues.
  • the central region of the two genomes which show homology based on the dot matrix analysis (cf. FIG. 3), and the regions at the ends of the CELO virus genome which have no homology with other adenoviruses ("Unique to CELO") are given.
  • the abbreviations in the figure which also correspond to those in the tables, mean: PB, penton base; EP, endoproteinase; DBP, DNA binding protein; bTP, pre-terminal protein; pol, DNA polymerase.
  • the sequenced CELO virus genome is 43,804 bp in length and has a G + C content of 54.3%. It previously it was suspected that the CELO virus genome is much larger than the 34-36 kb mastadenovirus genome; it was found that the CELO virus DNA
  • FIG. 2A shows that the CELO virus genome is 44 kb in length. From this analysis it can be seen that the CELO virus genome is actually significantly larger than the genome of the mammalian virus. Calculations based on the migration of fragments of the lambda bacteriophage result in a size of 43 kb for the CELO virus genome. The DNA extracted from two other FAV-1 isolates, Indiana C and OTE, co-migrates with the CELO virus species, which is further evidence of the size of the CELO virus genome.
  • Fig. 2B shows that the CELO virus sequence contained on the bacterial plasmid pBR327 has the same size. There is no identifiable El region. There was no significant homology between the CELO virus
  • An open reading frame at the right end of the virus genome (GAM-1) can replace E1B 19K in functional assays without significant homology between GAM-1 and E1B 19K.
  • Protein IX is essential for the hexon-hexon interactions and the stability of the mammalian adenovirus virions.
  • a protein V gene was also not identified.
  • Previous studies of homology between CELO and Ad2 (Aleström, et al., 1982a) showed two regions of the CELO virus that cross-hybridize with the Ad2 sequence.
  • the genes coding for proteins corresponding to the human adenovirus proteins hexon, purple, penton base, protein VI and protein VIII are present in the expected order and location (Fig. 1A and Table 2A; Table 2B shows unassigned open reading frames which code for gene products with more than 99 amino acid residues).
  • Each vertex of the mastadenovirus virion contains a pentamer of the penton base protein in association with a single fiber consisting of three copies of the fiber polypeptide.
  • Ad2 like most mastadenoviruses, has a single fiber gene, some types of adenovirus have two fiber genes.
  • the CELO virus genome codes for two fiber polypeptides of different lengths and sequences.
  • DNA binding proteins were identified in region E2 (Li, et al., 1984c); Four proteins with similar peptide maps have been described, suggesting a single precursor that is then cleaved or degraded.
  • the genes coding for DNA polymerase and pTP (pre-terminal protein) are present and in the expected positions (Fig. 1A, Table 2A).
  • CELO virus With regard to the production of vectors based on the CELO virus, it is of interest to identify the mechanisms that the CELO virus uses to package nearly 44 kb of DNA into a virion that is similar in size to human Adenoviruses that are severely restricted in their packaging capacity (Bett, et al., 1983; Caravokyri and Leppard, 1995; Ghosh-Choudhury, 1987).
  • One possibility is that the CELO virion, although almost identical in size to Ad2 and Ad5, has enough expanded structure to accommodate the larger genome.
  • An alternative hypothesis is that CELO has a different mechanism of DNA condensation and therefore has differences in the level of core proteins that are responsible for DNA packaging. Laver, et al.
  • CELO virus may lack the larger basic nuclear protein V (41 kD), which is found in mammalian adenoviruses. Perhaps the lack of Protein V and / or the presence of smaller, basic proteins is responsible for the additional packaging capacity of the CELO virion. The smallest of those described by Li, et al.
  • CELO virus core proteins (9.5 kD) most closely associated with virus DNA, similar to protein VII of human adenovirus.
  • An open reading frame which suggests a protein with 8,597 D with 72 amino acids, is nt 16,679; the encoded protein is rich in arginine (32.9 mol%) and contains two cleavage sites for protease (pVII of Ad2 has only one cleavage site).
  • An open reading frame which suggests a protein with 19,777 D with 188 amino acid residues, is nt 16,929.
  • the protein has protease cleavage sites after residues 22, 128 and 145, and the carboxy-terminal residues have homology with pX from mastadenovirus.
  • FIG. 4 shows the amino acid sequences of protein VII and pX of various mastadenoviruses in comparison to the CELO virus and the core proteins core 2 and core 1 of FAV-10.
  • the sequences were arranged using the UWGCG Bestfit program with a gap weight of 3.0 and a weight and a gap length of 0.1.
  • the protease cleavage sites of adenovirus are underlined.
  • the 19 residue mastadenovirus DNA binding protein called "rough” is formed by two protease cleavages of the pX precursor (Hosokava and Sung, 1976; Weber and Anderson, 1988; Anderson, et al ., 1989;).
  • Cleavage of the 188 residue protein after residues 128 and 145 would be 17 residues mu-like basic protein (41% arginine, 12% lysine).
  • the uncleaved form of the protein is also strongly basic; the uncleaved copies of this protein might correspond to the 20 kD core protein observed by Li, et al., 1984b; a third 12 kD core protein identified by these authors could not yet be assigned.
  • the present invention thus relates to a CELO virus which was obtained by in vitro manipulation of a plasmid-cloned CELO virus DNA.
  • the CELO virus according to the invention derived from the genomic DNA contains the left and right terminal repeat and the packaging signal and has modifications in the regions of the CELO virus DNA in the form of insertions and / or deletions and / or mutations on.
  • the left or right terminal repeat (“Inverted Terminal Repeat", ITR) extends from nucleotides 1 - 68 and from nucleotides 43734 -
  • the packaging signal (also referred to as "Psi") extends from nucleotides 70-200. Modifications in DNA sections other than these have the effect that the genes affected by the modification are non-functional or deleted.
  • Modifications of the CELO virus genome are preferably carried out, which lie on a section of the CELO virus DNA which comprises the nucleotides from approx. 201 to approx. 5,000 (following the left terminal repeat, the section on the left end, in the hereinafter referred to as "Section A") and / or on a section which comprises the nucleotides of approximately 31,800 - approximately 43,734 (the section located in front of the right terminal repeat at the right end, hereinafter referred to as "Section B”) and / or on a section comprising the nucleotides of approximately 28,114-30,495 (the region of the fiber 1 gene, hereinafter referred to as "section C").
  • a CELO virus that has certain genes non-functional or deleted e.g. Genes that affect the host's immune response, such as antagonists of genes from the E3 region of mammalian adenoviruses, can be used as the vaccine.
  • the CELO virus contains one or more foreign DNA molecules, in particular a foreign DNA to be expressed in a host organism.
  • the CELO virus acts as a vector which can transport and express the foreign DNA into higher eukaryotic cells, tissues or organisms, in particular mammals and birds. Suitable insertion sites for the foreign DNA are sections A and / or B and / or C.
  • the foreign DNA preferably replaces one or more sequences from these sections.
  • the CELO virus according to the invention is contained on a plasmid which is replicable in bacteria or yeast and which, after being introduced into suitable cells, delivers virus particles.
  • suitable cells are bird embryonic kidney or liver cells.
  • the foreign DNA can consist of one or more therapeutically active genes. Examples are genes coding for immunomodulators or modulators of
  • Inflammatory processes cytokines such as IL-2, GM-CSF, IL-1, IL-6, IL-12; interferons, tumor antigens, I ⁇ B and derivatives of I ⁇ B that lack serine phosphorylation sites (Traenckner, et al., 1995) or that lack lysine ubiquitination sites ; Glucocorticoid receptors; enzymes such as catalase,
  • coagulation factors such as factor VIII or IX
  • growth factors such as erythropoietin
  • cystic fibrous transmembrane regulator gene CFTR
  • dystrophin and its derivatives globin
  • globin the LDL receptor
  • genes that lysosomal storage diseases such as ⁇ -glucuronidase are absent; Etc.
  • compositions with which the immune response to tumors is to be strengthened are encoded by the foreign DNA for immunostimulating proteins or tumor antigens or fragments thereof.
  • the therapeutically effective DNA can also code for antisense molecules which prevent the expression of genes or the transcription of certain RNA sequences in the target cell.
  • the foreign DNA codes for one or more antigens which elicit an immune response in the treated individual.
  • the foreign DNA codes for an antigen which is derived from a human pathogen, in particular an infectious agent.
  • Epitopes that can be expressed by recombinant CELO viruses include any human viral pathogen such as HIV, hepatitis A, B, C, hantavirus, poliovirus, influenza virus, respiratory syncytiavirus, measles, mumps, rubella, papilloma and epitopes derived from many other viruses.
  • Non-viral pathogens include trypanosomes (causes of sleeping sickness and Chagas' disease), Leishmania, Plasmodium Falciparum
  • the foreign DNA codes for an antigen derived from a protein of a pathogen of animal diseases, in particular infectious avian diseases.
  • Avian Infectious Bronchitis Virus (IBV, a coronavirus; Jia, et al., 1995; Ignjatovic and McWaters, 1991; Whyrs, et al., 1990; Lenstra, et al., 1989; Cavanagh, et al ., 1988; Cunningham, 1975), Avian Influenza Virus (Orthomyxovirus Type A; Kodihalli, et al., 1994; Treanor, et al., 1991; Tripathy and Schnitzlein, 1991), Fowlpox virus (McMillen, et al., 1994), Avian Infectious Laryngotracheitis Virus (Guo, et al., 1994; Scholz, et al., 1993; Keeler, et al., 1991), Mycoplasma Gallisepticum (Nascimento, et al., 1993), Avian Pasteurella Multocida (Wilson ,
  • Avipoxvirus Isolate such as Juncopox, Pigeon Pox, and Feld (Field) and vaccine strains of bird poxviruses, Avian Encephalomyelitis Virus (Shafren and Tannock, 1991; Nicholas, et al. , 1987; Deshmukh, et al. , 1974), Avian Sarcoma Virus, Rotavirus (Estes and Graham, 1985), Avian Reovirus (Haffer, 1984; Gouvea, et al., 1983; Gouvea and Schnitzer, 1982), H7 Influenza Virus (Fynan, et al., 1993).
  • the foreign DNA can code for proteins or protein fragments which determine the behavior of the CELO virus, in particular its ability to bind to the cells, with a view to use on mammals especially on mammalian cells.
  • proteins are fiber or penton-based proteins from mammalian and other adenoviruses, surface proteins from other viruses, and ligands which have the ability to bind to mammalian cells and to transport the CELO virus into the cells.
  • Suitable ligands include transferrin from various mammalian species, lectins, antibodies or antibody fragments, etc. Such ligands are known to the person skilled in the art, further examples can be found in WO 93/07283.
  • the recombinant CELO virus can contain one or more foreign DNA molecules, these can either be inserted in tandem or, at a distance from one another, into different sections of the CELO virus sequence.
  • the foreign DNA is under the control of regulatory sequences; suitable promoters are e.g. the CMV immediate early promoter / enhancer, the Rous Sarcoma Virus LTR, the adenovirus major late promoter, the CELO virus major late promoter.
  • suitable promoters are e.g. the CMV immediate early promoter / enhancer, the Rous Sarcoma Virus LTR, the adenovirus major late promoter, the CELO virus major late promoter.
  • CELO virus does not naturally replicate in mammalian cells. Therefore, vectors based on this virus can be used in humans without the risk that subsequent infection with a wild-type human adenovirus could complement the vector and allow replication. This is an advantage over the Ad2 and Ad5 vectors currently used.
  • the CELO virus genome is approximately 44 kb long compared to the 36 kb of the Ad5 genome. Both viruses have comparable virion dimensions, so that with a CELO virus vector there is the possibility of expanding the strict packaging limit of 35 kb available with Ad5.
  • DNA-packaging core proteins of the CELO virus were identified and striking ones
  • CELO virion is remarkably stable. The infectivity and the ability to transport DNA survive treatment at 60 ° C for 30 min. In comparison, Ad5 loses two orders of magnitude of infectivity at 48 ° C and is completely inactivated at 52 ° C. Presumably the CELO virus did not develop its heat stability naturally, rather the heat stability may indicate a response to another type of selective pressure on the virion.
  • the natural route of the CELO virus infection is a fecal-oral one, which requires that the virion can survive contact with a chemically harsh environment with extreme pH values as well as proteases. An even more resistant virus would be desirable for special applications in gene therapy, e.g. would survive in the digestive tract or lungs of a patient with cystic fibrosis.
  • CELO virus binds only weakly to mammalian cells and requires the addition of a ligand for efficient entry into the cell (transferrin or lectin; Cotten, et al., 1993). Therefore, recombinant CELO virions cannot penetrate human cells, resulting in the following possible uses: As indicated above, the virus can be genetically modified in order to express ligands on its surface which enable targeted transport, such as specific peptides, or fibers and / or penton bases of human adenoviruses.
  • virus can be biotinylated
  • CELO virus vectors therefore do not have the disadvantages of human adenoviruses which, although they have a good ability to bind to human cells, have to be masked for a specific, targeted application mediated by the ligand.
  • the CELO virus is rarely associated with diseases in birds, which indicates that it causes a strong protective immune response in bird hosts.
  • the CELO virus vector can be easily adapted for the expression of new vaccine epitopes.
  • the sections of the genome from nt approximately 12,000 to approximately 33,000 which code for structural components of the virus are preferably not interrupted.
  • the region from approximately nt 5,000 to approximately 12,000 codes for the E2 genes IVa2 (a viral transcription factor), the viral DNA polymerase (POL) and the terminal viral protein (Viral Terminal Protein; pTP).
  • E2 genes IVa2 a viral transcription factor
  • POL viral DNA polymerase
  • pTP viral Terminal Protein
  • deletions of such essential genes are also possible, provided that they are in trans, e.g. B. from a packaging line can be produced.
  • a packaging cell line that produces Ad5 DNA polymerase, which made it possible to delete this gene from the virus genome.
  • the construction of CELO virus vectors can be carried out in a similar manner by removing sections or the entire region from nt 5,000 to 12,000 from the CELO virus and contributing the corresponding functions in trans from a packaging cell line.
  • Table 4 lists the sequence elements of the CELO virus genome and, with regard to their deletion and / or mutation in the production of CELO virus vectors, is divided into different categories (in Table 4, L1, L2, etc. mean late Message 1, 2, etc., according to the designation common for mastadenoviruses):
  • Category 1 includes sequence elements that are required in ice and therefore cannot be provided in trans by a complementing cell line or by a complementing plasmid. These sections are required and are therefore present on the CELO virus according to the invention; it is the left and right terminal repeat as well as the packaging signal.
  • Category 2 sequences code for proteins that are required for virion production in large quantities. These proteins can optionally be produced from a gene contained in a complementing cell line or on a complementing plasmid.
  • Other sequences of category 2 are the major late promoter, the tripartite leader sequence, also the splice acceptor sites (SA) or the
  • Polyadenylation sites (poly A sites) of genes that are essential and cannot be provided in trans. In principle, it must be ensured that any modifications to the CELO virus DNA that are carried out at the borders of genes do not interrupt or otherwise impair control signals that may be present, for example polyA sites.
  • the genes deleted or non-functional on the CELO virus can be trans, e.g. of complementing cell lines.
  • helper cells can be produced in a manner known from the literature, analogously to helper cells which complement the functions of mammalian adenoviruses.
  • the relevant CELO virus gene is introduced on a plasmid, preferably in combination with a selectable marker, into cells which allow the replication of CELO virus, preferably into immortalized cell lines such as LMH (Kawaguchi, et al., 1987) or immortalized quail cell lines, such as by Guilhot et al. 1993, described.
  • LMH Kanguchi, et al., 1987
  • immortalized quail cell lines such as by Guilhot et al. 1993, described.
  • the defective CELO viruses can replicate in helper cells that express the relevant CELO virus genes, possibly stably integrated.
  • the deletions can also be complemented by a copy of the gene in question contained on a plasmid.
  • a plasmid for example, that described in WO 96/03517 by Cotten et al. 1994a and 1994b) or that of Wagner et al.
  • a deletion-containing CELO virus vector as part of a transfection complex containing a conjugate of polylysine and a UV / psoralen-inactivated adenovirus (human or CELO) and optionally transferrin-polylysine, in embryonic Chicken kidney cells or liver cells, embryonic or immortalized quail cells, for example liver or kidney cells, are introduced and the transfection complex also contains a plasmid which carries a copy of the gene or genes which the CELO virus vector is missing.
  • the combination of genes contained on the vector and genes carried by the plasmid results in a normal virus replication cycle.
  • Another way to replace the genes missing from the CELO virus is to use helper viruses.
  • a CELO virus wild-type or partially defective
  • the mutation-carrying CELO plasmid (for example a derivative of pCEL07) is used, for example according to the method described in WO 96/03517 or by Cotten et al. , 1994, method described, introduced into chicken cells, the carrier for the derivative being, for example, psoralen / UV-inactivated adenovirus (human or CELO) together with an adenovirus (human or CELO) as a carrier for the plasmid (s) with the genes which complement the defect is used.
  • a wild-type CELO virus can be used both as a carrier and as a source for complementary gene functions.
  • the subsequent amplification of the defective CELO viruses obtained is by means of co-infection of the defective CELO virus with a complementing adenovirus (eg wild-type CELO or a CELO that has mutations at other parts of the genome).
  • CELO virus genes include the sequences on sections A, B and C. These are sequences which code for a protein or an RNA molecule which interacts with the host cell machinery or with the host immune system is required. These proteins should be required in lower concentrations or not necessary for the cultivation of the virus in tissue culture.
  • genes of category 3 are thus preferably replaced by the gene of interest in the CELO virus vectors according to the invention; if necessary, complementing cell lines or plasmids or helper viruses can be produced which produce the corresponding gene products.
  • the vectors according to the invention contain the gene of interest instead of one of the fiber genes.
  • the CELO virus has two fiber proteins (Laver, et al., 1971; Gelderblom and Maichle-Lauppe, 1982; Li, et al., 1984a). It is believed that one of the fibers of the CELO virus is not required for virion assembly and infectivity. This assumption is supported by electron microscopic observations that the longer fiber (fiber 1) may associate with the penton base along the side of the complex, while the shorter fiber (fiber 2) protrudes from the center of the penton base, similar to the penton / fiber complexes in the Mastadenoviruses (Hess, et al., 1995).
  • the fiber molecule In adenoviruses with only one fiber, the fiber molecule is for the Assembly of the virus required; in the absence of fiber, no stable, mature viruses are formed.
  • the CELO virion should therefore require fiber 2 for stability and as a ligand, while fiber 1 only has a ligand function.
  • dUTPase gene is thus a gene that is not required for growth in cell culture.
  • the recombinant CELO virus thus contains a foreign gene which is inserted in the region of the reading frame coding for dUTPase.
  • the present invention relates to a method for producing recombinant CELO virus.
  • the method is characterized in that the CELO virus genome, or sections thereof, contained on a plasmid is genetically manipulated.
  • the genetic manipulation consists of an insertion and / or deletion. Insertions and / or deletions can be made by naturally occurring in these sections in the CELO virus DNA
  • Restriction enzyme interfaces are used, e.g. the Fsel interface occurring in section B at position 35.693; the insertion into this interface can be made directly, over this interface or in the vicinity of this interface, or this interface is used to facilitate recombination in the neighborhood.
  • the manipulation consists in making insertions and / or deletions using standard molecular biological methods (Maniatis, 1989).
  • the naturally occurring restriction interfaces can be used for this, e.g. Locations located in regions of the genome which are unnecessary for culturing the virus in the host cell, e.g. the Fsel interface occurring in section B at position 35.693.
  • the insertion can be made in this interface directly, over this interface or in the vicinity of this interface, or this interface is used to facilitate recombination in the neighborhood.
  • Foreign DNA sequences e.g. Marker genes or genes coding for therapeutically active proteins can be inserted.
  • Another possibility is to insert the foreign gene into artificial restriction enzyme interfaces produced using conventional methods of recombinant DNA technology (Maniatis, 1989).
  • the method is characterized in that manipulations are carried out in a plasmid DNA which contains the CELO virus genome, in CELO DNA sequences, except in the left and right inverted terminal repeat and in the packaging signal.
  • the manipulation of the CELO genome is carried out by means of recombination.
  • a subfragment of the CELO genome is manipulated in order to introduce mutations and / or new sequences.
  • Subfragments can be produced in various ways, by means of PCR (polymerase chain reaction), by ligation between PCR products or between restriction fragments or by subcloning in bacteria (as described in the examples of the previous invention; see also Chartier et al. 1996 ).
  • suitable bacterial strains for recombination are BJ 5183 (Hanahan, 1983) or JC 8679 (Gillen et al., 1974) or JC 5176 (Capado-Kimball and Barbour, 1971).
  • the sequence to be inserted into the CELO genome is made using primers which contain the sequence plus approximately 15 nucleotides of the insertion site in the CELO genome flank complementary sequence, prepared by PCR (Oliner et al., 1993).
  • PCR Oligonucleot al., 1993
  • a further 15 nucleotides of the sequence complementary to CELO are added, which leads to a PCR product which consists of the sequence to be inserted with 30 nucleotides of the CELO sequence at both ends.
  • This fragment is mixed with a plasmid which contains the CELO-DNA (for example the plasmid pCEL07 produced in the context of the present invention) and which has been linearized with a restriction enzyme which only cuts between the two flanking sequences which are attached to the sequence by means of PCR were.
  • a plasmid which contains the CELO-DNA (for example the plasmid pCEL07 produced in the context of the present invention) and which has been linearized with a restriction enzyme which only cuts between the two flanking sequences which are attached to the sequence by means of PCR were.
  • the recombination using ligation reaction products (produced using conventional techniques, as described, for example, by Maniatis et al. 1989) is carried out in exactly the same way as in the case of recombination with cloned fragments, with the difference that the intermediate cloning step is omitted.
  • the manipulated product obtained is characterized and used to produce the virus by transfecting avian cells (for example using the method described by Wagner et al., 1992; Cotten et al., 1994; or Cotten et al., 1993) and then cultivated, whereupon the virus is harvested.
  • the procedure is preferably that of subcloning a small fragment from the relevant region of CELO virus into which the foreign gene is to be inserted on a bacterial plasmid in order to achieve that restriction sites that occur multiple times on the CELO virus genome, occur only once on the plasmid. These restriction sites will be used to remove a region from the small fragment. This region is replaced by foreign DNA for the production of the CELO virus vector.
  • the foreign DNA can consist only of a linker with a unique restriction site, or of a sequence coding for a protein or for an antigen. The sequence can also code for reporter gene with a unique restriction site.
  • Fig. 1A Comparison of the genomic organization of Ad2 / 5 with the CELO virus
  • FIG. 1B Restriction map of the CELO virus genome
  • Fig. 3 Dot matrix analysis of the DNA sequence homology between CELO virus and Ad2 4: Amino acid sequences of protein VII and pX from different mastadenoviruses in comparison with CELO virus and the core proteins core 2 and core 1
  • Fig. 5 Construction of a plasmid containing the entire length of the CELO genome
  • Figure 7 Identification of bacterial clones containing a deletion in the dUTPase gene
  • Figure 8 Comparison of wild-type CELO and CELO containing a deletion in the dUTPase gene Western blot analysis
  • Phelps strain which was used as the starting material for the DNA for both direct sequencing and for the formation of bacterial plasmid clones, was grown in 9 day old pathogen-free chicken embryos as described by Cotten, et al. , 1993.
  • the virus was purified from allantoic fluid or from infected embryonic kidney cells by separation in CsCl gradients, as described by Laver, et al. , 1971, and Cotten, et al. , 1993.
  • Virus DNA was obtained by treating the purified virions with Proteinase K (0.1 mg / ml) and SDS (0.2%) at 56 ° C. for 45 min, and subsequent equilibrium centrifugation of the DNA in a CsCl gradient in the presence of ethidium bromide. After the second gradient, the ethidium bromide was removed by extraction with CsCl-saturated isopropanol and the virus DNA was dialyzed extensively against 10 mM Tris, 0.1 mM EDTA, pH 8.
  • the kidneys from 14 day old chicken embryos were collected, washed in PBS and digested with pancreatic trypsin (2.5 mg / ml in PBS) at 37 ° C.
  • the dispersed cells were mixed with an equal volume of fetal calf serum, the cells obtained by centrifugation, washed once with FCK medium and taken up again in the same medium.
  • FCK medium is Medium 199 with Earle's salts (Sigma M2154), supplemented with 10% tryptose phosphate (Sigma T8159), with 10% fetal calf serum, 2 mM glutamine, 100 ⁇ g / ml streptomycin, 100 IU / ml penicillin.) Die Cells were plated in 175 cm 2 tissue culture bottles (2 embryos per bottle), stored at 37 ° C / 5% CO 2 and infected 24 to 48 hours later. The cells were infected with approximately 1,000 virus particles per cell and harvested 3-4 days after infection when the cytopathic effect was complete.
  • the cleavage sites are for the restriction enzymes EcoRI, HindiII, BamHI and BglII; the alphabetical designation of the EcoRI and HindiII fragments (because of their relative sizes) is also given 373 sequenced according to the manufacturer's instructions The sequence analysis of the terminal 2,000 bp on the left and the 1,000 bp on the right end of the CELO virus genome, the
  • Sequencing to close the gaps between the fragments EcoRI C / HindIII G and the fragments HindIII B / EcoRI D as well as sequencing to confirm the sequence at different sites in the genome were carried out by direct sequencing of the viral DNA. All sequence data are the result of at least three sequence reactions. The sequence data were merged using the SeqEd (ABI) and SeqMan (Lasergene) programs. Sequence analysis was performed using the University of Wisconsin program GCG.
  • the bacterial vector pBR327 (ATCC No. 37516) was chosen because it is retained in bacterial host strains with a somewhat low copy number (instead of this plasmid, any other plasmid with a low copy number, such as pBR322, could equally be used). It was essential to create a unique restriction site on the vector that does not appear in the CELO virus sequence. As described below, the virus sequence must be excised from the plasmid vector sequences to inject a productive infection, therefore restriction sites flanking the CELO sequence (but which are not within the CELO sequence) must be incorporated into the vector . In the experiments carried out, the restriction enzyme Spei was chosen; however, other enzymes that have no recognition sites in the CELO sequence, such as Ascl, Pacl and Sfil, can be used instead.
  • the plasmid p327SpeI was prepared by ligating a Spel linker (New England Biolabs) into the Klenow-treated EcoRI site of pBR327, whereby the EcoRl site was destroyed and a unique Spel site was created.
  • the two terminal HindII fragments were cloned.
  • CsCl-purified genomic CELO-DNA was digested with HindIII and separated on a low-melting agarose gel (0.7% low-melting agarose in TAE).
  • the 1601 bp left end fragment and the 959 bp right end fragment were cut from the gel, and each gel fragment was suspended in 300 ⁇ l 10 mM Tris, ImM EDTA pH 7.4 and heated at 70 ° C for 10 min to melt the agarose.
  • the terminal peptides were removed by adding NaOH to 0.3 N and heating to 37 ° C for 90 min (Hay, et al., 1984).
  • the solutions were then cooled to room temperature, then Tris pH 7.4 (to 0.1 M) and HC1 (to 0.3 M) were added to neutralize the NaOH.
  • the fragments were heated to 56 ° C for 20 min and slowly (1 h) cooled to room temperature to facilitate reannealing.
  • the DNA was then purified on a Qiaquick column and ligated to a Spel linker (New England Biolabs) at 16 ° C for 4 hours using a Pharmacia T4 ligase reaction (New England Biolabs).
  • the ligase was inactivated by heating to 70 ° C for 10 minutes, excess linker was removed (and an overhang complementary to Spei was formed) by digesting with Spei restriction endonuclease for two hours.
  • the DNA fragments were again purified by Qiaquick column chromatography and ligated to p327SpeI treated with Spei / HindiII / calf alkaline phosphatase.
  • the ligation product was transformed into the DH5alpha bacterial strain and plasmid clones were identified which either contained the 1601 bp left end fragment or the 959 bp right end fragment (both released by Spel / Hindlll digestion).
  • a DNA sequence analysis was carried out to confirm the terminal 300 bp of both fragments.
  • the 1601 bp left end fragment and the 959 bp right end fragment were cut out of their vectors by Hindi / SpeI digestion, separated by gel electrophoresis and purified by Qiaquick chromatography. The two fragments were mixed in approximately equimolar amounts and ligated for 30 minutes using the Pharmacia T4 ligase reaction. An aliquot of Spel / CIP treated p327SpeI was added and the ligation was continued for 4 hours. The ligation mixture was transformed into DH5alpha and plasmid clones were identified which carried the correct double insert (pWü # 1 and pWü # 3).
  • the second Hindlll site was removed by cleaving pWü # 3 with Clal and BamHI, treating with Klenow enzyme, religating, transforming DH5alpha and selecting a clone that contained the Clal / BamHI (which had contained a Hindlll site).
  • the plasmid pWü-H35 obtained in c) was treated with HindIII and CIP and purified on a low-melting agarose gel, followed by Qiaquick chromatography.
  • the linearized vector pWü-H35 was mixed with 0.3 ug purified CELO virus DNA, then 30 ⁇ l of electrocompetent bacterial strain JC8679 (Gillen, et al., 1974; Oliner, et al., 1993) were added to the DNA mixture on ice. Ten minutes later, the mixture was pulsed into a BioRad electroporation chamber and with an electrical charge of 2.4 kV (BioRad Gene Pulser; Oliner, et al., 1993).
  • the bacteria were then plated on LB ampicillin plates and the ampicillin-resistant colonies examined for their plasmid content.
  • the recombination between the terminal CELO sequences on pWü-H35 and the ends of the genomic CELO DNA restores the circularity of the linearized plasmid and allows growth on ampicillin.
  • a plasmid containing the full length of the CELO genome was identified and this plasmid, designated pCEL07, was used for subsequent studies.
  • the characterization of plasmid-cloned copies of the CELO virus genome is shown in FIG. 2C.
  • the two final CELO fragments that are bound to the bacterial plasmid during cloning are shown on the left in the figure (in base pairs). These are the fragments with 5832 and 5102 bp with Bglll, and 1601 and 959 with Hindlll.
  • pCEL07 was digested with SpeI (which cleaves at the sites flanking the adenovirus termini), extracted with phenol / chloroform and passed through an HBS-equilibrated gel filtration column (Pharmacia Nick column) to remove contaminants. The digested DNA was then in streptavidin-polylysine / transferrin-polylysine / biotin adenovirus
  • the plasmid vector also has an Asel site; however, this is in the ampicillin resistance gene, and selection for ampicillin resistance requires that all positive colonies have at least the two fragments that carry the right and left halves of the amp gene.
  • pALMCELO_35870-42373 was digested with Asel (which cuts once in the ampicillin resistance gene of the plasmid and once at position 35.870) and ligated to a linker oligonucleotide TACCCTTAATTAAGGG, which is used for an interface encoded for the restriction endonuclease Pacl and for ends that are complementary to those formed during the Asel digest.
  • a linker oligonucleotide TACCCTTAATTAAGGG which is used for an interface encoded for the restriction endonuclease Pacl and for ends that are complementary to those formed during the Asel digest.
  • Restriction digestion identified a plasmid that carried a PacI site at the former Asel site of CELO at position 35,870. This plasmid was named pALMCELO_35870-42373P.
  • Example 3 Production of a CELO virus vector in which a fiber gene is missing, which is replaced by a gene of interest
  • the CELO fiber genes are contained on a Hindi I I fragment which extends from nt 27,060 to 33,920 (the HindIII B fragment, cf. the restriction map in FIG. 1B). On this fragment, the sequence coding for fiber 1 extends from nt 1,054 to 3,435.
  • the 5H3 fragment was digested with Bglll (which cuts at nt 1,168) and Hpal (which cuts at 3,440), the Bglll end was filled in with Klenow enzyme and attached to a blunt CMV / luciferase / ⁇ -globin
  • Gbxße 1659 329 26620 10660 2478 2058
  • the modifications made to p5H_28227-30502 (luc) were introduced into the entire CELO genome in the following manner:
  • the CELO / Luciferase / CELO fragment was excised from p5H_28227-30502 (luc) as a Hindi II fragment. This fragment was generated with the 26kbXbaI fragment (CELO nucleotides 1988-28608) and the terminal Hpal fragments derived from pCEL07 (obtained by cutting with hpal containing the left end of the CELO virus and pBR327 sequences defined by the Hpal Positions) recombined.
  • the three DNA fragments (approximately 50 ng each) were mixed in water and electroporated into JC8679 cells as described above.
  • reporter gene luciferase
  • the EcoRI fragment of the designation 7R1 was cloned into a pSP65 derivative of the designation pAAALM (described in WO 95/33062).
  • the plasmid was in the DAM methylase negative bacterial strain JM110 was transformed to allow clal sites in the fragment to be cleaved.
  • the plasmid was purified, cut with Clal (at position 1083) and Ncol (at position 4334), treated with Klenow enzyme to fill in the overhanging ends, and attached to a blunt CMV / luciferase / ⁇ -globin cleft / polyadenylation signal (Plank et al., 1992).
  • the resulting plasmid was named p7Rl__1083- 4334Luc.
  • the plasmid p7Rl_1083-4334Luc was cleaved with Eco47 III, which cleaves at the CELO nucleotides 937, 1292, 2300 and 8406 (the sites at nucleotide 1292 and 2300 are missing in p7Rl_1083-4334Luc) to a large fragment containing the sequence
  • CELOnt937-1083 / CMVLucPA / CELOnt4334-8406 This fragment was recombined in pCEL07.
  • pCEL07 was cleaved at the only Pmel site at CELO nt7433 and extensively dephosphorylated with calf intestinal phosphatase.
  • the linearized pCEL07 was mixed with an approx. 3 to stache molar excess of CELOnt937-1083 / CMVLucPA / CELOnt4334-8406.
  • the mixture was electroporated into the JC8679 bacterial strain and ampicillin resistant colonies were examined for plasmids containing the desired recombinant DNA. The correct plasmid was identified, characterized by restriction enzyme analysis and designated pCELOLucI.
  • a luciferase expressing CELO virus was made by transfecting pCELOLucI into primary embryonic chicken kidney cells as described above.
  • the region between the Dralll site (originally contained at nt 34,426 in the CELO virus genome) and the Xhol site (originally contained at nt 36,648 in the CELO virus genome) was derived from the plasmid pAALMH3, which contains the HindiII fragment from nt 33,920 to nt 38,738, cloned in pAALM, contains, removed. It was then treated with T4 DNA polymerase to produce blunt ends and ligated with the CMV / luciferase / ⁇ -globin fragment (see Example 4). The plasmid p7H3 ⁇ 34426-36648 Luc was thus obtained.
  • the CELO / Luciferase / CELO fragment was cut out on a Hind3 fragment and inserted into the CELO genome of pCEL07 by recombination via the unique Fsel site at position 35,694. This resulted in the plasmid pCELO ⁇ 34426-36648Luc. Digest with Spei and transfection into embryonic chicken kidney cells revealed a virus CELO ⁇ 34426-36648Luc. Subsequently, further insertions were made to replace the luciferase sequence with other genes of interest, using the unique Pacl site introduced with the luciferase sequence.
  • Figure 6 shows the cloning strategy used in this example in general form: a small CELO fragment is subcloned into a plasmid (containing restriction site C); the
  • Restriction sites A and B which now occur only once in this plasmid, are used to replace the sequence with foreign DNA.
  • the next step is the entire fragment, containing the foreign DNA between CELO sequences cut out of the plasmid and mixed with the plasmid which contains all of the CELO DNA and which was cut with a restriction enzyme (D) which cleaves the CELO DNA only once.
  • D restriction enzyme
  • This mixture is used to transform bacteria (for example from strain JC8679; Oliner et al., 1993; or another strain of Bakery with a similar ability to recombine); Recombination provides the desired plasmid, containing the foreign DNA as an insert in the CELO virus genome.
  • the plasmids pX7Rl and pX9Rl (described in WO 95/33062) were introduced into primary embryonic quail kidney or liver cells by means of transfer infection, as described in WO 93/07283. Four days after the transfection, the cells were trypsinized and seeded at 1/5 of the original density. The cells were replenished with FCK medium twice a week. Clonal lines were expanded and clones carrying either the 7R1, 9R1 plasmid, or both plasmids were identified by PCR analysis. RNA expression from the integrated plasmids was determined by Northern analysis.
  • pWü ⁇ dut A plasmid called pWü ⁇ dut was prepared by removing a 540 bp AfIIII-SacI fragment from the ORF794 in pWü-H35 (see Example 1 c). To prepare pCELO ⁇ dut, pWü ⁇ dut was linearized with HindIII and dephosphorylated using alkaline shrimp phosphatase. After gel purification, the DNA was mixed with purified CELO DNA and used to transform E.coli BJ5183 (Degryse, 1996) to ampicillin resistance.
  • the DNA was extracted from the ampicilli-resistant bacterial colonies obtained and thus E.coli DH5a was transformed. DNA extracted from these bacteria was analyzed by restriction mapping to identify recombinant virus plasmids. The identity of the clones was determined by means of restriction mapping (FIG. 7; pWü-H35 is labeled "pWü” in the figure). The digestion of the wild type plasmid pWü-H35 with Hindlll and Spei gives fragments of 2944 bp, 1607 bp and 961 bp
  • Either 6 ⁇ g pCEL07 (see Example 1 d) or 6 ⁇ g pCELO ⁇ dut (see above; digested with SpeI) were used to isolate primary embryonic chicken kidney cells (approx. 500,000 cells in a 2.5 cm well) using polyethyleneamine (PEI) / adenovirus Complex to transfect.
  • the Qiagen-purified DNA was used for this Triton X-114 extracted to remove lipopolysaccharide as described by Cotten et al. 1994.
  • Transfection complexes were prepared by diluting 6 ⁇ g of digested DNA in 250 ⁇ l 20 mM HEPES, pH 7.4. 20 ul 10 mM PEI (molecular weight 2,000, pH 7) were diluted in 250 ul 20 mM HEPES, pH 7.4. The PEI solution was added dropwise to the DNA solution
  • adenovirus preparation psoralen / UV-inactivated adenovirus type 5, cf. WO 1719, 1.5 ⁇ 10 12 particles / ml. After a further 20 min, the complex was applied to the cells in DMEM without serum (250 ⁇ l complex on 1.25 ml medium). The medium was changed to normal growth medium (with serum), and
  • the cells were harvested, resuspended in 100 ⁇ l HBS and sonicated for 2 minutes. A 10 ul aliquot of this sonicate (virus in passage 1) was used to infect the same number of primary embryonic chicken kidney cells in a 2.5 cm well of a cell culture plate. After another 4 to
  • the cells were counted for 5 days to determine the cytophatic effect (CPE endpoint assay or plaque assay, Precious and Jossel, 1985).
  • the cells were harvested (virus in passage 2) as in the first step and used to infect fresh chicken cells; harvesting these cells resulted in 3rd passage viruses, the analysis of which is shown in FIG. 8.
  • the virus-infected cells were harvested, resuspended in HBS and sonicated. Aliquots were mixed with 5x loading buffer (250 mM Tris-Cl, pH 6.8, 500 mM DTT, 10% SDS, 0.5% bromophenol blue, 50% glycerin),
  • 5x loading buffer 250 mM Tris-Cl, pH 6.8, 500 mM DTT, 10% SDS, 0.5% bromophenol blue, 50% glycerin
  • Virus infected cells were harvested and in 100 ul HBS / 0. 1% SDS / lg / ml proteinase K was added, incubated at 56 ° C. for 1 hour and extracted with phenol / chloroform. The DNA was precipitated with ethanol.
  • the analyzes performed showed that the recombination between the linearized plasmid pWü ⁇ dut and the CELO DNA gave two types of plasmids. Recombination at the left end of the dUTPase mutation resulted in a wild-type CELO genome; recombination on the right side of the dUTPase mutation resulted in a CELO genome that carried the dUTPase mutation.
  • pCEL07 encodes a viable CELO virus genome.
  • This DNA after excision with Spei and transfection into primary embryonic chicken kidney cells, delivers infectious, passable virus.
  • Lysates from 1st and 2nd passage viruses produce a cytopathic effect on primary embryonic chicken kidney cells. It should be noted that these lysates were produced by sonication, which excludes the possibility that the CPE in the secondary and tertiary infections can be attributed to the expression of viral genes which originate from residual plasmid DNA in the lysates; plasmid DNA is not expected to endure the method used to prepare the lysates. It was also found that with each round of infection there is a 100-fold amplification of the CPE-causing agent, which is in accordance with the amplification of a virus, but not with the simple passage of residual plasmid DNA from the first transfection.
  • CELO virus sequences published or from databases
  • Adenoviridae Aviadenovirus
  • REPLACEMENT BLA ⁇ (RULE 26) 1 gatgatgtat aataacctca aaaactaacg cagtcataac cggccataac cgcacggtgt
  • REPLACEMENT BLA ⁇ (RULE 28) 3121 agattaagag ggagttgggg ctggtggtcg tgttgagcaa cgaaattgac gaccgttttg 3181 gcccagtgag ctgtaagcac tcggatgagg gataaacaaa agagggaacg gggtgtctcg 3241 cagctgcaga tgtactggat agtccagtcg gtacatcgca tctcaataac tcttatccag 3301 ctgcagaatg acctgagctg gaggtcacac tctcgtccg taatgcagtg gggcgagtgc 3361 ttgaaggggt acatctgtctttaaggaga aaga a
  • gaggcgtggg gtgcgatttc gcccagtgat agtatggagt tgattcggct gtcggagatc 3901 gaggcgtggg gtgcgatttc gcccagtgat agtatggagt tgattcggct gtcggagatc 3961 gcgagcggga aacacgcgca taaggcatta aagagactct tggcgttgga aagtcttcct 4021 ccgcagagca cgagggtgtt tagttctcct cggagccatc ggaggatggc gttagctgccc
  • REPLACEMENT BLA ⁇ (RULE 26) 6361 taacgcccc taggctgtag aactcgtcgt aggaggggaa gtgttgctcg cggaagagct 6421 gcggtgctag gtcgacagct ccgtcgtacc agctggtgac gcgctggtag aagtcccgcg 6481 aggcttcgta ctcttctcc tcatactccc aggctttccg cttcctggga gctatcatct 6541 gcgaagagta ggtcgtgaac ttgcccgcat tcctcttcgg ataggaacgc gtagggttcc 6601 catcgtaggg gtgcga
  • REPLACEMENT SHEET (REGELä ⁇ ) 16081 tttaaaagac tccaagggcg tttcctataa cgtgatcacc actggcgtga ctcaaccgca 16141 aaccgcttat cggtcttggc tccttgccta ccacaccctg gactcccccg cgcgcaataa 16201 aacgttattg actgttccgg atatggcagg tggtatcggc gctatgtaca catcgatgcc 16261 ggacacgttt accgcacctg ccggatttaa ggaagacaat acgaccaacc tttgtcctgt 16321 ggtggccatg aacctgttcc cgagtttcaa taggtattt taccag
  • REPLACEMENT SHEET (REG & g ⁇ ) 19321 catcactact tcgcgctgtg gaaccaggcc gtcgaccagt acgaccacga cgtgcgcgtc 19381 ttcaacaacg acggctacga agagggcgtg cctacttacg ccttcctgcc cgacgggcac 19441 ggggcgggcg aagacaacgg tcccgacctc agcaatgtca aaatttacac caacggacag 19501 caagataagg gcaacgtggt ggccggaacg gtttccacac agctcaatttt cggtaccatt 19561 ccctcctacg agatcgacat tgctgc
  • JRSATZBLA ⁇ (RULE2 ⁇ ) 35521 ggggatctag cgccactatg cggccaacct tttttgaccc tctgtccgga ctagaagttg 35581 gcgggacaaa gccgcgcata cagtgccccc tagcgacatc cctatgcaat gaattcgatg 35641 gtccttgaac tccgtaaaaaatgagcagt ggtcctgact gcgtaatagg ccggcccct 35701 cacatcctgc cccacaaaa gggcgtctac cttctacaa atatctctca gctgattggt 35761 ccagtccaac agaatgaccg gggactctgg cgtcata

Abstract

The invention relates to a chicken embryo lethal orphan (CELO) virus obtained by in vitro manipulation of plasmid-cloned CELO virus DNA. Said virus is suitable for production of vectors for gene therapy and as a vaccine against infectious diseases in humans and animals, in particular birds.

Description

CELO-VirusCELO virus
Die Erfindung bezieht sich auf Adenoviren. Die große Familie der Adenoviren wird nach ihrem Wirt in Adenoviren, die Säugetiere infizieren (die Mastadenoviridae) , und Adenoviren, die Vögel infizieren (die Aviadenoviridae) , unterteilt. Das CELO-Virus ("Chicken Embryo Lethal Orphan"; Übersichtsartikel von McFerran, et al . , 1977; McCracken und Adair, 1993) wurde 1957 als infektiöses Agens identifiziert (Yates und Fry, 1957) . Das CELO-Virus wird als Geflügel-Adenovirus Typ 1 (FAV-1) klassifiziert und erregte zunächst aufgrund seiner Eigenschaft, in Baby-Hamstern tumorigen zu sein, Interesse. Da jedoch eine Infektion mit dem CELO-Virus keine ernsten gesundheitlichen und wirtschaftlichen Folgen hat, schwand das Interesse an diesem Virus in den letzten Jahren. Die FAV-1-Adenoviren können aus gesunden Hühnern isoliert werden und verursachen keine Erkrankung, wenn sie experimentell wieder in Hühner eingeführt werden (Cowen, et al . , 1978) . Ihre Isolierung aus erkrankten Vögeln ist wahrscheinlich das Ergebnis einer Adenovirus-Replikation in einem Wirt, der aufgrund anderer Einflußfaktoren ein geschwächtes Immunsystem hat.The invention relates to adenoviruses. The large family of adenoviruses is divided into adenoviruses that infect mammals (the mastadenoviridae) and adenoviruses that infect birds (the aviadenoviridae) according to their host. The CELO virus ("Chicken Embryo Lethal Orphan"; review by McFerran, et al., 1977; McCracken and Adair, 1993) was identified as an infectious agent in 1957 (Yates and Fry, 1957). The CELO virus is classified as poultry adenovirus type 1 (FAV-1) and initially aroused interest due to its property of being tumorigenic in baby hamsters. However, since infection with the CELO virus has no serious health and economic consequences, interest in this virus has waned in recent years. The FAV-1 adenoviruses can be isolated from healthy chickens and do not cause disease when experimentally reintroduced into chickens (Cowen, et al., 1978). Isolation from diseased birds is likely the result of adenovirus replication in a host that has a weakened immune system due to other factors.
Die allgemeine strukturelle Organisation von CELO-Virus ist mit einem icosahedralen Kapsid von 70-80 nm, aufgebaut aus Hexon- und Pentonstrukturen, ähnlich wie bei den Säugetier-Adenoviren (Laver, et al . , 1971) . Das CELO-Virus-Genom ist ein lineares, doppelsträngiges DNA- Molekül, wobei die DNA innerhalb des Virions von viruskodierte Kernproteinen kondensiert wird (Laver, et al., 1971; Li, et al . , 1984b) . Das CELO-Virus-Genom hat kovalent gebundene terminale Proteine (Li, et al . , 1983) , und das Genom hat invertierte terminale Wiederholungen ("Inverted Terminal Repeats", ITRs) , wenn auch kürzer als die Säugetier-ITRs (Aleström, et al . , 1982b; Sheppard und Trist, 1992) . Das CELO-Virus kodiert eine Protease mit 61-69 % Homologie zu den Säugetier- Adenovirus-Proteasen (Cai und Weber, 1993) .The general structural organization of CELO virus is with an icosahedral capsid of 70-80 nm, made up of hexon and penton structures, similar to that of mammalian adenoviruses (Laver, et al., 1971). The CELO virus genome is a linear, double-stranded DNA molecule, the DNA being condensed within the virion by virus-encoded core proteins (Laver, et al., 1971; Li, et al., 1984b). The CELO virus genome has covalently bound terminal proteins (Li, et al., 1983), and the genome has inverted terminal repeats (ITRs) when also shorter than the mammalian ITRs (Aleström, et al., 1982b; Sheppard and Trist, 1992). The CELO virus encodes a protease with 61-69% homology to the mammalian adenovirus proteases (Cai and Weber, 1993).
Es gibt deutliche Unterschiede zwischen CELO-Virus und den Mastadenoviren. CELO-Virus hat ein größeres Genom, mit einer nur in zwei kurzen Regionen des CELO-Virus- Genoms (durch Hybridisierung) festzustellenden Sequenzhomologie zu Ad5 (Aleström, et al . , 1982a) . Vom CELO-Virion wurde berichtet, daß es an jedem Vertex zwei Fasern unterschiedlicher Länge hat. Das CELO-Virus kann die E1A-Funktionen von Ad5 nicht komplementieren, und die Replikation von CELO-Virus wird durch die Aktivität von Ad5El nicht erleichtert (Li, et al . , 1984c) .There are clear differences between the CELO virus and the mastadenovirus. CELO virus has a larger genome, with a sequence homology to Ad5 (Aleström, et al., 1982a) that can only be determined in two short regions of the CELO virus genome (by hybridization). The CELO virion has been reported to have two fibers of different lengths at each vertex. The CELO virus cannot complement the E1A functions of Ad5, and the replication of CELO virus is not facilitated by the activity of Ad5El (Li, et al., 1984c).
Im Rahmen der vorliegenden Erfindung wurde eine vollständige Sequenzanalyse des CELO-Virus vorgenommen; einerseits weil es für das Verständnis der Biologie von Adenoviren nützlich ist, die genomische Organisation eines Adenovirus aufzuklären, der von den im allgemeinen studierten Säugetier-Adenoviren weit entfernt ist. Da wahrscheinlich die Übertragungs- undIn the context of the present invention, a complete sequence analysis of the CELO virus was carried out; on the one hand because it is useful for understanding the biology of adenoviruses to elucidate the genomic organization of an adenovirus that is far from the generally studied mammalian adenoviruses. Since probably the transmission and
Überlebensbedingungen für ein Virus, das eine Vogelart infiziert, anders sind als für Säugetierviren, ist es möglich, daß die Vogel-Adenoviren neue Virusfunktionen erworben haben oder ein größeres Maß an Variabilität zeigen als die Mastadenoviridae. Die vollständige CELO- Virus-Sequenz ermöglicht außerdem Änderungen im CELO- Virus-Genom im Hinblick auf F" iktionsanalysen.Survival conditions for a virus that infects an avian species are different than for mammalian viruses, it is possible that the avian adenoviruses have acquired new viral functions or show a greater degree of variability than the mastadenoviridae. The complete CELO virus sequence also enables changes in the CELO virus genome with a view to fiction analysis.
Da sich Adenovirus-Vektoren als sehr leistungsfähige Vektoren für den Gentransfer erwiesen haben {Übersichtsartikel von Graham, 1990; Kozarsky und Wilson, 1993; Trapnell und Gorziglia, 1994) , ist die vollständige CELO-Virus-Sequenz andererseits insbesondere als Grundlage für die Herstellung neuer rekombinanter Vektoren für den Gentransfer von Interesse.Since adenovirus vectors have proven to be very powerful vectors for gene transfer {review article by Graham, 1990; Kozarsky and Wilson, 1993; Trapnell and Gorziglia, 1994), on the other hand, is the complete CELO virus sequence of particular interest as a basis for the production of new recombinant vectors for gene transfer.
Die Sequenz-Analyse hat gezeigt, daß das CELO-Virus- Genom 43.8 kb aufweist, womit es um mehr als 8 kb länger ist als die humanen Subtypen Ad2 und Ad5. Die Gene für die Hauptstrukturproteine (Hexon, Pentonbasis, lila, Faser, pVI, pVII, pVIII) sind einerseits sowohl vorhanden, andererseits befinden sie sich auch an den entsprechenden Stellen im Genom. Die Gene der Early Region 2 (E2; DNA-Bindungsprotein, DNA-Polymerase und terminales Protein) sind ebenfalls vorhanden. Dem CELO- Virus fehlen jedoch Sequenzen, die den Regionen El, E3 und E4 der Säugetier-Adenoviren homolog sind. Es gibt ungefähr 5 kb am linken Ende und 15 kb am rechten Ende des CELO-Virus-Genoms, wo eine nur beschränkte oder gar keine Homologie mit den Mastadenovirus-Genomen vorhanden ist. Diese neuen Sequenzen enthalten eine Anzahl von offenen Leserahmen, und es ist anzunehmen, daß diese für Funktionen kodieren, die die fehlenden El-, E3- und möglicherweise E4-Regionen ersetzen.Sequence analysis has shown that the CELO virus genome has 43.8 kb, which is more than 8 kb longer than the human subtypes Ad2 and Ad5. The genes for the main structural proteins (hexon, penton base, purple, fiber, pVI, pVII, pVIII) are both present on the one hand, and on the other hand they are also located at the corresponding locations in the genome. The Early Region 2 genes (E2; DNA binding protein, DNA polymerase and terminal protein) are also present. However, the CELO virus lacks sequences which are homologous to the regions E1, E3 and E4 of the mammalian adenoviruses. There is approximately 5 kb at the left end and 15 kb at the right end of the CELO virus genome, where there is little or no homology with the mastadenovirus genomes. These new sequences contain a number of open reading frames and are believed to code for functions that replace the missing E1, E3 and possibly E4 regions.
Teile der CELO-Virus-Sequenz wurden bereits publiziert; sie sind in Tabelle 1 aufgelistet, ebenso die Unterschiede zwischen der aus der Datenbank bekannten und der im Rahmen der vorliegenden Erfindung ermittelten Sequenz. Aus Studien, die sich auf bestimmte virale Gene konzentrierten, wurde ein Homologes des VA-RNA-Gens von Mastadenovirus bekannt (Larsson, et al . , 1986) , und ein Teil der Genomsequenz, die die Endoprotease trägt, wurde beschrieben (Cai und Weber, 1993) . Außerdem wurden Fragmente des CELO-Virus-Genoms publiziert (Akopian, et al., 1990; Akopian, et al . , 1992; Hess, et al . , 1995) . Die Sequenz der Pentonbasis von dem verwandten Virus FAV-10 wurde ebenfalls berichtet (Sheppard und Trist, 1992) . Einige weitere Sequenzfragmente wurden in der Datenbank hinterlegt und sind ebenfalls in Tabelle 1 angegeben. Insgesamt waren ca. 50 % des CELO-Virus-Parts of the CELO virus sequence have already been published; they are listed in Table 1, as are the differences between the sequence known from the database and the sequence determined in the context of the present invention. Studies focusing on certain viral genes have made a homologue of the VA-RNA gene of mastadenovirus known (Larsson, et al., 1986) and part of the genome sequence carrying the endoprotease has been described (Cai and Weber , 1993). Fragments of the CELO virus genome have also been published (Akopian, et al., 1990; Akopian, et al., 1992; Hess, et al., 1995). The sequence of the penton base from the related virus FAV-10 has also been reported (Sheppard and Trist, 1992). Some other sequence fragments were stored in the database and are also shown in Table 1. In total, about 50% of the CELO virus
Genoms in Form von Fragmenten verfügbar (insgesamt ca. 24 kb) . Die im Rahmen der vorliegenden Erfindung erhaltene Sequenz ist vollständig und hat den Vorteil, daß sie von einem einzigen Isolat erhalten wurde.Genome available in the form of fragments (approx. 24 kb in total). The sequence obtained in the context of the present invention is complete and has the advantage that it was obtained from a single isolate.
Die vollständige Sequenz des CELO-Virus ist im Sequenzprotokoll dargestellt (im Sequenzprotokoll bedeutet "komplementär", daß die jeweiligen offenen Leserahmen in umgekehrter Anordnung vorliegen) . Sie zeigt eine große Anzahl von auffallenden Unterschieden zwischen Ad2 und dem CELO-Virus. Die Organisation der erkennbaren offenen Leserahmen (ORFs) des CELO-Virus- Genoms auf der Grundlage der Sequenzanalyse, im Vergleich mit Ad2, ist in Fig. 1A dargestellt: Die Figur zeigt eine Übersicht der genomischen Organisation von Ad2/5 und CELO-Virus. Die Pfeile geben die Lage der kodierenden Regionen an, jedoch nicht die genauen Spaltmuster der Genprodukte. Das Muster des CELO-Virus gibt auch (in den ersten 6.000 bp und in den letzten 13.000 bp) alle nicht zugeordneten offenen Leserahmen an, die mit einem Methionin beginnen und die für mehr als 99 Aminosäurereste kodieren. Die zentrale Region der beiden Genome, die aufgrund der Dot Matrix-Analyse Homologie zeigen (vgl. Fig. 3) sowie die Regionen an den Enden des CELO-Virus-Genoms, die keine Homologie zu anderen Adenoviren aufweisen ("Unique to CELO") sind angegeben. Die Abkürzungen in der Figur, die auch denen in den Tabellen entsprechen, bedeuten: PB, Pentonbasis; EP, Endoproteinase; DBP, DNA-Bindungsprotein; bTP, pre-terminal Protein; pol, DNA-Polymerase.The complete sequence of the CELO virus is shown in the sequence listing (in the sequence listing "complementary" means that the respective open reading frames are in reverse order). It shows a large number of striking differences between Ad2 and the CELO virus. The organization of the recognizable open reading frames (ORFs) of the CELO virus genome on the basis of the sequence analysis, in comparison with Ad2, is shown in FIG. 1A: The figure shows an overview of the genomic organization of Ad2 / 5 and CELO virus. The arrows indicate the location of the coding regions, but not the exact cleavage pattern of the gene products. The CELO virus pattern also indicates (in the first 6,000 bp and in the last 13,000 bp) all unassigned open reading frames that start with a methionine and that code for more than 99 amino acid residues. The central region of the two genomes, which show homology based on the dot matrix analysis (cf. FIG. 3), and the regions at the ends of the CELO virus genome which have no homology with other adenoviruses ("Unique to CELO") are given. The abbreviations in the figure, which also correspond to those in the tables, mean: PB, penton base; EP, endoproteinase; DBP, DNA binding protein; bTP, pre-terminal protein; pol, DNA polymerase.
Das sequenzierte CELO-Virus-Genom weist eine Länge von 43.804 bp auf und hat einen Gehalt an G+C von 54.3 %. Es wurde bereits früher vermutet, daß das CELO-Virus-Genom viel größer ist als die Mastadenovirus-Genome mit 34- 36 kb; es wurde gefunden, daß die CELO-Virus-DNA einThe sequenced CELO virus genome is 43,804 bp in length and has a G + C content of 54.3%. It previously it was suspected that the CELO virus genome is much larger than the 34-36 kb mastadenovirus genome; it was found that the CELO virus DNA
Gewicht von 30 x 106 Dalton, bestimmt nach seinem Sedimentationskoeffizienten, aufweist (Laver, et al . , 1971) , im Vergleich zu 24 x 106 Dalton für Ad2 (Green, et al . , 1967) . Die Größe des CELO-Virus-Genoms, bestimmt durch Addition der Restriktionsfragmente, beträgt ca. 43 kb (Cai und Weber, 1993; Denisova, et al . , 1979) . Eine Pulsed Field Gel Analyse des aus gereinigten Virionen isolierten CELO-Virus-Genoms ist in Fig. 2A gezeigt und wird mit der aus Ad5 dll014 isolierten DNA (34.600 bp; Bridge und Ketner, 1989) oder Wildtyp Ad5- Virionen (35.935 bp; vt300; Chroboczek, et al . , 1992; Jones und Shenk, 1978) verglichen; als Größenmarker wurde eine Mischung von nicht-gespaltener Bakteriophagen λ-DNA und λ-DNA, gespalten mit fünf verschiedenen Restriktionsenzymen (Biorad) , verwendet (Spuren 1 und 7 zeigen die Molekulagewichtsmarker, Spur 2 die DNA vonHas a weight of 30 x 10 6 daltons, determined according to its sedimentation coefficient (Laver, et al., 1971), compared to 24 x 10 6 daltons for Ad2 (Green, et al., 1967). The size of the CELO virus genome, determined by adding the restriction fragments, is approximately 43 kb (Cai and Weber, 1993; Denisova, et al., 1979). A pulsed field gel analysis of the CELO virus genome isolated from purified virions is shown in FIG. 2A and is carried out with the DNA isolated from Ad5 dll014 (34,600 bp; Bridge and Ketner, 1989) or wild-type Ad5 virions (35,935 bp; vt300) ; Chroboczek, et al., 1992; Jones and Shenk, 1978); a mixture of uncleaved bacteriophage λ-DNA and λ-DNA, digested with five different restriction enzymes (Biorad), was used as the size marker (lanes 1 and 7 show the molecular weight markers, lane 2 the DNA of
Ad5 dll014, Spur 3 die DNA von Ad5 wt300, Spur 4 die CELO-Virus-DNA, Spur 5 die DNA von OTE, Spur 6 die DNA von Indiana C) . Fig. 2A zeigt, daß das CELO-Virus Genom eine Länge von 44 kb aufweist . Aus dieser Analyse ist ersichtlich, daß das CELO-Virus-Genom tatsächlich wesentlich größer ist als das Genom des Säugetiervirus. Berechnungen auf der Grundlage der Wanderung von Fragmenten des Lambda-Bakteriophagen ergeben für das CELO-Virus-Genom eine Größe von 43 kb. Die aus zwei weiteren FAV-1-Isolaten, Indiana C und OTE, extrahierte DNA co-migriert mit der CELO-Virus-Spezies, was ein weiterer Beweis für die Größe des CELO-Virus-Genoms ist. Fig. 2B zeigt, daß die auf dem bakteriellen Plasmid pBR327 enthaltene CELO-Virus-Sequenz dieselbe Größe aufweist. Es existiert keine identifizierbare El-Region. Es konnte keine signifikante Homologie zwischen dem CELO-Virus-Ad5 dll014, lane 3 the DNA from Ad5 wt300, lane 4 the CELO virus DNA, lane 5 the DNA from OTE, lane 6 the DNA from Indiana C). Figure 2A shows that the CELO virus genome is 44 kb in length. From this analysis it can be seen that the CELO virus genome is actually significantly larger than the genome of the mammalian virus. Calculations based on the migration of fragments of the lambda bacteriophage result in a size of 43 kb for the CELO virus genome. The DNA extracted from two other FAV-1 isolates, Indiana C and OTE, co-migrates with the CELO virus species, which is further evidence of the size of the CELO virus genome. Fig. 2B shows that the CELO virus sequence contained on the bacterial plasmid pBR327 has the same size. There is no identifiable El region. There was no significant homology between the CELO virus
Genom und den ersten 4.000 bp von Ad2 festgestellt werden. Es gibt einige kleine offene Leserahmen in den ersten 5.000 bp von CELO-Virus, die möglicherweise einige der El-Aufgaben erfüllen. Ein offener Leserahmen am rechten Ende des Virus-Genoms (GAM-1) kann E1B 19K in funktionellen Assays ersetzen, ohne daß eine signifikante Homologie zwischen GAM-1 und E1B 19K besteht. Um zu bestätigen, daß das linke Ende vom Wildtyp CELO-Virus-Genom stammt und nicht die Sequenz einer klonierten Variante darstellt, wurden verschiedene Tests durchgeführt: Vergleich der direkten Sequenzanalyse von CELO-Virionen an drei verschiedenen Stellen mit den entsprechenden Stellen der klonierten Sequenzen; Southern Analysen mit DNA aus verschiedenen Virusisolaten, die dieselben Restriktionsfragmente ergaben; Pulsed Field Gelelektrophorese verschiedener Virus-Genome, die keine Heterogenizität zeigte.Genome and the first 4,000 bp of Ad2. There are some small open reading frames in the first 5,000 bp of CELO virus that may accomplish some of the El tasks. An open reading frame at the right end of the virus genome (GAM-1) can replace E1B 19K in functional assays without significant homology between GAM-1 and E1B 19K. To confirm that the left end is from the wild-type CELO virus genome and does not represent the sequence of a cloned variant, various tests were carried out: comparison of the direct sequence analysis of CELO virions at three different sites with the corresponding sites of the cloned sequences; Southern analyzes with DNA from different virus isolates, which gave the same restriction fragments; Pulsed field gel electrophoresis of various virus genomes that showed no heterogeneity.
Es gibt keine identifizierbare E3-Region; die beiden kleinen offenen Leserahmen in der entsprechenden Region von CELO-Virus haben keine signifikante Homologie mit beschriebenen E3-Funktionen.There is no identifiable E3 region; the two small open reading frames in the corresponding region of CELO virus have no significant homology with the E3 functions described.
Es gibt eine Gruppe von kleinen offenen Leserahmen zwischen 36.000 und 31.000, deren Lage auf die Säugetiervirus-E4-Region hinweist, jedoch mit zusätzlichen 8 kb Sequenz am rechten Ende des CELO- Virus.There is a group of small open reading frames between 36,000 and 31,000, the location of which indicates the mammalian virus E4 region, but with an additional 8 kb sequence at the right end of the CELO virus.
Es wurde auch keine Protein IX ähnliche Sequenz identifiziert (das Protein IX ist für die Hexon-Hexon- Wechselwirkungen und die Stabilität der Säugetieradenovirus-Virionen wesentlich) . Auch ein Protein V-Gen wurde nicht identifiziert.No sequence similar to Protein IX was identified either (Protein IX is essential for the hexon-hexon interactions and the stability of the mammalian adenovirus virions). A protein V gene was also not identified.
Folgende Regionen sind zwischen CELO-Virus und Ad2 konserviert: Der zentrale Anteil des CELO-Virus-Genoms, vom IVa2-Gen (ca. ab Nukleotid (nt) 5.000) auf dem linken Strang bis zu den Fasergenen am rechten Strang (ca. bis nt 33.000) ist wie bei den Mastadenoviren organisiert, und die meisten der wichtigen viralen Gene können sowohl nach Position als auch durch Sequenzhomologie identifiziert werden. Frühere Studien zur Homologie zwischen CELO und Ad2 (Aleström, et al . , 1982a) zeigten zwei Regionen des CELO-Virus, die mit der Ad2-Sequenz kreuzhybridisieren. Diese beiden Fragmente sind nt 5.626 bis 8.877 (kodierend für IVa2 und den Carboxy-Terminus der DNA-Polymerase) und nt 17.881 bis 21.607 (kodierend für das Hexon) . Die in Fig. 3 dargestellte Dot Matrix-Analyse (durchgeführt unter Verwendung des UWGCG-Programms Compare mit einem Fenster von 30 und einer Stringenz von 20; zusammengefaßt in Fig. 1A) zeigt, daß die gesamte DNA-Sequenzhomologie zwischen CELO-Virus und Ad5 in der mittleren Region des CELO-Virus-Genoms kartiert. Das kann deshalb erwartet werden, weil in dieser zentralen Region die Kapsidproteine kodiert sind und die Grobstruktur des CELO-Virions mit dem Kapsid des Säugetieradenovirus vergleichbar ist (Laver, et al . , 1971; Li, et al . , 1984a) . Die Gene, die für Proteine kodieren, die den humanen Adenovirusproteinen Hexon, lila, Pentonbasis, Protein VI und Protein VIII entsprechen, sind vorhanden und zwar in der erwarteten Reihenfolge und Lage (Fig. 1A und Tabelle 2A; Tabelle 2B zeigt nicht zugeordnete offene Leserahmen, die für Genprodukte mit mehr als 99 Aminosäureresten kodieren) . Jeder Vertex des Mastadenovirus-Virions enthält ein Pentamer des Pentonbasisproteins in Verbindung mit einer einzigen Faser, bestehend aus drei Kopien des Faserpolypeptids. Ad2 hat, wie die meisten Mastadenoviren, ein einziges Fasergen, manche Adenovirustypen haben zwei Fasergene. Das CELO-Virus-Genom kodiert für zwei Faserpolypeptide verschiedener Länge und Sequenz.The following regions are conserved between the CELO virus and Ad2: The central part of the CELO virus genome, from the IVa2 gene (approx. From nucleotide (nt) 5,000) on the left strand to the fiber genes on the right strand (approx nt 33,000) is organized like mastadenoviruses, and most of the important viral genes can be identified both by position and by sequence homology. Previous studies of homology between CELO and Ad2 (Aleström, et al., 1982a) showed two regions of the CELO virus that cross-hybridize with the Ad2 sequence. These two fragments are nt 5,626 to 8,877 (coding for IVa2 and the carboxy terminus of DNA polymerase) and nt 17,881 to 21,607 (coding for the hexon). The dot matrix analysis shown in FIG. 3 (carried out using the UWGCG program Compare with a window of 30 and a stringency of 20; summarized in FIG. 1A) shows that the entire DNA sequence homology between CELO virus and Ad5 mapped in the central region of the CELO virus genome. This can be expected because the capsid proteins are encoded in this central region and the coarse structure of the CELO virion is comparable to the capsid of the mammalian adenovirus (Laver, et al., 1971; Li, et al., 1984a). The genes coding for proteins corresponding to the human adenovirus proteins hexon, purple, penton base, protein VI and protein VIII are present in the expected order and location (Fig. 1A and Table 2A; Table 2B shows unassigned open reading frames which code for gene products with more than 99 amino acid residues). Each vertex of the mastadenovirus virion contains a pentamer of the penton base protein in association with a single fiber consisting of three copies of the fiber polypeptide. Ad2, like most mastadenoviruses, has a single fiber gene, some types of adenovirus have two fiber genes. The CELO virus genome codes for two fiber polypeptides of different lengths and sequences.
In der Region E2 wurden DNA-Bindungsproteine identifiziert (Li, et al . , 1984c) ; es wurden vier Proteine mit ähnlichen Peptidkarten beschrieben, was auf einen einzigen Vorläufer schließen läßt, der dann gespalten oder abgebaut wird. Der linke offene Leserahmen des CELO-Virus-Genoms, beginnend bei nt 23.224, liegt in der erwarteten DNA-Bindungsprotein- Region. Die Gene, kodierend für DNA-Polymerase und pTP (pre-terminal Protein) sind vorhanden und in den erwarteten Positionen (Fig. 1A, Tabelle 2A) .DNA binding proteins were identified in region E2 (Li, et al., 1984c); Four proteins with similar peptide maps have been described, suggesting a single precursor that is then cleaved or degraded. The left open reading frame of the CELO virus genome, starting at nt 23,224, is in the expected DNA binding protein region. The genes coding for DNA polymerase and pTP (pre-terminal protein) are present and in the expected positions (Fig. 1A, Table 2A).
Im Hinblick auf die Herstellung von Vektoren auf der Grundlage des CELO-Virus ist es von Interesse, die Mechanismen zu identifizieren, die das CELO-Virus verwendet, um nahezu 44 kb DNA in ein Virion zu verpacken, das eine ähnliche Größe aufweist wie die humanen Adenoviren, die hinsichtlich ihrer Verpackungskapazität starken Beschränkungen unterworfen sind (Bett, et al . , 1983; Caravokyri und Leppard, 1995; Ghosh-Choudhury, 1987) . Eine Möglichkeit besteht darin, daß das CELO-Virion, obwohl größenmäßig beinahe identisch mit Ad2 und Ad5, genügend erweiterte Struktur hat, um das größere Genom unterzubringen. Eine alternative Hypothese ist, daß CELO über einen anderen Mechanismus der DNA-Kondensierung verfügt und daher Unterschiede in der Ausstattung mit Kernproteinen aufweist, die für die DNA-Verpackung zuständig sind. Laver, et al . , 1971 identifizierten zwei Proteine im Kern von CELO-Virus und bemerkten das Fehlen eines Protein V-ähnlichen Moleküls. Li, et al . , 1984b, verwendeten eine Elektrophorese mit höherer Auflösung und berichteten eine Kernstruktur mit drei Polypeptiden (20 kD, 12 kD und 9.5 kD) . Aus beiden Befunden läßt sich schließen, daß dem CELO-Virus das größere basische Kernprotein V (41 kD) , das in Säugetieradenoviren vorkommt, fehlen dürfte. Vielleicht ist das Fehlen von Protein V und/oder die Gegenwart von kleineren, basischen Proteinen für die zusätzliche Verpackungskapazität des CELO-Virions verantwortlich. Das kleinste der von Li, et al. , 1984b, identifizierten CELO-Virus-Kernproteine (9.5 kD) assoziiert am engsten mit der Virus-DNA, ähnlich wie das Protein VII des humanen Adenovirus. Ein offener Leserahmen, der ein Protein mit 8.597 D mit 72 Aminosäuren erwarten läßt, liegt bei nt 16.679; das kodierte Protein ist reich an Arginin (32.9 Mol%) und enthält zwei Spaltstellen für Protease (pVII von Ad2 hat nur eine Spaltstelle) . Ein offener Leserahmen, der ein Protein mit 19.777 D mit 188 Aminosäureresten erwarten läßt, liegt bei nt 16.929. Das Protein hat Protease-Spaltstellen nach den Resten 22, 128 und 145, und die carboxy-terminalen Reste haben Homologie mit pX von Mastadenovirus. Fig. 4 zeigt die Aminosäuresequenzen von Protein VII und pX von verschiedenen Mastadenoviren im Vergleich zum CELO-Virus sowie die Kernproteine Core 2 und Core 1 von FAV-10. Die Sequenzen wurden unter Verwendung des UWGCG Bestfit Programms mit einer Lückengewichtung ("Gap Weight") von 3.0 und einer Gewicht und der Lückenlänge ("Gap Length Weight") von 0.1 angeordnet. Die Proteasespaltstellen von Adenovirus sind unterstrichen. In diesem Zusammenhang ist es von Interesse, daß das aus 19 Resten bestehende Mastadenovirus-DNA-Bindungsprotein der Bezeichnung "rau" durch zwei Proteasespaltungen des pX- Vorläufers gebildet wird (Hosokava und Sung, 1976; Weber und Anderson, 1988; Anderson, et al . , 1989; ) . Eine Spaltung des 188 Reste aufweisenden Proteins nach den Resten 128 und 145 würde ein aus 17 Resten bestehendes mu-ähnliches basisches Protein (41 % Arginin, 12 % Lysin) ergeben. Die nicht gespaltene Form des Proteins ist ebenfalls stark basisch; die nichtgespaltenen Kopien dieses Proteins könnten den von Li, et al., 1984b, beobachteten 20 kD Kernprotein entsprechen; ein drittes von diesen Autoren identifiziertes 12 kD Kernprotein konnte noch nicht zugeordnet werden.With regard to the production of vectors based on the CELO virus, it is of interest to identify the mechanisms that the CELO virus uses to package nearly 44 kb of DNA into a virion that is similar in size to human Adenoviruses that are severely restricted in their packaging capacity (Bett, et al., 1983; Caravokyri and Leppard, 1995; Ghosh-Choudhury, 1987). One possibility is that the CELO virion, although almost identical in size to Ad2 and Ad5, has enough expanded structure to accommodate the larger genome. An alternative hypothesis is that CELO has a different mechanism of DNA condensation and therefore has differences in the level of core proteins that are responsible for DNA packaging. Laver, et al. , 1971 identified two proteins in the core of CELO virus and noted the lack of a protein V-like molecule. Li, et al. , 1984b, used higher resolution electrophoresis and reported a core structure with three polypeptides (20 kD, 12 kD and 9.5 kD). It can be concluded from both findings that the CELO virus may lack the larger basic nuclear protein V (41 kD), which is found in mammalian adenoviruses. Perhaps the lack of Protein V and / or the presence of smaller, basic proteins is responsible for the additional packaging capacity of the CELO virion. The smallest of those described by Li, et al. , 1984b, identified CELO virus core proteins (9.5 kD) most closely associated with virus DNA, similar to protein VII of human adenovirus. An open reading frame, which suggests a protein with 8,597 D with 72 amino acids, is nt 16,679; the encoded protein is rich in arginine (32.9 mol%) and contains two cleavage sites for protease (pVII of Ad2 has only one cleavage site). An open reading frame, which suggests a protein with 19,777 D with 188 amino acid residues, is nt 16,929. The protein has protease cleavage sites after residues 22, 128 and 145, and the carboxy-terminal residues have homology with pX from mastadenovirus. 4 shows the amino acid sequences of protein VII and pX of various mastadenoviruses in comparison to the CELO virus and the core proteins core 2 and core 1 of FAV-10. The sequences were arranged using the UWGCG Bestfit program with a gap weight of 3.0 and a weight and a gap length of 0.1. The protease cleavage sites of adenovirus are underlined. In this context, it is of interest that the 19 residue mastadenovirus DNA binding protein called "rough" is formed by two protease cleavages of the pX precursor (Hosokava and Sung, 1976; Weber and Anderson, 1988; Anderson, et al ., 1989;). Cleavage of the 188 residue protein after residues 128 and 145 would be 17 residues mu-like basic protein (41% arginine, 12% lysine). The uncleaved form of the protein is also strongly basic; the uncleaved copies of this protein might correspond to the 20 kD core protein observed by Li, et al., 1984b; a third 12 kD core protein identified by these authors could not yet be assigned.
Im CELO-Virus-Genom wurden ferner einige neue oder nicht zugeordnete offene Leserahmen gefunden. Eine Zusammenstellung dieser offenen Leserahmen ist in Tabelle 2A gezeigt; diese offenen Leserahmen sind auch in Fig. 1A angegeben. Diese Zusammenstellung wurde auf die Sequenzen von nt 0 - 6.000 sowie 31.000 - 43.804 beschränkt und nur ORFs, die einen Methioninrest enthalten sowie für ein Protein von >99 Aminosäureresten kodieren, sind angegeben. Wie bereits erwähnt, gibt es einen ORF bei nt 1999, der für ein Protein mit Homologien zu Parvovirus-REP kodiert, und einen ORF bei nt 794 mit Homologie zu dUTPase und Ad2 E4 ORF1. Der vorliegenden Erfindung lag die Aufgabe zugrunde, ein neues CELO-Virus bereitzustellen.Some new or unassigned open reading frames were also found in the CELO virus genome. A summary of these open reading frames is shown in Table 2A; these open reading frames are also shown in Fig. 1A. This compilation was limited to the sequences from nt 0 - 6,000 and 31,000 - 43,804 and only ORFs which contain a methionine residue and which code for a protein of> 99 amino acid residues are given. As already mentioned, there is an ORF at nt 1999 which codes for a protein with homologies to Parvovirus REP, and an ORF at nt 794 with homology to dUTPase and Ad2 E4 ORF1. The object of the present invention was to provide a new CELO virus.
Auf der Grundlage der vollständigen CELO-Virus-Genom-Sequenz betrifft die vorliegende Erfindung somit ein CELO-Virus, das durch in vitro Manipulation einer Plasmid-klonierten CELO- Virus-DNA erhalten wurde.Based on the complete CELO virus genome sequence, the present invention thus relates to a CELO virus which was obtained by in vitro manipulation of a plasmid-cloned CELO virus DNA.
Das erfindungsgemäße, von der genomischen DNA abgeleitete CELO-Virus enthält in einer bevorzugten Ausführungsform den linken und rechten terminalen Repeat sowie das Verpackungssignal und weist in davon verschiedenen Regionen der CELO-Virus-DNA Modifikationen in Form von Insertionen und/oder Deletionen und/oder Mutationen auf. Der linke bzw. rechte terminale Repeat ("Inverted Terminal Repeat", ITR) erstreckt sich von den Nukleotiden 1 - 68 bzw. von den Nukleotiden 43734 -In a preferred embodiment, the CELO virus according to the invention derived from the genomic DNA contains the left and right terminal repeat and the packaging signal and has modifications in the regions of the CELO virus DNA in the form of insertions and / or deletions and / or mutations on. The left or right terminal repeat ("Inverted Terminal Repeat", ITR) extends from nucleotides 1 - 68 and from nucleotides 43734 -
43804, das Verpackungssignal (auch "Psi" bezeichnet) erstreckt sich von den Nukleotiden 70 - 200. Durch Modifikationen in anderen als diesen DNA-Abschnitten wird bewirkt, daß die durch die Modifikation betroffenen Gene nicht-funktioneil bzw. deletiert werden.43804, the packaging signal (also referred to as "Psi") extends from nucleotides 70-200. Modifications in DNA sections other than these have the effect that the genes affected by the modification are non-functional or deleted.
Bevorzugt werden Modifikationen des CELO-Virus-Genoms vorgenommen, die auf einem Abschnitt der CELO-Virus-DNA liegen, der die Nukleotide von ca. 201 - ca. 5.000 umfaßt (im Anschluß an den linken terminalen Repeat der Abschnitt am linken Ende, im folgenden als "Abschnitt A" bezeichnet) und/oder auf einem Abschnitt, der die Nukleotide von ca. 31.800 - ca. 43.734 umfaßt (der vor dem rechten terminalen Repeat gelegene Abschnitt am rechten Ende, im folgenden "Abschnitt B" bezeichnet) und/oder auf einem Abschnitt, der die Nukleotide von ca. 28.114 - 30.495 umfaßt (die Region des Faser 1 Gens, im folgenden "Abschnitt C" bezeichnet) .Modifications of the CELO virus genome are preferably carried out, which lie on a section of the CELO virus DNA which comprises the nucleotides from approx. 201 to approx. 5,000 (following the left terminal repeat, the section on the left end, in the hereinafter referred to as "Section A") and / or on a section which comprises the nucleotides of approximately 31,800 - approximately 43,734 (the section located in front of the right terminal repeat at the right end, hereinafter referred to as "Section B") and / or on a section comprising the nucleotides of approximately 28,114-30,495 (the region of the fiber 1 gene, hereinafter referred to as "section C").
Ein CELO-Virus, dem bestimmte Gene nicht-funktionell bzw. deletiert sind, z.B. Gene, die die Immunantwort des Wirts beeinflussen, wie Gegenspieler von Genen der E3- Region von Säugetier-Adenoviren, kann als Vakzin verwendet werden.A CELO virus that has certain genes non-functional or deleted, e.g. Genes that affect the host's immune response, such as antagonists of genes from the E3 region of mammalian adenoviruses, can be used as the vaccine.
In einer Ausführungsform der Erfindung enthält das CELO- Virus eine oder mehrere Fremd-DNA-Moleküle, insbesondere eine in einem Wirtsorganismus zu exprimierende Fremd- DNA. In dieser Ausführungsform fungiert das CELO-Virus als Vektor, der die Fremd-DNA in höhere eukaryotische Zellen, Gewebe oder Organismen, insbesondere Säugetiere und Vögel, transportieren und zur Expression bringen kann. Geeignete Insertionsstellen für die Fremd-DNA sind die Abschnitte A und/oder B und/oder C.In one embodiment of the invention, the CELO virus contains one or more foreign DNA molecules, in particular a foreign DNA to be expressed in a host organism. In this embodiment, the CELO virus acts as a vector which can transport and express the foreign DNA into higher eukaryotic cells, tissues or organisms, in particular mammals and birds. Suitable insertion sites for the foreign DNA are sections A and / or B and / or C.
Die Fremd-DNA ersetzt vorzugsweise eine oder mehrere Sequenzen aus diesen Abschnitten.The foreign DNA preferably replaces one or more sequences from these sections.
Das erfindungsgemäße CELO-Virus ist auf einem Plasmid, das in Bakterien oder Hefe replizierbar ist und nach Einbringen in geeignete Zellen Viruspartikel liefert, enthalten. Beispiele für geeignete Zellen sind Vogelembryonieren- oder -leberzellen.The CELO virus according to the invention is contained on a plasmid which is replicable in bacteria or yeast and which, after being introduced into suitable cells, delivers virus particles. Examples of suitable cells are bird embryonic kidney or liver cells.
Im Hinblick auf die Anwendung eines rekombinanten CELO- Virus-Vektors für die Gentherapie kann die Fremd-DNA aus einem oder mehreren therapeutisch wirksamen Genen bestehen. Beispiele sind Gene, kodierend für Immunmodulatoren bzw. Modulatoren vonWith regard to the use of a recombinant CELO virus vector for gene therapy, the foreign DNA can consist of one or more therapeutically active genes. Examples are genes coding for immunomodulators or modulators of
Entzündungsprozessen (Zytokine wie IL-2, GM-CSF, IL-1, IL-6, IL-12; Interferone, Tumorantigene, IκB und Derivate von IκB, denen Serinphosphorylierungsstellen fehlen (Traenckner, et al . , 1995) oder denen Lysinubiquitinierungsstellen fehlen; Glucocorticoid- Rezeptoren; Enzyme wie Katalase,Inflammatory processes (cytokines such as IL-2, GM-CSF, IL-1, IL-6, IL-12; interferons, tumor antigens, IκB and derivatives of IκB that lack serine phosphorylation sites (Traenckner, et al., 1995) or that lack lysine ubiquitination sites ; Glucocorticoid receptors; enzymes such as catalase,
Mangansuperoxiddismutase, Glutathionperoxydase, LIP- Mitglieder der C/EBP-Familie wie LIP oder LAP (Descombes und Schibier, 1991) , ADF (Tagaya, et al . , 1989)) , Gene, die die Apoptose beeinflussen (Mitglieder der Bcl-2- Familie, wie Bcl-2, Adenovirus E1B19K, Mcl-2; BAX; IRF-2; Mitglieder der ICE-Proteasefamilie; Varianten von cJun, wie TAM-67 (Brown, et al . , 1991) ; Adenovirus E1A; p53) und Gene, die für andere therapeutische Proteine kodieren (z.B. Gerinnungsfaktoren wie Faktor VIII oder IX; Wachstumsfaktoren wie Erythropoetin; das Zystische Fibröse Transmembranregulatorgen (CFTR) ; Dystrophin und seine Derivate; Globin; der LDL-Rezeptor; Gene, die bei lysosomalen Speicherkrankheiten fehlen, wie ß -Glucuronidase; etc.) .Manganese superoxide dismutase, glutathione peroxidase, LIP members of the C / EBP family such as LIP or LAP (Descombes and Schibier, 1991), ADF (Tagaya, et al., 1989)), genes which influence apoptosis (members of Bcl-2- Family such as Bcl-2, adenovirus E1B19K, Mcl-2; BAX; IRF-2; members of the ICE protease family; variants of cJun such as TAM-67 (Brown, et al., 1991); adenovirus E1A; p53) and Genes coding for other therapeutic proteins (e.g. coagulation factors such as factor VIII or IX; growth factors such as erythropoietin; the cystic fibrous transmembrane regulator gene (CFTR); dystrophin and its derivatives; globin; the LDL receptor; genes that lysosomal storage diseases such as β-glucuronidase are absent; Etc.) .
Im Hinblick auf die Herstellung von zellulären Tumorvakzinen oder für pharmazeutischeWith regard to the production of cellular tumor vaccines or for pharmaceutical
Zusammensetzungen, mit denen die Immunantwort auf Tumore verstärkt werden soll, kodiert die Fremd-DNA für immunstimulierende Proteine oder Tumorantigene bzw. Fragmente davon.Compositions with which the immune response to tumors is to be strengthened are encoded by the foreign DNA for immunostimulating proteins or tumor antigens or fragments thereof.
Die therapeutisch wirksame DNA kann auch für Antisense- Moleküle kodieren, die in der Zielzelle die Expression von Genen bzw. die Transkription bestimmter RNA- Sequenzen verhindern.The therapeutically effective DNA can also code for antisense molecules which prevent the expression of genes or the transcription of certain RNA sequences in the target cell.
Im Hinblick auf die Anwendung des rekombinanten CELO- Virus-Vektors als Vakzine kodiert die Fremd-DNA für eine oder mehrere Antigene, die im behandelten Individuum eine Immunantwort hervorrufen.With regard to the use of the recombinant CELO virus vector as a vaccine, the foreign DNA codes for one or more antigens which elicit an immune response in the treated individual.
In einer Ausführungsform der Erfindung kodiert die Fremd-DNA für ein Antigen, das von einem Humanpathogen, insbesondere einem Erreger von Infektionskrankheiten, abgeleitet ist .In one embodiment of the invention, the foreign DNA codes for an antigen which is derived from a human pathogen, in particular an infectious agent.
Epitope, die von rekombinanten CELO-Viren exprimiert werden können, umfassen von beliebigen humanen viralen Pathogenen, wie HIV, Hepatitis A, B, C, Hantavirus, Poliovirus, Influenzavirus, Respiratory Syncytiavirus, Masern-, Mumps-, Rubella-, Papilloma- und vielen anderen Viren abgeleitete Epitope. Zu nicht-viralen Pathogenen zählen Trypanosomen (Verursacher von Schlafkrankheit und Chagas ' Krankheit) , Leishmania, Plasmodium FalciparumEpitopes that can be expressed by recombinant CELO viruses include any human viral pathogen such as HIV, hepatitis A, B, C, hantavirus, poliovirus, influenza virus, respiratory syncytiavirus, measles, mumps, rubella, papilloma and epitopes derived from many other viruses. Non-viral pathogens include trypanosomes (causes of sleeping sickness and Chagas' disease), Leishmania, Plasmodium Falciparum
(Malaria) , diverse bakterielle Pathogene, wie die Erreger von Tuberkulose, Lepra, Pseudomonas aeruginosa(Malaria), various bacterial pathogens, such as the causative agents of tuberculosis, leprosy, Pseudomonas aeruginosa
(Komplikationen in zystischer Fibröse) und viele andere. Eine Übersicht über Vakzine auf der Grundlage von Mastadenoviren ist in Tabelle 3 gegeben; die dort bespielhaft angeführten Epitope können auch verwendet werden, um in einen Vektor auf der Grundlage des CELO- Virus eingefügt zu werden.(Complications in cystic fibrosis) and many others. An overview of vaccines based on mastadenoviruses is given in Table 3; the epitopes exemplified there can also be used to insert into a vector based on the CELO virus.
Im Hinblick auf die Anwendung des rekombinanten CELO- Virus-Vektors als Impfstoff im Veterinärbereich, z.B. für Vogel-, insbesondere Geflügelvakzine, kodiert die Fremd-DNA in einer weiteren bevorzugten Ausführungsform für ein Antigen, abgeleitet von einem Protein eines Erregers von Tierkrankheiten, insbesondere infektiösen Vogelerkrankungen.With regard to the use of the recombinant CELO virus vector as a veterinary vaccine, e.g. for avian, in particular poultry, vaccine, in a further preferred embodiment the foreign DNA codes for an antigen derived from a protein of a pathogen of animal diseases, in particular infectious avian diseases.
Beispiele für Erreger von Vogelerkrankungen sind Avian Infectious Bronchitis Virus (IBV, ein Coronavirus; Jia, et al . , 1995; Ignjatovic und McWaters, 1991; Küsters, et al . , 1990; Lenstra, et al . , 1989; Cavanagh, et al . , 1988; Cunningham, 1975) , Avian Influenza Virus (Orthomyxovirus Type A; Kodihalli, et al . , 1994; Treanor, et al . , 1991; Tripathy und Schnitzlein, 1991) , Fowlpox-Virus (McMillen, et al . , 1994) , Avian Infectious Laryngotracheitis Virus (Guo, et al . , 1994; Scholz, et al., 1993; Keeler, et al . , 1991) , Mycoplasma Gallisepticum (Nascimento, et al . , 1993) , Avian Pasteurella Multocida (Wilson, et al . , 1993; Lee, et al . , 1991; Hertman, et al . , 1980; Hertman, et al . , 1979) , Avian Reovirus (Ni und Kemp, 1992; Huang, et al . , 1987) , Marek's Disease Virus (MDV; Malkinson, et al . , 1992; Scott, et al . , 1989) , Puten-Herpesvirus (HVT, Herpesvirus of Turkeys) , Newcastle Disease Virus (NDV; Cosset, et al . , 1991; Morrison, et al . , 1990) , Avian Paramyxovirus Typ 1 (Jestin, et al . , 1989) , Avipoxvirus Isolate (Schnitzlein, et al . , 1988) , wie Juncopox, Pigeon Pox, und Feld- (Field) und Vakzinstämme von Vogelpoxviren, Avian Encephalomyelitis Virus (Shafren und Tannock, 1991; Nicholas, et al . , 1987; Deshmukh, et al . , 1974) , Avian Sarcoma Virus, Rotavirus (Estes und Graham, 1985) , Avian Reovirus (Haffer, 1984; Gouvea, et al . , 1983; Gouvea und Schnitzer, 1982) , H7 Influenza- Virus (Fynan, et al . , 1993) .Avian Infectious Bronchitis Virus (IBV, a coronavirus; Jia, et al., 1995; Ignjatovic and McWaters, 1991; Küsters, et al., 1990; Lenstra, et al., 1989; Cavanagh, et al ., 1988; Cunningham, 1975), Avian Influenza Virus (Orthomyxovirus Type A; Kodihalli, et al., 1994; Treanor, et al., 1991; Tripathy and Schnitzlein, 1991), Fowlpox virus (McMillen, et al., 1994), Avian Infectious Laryngotracheitis Virus (Guo, et al., 1994; Scholz, et al., 1993; Keeler, et al., 1991), Mycoplasma Gallisepticum (Nascimento, et al., 1993), Avian Pasteurella Multocida (Wilson , et al., 1993; Lee, et al., 1991; Hertman, et al., 1980; Hertman, et al., 1979), Avian Reovirus (Ni and Kemp, 1992; Huang, et al., 1987), Marek's Disease Virus (MDV; Malkinson, et al., 1992; Scott, et al., 1989), Turkey herpes virus (HVT, Herpesvirus of Turkeys), Newcastle Disease Virus (NDV; Cosset, et al., 1991; Morrison, et al., 1990), Avia n Paramyxovirus type 1 (Jestin, et al. , 1989), Avipoxvirus Isolate (Schnitzlein, et al., 1988) such as Juncopox, Pigeon Pox, and Feld (Field) and vaccine strains of bird poxviruses, Avian Encephalomyelitis Virus (Shafren and Tannock, 1991; Nicholas, et al. , 1987; Deshmukh, et al. , 1974), Avian Sarcoma Virus, Rotavirus (Estes and Graham, 1985), Avian Reovirus (Haffer, 1984; Gouvea, et al., 1983; Gouvea and Schnitzer, 1982), H7 Influenza Virus (Fynan, et al., 1993).
Außer DNA-Sequenzen, die für therapeutisch wirksame Genprodukte bzw. für Antigene kodieren, kann die Fremd- DNA für Proteine bzw. Proteinfragmente kodieren, die das Verhalten des CELO-Virus, insbesondere seine Bindungsfähigkeit an die Zellen, im Hinblick auf die Anwendung auf Säugetiere insbesondere an Säugetierzellen, verändern. Beispiele für derartige Proteine sind Faser- oder Pentonbasisproteine von Säugtier- und anderen Adenoviren, Oberflächenproteine anderer Viren, sowie Liganden, die die Fähigkeit haben, an Säugetierzellen zu binden und das CELO-Virus in die Zellen zu transportieren. Zu geeigneten Liganden zählen Transferrin von verschiedenen Säugetierspezies, Lektine, Antikörper bzw. Antikörperfragmente, etc. Dem Fachmann sind derartige Liganden bekannt, weitere Beispiele sind der WO 93/07283 entnehmbar.In addition to DNA sequences which code for therapeutically effective gene products or for antigens, the foreign DNA can code for proteins or protein fragments which determine the behavior of the CELO virus, in particular its ability to bind to the cells, with a view to use on mammals especially on mammalian cells. Examples of such proteins are fiber or penton-based proteins from mammalian and other adenoviruses, surface proteins from other viruses, and ligands which have the ability to bind to mammalian cells and to transport the CELO virus into the cells. Suitable ligands include transferrin from various mammalian species, lectins, antibodies or antibody fragments, etc. Such ligands are known to the person skilled in the art, further examples can be found in WO 93/07283.
Das rekombinante CELO-Virus kann eine oder mehrere Fremd-DNA-Moleküle enthalten, diese können entweder in Tandem oder, entfernt voneinander, in verschiedene Abschnitte der CELO-Virus-Sequenz eingefügt werden.The recombinant CELO virus can contain one or more foreign DNA molecules, these can either be inserted in tandem or, at a distance from one another, into different sections of the CELO virus sequence.
Die Fremd-DNA steht unter der Kontrolle von regulatorischen Sequenzen, geeignete Promotoren sind z.B. der CMV-Immediate Early Promotor/Enhancer, der Rous Sarcoma Virus LTR, der Adenovirus Major Late Promotor, der CELO-Virus Major Late Promotor.The foreign DNA is under the control of regulatory sequences; suitable promoters are e.g. the CMV immediate early promoter / enhancer, the Rous Sarcoma Virus LTR, the adenovirus major late promoter, the CELO virus major late promoter.
Die Eignung des CELO-Virus für die Herstellung von Vektoren sowie die Vorteile dieser Vektoren und ihrer Anwendungen beruhen insbesondere auf folgenden Eigenschaften des CELO-Virus:The suitability of the CELO virus for the production of vectors and the advantages of these vectors and their Applications are based in particular on the following properties of the CELO virus:
i) Sicherheit: Das CELO-Virus repliziert natürlicherweise nicht in Säugetierzellen. Daher können Vektoren auf der Grundlage dieses Virus in Menschen verwendet werden, ohne daß die Gefahr besteht, daß eine anschließende Infektion mit einem Wildtyp- Humanadenovirus den Vektor komplementieren und die Replikation ermöglichen könnte. Dies stellt einen Vorteil gegenüber den derzeit verwendeten Ad2- und Ad5-Vektoren dar.i) Safety: The CELO virus does not naturally replicate in mammalian cells. Therefore, vectors based on this virus can be used in humans without the risk that subsequent infection with a wild-type human adenovirus could complement the vector and allow replication. This is an advantage over the Ad2 and Ad5 vectors currently used.
ii) Erhöhte Verpackungskapazität: Das CELO-Virus-Genom ist ca. 44 kb lang, im Vergleich zu den 36 kb des Ad5-Genoms. Beide Viren haben vergleichbare Virion- Ausmaße, sodaß mit einem CELO-Virus-Vektor die Möglichkeit besteht, das bei Ad5 vorhandene strikte Verpackungslimit von 35 kb zu erweitern. Aufgrund der im Rahmen der vorliegenden Erfindung durchgeführten Sequenzierung wurden DNA-verpackende Kernproteine des CELO-Virus identifiziert, und es wurden auffallendeii) Increased packaging capacity: The CELO virus genome is approximately 44 kb long compared to the 36 kb of the Ad5 genome. Both viruses have comparable virion dimensions, so that with a CELO virus vector there is the possibility of expanding the strict packaging limit of 35 kb available with Ad5. On the basis of the sequencing carried out in the context of the present invention, DNA-packaging core proteins of the CELO virus were identified and striking ones
Unterschiede zu Ad2 festgestellt, die für die erhöhte Verpackungkapazität verantwortlich sein könnten. Es existieren ca. 13 kb an den beiden Enden des CELO-Virus, die nicht für Strukturproteine (z.B. Kapsidkomponenten) oder für Proteine, die direkt für die Virusreplikation benötigt werden (z.B. DNA-Polymerase) kodieren dürften. Für die Herstellung von Vektoren können diese Sequenzen auf dem CELO-Virus-Genom entfernt und, falls erforderlich, durch komplementierende Zellinien ersetzt werden. Von diesen Sequenzen ist anzunehmen, daß sie für die Immunfunktionen oder die apoptotischen Funktionen (z.B. GAM-1) der Wirtszelle kodieren oder daß sie an der Aktivierung der Wirtszelle für die Virusreplikation beteiligt sind (Gegenspieler zu den El-, E3- und E4- Regionen von Ad2) . Dabei handelt es sich um die Gentypen, die entweder für das Viruswachstum in der Zellkultur entbehrlich sind, wie die E3-Gene von Ad2 (Wold and Gooding, 1991; Gooding, 1992) , oder die leicht aus dem Virus enfernt und von einer komplementierenden Zellinie exprimiert werden können, wie die El-Region in 293-Zellen (Graham, et al , 1977) und die E4-Region in W162-Zellen (Weinberg und Ketner, 1983) .Differences to Ad2 found that could be responsible for the increased packaging capacity. There are approx. 13 kb at both ends of the CELO virus, which should not code for structural proteins (eg capsid components) or for proteins that are required directly for virus replication (eg DNA polymerase). For the production of vectors, these sequences on the CELO virus genome can be removed and, if necessary, replaced by complementing cell lines. These sequences can be assumed to encode the immune functions or the apoptotic functions (eg GAM-1) of the host cell or that they are involved in the activation of the host cell for virus replication (opponents to the El-, E3- and E4- Regions of Ad2). These are the gene types that are either unnecessary for virus growth in cell culture, such as the E3 genes from Ad2 (Wold and Gooding, 1991; Gooding, 1992), or that are easily removed from the virus and from a complementing cell line can be expressed, such as the El region in 293 cells (Graham, et al, 1977) and the E4 region in W162 cells (Weinberg and Ketner, 1983).
iii) Stabilität: Das CELO-Virion ist bemerkenswert stabil. Die Infektivität und die Fähigkeit, DNA zu transportieren, überdauern eine Behandlung bei 60°C während 30 min. Vergleichweise verliert Ad5 zwei Zehnerpotenzen an Infektivität bei 48°C und ist bei 52°C komplett inaktiviert. Vermutlich entwickelte das CELO- Virus seine Hitzestabilität nicht natürlicherweise, die Hitzestabilität dürfte vielmehr auf eine Reaktion auf einen anderen Typ von selektivem Druck auf das Virion hinweisen. Die natürliche Route der CELO-Virus-Infektion ist eine fäkal-orale, welche erfordert, daß das Virion den Kontakt mit einer in chemischer Hinsicht rauhen Umwelt mit extremen pH-Werten sowie mit Proteasen überleben kann. Für besondere Anwendungen in der Gentherapie wäre ein noch widerstandsfähigeres Virus erwünscht, das z.B. im Verdauungstrakt oder in der Lunge eines Patienten mit zystischer Fibröse überleben würde.iii) Stability: The CELO virion is remarkably stable. The infectivity and the ability to transport DNA survive treatment at 60 ° C for 30 min. In comparison, Ad5 loses two orders of magnitude of infectivity at 48 ° C and is completely inactivated at 52 ° C. Presumably the CELO virus did not develop its heat stability naturally, rather the heat stability may indicate a response to another type of selective pressure on the virion. The natural route of the CELO virus infection is a fecal-oral one, which requires that the virion can survive contact with a chemically harsh environment with extreme pH values as well as proteases. An even more resistant virus would be desirable for special applications in gene therapy, e.g. would survive in the digestive tract or lungs of a patient with cystic fibrosis.
iv) Zielgerichtete Anwendung: Das CELO-Virus bindet von sich aus nur schwach an Säugetierzellen und erfordert für einen effizienten Eintritt in die Zelle den Zusatz eines Liganden (Transferrin oder Lectin; Cotten, et al . , 1993) . Daher können rekombinante CELO-Virionen in menschliche Zellen nicht eindringen, woraus sich folgende Anwendungsmöglichkeiten ergeben: Das Virus kann, wie oben angegeben, genetisch verändert werden, um an seiner Oberfläche Liganden exprimieren, die einen zielgerichteten Transport ermöglichen, wie z.B. spezifische Peptide, oder Fasern und/oder Pentonbasen von humanen Adenoviren.iv) Targeted use: The CELO virus binds only weakly to mammalian cells and requires the addition of a ligand for efficient entry into the cell (transferrin or lectin; Cotten, et al., 1993). Therefore, recombinant CELO virions cannot penetrate human cells, resulting in the following possible uses: As indicated above, the virus can be genetically modified in order to express ligands on its surface which enable targeted transport, such as specific peptides, or fibers and / or penton bases of human adenoviruses.
Eine weitere Möglichkeit besteht in der chemischen Modifikation des Virus, um daran spezifische Liganden wie Transferrin zu koppeln, wie z.B. in der WO 94/24299 vorgschlagen, ferner kann das Virus biotinyliertAnother possibility is the chemical modification of the virus in order to couple specific ligands such as transferrin, e.g. propose in WO 94/24299, furthermore the virus can be biotinylated
(WO 93/07283) und über Streptavidin an biotinylierte Liganden, wie Weizenkeimagglutinin oder andere Lectine(WO 93/07283) and via streptavidin to biotinylated ligands such as wheat germ agglutinin or other lectins
(WO 93/07283) gebunden werden. CELO-Virus-Vektoren weisen somit nicht die Nachteile humaner Adenoviren auf, die zwar eine gute Bindungsfähigkeit an menschliche Zellen aufweisen, jedoch für eine spezifische, zielgerichteten, durch den Liganden vermittelten Anwendung maskiert werden müssen.(WO 93/07283) are bound. CELO virus vectors therefore do not have the disadvantages of human adenoviruses which, although they have a good ability to bind to human cells, have to be masked for a specific, targeted application mediated by the ligand.
v) Anwendbarkeit für Vakzine: Das CELO-Virus ist selten mit Erkrankungen in Vögeln verbunden, was darauf hinweist, daß es eine starke protektive Immunantwort in Vogelwirten hervorruft. Der CELO-Virus-Vektor kann auf einfache Weise für die Expression neuer Vakzinepitope angepaßt werden.v) Applicability for vaccines: The CELO virus is rarely associated with diseases in birds, which indicates that it causes a strong protective immune response in bird hosts. The CELO virus vector can be easily adapted for the expression of new vaccine epitopes.
Im Hinblick auf die Entfernung von Regionen der CELO- Virus-DNA wurde aus den beim Mastadenovirus gewonnenen Erkenntnissen gefolgert, daß bei Entfernung der zentralen Abschnitte des CELO-Genoms diese Abschnitte in trans, z.B. von einer Verpackungszellinie, zur Verfügung gestellt werden müssen. Diese Beschränkung beruht auf der großen Menge von Virionbestandteilen, die für den Zusammenbau des Virus notwendig sind, sowie der Notwendigkeit, eine Zellinie herzustellen, die die entsprechenden Mengen dieser Proteine ohne Toxizität produzieren kann.With regard to the removal of regions of the CELO virus DNA, it was concluded from the knowledge gained from the mastadenovirus that if the central sections of the CELO genome were removed, these sections must be made available in trans, for example from a packaging cell line. This limitation is due to the large amount of virion components necessary to assemble the virus and the need to make a cell line that can can produce appropriate amounts of these proteins without toxicity.
Die bisher in dieser Hinsicht erfolgreicheren Ansätze bei Mastadenoviren bestanden im Herstellen von Zellinien, die regulatorische Proteine (El-, E4- Regionen) oder enzymatische Proteine (DNA-Polymerase, DNA-Bindungsprotein) exprimieren, weil diese Proteine während einer produktiven Virusinfektion nicht in großen Mengen benötigt werden.The approaches to mastadenoviruses that have so far been more successful in this regard have been the production of cell lines that express regulatory proteins (E1, E4 regions) or enzymatic proteins (DNA polymerase, DNA binding protein) because these proteins do not become large during a productive virus infection Quantities are needed.
Ausgehend von der Analyse der bekannten CELO-Gene werden die Abschnitte des Genoms von nt ca. 12.000 bis ca. 33.000, die für Strukturkomponenten des Virus kodieren, vorzugsweise nicht unterbrochen. Die Region von ca. nt 5.000 bis ca. 12.000 kodiert für die E2-Gene IVa2 (ein viraler Transkriptionsfaktor) , die virale DNA- Polymerase (POL) und das terminale Virusprotein (Viral Terminal Protein; pTP) . Diese Gene sind für die Funktion von Mastadenoviren essentiell; sie dürften demnach auch für das CELO-Virus essentiell sein. Es sind jedoch grundsätzlich auch Deletionen solch essentieller Gene möglich, sofern sie in trans, z. B. von einer Verpackungslinie, produziert werden können. Es wurde z.B. eine Verpackungszellinie hergestellt, die Ad5-DNA-Polymerase produziert, womit die Deletion dieses Gens aus dem Virusgenom ermöglicht wurde. Auf ähnliche Weise kann bei der Konstruktion von CELO-Virus-Vektoren vorgegangen werden, indem Abschnitte oder die gesamte Region von nt 5.000 bis 12.000 aus dem CELO-Virus entfernt und die entsprechenden Funktionen in trans von einer Verpackungszellinie beigesteuert werden.Based on the analysis of the known CELO genes, the sections of the genome from nt approximately 12,000 to approximately 33,000 which code for structural components of the virus are preferably not interrupted. The region from approximately nt 5,000 to approximately 12,000 codes for the E2 genes IVa2 (a viral transcription factor), the viral DNA polymerase (POL) and the terminal viral protein (Viral Terminal Protein; pTP). These genes are essential for the function of mastadenoviruses; they should therefore also be essential for the CELO virus. In principle, however, deletions of such essential genes are also possible, provided that they are in trans, e.g. B. from a packaging line can be produced. For example, produced a packaging cell line that produces Ad5 DNA polymerase, which made it possible to delete this gene from the virus genome. The construction of CELO virus vectors can be carried out in a similar manner by removing sections or the entire region from nt 5,000 to 12,000 from the CELO virus and contributing the corresponding functions in trans from a packaging cell line.
Eine weitere mögliche Einschränkung besteht hinsichtlich des vermutlichen Major Late Promotor, der vorläufig der Region bei ca. nt 7.000 zugeordnet wurde (TATA-Box bei nt 7.488) . In den Mastadenoviren ist dieser Promotor wesentlich, um die späte Genexpression zu treiben. Daher muß jede Änderung in der Region bei nt 7.000 des CELO- Genoms in einer Weise vorgenommen werden, die die Promotorfunktion dieser Region erhält.Another possible limitation is the presumed major late promoter, which was provisionally assigned to the region at around nt 7,000 (TATA box at nt 7,488). In the mastadenovirus, this promoter is essential to drive late gene expression. Therefore, any change in the region at nt 7,000 of the CELO genome must be made in a manner that maintains that region's promoter function.
In Tabelle 4 sind die Sequenzelemente des CELO-Virus- Genoms aufgelistet und im Hinblick auf ihre Deletion und/oder Mutation bei der Herstellung von CELO-Virus- Vektoren in verschiedene Kategorien eingeteilt (in Tab. 4 bedeuten Ll, L2, etc. "Late Message 1, 2, etc., entsprechend der bei Mastadenoviren üblichen Bezeichung) :Table 4 lists the sequence elements of the CELO virus genome and, with regard to their deletion and / or mutation in the production of CELO virus vectors, is divided into different categories (in Table 4, L1, L2, etc. mean late Message 1, 2, etc., according to the designation common for mastadenoviruses):
Zur Kategorie 1 zählen Sequenzelemente, die in eis benötigt werden und daher nicht in trans von einer komplementierenden Zellinie oder von einem komplementierenden Plasmid zur Verfügung gestellt werden können. Diese Abschnitte sind erforderlich und daher auf dem erfindungsgemäßen CELO-Virus vorhanden; es sind der linke und rechte terminale Repeat sowie das Verpackungsignal .Category 1 includes sequence elements that are required in ice and therefore cannot be provided in trans by a complementing cell line or by a complementing plasmid. These sections are required and are therefore present on the CELO virus according to the invention; it is the left and right terminal repeat as well as the packaging signal.
Sequenzen der Kategorie 2 kodieren für Proteine, die für die Virionproduktion in großen Mengen benötigt werden. Diese Proteine können gegebenenfalls von einem Gen, das in einer komplementierenden Zellinien oder auf einem komplementierenden Plasmid enthalten ist, produziert werden. Weitere Sequenzen der Kategorie 2 sind der Major Late Promotor, die Tripartite Leader-Sequenz, ferner die Splice Acceptor Sites (SA) oder dieCategory 2 sequences code for proteins that are required for virion production in large quantities. These proteins can optionally be produced from a gene contained in a complementing cell line or on a complementing plasmid. Other sequences of category 2 are the major late promoter, the tripartite leader sequence, also the splice acceptor sites (SA) or the
Polyadenylierungsstellen (poly A Sites) von Genen, die essentiell sind und nicht in trans zur Verfügung gestellt werden können. Grundsätzlich muß beachtet werden, daß bei Modifikationen der CELO-Virus-DNA, die an Grenzen von Genen vorgenommen werden, gegebenfalls vorhandene Steuerungssignale, z.B. PolyA-Stellen, möglichst nicht unterbrochen bzw. anderswie beeinträchtigt werden.Polyadenylation sites (poly A sites) of genes that are essential and cannot be provided in trans. In principle, it must be ensured that any modifications to the CELO virus DNA that are carried out at the borders of genes do not interrupt or otherwise impair control signals that may be present, for example polyA sites.
Die auf dem CELO-Virus deletierten bzw. nicht- funktionellen Gene können in trans, z.B. von komplementierenden Zellinien, bereitgestellt werden.The genes deleted or non-functional on the CELO virus can be trans, e.g. of complementing cell lines.
Komplementierene Zellinien ("Helferzellen") können auf literaturbekannte Weise, analog wie Helferzellen, die Funktionen von Säugetieradenoviren komplementieren, hergestellt werden. Dazu wird das relevante CELO-Virus- Gen auf einem Plasmid, vorzugsweise in Kombination mit einem selektierbaren Marker, in Zellen eingeführt, die die Replikation von CELO-Virus erlauben, vorzugsweise in immortalisierte Zellinien wie LMH (Kawaguchi, et al . , 1987) oder immortalisierte Wachtelzellinien, wie z.B. von Guilhot et al . 1993, beschieben. In Helferzellen, die die relevanten CELO-Virusgene, gegebenenfalls stabil integriert, exprimieren, können die defekten CELO-Viren replizieren.Complementing cell lines ("helper cells") can be produced in a manner known from the literature, analogously to helper cells which complement the functions of mammalian adenoviruses. For this purpose, the relevant CELO virus gene is introduced on a plasmid, preferably in combination with a selectable marker, into cells which allow the replication of CELO virus, preferably into immortalized cell lines such as LMH (Kawaguchi, et al., 1987) or immortalized quail cell lines, such as by Guilhot et al. 1993, described. The defective CELO viruses can replicate in helper cells that express the relevant CELO virus genes, possibly stably integrated.
Statt die im Vektor deletierten Regionen des CELO-Virus durch eine Zellinie zur Verfügung zu stellen, können die Deletionen auch durch eine auf einem Plasmid enthaltene Kopie des betreffenden Gens komplementiert werden. Dafür kann z.B. die in der WO 96/03517, die von Cotten et al . 1994a und 1994 b) oder die von Wagner et al. , 1992, beschriebene Methode angewendet werden, wobei ein eine Deletion enthaltender CELO-Virus-Vektor als Bestandteil eines Transfektionskomplexes, enthaltend ein Konjugat aus Polylysin und einem UV/Psoralen-inaktivierten Adenovirus (human oder CELO) und gegebenenfalls Transferrin-Polylysin, in embryonische Hühnernierenzellen oder -leberzellen, embryonische oder immortalisierte Wachtelzellen, z.B. Leber- oder Nierenzellen, eingebracht wird und wobei in dem Transfektionskomplex außerdem ein Plasmid enthalten ist, das eine Kopie des Gens bzw. der Gene trägt, das dem CELO-Virus-Vektor fehlt. Die Kombination von Genen, die auf dem Vektor enthalten sind, und Genen, die das Plasmid trägt, resultiert in einem normalen Virus- Replikationszyklus . (Ähnliche Ansätze wurden bei Mastadenovirussystemen verwendet, um El-defiziente (Goldsmith, et al . , 1994) bzw. E4-defiziente (Scaria, et al . , 1995) Adenoviren zu komplementieren.) Die anschließende Amplifikation des Virus kann durchgeführt werden, indem das defekte Virus als Carrier verwendet wird, an das gemäß den oben angegebenen Methoden das komplementierende Plasmid angehängt wird.Instead of making the regions of the CELO virus deleted in the vector available by means of a cell line, the deletions can also be complemented by a copy of the gene in question contained on a plasmid. For this purpose, for example, that described in WO 96/03517 by Cotten et al. 1994a and 1994b) or that of Wagner et al. , 1992, method used, wherein a deletion-containing CELO virus vector as part of a transfection complex, containing a conjugate of polylysine and a UV / psoralen-inactivated adenovirus (human or CELO) and optionally transferrin-polylysine, in embryonic Chicken kidney cells or liver cells, embryonic or immortalized quail cells, for example liver or kidney cells, are introduced and the transfection complex also contains a plasmid which carries a copy of the gene or genes which the CELO virus vector is missing. The combination of genes contained on the vector and genes carried by the plasmid results in a normal virus replication cycle. (Similar approaches have been used in mastadenovirus systems to complement El-deficient (Goldsmith, et al., 1994) or E4-deficient (Scaria, et al., 1995) adenoviruses.) The subsequent amplification of the virus can be performed by the defective virus is used as a carrier to which the complementing plasmid is attached according to the methods given above.
Eine weitere Möglichkeit, die dem CELO-Virus fehlenden Gene zu ersetzen, besteht in der Verwendung von Helferviren.Another way to replace the genes missing from the CELO virus is to use helper viruses.
Als Helfervirus kann ein CELO-Virus (Wildtyp oder teilweise defekt) verwendet werden. In dieser Ausführungsform wird das die Mutation tragende CELO- Plasmid (z.B. ein Derivat von pCEL07), z.B. nach der in der WO 96/03517 oder von Cotten et al . , 1994, beschriebenen Methode, in Hühnerzellen eingeführt, wobei als Carrier für das Derivat z.B. Psoralen/UV- inaktiviertes Adenovirus (human oder CELO) zusammen mit einem Adenovirus (human oder CELO) als Träger für das bzw. die Plasmide mit den Genen, die den Defekt komplementieren, verwendet wird. Alternativ kann ein Wildtyp CELO-Virus sowohl als Carrier als auch als Quelle für komplementierende Genfunktionen verwendet werden. Die anschließende Amplifikation der erhaltenen defekten CELO-Viren wird mittels Co-Infektion des defekten CELO-Virus mit einem komplementierenden Adenovirus (z.B. Wildtyp-CELO oder ein CELO, das Mutationen an anderen Stellen des Genoms aufweist) durchgeführt.A CELO virus (wild-type or partially defective) can be used as the helper virus. In this embodiment, the mutation-carrying CELO plasmid (for example a derivative of pCEL07) is used, for example according to the method described in WO 96/03517 or by Cotten et al. , 1994, method described, introduced into chicken cells, the carrier for the derivative being, for example, psoralen / UV-inactivated adenovirus (human or CELO) together with an adenovirus (human or CELO) as a carrier for the plasmid (s) with the genes which complement the defect is used. Alternatively, a wild-type CELO virus can be used both as a carrier and as a source for complementary gene functions. The subsequent amplification of the defective CELO viruses obtained is by means of co-infection of the defective CELO virus with a complementing adenovirus (eg wild-type CELO or a CELO that has mutations at other parts of the genome).
Zu CELO-Virus-Genen der Kategorie 3 zählen die Sequenzen auf den Abschnitten A, B und C. Dabei handelt es sich um Sequenzen, die für ein Protein oder ein RNA-Molekül kodieren, das für die Wechselwirkung mit der Wirtszellmaschinerie oder mit dem Wirtsimmunsystem erforderlich ist. Diese Proteine sollten in niedrigeren Konzentrationen erforderlich oder für die Kultivierung des Virus in der Gewebekultur entbehrlich sein.Category 3 CELO virus genes include the sequences on sections A, B and C. These are sequences which code for a protein or an RNA molecule which interacts with the host cell machinery or with the host immune system is required. These proteins should be required in lower concentrations or not necessary for the cultivation of the virus in tissue culture.
Bevorzugt werden somit in den erfindungsgemäßen CELO- Virus-Vektoren die Gene der Kategorie 3 durch das interessierende Gen ersetzt; erforderlichenfalls können komplementierende Zellinien oder Plasmide bzw. Helferviren hergestellt werden, die die entsprechenden Genprodukte produzieren.The genes of category 3 are thus preferably replaced by the gene of interest in the CELO virus vectors according to the invention; if necessary, complementing cell lines or plasmids or helper viruses can be produced which produce the corresponding gene products.
In einer Ausführungsform der Erfindung enthalten die erfindungsgemäßen Vektoren das interessierende Gen anstelle eines der Fasergene. Das CELO-Virus hat zwei Faserproteine (Laver, et al . , 1971; Gelderblom und Maichle-Lauppe, 1982; Li, et al . , 1984a) . Es ist anzunehmen, daß eine der Fasern des CELO-Virus nicht für den Zusammenbau des Virions und die Infektivität erforderlich ist. Diese Annahme wird gestützt durch elektronenmikroskopische Beobachtungen, daß die längere Faser (Faser 1) mit der Pentonbasis entlang der Seite des Komplexes assoziieren dürfte, während die kürzere Faser (Faser 2) aus der Mitte der Pentonbasis herausragt, ähnlich wie die Penton/Faserkomplexe bei den Mastadenoviren (Hess, et al . , 1995) . In Adenoviren mit nur einer einzigen Faser ist das Fasermolkül für den Zusammenbau des Virus erforderlich; in Abwesenheit von Faser werden keine stabilen reifen Viren gebildet. Das CELO-Virion dürfte daher Faser 2 für die Stabilität und als Liganden benötigen, während Faser 1 nur Ligandenfunktion hat. Im Rahmen der vorliegendenIn one embodiment of the invention, the vectors according to the invention contain the gene of interest instead of one of the fiber genes. The CELO virus has two fiber proteins (Laver, et al., 1971; Gelderblom and Maichle-Lauppe, 1982; Li, et al., 1984a). It is believed that one of the fibers of the CELO virus is not required for virion assembly and infectivity. This assumption is supported by electron microscopic observations that the longer fiber (fiber 1) may associate with the penton base along the side of the complex, while the shorter fiber (fiber 2) protrudes from the center of the penton base, similar to the penton / fiber complexes in the Mastadenoviruses (Hess, et al., 1995). In adenoviruses with only one fiber, the fiber molecule is for the Assembly of the virus required; in the absence of fiber, no stable, mature viruses are formed. The CELO virion should therefore require fiber 2 for stability and as a ligand, while fiber 1 only has a ligand function. As part of the present
Erfindung wurde die Richtigkeit der Annahme, daß von den zwei Fasergenen des CELO-Virus das Fasergen 1, das in der Region C lokalisiert ist, überflüssig ist und durch das interessierenden Gen ersetzt werden kann, bestätigt, indem das Faser 1-Gen entfernt und durch eine Luciferaseexpressionseinheit ersetzt wurde.Invention, the correctness of the assumption that of the two fiber genes of the CELO virus, the fiber gene 1 located in region C is superfluous and can be replaced by the gene of interest, was confirmed by removing the fiber 1 gene and by a luciferase expression unit has been replaced.
Andere Beispiele sind Insertionen in der Region A und/oder B.Other examples are insertions in region A and / or B.
Im Rahmen der vorliegenden Erfindung wurde festgestellt, daß eine Zerstörung des Leserahmens bei nt 794 (Region A) , der für dUTPase kodiert, lebensfähige Viren liefert. Das dUTPase-Gen ist somit ein Gen, welches nicht für das Wachstum in Zellkultur erforderlich ist.In the context of the present invention, it was found that destruction of the reading frame at nt 794 (region A) which codes for dUTPase provides viable viruses. The dUTPase gene is thus a gene that is not required for growth in cell culture.
In einer Ausführungsform der Erfindung enthält somit das rekombinante CELO-Virus ein Fremdgen, das im Bereich des für dUTPase kodierenden Leserahmens inseriert ist.In one embodiment of the invention, the recombinant CELO virus thus contains a foreign gene which is inserted in the region of the reading frame coding for dUTPase.
In einem weiteren Aspekt betrifft die vorliegende Erfindung ein Verfahren zur Herstellung von rekombinantem CELO-Virus.In a further aspect, the present invention relates to a method for producing recombinant CELO virus.
Das Verfahren ist dadurch gekennzeichnet, daß man das auf einem Plasmid enthaltene CELO-Virus-Genom oder Abschnitte davon genetisch manipuliert.The method is characterized in that the CELO virus genome, or sections thereof, contained on a plasmid is genetically manipulated.
In einem Aspekt der Erfindung besteht die genetische Manipulation in einer Insertion und/oder Deletion. Insertionen und/oder Deletionen können vorgenommen werden, indem natürlicherweise in der CELO-Virus-DNA in diesen Abschnitten vorkommendeIn one aspect of the invention, the genetic manipulation consists of an insertion and / or deletion. Insertions and / or deletions can be made by naturally occurring in these sections in the CELO virus DNA
Restriktionsenzymschnittstellen benutzt werden, z.B. die in Abschnitt B vorkommende Fsel-Schnittstelle bei Position 35.693; die Insertion kann in diese Schnittstelle direkt, bzw. über diese Schnittstelle hinweg oder in der Nähe dieser Schnittstelle vorgenommen werden, oder diese Schnittstelle wird benutzt, um Rekombination in der Nachbarschaft zu erleichtern.Restriction enzyme interfaces are used, e.g. the Fsel interface occurring in section B at position 35.693; the insertion into this interface can be made directly, over this interface or in the vicinity of this interface, or this interface is used to facilitate recombination in the neighborhood.
In einer bevorzugten Ausführungsform besteht die Manipulation darin, daß man mit Hilfe molekularbiologischer Standardmethoden (Maniatis, 1989) Insertionen und/oder Deletionen vornimmt. Dazu können die natürlich vorkommenden Restriktionsschnittstellen verwendet werden, z.B. Stellen, die in Regionen des Genoms gelegen sind, welche für die Kultivierung des Virus in der Wirtszelle entbehrlich sind, z.B. die in Abschnitt B vorkommende Fsel-Schnittstelle bei Position 35.693. Die Insertion kann in diese Schnittstelle direkt, bzw. über diese Schnittstelle hinweg oder in der Nähe dieser Schnittstelle vorgenommen werden, oder diese Schnittstelle wird benutzt, um Rekombination in der Nachbarschaft zu erleichtern. Es können Fremd-DNA- Sequenzen, z.B. Markergene oder Gene kodierend für therapeutisch wirksame Proteine, eingefügt werden.In a preferred embodiment, the manipulation consists in making insertions and / or deletions using standard molecular biological methods (Maniatis, 1989). The naturally occurring restriction interfaces can be used for this, e.g. Locations located in regions of the genome which are unnecessary for culturing the virus in the host cell, e.g. the Fsel interface occurring in section B at position 35.693. The insertion can be made in this interface directly, over this interface or in the vicinity of this interface, or this interface is used to facilitate recombination in the neighborhood. Foreign DNA sequences, e.g. Marker genes or genes coding for therapeutically active proteins can be inserted.
Eine alternative Möglichkeit besteht darin, CELO- Sequenzen, die von zwei Restriktionsstellen flankiert werden, zu entfernen und durch neue Sequenzen zu ersetzen. (Ein Beispiel dafür ist die dUTPase-Mutation, wie sie in Beispiel 7 vorgenommen wurde.) In diesen Fällen wird die Manipulation mit dem gesamten CELO- Virus-Genom vorgenommen. Für den Fall, daß Restriktionsstellen vorhanden sind, kann alternativ die Deletion/Insertion auf einem Subfragment vorgenommen werden, das dann, mittels Ligation und gegebenenfalls Reklonierung in Bakterien, in das gesamte Genom wiedereingebaut wird.An alternative possibility is to remove CELO sequences flanked by two restriction sites and to replace them with new sequences. (An example of this is the dUTPase mutation, as was carried out in Example 7.) In these cases, the manipulation is carried out with the entire CELO virus genome. In the event that restriction sites are present, the Deletion / insertion can be carried out on a subfragment, which is then reinstalled into the entire genome by means of ligation and possibly recloning in bacteria.
Eine weitere Möglichkeit besteht darin, das Fremdgen in mittels herkömmlicher Methoden der rekombinanten DNA- Technik (Maniatis, 1989) hergestellte künstliche Restriktionsenzymschnittstellen einzufügen.Another possibility is to insert the foreign gene into artificial restriction enzyme interfaces produced using conventional methods of recombinant DNA technology (Maniatis, 1989).
In einer Ausführungsform ist das Verfahren dadurch gekennzeichnet, daß man in einer Plasmid-DNA, die das CELO-Virus-Genom enthält, in CELO-DNA Sequenzen, ausgenommen im linken und rechten invertierten terminalen Repeat sowie im Verpackungssignal, Manipulationen vornimmt.In one embodiment, the method is characterized in that manipulations are carried out in a plasmid DNA which contains the CELO virus genome, in CELO DNA sequences, except in the left and right inverted terminal repeat and in the packaging signal.
In einer weiteren bevorzugten Methode wird die Manipulation des CELO-Genoms mittels Rekombination vorgenommen. Dazu wird ein Subfragment des CELO-Genoms manipuliert, um Mutationen und/oder neue Sequenzen einzuführen. Subfragmente können auf verschiedene Arten hergestellt werden, und zwar mittels PCR (Polymerase Chain Reaction) , durch Ligation zwischen PCR-Produkten oder zwischen Restriktionsfragmenten oder durch Subklonieren in Bakterien (wie in den Beispielen der vorigen Erfindung beschrieben; s. auch Chartier et al . 1996) . Beispiele für geeignete Bakterienstämme für die Rekombination sind BJ 5183 (Hanahan, 1983) oder JC 8679 (Gillen et al . , 1974) oder JC 5176 (Capado-Kimball and Barbour, 1971) .In a further preferred method, the manipulation of the CELO genome is carried out by means of recombination. For this purpose, a subfragment of the CELO genome is manipulated in order to introduce mutations and / or new sequences. Subfragments can be produced in various ways, by means of PCR (polymerase chain reaction), by ligation between PCR products or between restriction fragments or by subcloning in bacteria (as described in the examples of the previous invention; see also Chartier et al. 1996 ). Examples of suitable bacterial strains for recombination are BJ 5183 (Hanahan, 1983) or JC 8679 (Gillen et al., 1974) or JC 5176 (Capado-Kimball and Barbour, 1971).
Für die Rekombination mit Hilfe von PCR-Produkten wird die ins CELO-Genom zu inserierende Sequenz unter Verwendung von Primern, welche die Sequenz plus ca. 15 Nukleotide der zur Insertionsstelle im CELO-Genom komplementären Sequenz flankieren, mittels PCR (Oliner et al . , 1993) hergestellt. In einer zweiten PCR-Runde werden weitere 15 Nukleotide der zu CELO komplementären Sequenz angehängt, was zu einm PCR-Produkt führt, das aus der zu inserierenden Sequenz mit je 30 Nukleotiden der CELO-Sequenz an beiden Enden besteht. Dieses Fragment wird mit einem Plasmid gemischt, welches die CELO-DNA enthält (z.B. das im Rahmen der vorliegenden Erfindung hergestellte Plasmid pCEL07) und welches mit einem Restriktionsenzym linearisiert wurde, das nur zwischen den beiden flankierenden Sequenzen schneidet, die mittels PCR an die Sequenz angehängt wurden.For the recombination with the aid of PCR products, the sequence to be inserted into the CELO genome is made using primers which contain the sequence plus approximately 15 nucleotides of the insertion site in the CELO genome flank complementary sequence, prepared by PCR (Oliner et al., 1993). In a second round of PCR, a further 15 nucleotides of the sequence complementary to CELO are added, which leads to a PCR product which consists of the sequence to be inserted with 30 nucleotides of the CELO sequence at both ends. This fragment is mixed with a plasmid which contains the CELO-DNA (for example the plasmid pCEL07 produced in the context of the present invention) and which has been linearized with a restriction enzyme which only cuts between the two flanking sequences which are attached to the sequence by means of PCR were.
Für die Rekombination mit Hilfe von Ligationsreaktionsprodukten (hergestellt mittels konventioneller Techniken, wie z.B. von Maniatis et al . 1989, beschrieben) wird im Prinzip ebenso vorgegangen wie bei der Rekombination mit klonierten Fragmenten, mit dem Unterschied, daß der Zwischenklonierungsschritt entfällt .In principle, the recombination using ligation reaction products (produced using conventional techniques, as described, for example, by Maniatis et al. 1989) is carried out in exactly the same way as in the case of recombination with cloned fragments, with the difference that the intermediate cloning step is omitted.
In allen Fällen wird das erhaltene manipulierte Produkt charakterisiert und zur Herstellung von Virus verwendet, indem Vogelzellen transfiziert (z.B. mittels der von Wagner et al . , 1992; Cotten et al . , 1994; oder Cotten et al. , 1993 beschriebenen Methode) und anschließend kultiviert werden, worauf das Virus geerntet wird.In all cases, the manipulated product obtained is characterized and used to produce the virus by transfecting avian cells (for example using the method described by Wagner et al., 1992; Cotten et al., 1994; or Cotten et al., 1993) and then cultivated, whereupon the virus is harvested.
Für die Herstellung von rekombinantem CELO-Virus mittels klonierter Fragmente wird bevorzugt so vorgegangen, daß man ein kleines Fragment aus der relevanten Region von CELO-Virus, in die das Fremdgen eingesetzt werden soll, auf einem bakteriellen Plasmid subkloniert, um zu erreichen, daß Restriktionsstellen, die auf dem CELO- Virus-Genom mehrmals vorkommen, auf dem Plasmid nur einmal vorkommen. Diese Restriktionsstellen werden verwendet, um eine Region aus dem kleinen Fragment zu entfernen. Für die Herstellung des CELO-Virus-Vektors wird diese Region durch Fremd-DNA ersetzt. Die Fremd-DNA kann lediglich aus einem Linker mit einer nur einmal vorkommen Restriktionsstelle bestehen, oder aus einer für ein Protein oder für ein Antigen kodierenden Sequenz. Die Sequenz kann auch für Reportergen mit einer nur einmal vorkommmenden Restriktionsstelle kodieren. Dadurch wird die weitere Manipulation des CELO-Virus erleichtert, indem die Fremd-DNA, kodierend für ein therapeutisch wirksames Genprodukt oder für ein Antigen, in diese Restriktionsstelle inseriert wird, gleichzeitig ermöglicht das Reportergen eine rasche Information über die Effizienz des Vektors, indem das Plasmid in Zellen eingebracht wird und die Expression des Reportergens verfolgt wird.For the production of recombinant CELO virus by means of cloned fragments, the procedure is preferably that of subcloning a small fragment from the relevant region of CELO virus into which the foreign gene is to be inserted on a bacterial plasmid in order to achieve that restriction sites that occur multiple times on the CELO virus genome, occur only once on the plasmid. These restriction sites will be used to remove a region from the small fragment. This region is replaced by foreign DNA for the production of the CELO virus vector. The foreign DNA can consist only of a linker with a unique restriction site, or of a sequence coding for a protein or for an antigen. The sequence can also code for reporter gene with a unique restriction site. This facilitates further manipulation of the CELO virus by inserting the foreign DNA coding for a therapeutically active gene product or for an antigen into this restriction site, and at the same time the reporter gene enables rapid information about the efficiency of the vector by the plasmid is introduced into cells and the expression of the reporter gene is monitored.
FigurenübersichtFigure overview
Fig. 1A: Vergleich der genomischen Organisation von Ad2/5 mit dem CELO-VirusFig. 1A: Comparison of the genomic organization of Ad2 / 5 with the CELO virus
Fig. 1B: Restriktionskarte des CELO-Virus-GenomsFigure 1B: Restriction map of the CELO virus genome
Fig. 2A und B: Pulsed Field gelelektrophoretische Analyse der Genomgröße von Adenoviren2A and B: Pulsed field gel electrophoretic analysis of the genome size of adenoviruses
Fig. 2C: Charakterisierung von Plasmid-klonierten Kopien des CELO-Virus-Genoms mittels Restriktionsendonukleasen2C: Characterization of plasmid-cloned copies of the CELO virus genome by means of restriction endonucleases
Fig. 3: Dot Matrix-Analyse der DNA-Sequenzhomologie zwischen CELO-Virus und Ad2 Fig. 4: Aminosäuresequenzen von Protein VII und pX von verschiedenen Mastadenoviren im Vergleich mit CELO- Virus und den Kernproteinen Core 2 und Core 1Fig. 3: Dot matrix analysis of the DNA sequence homology between CELO virus and Ad2 4: Amino acid sequences of protein VII and pX from different mastadenoviruses in comparison with CELO virus and the core proteins core 2 and core 1
Fig. 5: Konstruktion eines Plasmids, das das CELO-Genom in seiner gesamten Länge enthältFig. 5: Construction of a plasmid containing the entire length of the CELO genome
Fig. 6: Herstellung eines CELO-Vektors von einer auf einem Plasmid enthaltenen Kopie des CELO-Virus-Genoms6: Production of a CELO vector from a copy of the CELO virus genome contained on a plasmid
Fig. 7: Identifizierung von bakteriellen Klonen, die eine Deletion im dUTPase Gen enthaltenFigure 7: Identification of bacterial clones containing a deletion in the dUTPase gene
Fig. 8: Vergleich von Wildtyp-CELO und von CELO, enthaltend eine Deletion im dUTPase Gen Western Blot AnalyseFigure 8: Comparison of wild-type CELO and CELO containing a deletion in the dUTPase gene Western blot analysis
In den Beispielen wurden, wenn nicht anders angegeben, die folgenden Materialien und Methoden verwendet:Unless otherwise stated, the following materials and methods were used in the examples:
a) Virus und Virus-DNAa) Virus and virus DNA
Ein Plaque-gereinigtes Isolat von CELO-Virus (FAV-1,A plaque-purified isolate of CELO virus (FAV-1,
Phelps-Stamm) , das als Ausgangsmaterial für die DNA sowohl für die direkte Sequenzierung als auch für die Bildung bakterieller Plasmidklone verwendet wurde, wurde in 9 Tage alten pathogenfreien Hühnerembryos gezüchtet, wie von Cotten, et al . , 1993, beschrieben. Die FAV-1- Isolate OTE (Kawamura, et al . , 1963) und Indiana C (Calnek und Cowen, 1975; Cowen, et al . , 1978) wurden in Huhnerembryonierenzellen gezüchtet. Das Virus wurde aus der Allantoisflussigkeit oder aus infizierten Embryonierenzellen mittels Auftrennung in CsCl- Gradienten gereinigt, wie von Laver, et al . , 1971, und Cotten, et al . , 1993, beschrieben. Virus-DNA wurde durch Behandlung der gereinigten Virionen mit Proteinase K (0.1 mg/ml) und SDS (0.2 %) bei 56°C, 45 min lang, und anschließender Gleichgewichtszentrifugation der DNA in einem CsCl-Gradienten in Gegenwart von Ethidiumbromid isoliert . Nach dem zweiten Gradienten wurde das Ethidiumbromid durch Extraktion mit CsCl-gesättigtem Isopropanol entfernt und die Virus-DNA ausgiebig gegen 10 mM Tris, 0.1 mM EDTA, pH 8 dialysiert .Phelps strain), which was used as the starting material for the DNA for both direct sequencing and for the formation of bacterial plasmid clones, was grown in 9 day old pathogen-free chicken embryos as described by Cotten, et al. , 1993. The FAV-1 isolates OTE (Kawamura, et al., 1963) and Indiana C (Calnek and Cowen, 1975; Cowen, et al., 1978) were grown in chicken embryonic kidney cells. The virus was purified from allantoic fluid or from infected embryonic kidney cells by separation in CsCl gradients, as described by Laver, et al. , 1971, and Cotten, et al. , 1993. Virus DNA was obtained by treating the purified virions with Proteinase K (0.1 mg / ml) and SDS (0.2%) at 56 ° C. for 45 min, and subsequent equilibrium centrifugation of the DNA in a CsCl gradient in the presence of ethidium bromide. After the second gradient, the ethidium bromide was removed by extraction with CsCl-saturated isopropanol and the virus DNA was dialyzed extensively against 10 mM Tris, 0.1 mM EDTA, pH 8.
b) Huhnerembryonierenzellenb) Chicken embryonic kidney cells
Die Nieren von 14 Tage alten Hühnerembryos wurden gesammelt, in PBS gewaschen und mit Pankreastrypsin (2.5 mg/ml in PBS) bei 37 °C verdaut. Die dispergierten Zellen wurden mit einem gleichen Volumen fötalem Kälberserum gemischt, die Zellen durch Zentrifugation gewonnen, einmal mit FCK-Medium gewaschen und in demselben Medium wieder aufgenommen. (Das FCK-Medium ist Medium 199 mit Earle's Salzen (Sigma M2154) , ergänzt mit 10 % Tryptosephosphat (Sigma T8159) , mit 10 % fötalem Kälberserum, 2 mM Glutamin, 100 μg/ml Streptomycin, 100 IU/ml Penicillin.) Die Zellen wurden in 175 cm2 Gewebekulturflaschen ausplattiert (2 Embryonieren pro Flasche) , bei 37°C/5 % C02 aufbewahrt und 24 bis 48 h später infiziert. Die Zellen wurden mit ca. 1.000 Viruspartikeln pro Zelle infiziert und 3 bis 4 Tage nach der Infektion, wenn der zytopathische Effekt vollständig war, geerntet.The kidneys from 14 day old chicken embryos were collected, washed in PBS and digested with pancreatic trypsin (2.5 mg / ml in PBS) at 37 ° C. The dispersed cells were mixed with an equal volume of fetal calf serum, the cells obtained by centrifugation, washed once with FCK medium and taken up again in the same medium. (The FCK medium is Medium 199 with Earle's salts (Sigma M2154), supplemented with 10% tryptose phosphate (Sigma T8159), with 10% fetal calf serum, 2 mM glutamine, 100 μg / ml streptomycin, 100 IU / ml penicillin.) Die Cells were plated in 175 cm 2 tissue culture bottles (2 embryos per bottle), stored at 37 ° C / 5% CO 2 and infected 24 to 48 hours later. The cells were infected with approximately 1,000 virus particles per cell and harvested 3-4 days after infection when the cytopathic effect was complete.
c) Pulsed Field Elektrophoresec) Pulsed field electrophoresis
Aliquots von gereinigter Adenovirus-DNA (10-20 ng) wurden auf ein 1 % Agarose-Gel (BioRad, PFC-Agarose) geladen und unter Verwendung eines BioRad CHEF Mapper Pulsed Field Elektrophoresesystems (FIGE-Modus) 24 h lang in 0.5 x TBE, gekühlt auf 14 C, aufgetrennt. Die Schaltzeit, sowohl in Vorwärts- als auch Rückwärtsrichtung, wurde logarithmisch von 0.22 see auf 0.92 see mit einem Ramp-Faktor von 0.357 (21 %) verändert. Der Vorwärts-Spannungsgradient war 9 V/cm (300 V) , der Rückwärts-Spannungsgradient war 6 V/cm (200 V) . Nach dem Lauf wurde das Gel 25 min in 0.5 μg/ml Ethidiumbromidlösung in Wasser gefärbt und anschließend 1 h lang entfärbt, bevor das DNA-Muster durch UV- Beleuchtung sichtbar gemacht wurde.Aliquots of purified adenovirus DNA (10-20 ng) were loaded onto a 1% agarose gel (BioRad, PFC-agarose) and using a BioRad CHEF Mapper Pulsed Field electrophoresis system (FIGE mode) in 0.5 x TBE for 24 h , cooled to 14 C, separated. The switching time, both in forward and Reverse direction, was changed logarithmically from 0.22 see to 0.92 see with a ramp factor of 0.357 (21%). The forward voltage gradient was 9 V / cm (300 V), the reverse voltage gradient was 6 V / cm (200 V). After the run, the gel was stained in water for 0.5 min in 0.5 μg / ml ethidium bromide solution and then decolorized for 1 h before the DNA pattern was made visible by UV illumination.
d) Sequenziermethoden, Datenanalysed) sequencing methods, data analysis
Für die Sequenzierung wurden EcoRl- und Hindlll- Restriktionsfragmente von CELO-Virus-DNA in pBlueScript SK(") kloniert. Drei der EcoRl-Klone, enthaltend die EcoRl-Fragmente C, D und E (vgl. Fig. 1B) , und fünf der HindiII-Klone, enthaltend die HindiII-Fragmente F, A, G, B und E (vgl. Fig. 1B) , wurden für die Herstellung von Deletionen in einer Richtung unter Verwendung von Exonuklease III ausgewählt (in Fig. 1B sind die Spaltstellen für die Restriktionsenzyme EcoRl , , HindiII, , BamHI und Bglll angegeben; die alphabetische Bezeichnung der EcoRl- und HindiII-Fragmente - aufgrund ihrer relativen Größen - ist ebenfalls angegeben) . Diese Deletionsklone wurden unter Verwendung des Taq Dyedeoxy Terminator Systems mit dem automatischen Sequenzierapparat ABI 373 nach Vorschrift des Herstellers sequenziert. Die Sequenzanalyse der terminalen 2.000 bp am linken und der 1.000 bp am rechten Ende des CELO-Virus-Genoms, dieFor the sequencing, EcoRI and HindIII restriction fragments of CELO virus DNA were cloned into pBlueScript SK ( " ). Three of the EcoRI clones containing the EcoRI fragments C, D and E (see FIG. 1B) and five the HindiII clones containing HindiII fragments F, A, G, B and E (see FIG. 1B) were selected for the creation of unidirectional deletions using exonuclease III (in FIG. 1B the cleavage sites are for the restriction enzymes EcoRI, HindiII, BamHI and BglII; the alphabetical designation of the EcoRI and HindiII fragments (because of their relative sizes) is also given 373 sequenced according to the manufacturer's instructions The sequence analysis of the terminal 2,000 bp on the left and the 1,000 bp on the right end of the CELO virus genome, the
Sequenzierung zum Schließen der Lücken zwischen den Fragmenten EcoRl C/Hindlll G und den Fragmenten HindiII B/EcoRl D sowie das Sequenzieren zwecks Bestätigung der Sequenz an verschiedenen Stellen des Genoms wurden durch direkte Sequenzierung der viralen DNA vorgenommen. Alle Sequenzdaten sind das Ergebnis von mindestens drei Sequenzreaktionen. Die Sequenzdaten wurden unter Verwendung der Programme SeqEd (ABI) und SeqMan (Lasergene) zusammengeführt. Die Sequenzanalyse wurde unter Verwendung des Programms GCG der Universität von Wisconsin durchgeführt.Sequencing to close the gaps between the fragments EcoRI C / HindIII G and the fragments HindIII B / EcoRI D as well as sequencing to confirm the sequence at different sites in the genome were carried out by direct sequencing of the viral DNA. All sequence data are the result of at least three sequence reactions. The sequence data were merged using the SeqEd (ABI) and SeqMan (Lasergene) programs. Sequence analysis was performed using the University of Wisconsin program GCG.
Beispiel 1example 1
Herstellung eines rekombinanten bakteriellen Plasmidklons des CELO-Virus-GenomsProduction of a recombinant bacterial plasmid clone of the CELO virus genome
a) Herstellung eines Plasmidvektors mit geringer Kopienzahl für die Klonierung des CELO-Virusa) Preparation of a plasmid vector with a low copy number for the cloning of the CELO virus
Dafür wurde der bakterielle Vektor pBR327 (ATCC Nr. 37516) gewählt, weil er in bakteriellen Wirtsstämmen bei einigermaßen geringer Kopienzahl behalten wird (statt diesem Plasmid könnte jedes andere Plasmid mit geringer Kopienzahl, wie pBR322, gleichermaßen verwendet werden) . Wesentlich war es, eine nur einmal vorkommende Restriktionsstelle auf dem Vektor zu schaffen, die in der CELO-Virus-Sequenz nicht aufscheint. Wie im folgenden beschrieben, muß die Virus-Sequenz aus den Plasmidvektorsequenzen herausgeschnitten werden, um eine produktive Infektion zu injizieren, daher müssen Restriktionsstellen, die die CELO-Sequenz flankieren (die jedoch innerhalb der CELO-Sequenz nicht vorhanden sind) in den Vektor eingebaut werden. In den durchgeführten Versuchen wurde das Restriktionsenzym Spei gewählt; statt dessen können jedoch andere Enzyme, die keine Erkennungsstellen in der CELO-Sequenz haben, wie Ascl, Pacl und Sfil, verwendet werden.The bacterial vector pBR327 (ATCC No. 37516) was chosen because it is retained in bacterial host strains with a somewhat low copy number (instead of this plasmid, any other plasmid with a low copy number, such as pBR322, could equally be used). It was essential to create a unique restriction site on the vector that does not appear in the CELO virus sequence. As described below, the virus sequence must be excised from the plasmid vector sequences to inject a productive infection, therefore restriction sites flanking the CELO sequence (but which are not within the CELO sequence) must be incorporated into the vector . In the experiments carried out, the restriction enzyme Spei was chosen; however, other enzymes that have no recognition sites in the CELO sequence, such as Ascl, Pacl and Sfil, can be used instead.
Das Plasmid p327SpeI wurde hergestellt, indem ein Spel- Linker (New England Biolabs) in die Klenow-behandelte EcoRI-Stelle von pBR327 ligiert wurde, wodurch die EcoRl-Stelle zerstört und eine nur einmal vorkommende Spel-Stelle geschaffen wurde.The plasmid p327SpeI was prepared by ligating a Spel linker (New England Biolabs) into the Klenow-treated EcoRI site of pBR327, whereby the EcoRl site was destroyed and a unique Spel site was created.
b) Klonierung der Enden von CELOb) Cloning the ends of CELO
Es wurden die beiden terminalen HindiII-Fragmente kloniert. Dazu wurde CsCl-gereinigte genomische CELO-DNA mit Hindlll verdaut und auf einem niedrigschmelzenden Agarosegel (0.7 % niedrigschmelzende Agarose in TAE) aufgetrennt. Das 1601 bp linke Endfragment und das 959 bp rechte Endfragment wurden aus dem Gel geschnitten, und jedes Gelfragment wurde in 300 μl 10 mM Tris, ImM EDTA pH 7.4 suspendiert und 10 min auf 70°C erhitzt, um die Agarose zu schmelzen. Die terminalen Peptide wurden durch Zusatz von NaOH auf 0.3 N und Erhitzen auf 37°C während 90 min entfernt (Hay,et al . , 1984) . Die Lösungen wurden dann auf Raumtemperatur abgekühlt, dann wurden Tris pH 7.4 (auf 0.1 M) und HC1 (auf 0.3 M) zugesetzt, um die NaOH zu neutralisieren. Die Fragmente wurden 20 min auf 56°C erhitzt und langsam (1 h lang) auf Raumtemperatur abgekühlt, um das Reannealing zu erleichtern. Dann wurde die DNA über eine Qiaquick-Säule gereinigt und 4 h lang bei 16°C unter Verwendung einer Pharmacia T4-Ligasereaktion (New England Biolabs) an einen Spel-Linker (New England Biolabs) ligiert. Die Ligase wurde durch 10 minütiges Erhitzen auf 70°C inaktiviert, überschüssiger Linker wurde entfernt (und ein zu Spei komplementärer Überhang gebildet) durch zweistündiges Verdauen mit Restriktionsendonuklease Spei. Die DNA- Fragmente wurden wiederum mittels Qiaquick Säulenchromatographie gereinigt und an mittels Spei/HindiII/Kälber-alkalische-Phosphatase behandeltes p327SpeI ligiert. Das Ligationsprodukt wurde in den Bakterienstamm DH5alpha transformiert, und es wurden Plasmidklone identifiziert, die entweder das 1601 bp linke Endfragment oder das 959 bp rechte Endfragment (beide freigesetzt mittels Spel/Hindlll-Verdau) trugen. Um die terminalen 300 bp beider Fragmente zu bestätigen, wurde eine DNA-Sequenzanalyse durchgeführt.The two terminal HindII fragments were cloned. For this purpose, CsCl-purified genomic CELO-DNA was digested with HindIII and separated on a low-melting agarose gel (0.7% low-melting agarose in TAE). The 1601 bp left end fragment and the 959 bp right end fragment were cut from the gel, and each gel fragment was suspended in 300 µl 10 mM Tris, ImM EDTA pH 7.4 and heated at 70 ° C for 10 min to melt the agarose. The terminal peptides were removed by adding NaOH to 0.3 N and heating to 37 ° C for 90 min (Hay, et al., 1984). The solutions were then cooled to room temperature, then Tris pH 7.4 (to 0.1 M) and HC1 (to 0.3 M) were added to neutralize the NaOH. The fragments were heated to 56 ° C for 20 min and slowly (1 h) cooled to room temperature to facilitate reannealing. The DNA was then purified on a Qiaquick column and ligated to a Spel linker (New England Biolabs) at 16 ° C for 4 hours using a Pharmacia T4 ligase reaction (New England Biolabs). The ligase was inactivated by heating to 70 ° C for 10 minutes, excess linker was removed (and an overhang complementary to Spei was formed) by digesting with Spei restriction endonuclease for two hours. The DNA fragments were again purified by Qiaquick column chromatography and ligated to p327SpeI treated with Spei / HindiII / calf alkaline phosphatase. The ligation product was transformed into the DH5alpha bacterial strain and plasmid clones were identified which either contained the 1601 bp left end fragment or the 959 bp right end fragment (both released by Spel / Hindlll digestion). A DNA sequence analysis was carried out to confirm the terminal 300 bp of both fragments.
c) Klonierung beider CELO-Enden auf dem selben Plasmidc) Cloning both CELO ends on the same plasmid
Das 1601 bp linke End- und das 959 bp rechte Endfragment wurden aus ihren Vektoren durch einen HindiII/Spei- Verdau herausgeschnitten, mittels Gelelektrophorese aufgetrennt und durch Qiaquick-Chromatographie gereinigt. Die beiden Fragmente wurden in ungefähr äquimolaren Mengen gemischt und unter Vewendung der Pharmacia T4-Ligasereaktion 30 min lang ligiert. Ein Aliquot von Spel/CIP-behandeltem p327SpeI wurde beigegeben und die Ligation 4 h lang fortgesetzt. Die Ligationsmischung wurde in DH5alpha transformiert, und es wurden Plasmidklone identifiziert, die das korrekte Doppelinsert trugen (pWü#l und pWü#3) .The 1601 bp left end fragment and the 959 bp right end fragment were cut out of their vectors by Hindi / SpeI digestion, separated by gel electrophoresis and purified by Qiaquick chromatography. The two fragments were mixed in approximately equimolar amounts and ligated for 30 minutes using the Pharmacia T4 ligase reaction. An aliquot of Spel / CIP treated p327SpeI was added and the ligation was continued for 4 hours. The ligation mixture was transformed into DH5alpha and plasmid clones were identified which carried the correct double insert (pWü # 1 and pWü # 3).
Die zweite Hindlll-Stelle wurde entfernt durch Spalten von pWü#3 mit Clal und BamHI , Behandlung mit Klenow- Enzym, Religieren, Transformieren von DH5alpha und Auswahl eines Klons, dem das Clal/BamHI (das eine Hindlll-Stelle enthalten hatte) . Das erhaltene Plasmid der Bezeichnung pWü-H35 enthielt nun eine einzige Hindlll-Stelle zwischen dem linken und dem rechten CELO- Endfragment .The second Hindlll site was removed by cleaving pWü # 3 with Clal and BamHI, treating with Klenow enzyme, religating, transforming DH5alpha and selecting a clone that contained the Clal / BamHI (which had contained a Hindlll site). The resulting plasmid, designated pWü-H35, now contained a single HindIII site between the left and right CELO end fragments.
d) Klonierung des gesamten CELO-Genomsd) Cloning of the entire CELO genome
Das in c) erhaltene Plasmid pWü-H35 wurde mit Hindlll und CIP behandelt und auf einem niedrig schmelzenden Agarosegel, gefolgt von Qiaquick-Chromatographie, gereinigt. Der linearisierte Vektor pWü-H35 wurde mit 0.3 μg gereingter CELO-Virus-DNA gemischt, dann wurden der DNA-Mischung auf Eis 30 μl elektrokompetenter Bakterienstamm JC8679 (Gillen, et al . , 1974; Oliner, et al . , 1993) beigegeben. Zehn Minuten später wurde die Mischung in eine BioRad E1ektroporationskämmer und mit einer elektrischen Ladung von 2.4 kV gepulst (BioRad Gene Pulser; Oliner, et al . , 1993) . Die Bakterien wurden dann auf LB Ampicillinplatten plattiert und die ampicillinresistenten Kolonien auf ihren Plasmidgehalt untersucht. Die Rekombination zwischen den terminalen CELO-Sequenzen auf pWü-H35 und den Enden der genomischen CELO-DNA stellt die Zirkularität des linearisierten Plasmids wieder her und erlaubt das Wachstum auf Ampicillin. Ein Plasmid, das das CELO-Genom in seiner gesamten Länge (füll length) enthält, wurde identifiziert, und dieses pCEL07 bezeichnete Plasmid für die anschließenden Untersuchungen verwendet. In Fig. 2C ist die Charakterisierung von Plasmid-klonierten Kopien des CELO-Virus-Genoms dargestellt. Plasmid DNA von Klonen der Bezeichnung pCEL07, 8, 9 und 13 oder DNA, isoliert von gereinigtem CELO-Virus, wurde entweder mit Bglll (Spuren 2-6) oder Hindlll (Spuren 7-11) verdaut und auf einem 0.6 % Agarosegel aufgetrennt, und die DNA wurde mittels Ethidiumbromidfärbung sichtbar gemacht. Der Molekulargewichtsmarker (Spuren 1 und 12) war Bakteriophagen λ-DNA, geschnitten mit Hindlll und EcoRl. Die Größen einiger Molekulargewichtsfragmente (in Basenpaaren) sind rechts in der Figur angegeben. Bei jedem Enzym sind die beiden CELO-Endfragmente, die während des Klonierens an das bakterielle Plasmid gebunden werden (und die daher nach Restriktionsverdau nicht freigesetzt werden) links in der Figur angegeben (in Basenpaaren) . Dies sind die Fragmente mit 5832 und 5102 bp mit Bglll, bzw. 1601 und 959 mit Hindlll.The plasmid pWü-H35 obtained in c) was treated with HindIII and CIP and purified on a low-melting agarose gel, followed by Qiaquick chromatography. The linearized vector pWü-H35 was mixed with 0.3 ug purified CELO virus DNA, then 30 μl of electrocompetent bacterial strain JC8679 (Gillen, et al., 1974; Oliner, et al., 1993) were added to the DNA mixture on ice. Ten minutes later, the mixture was pulsed into a BioRad electroporation chamber and with an electrical charge of 2.4 kV (BioRad Gene Pulser; Oliner, et al., 1993). The bacteria were then plated on LB ampicillin plates and the ampicillin-resistant colonies examined for their plasmid content. The recombination between the terminal CELO sequences on pWü-H35 and the ends of the genomic CELO DNA restores the circularity of the linearized plasmid and allows growth on ampicillin. A plasmid containing the full length of the CELO genome was identified and this plasmid, designated pCEL07, was used for subsequent studies. The characterization of plasmid-cloned copies of the CELO virus genome is shown in FIG. 2C. Plasmid DNA from clones of the designation pCEL07, 8, 9 and 13 or DNA isolated from purified CELO virus was digested with either BglII (lanes 2-6) or Hindlll (lanes 7-11) and separated on a 0.6% agarose gel, and the DNA was visualized using ethidium bromide staining. The molecular weight marker (lanes 1 and 12) was bacteriophage λ-DNA cut with HindIII and EcoRI. The sizes of some molecular weight fragments (in base pairs) are shown on the right in the figure. For each enzyme, the two final CELO fragments that are bound to the bacterial plasmid during cloning (and therefore are not released after restriction digestion) are shown on the left in the figure (in base pairs). These are the fragments with 5832 and 5102 bp with Bglll, and 1601 and 959 with Hindlll.
Die Konstruktion von pCEL07 ist in Fig. 5 dargestellt. e) Initiierung einer CELO-Virus-Infektion von einem klonierten CELO-GenomThe construction of pCEL07 is shown in Fig. 5. e) Initiation of a CELO virus infection from a cloned CELO genome
pCEL07 wurde mit Spei (welches an den Stellen spaltet, die die Adenovirus-Termini flankieren) gespalten, mit Phenol/Chloroform extrahiert und über eine HBS- equilibrierte Gelfiltrationssäule (Pharmacia Nick Säule) geschickt, um Verunreinigungen zu entfernen. Die gespaltene DNA wurde dann in Streptavidin- Polylysin/Transferrin-Polylysin/Biotin-AdenoviruspCEL07 was digested with SpeI (which cleaves at the sites flanking the adenovirus termini), extracted with phenol / chloroform and passed through an HBS-equilibrated gel filtration column (Pharmacia Nick column) to remove contaminants. The digested DNA was then in streptavidin-polylysine / transferrin-polylysine / biotin adenovirus
(UV/Psoralen-inaktiviert) eingebaut, wie in der WO 93/07283 beschrieben. Komplexe, enthaltend 0.5 μg Spei-gespaltenes pCEL07 plus 5.5 μg Carrier-DNA (pSP65; Boehringer Mannheim) , wurden verwendet, um primäre embryonische Hühnernierenzellen zu transfizieren (die Komplexe enthielten 4 mg DNA pro 180 cm2 Flasche, enthaltend ca. 3 x 10 Zellen) , und die Zellen wurden auf den durch die Virusreplikation verursachten zytopathischen Effekt untersucht. Fünf Tage nach der Transfektion, als sich die meisten der transfizierten Zellen abgerundet und von der Plattenoberfläche gelöst hatten, wurden die Zellen durch Zentrifugation gewonnen, und das CELO-Virus wurde gereinigt, wie von Cotten, et al . , 1993, beschrieben. Die Virusausbeute vom Plasmid- klonierten CELO-Virus ist vergleichbar mit den Ausbeuten, die bei Verwendung von reiner CELO-Virus-DNA(UV / Psoralen inactivated) incorporated, as described in WO 93/07283. Complexes containing 0.5 μg SpeI-cleaved pCEL07 plus 5.5 μg carrier DNA (pSP65; Boehringer Mannheim) were used to transfect primary embryonic chicken kidney cells (the complexes contained 4 mg DNA per 180 cm 2 bottle, containing approx. 3 x 10 Cells), and the cells were examined for the cytopathic effect caused by virus replication. Five days after the transfection, when most of the transfected cells had rounded and detached from the plate surface, the cells were collected by centrifugation and the CELO virus was purified as described by Cotten, et al. , 1993. The virus yield from the plasmid-cloned CELO virus is comparable to the yields when using pure CELO virus DNA
(gereinigt aus Virionen) erhalten werden.(purified from virions) can be obtained.
Beispiel 2Example 2
Herstellung einer CELO-Mutante, der am rechten Ende die Sequenzen von nt 35.870 bis 42.373 fehlenProduction of a CELO mutant, which lacks the sequences from nt 35,870 to 42,373 at the right end
Es gibt keine identifizierbarer viralen Strukturgene jenseits der zwei Fasergene, mit der L5-Polyadenylierungsstelle bei Position 31771. (Es gibt ein kryptisches VA-Gen bei Position 39.841 bis 39.751.) Es wurde daher untersucht, ob die Sequenzen zwischen ca. 32.000 und dem rechten ITR für das Wachstum des Virus in Zellkultur notwendig sind. Dafür wurde eine Häufung von sieben Asel-Stellen bei den Positionen 35.870, 36.173, 38.685. 38.692, 39.015, 42.348 und 42.373 ausgenutzt, die sonst nirgends im CELO-Virus-Genom vorkommt. pCEL07 wurde mit Asel verdaut, religiert, und ein Plasmid, dem die inneren Asel-Fragmente fehlen, wurde identifiziert und als pALMCELO_35870-42373 bezeichnet. In diesem Zusammenhang ist zu beachten, daß der Plasmidvektor ebenfalls eine Asel-Stelle hat; diese befindet sich jedoch im Ampicillinresistenzgen, und die Selektion auf Ampicillinresistenz erfordert, daß alle positiven Kolonien zumindest die beiden Fragmente haben, die die rechten und linken Hälften des amp-Gens tragen.There are no identifiable viral structural genes beyond the two fiber genes with which L5 polyadenylation site at position 31771. (There is a cryptic VA gene at position 39.841 to 39.751.) It was therefore examined whether the sequences between approximately 32,000 and the right ITR are necessary for the virus to grow in cell culture. For this, a cluster of seven Asel positions at positions 35,870, 36,173, 38,685. 38.692, 39.015, 42.348 and 42.373, which does not occur anywhere else in the CELO virus genome. pCEL07 was digested with Asel, religated, and a plasmid lacking the inner Asel fragments was identified and named pALMCELO_35870-42373. In this connection it should be noted that the plasmid vector also has an Asel site; however, this is in the ampicillin resistance gene, and selection for ampicillin resistance requires that all positive colonies have at least the two fragments that carry the right and left halves of the amp gene.
Um die weiteren Manipulationen des Virus mit dem fehlenden linken Ende des Genoms zu vereinfachen, wurde pALMCELO_35870-42373 mit Asel (welches einmal im Ampicillinresistenzgen des Plasmids und einmal bei Position 35.870 schneidet) verdaut und an ein Linker- Oligonukleotid TACCCTTAATTAAGGG ligiert, welches für eine Schnittstelle für die Restriktions-Endonuklease Pacl sowie für Enden, die komplementär den beim Asel- Verdau gebildeten sind, kodiert. Religierung, gefolgt von Selektion auf Ampicillinresistenz, identifizierte Plasmide, die das Oligonukleotid nicht an der Asel- Stelle des Ampicillinresistenzgens integrierten. Restriktionsverdau identifizierte ein Plasmid, das eine Pacl-Stelle an der früheren Asel-Stelle von CELO bei Position 35.870 trug. Dieses Plasmid wurde als pALMCELO_35870-42373P bezeichnet.In order to simplify further manipulations of the virus with the missing left end of the genome, pALMCELO_35870-42373 was digested with Asel (which cuts once in the ampicillin resistance gene of the plasmid and once at position 35.870) and ligated to a linker oligonucleotide TACCCTTAATTAAGGG, which is used for an interface encoded for the restriction endonuclease Pacl and for ends that are complementary to those formed during the Asel digest. Religion followed by selection for ampicillin resistance identified plasmids that did not integrate the oligonucleotide at the Asel site of the ampicillin resistance gene. Restriction digestion identified a plasmid that carried a PacI site at the former Asel site of CELO at position 35,870. This plasmid was named pALMCELO_35870-42373P.
Beispiel 3 Herstellung eines CELO- Virus -Vektors, in dem ein Fasergen fehlt, das durch ein interessierendes Gen ersetzt wirdExample 3 Production of a CELO virus vector in which a fiber gene is missing, which is replaced by a gene of interest
Die CELO- Fasergene sind auf einem Hindi I I -Fragment , das sich von nt 27.060 bis 33.920 erstreckt (das Hindlll B- Fragment , vgl. die Restriktionskarte in Fig. 1B) , enthalten. Auf diesem Fragment, erstreckt sich die für Faser 1 kodierende Sequenz von nt 1.054 bis 3.435. Das 5H3- Fragment wurde mit Bglll (das bei nt 1.168 schneidet) und Hpal (das bei 3.440 schneidet) verdaut, das Bglll-Ende wurde mit Klenow-Enzym aufgefüllt und an ein stumpfes CMV/Luciferase/ß-Globin-The CELO fiber genes are contained on a Hindi I I fragment which extends from nt 27,060 to 33,920 (the HindIII B fragment, cf. the restriction map in FIG. 1B). On this fragment, the sequence coding for fiber 1 extends from nt 1,054 to 3,435. The 5H3 fragment was digested with Bglll (which cuts at nt 1,168) and Hpal (which cuts at 3,440), the Bglll end was filled in with Klenow enzyme and attached to a blunt CMV / luciferase / β-globin
Spalt/Polyadenylierungssignal-Fragment aus dem Plasmid pCMVL (Plank et al . , 1992) ligiert, um das Plasmid p5H_28227-30502 (luc) zu bilden, dem beinahe die ganze Faser 1-Sequenz fehlt, die durch eine Lucif eraseexpressionseinheit ersetzt ist.Cleavage / polyadenylation signal fragment from plasmid pCMVL (Plank et al., 1992) ligated to form plasmid p5H_28227-30502 (luc) which lacks almost all of the fiber 1 sequence which is replaced by a luciferase expression unit.
Die relevanten Restriktionsschnittstellen in CELO sind folgende :The relevant restriction interfaces in CELO are as follows:
Bglll A'GATCJTBglll A'GATCJT
Schneidet bei: 0 5102 15979 23472 28227 37972 43804Cuts at: 0 5102 15979 23472 28227 37972 43804
Größe: 5102 10877 7493 4755 9745 5832Size: 5102 10877 7493 4755 9745 5832
Hindlll A'AGCTJTHindlll A'AGCTJT
Schneidet bei: 0 1601 5626 17881 23327 27060 33920 38738 42845Cuts at: 0 1601 5626 17881 23327 27060 33920 38738 42845
42845 4380442845 43804
Größe: 1601 4025 12255 5446 3733 6860 4818 4107Size: 1601 4025 12255 5446 3733 6860 4818 4107
959959
Hpal GTT'AACHpal GTT'AAC
Schneidet bei: 0 5503 20673 23355 30502 43804Cuts at: 0 5503 20673 23355 30502 43804
Große: 5503 15170 2682 7147 13302 Notl GC'GGCCJGCLarge: 5503 15170 2682 7147 13302 Notl GC'GGCCJGC
Schneidet bei: 0 17389 43804Cuts at: 0 17389 43804
Größe: 17389 26415Size: 17389 26415
Xbal T'CTAG_AXbal T'CTAG_A
Schneidet bei : 0 1659 1988 28608 39268 41746 43804Cuts at: 0 1659 1988 28608 39268 41746 43804
Gbxße: 1659 329 26620 10660 2478 2058Gbxße: 1659 329 26620 10660 2478 2058
Die Modifikationen, die auf p5H_28227-30502 (luc) vorgenommen worden waren, wurden auf folgende Weise in das gesamte CELO-Genom eingeführt: Das CELO/Luciferase/CELO-Fragment wurde aus p5H_28227-30502 (luc) als Hindi II -Fragment herausgeschnitten. Dieses Fragment wurde mit dem 26kbXbaI -Fragment (CELO-Nukleotide 1988-28608) und den terminalen Hpal -Fragmenten, abgeleitet von pCEL07 (erhalten durch Schneiden mit hpal, enthaltend das linke Ende des CELO-Virus und pBR327-Sequenzen, definiert durch die Hpal-Stellen) rekombiniert. Die drei DNA- Fragmente (ca. je 50 ng) wurden in Wasser gemischt und in JC8679-Zellen elektroporiert , wie oben beschrieben.The modifications made to p5H_28227-30502 (luc) were introduced into the entire CELO genome in the following manner: The CELO / Luciferase / CELO fragment was excised from p5H_28227-30502 (luc) as a Hindi II fragment. This fragment was generated with the 26kbXbaI fragment (CELO nucleotides 1988-28608) and the terminal Hpal fragments derived from pCEL07 (obtained by cutting with hpal containing the left end of the CELO virus and pBR327 sequences defined by the Hpal Positions) recombined. The three DNA fragments (approximately 50 ng each) were mixed in water and electroporated into JC8679 cells as described above.
Beispiel 4Example 4
Einführung eines Reportergens (Luciferase) in das CELO- GenomIntroduction of a reporter gene (luciferase) into the CELO genome
i) Herstellung eines linken Endfragments, enthaltend ein CMV-Luciferasekonstrukti) Preparation of a left end fragment containing a CMV luciferase construct
Das EcoRl-Fragment der Bezeichnung 7R1 (Nukleotide von Position 79 bis 8877) wurde in ein pSP65-Derivat der Bezeichnung pAAALM (beschrieben in der WO 95/33062) kloniert. Das Plasmid wurde in den DAM-Methylase- negativen Bakterienstamm JM110 transformiert, um eine Spaltung der Clal-Stellen in dem Fragment zu ermöglichen. Das Plasmid wurde gereinigt, mit Clal (bei Position 1083) und Ncol (bei Position 4334) geschnitten, mit Klenow-Enzym behandelt, um die überhängenden Enden aufzufüllen, und an ein stumpfes CMV/Luciferase/ß- Globin-Spalt/Polyadenylierungssignal (Plank et al . , 1992) ligiert. Das erhaltene Plasmid wurde p7Rl__1083- 4334Luc bezeichnet.The EcoRI fragment of the designation 7R1 (nucleotides from positions 79 to 8877) was cloned into a pSP65 derivative of the designation pAAALM (described in WO 95/33062). The plasmid was in the DAM methylase negative bacterial strain JM110 was transformed to allow clal sites in the fragment to be cleaved. The plasmid was purified, cut with Clal (at position 1083) and Ncol (at position 4334), treated with Klenow enzyme to fill in the overhanging ends, and attached to a blunt CMV / luciferase / β-globin cleft / polyadenylation signal (Plank et al., 1992). The resulting plasmid was named p7Rl__1083- 4334Luc.
ii) Rekombination des Luciferase-Linkes-Ende-Fragments in eine komplette (füll length) CELO-Sequenzii) Recombination of the luciferase link end fragment into a complete (full length) CELO sequence
Das Plasmid p7Rl_1083-4334Luc wurde gespalten mit Eco47 III, welches bei den CELO-Nukleotiden 937, 1292, 2300 und 8406 (die Stellen bei Nukleotid 1292 und 2300 fehlen in p7Rl_1083-4334Luc) spaltet, um ein großes Fragment, enthaltend die SequenzThe plasmid p7Rl_1083-4334Luc was cleaved with Eco47 III, which cleaves at the CELO nucleotides 937, 1292, 2300 and 8406 (the sites at nucleotide 1292 and 2300 are missing in p7Rl_1083-4334Luc) to a large fragment containing the sequence
CELOnt937-1083/CMVLucPA/CELOnt4334-8406, freizusetzen. Dieses Fragment wurde in pCEL07 rekombiniert . pCEL07 wurde an der einzigen Pmel-Stelle bei CELO nt7433 gespalten und ausgiebig mit Kalbsdarmphosphatase dephosphoryliert . Das linearisierte pCEL07 wurde mit einem ca. 3 bis Stachen molaren Überschuß von CELOnt937-1083/CMVLucPA/CELOnt4334-8406 gemischt. Die Mischung wurde in den Bakterienstamm JC8679 elektroporiert, und ampicillinresistente Kolonien wurden auf Plasmide untersucht, die die gewünschte rekombinante DNA enthalten. Das richtige Plasmid wurde identifiziert, mittels Restriktionsenzymanalyse charakterisiert und pCELOLucI bezeichnet .CELOnt937-1083 / CMVLucPA / CELOnt4334-8406. This fragment was recombined in pCEL07. pCEL07 was cleaved at the only Pmel site at CELO nt7433 and extensively dephosphorylated with calf intestinal phosphatase. The linearized pCEL07 was mixed with an approx. 3 to stache molar excess of CELOnt937-1083 / CMVLucPA / CELOnt4334-8406. The mixture was electroporated into the JC8679 bacterial strain and ampicillin resistant colonies were examined for plasmids containing the desired recombinant DNA. The correct plasmid was identified, characterized by restriction enzyme analysis and designated pCELOLucI.
iii) Ein Luciferase exprimierendes CELO-Virus wurde hergestellt, indem pCELOLucI in primäre embryonische Hühnernierenzellen transfiziert wurde, wie oben beschrieben. Beispiel 5iii) A luciferase expressing CELO virus was made by transfecting pCELOLucI into primary embryonic chicken kidney cells as described above. Example 5
Herstellung eines CELO-Vektors von einer auf einem Plasmid enthaltenen Kopie des CELO-Virus-GenomsPreparation of a CELO vector from a copy of the CELO virus genome contained on a plasmid
Die Region zwischen der Dralll-Stelle (ursprünglich bei nt 34.426 im CELO-Virus-Genom enthalten) und der Xhol- Stelle (ursprünglich bei nt 36.648 im CELO-Virus-Genom enthalten) wurden aus dem Plasmid pAALMH3, welches das HindiII-Fragment von nt 33.920 bis nt 38.738, kloniert in pAALM, enthält, entfernt. Dann wurde mit T4-DNA- Polymerase behandelt, um stumpfe Enden herzustellen, und mit dem CMV/Luciferase/ß-Globin-Fragment (vgl. Beispiel 4) ligiert. Damit wurde das Plasmid p7H3Δ 34426-36648 Luc erhalten. Das CELO/Luciferase/CELO- Fragment wurde auf einem Hind3-Fragment herausgeschnitten und in das CELO-Genom von pCEL07 mittels Rekombination über die nur einmal vorkommende Fsel-Stelle bei Position 35.694 inseriert. Dies ergab das Plasmid pCELOΔ 34426-36648Luc. Verdau mit Spei und Transfektion in embryonale Hühnernierenzellen ergaben ein Virus CELOΔ 34426-36648Luc. Im Anschluß wurden weitere Insertionen, die die Luciferasesequenz durch andere interessierende Gene ersetzen, durchgeführt, indem die mit der Luciferasesequenz eingeführte, nur einmal vorkommende Pacl-Stelle benutzt wurde.The region between the Dralll site (originally contained at nt 34,426 in the CELO virus genome) and the Xhol site (originally contained at nt 36,648 in the CELO virus genome) was derived from the plasmid pAALMH3, which contains the HindiII fragment from nt 33,920 to nt 38,738, cloned in pAALM, contains, removed. It was then treated with T4 DNA polymerase to produce blunt ends and ligated with the CMV / luciferase / β-globin fragment (see Example 4). The plasmid p7H3Δ 34426-36648 Luc was thus obtained. The CELO / Luciferase / CELO fragment was cut out on a Hind3 fragment and inserted into the CELO genome of pCEL07 by recombination via the unique Fsel site at position 35,694. This resulted in the plasmid pCELOΔ 34426-36648Luc. Digest with Spei and transfection into embryonic chicken kidney cells revealed a virus CELOΔ 34426-36648Luc. Subsequently, further insertions were made to replace the luciferase sequence with other genes of interest, using the unique Pacl site introduced with the luciferase sequence.
Fig. 6 zeigt die in diesem Beispiel angewendete Klonierungstrategie in allgemeiner Form: Ein kleines CELO-Fragment wird in ein Plasmid (enthaltend Restriktionsstelle C) subkloniert; dieFigure 6 shows the cloning strategy used in this example in general form: a small CELO fragment is subcloned into a plasmid (containing restriction site C); the
Restriktionsstellen A und B, die in diesem Plasmid nun nur einmal vorkommen, werden verwendet, um die Sequenz durch Fremd-DNA zu ersetzen. Als nächster Schritt wird das gesamte Fragment, enthaltend die Fremd-DNA zwischen CELO-Sequenzen, aus dem Plasmid herausgeschnitten und mit dem Plasmid, das die gesamte CELO-DNA enthält und das mit einem Restriktionsenzym (D)geschnitten wurde, das die CELO-DNA nur einmal spaltet, gemischt. Mit diesem Gemisch werden Bakterien (z.B. vom Stamm JC8679; Oliner et al . , 1993; oder einem anderen Bakertienstamm mit ähnlicher Fähigkeit zur Rekombination) transformiert; Rekombination liefert das gewünschte Plasmid, enthaltend die Fremd-DNA als Insert im CELO- Virus-Genom.Restriction sites A and B, which now occur only once in this plasmid, are used to replace the sequence with foreign DNA. The next step is the entire fragment, containing the foreign DNA between CELO sequences cut out of the plasmid and mixed with the plasmid which contains all of the CELO DNA and which was cut with a restriction enzyme (D) which cleaves the CELO DNA only once. This mixture is used to transform bacteria (for example from strain JC8679; Oliner et al., 1993; or another strain of Bakery with a similar ability to recombine); Recombination provides the desired plasmid, containing the foreign DNA as an insert in the CELO virus genome.
Beispiel 6Example 6
Herstellung einer Wachtelzellinie, die die 7R1- Deletionen und/oder die 9R1-Deletionen in CELO komplementiertPreparation of a quail cell line that complements the 7R1 deletions and / or the 9R1 deletions in CELO
Die Plasmide pX7Rl und pX9Rl (beschrieben in der WO 95/33062) wurden mittels Transferrinfektion, wie in der WO 93/07283 beschrieben, in primäre embryonische Wachtelnieren- oder -leberzellen eingebracht. Vier Tage nach der Transfektion wurden die Zellen trypsinisiert und bei 1/5 der ursprünglichen Dichte ausgesät.Die Zellen wurden zweimal wöchentlich mit FCK-Medium nachgefüttert. Klonale Linien wurden expandiert, und Klone, die entweder das 7R1-, das 9R1-Plasmid oder beide Plasmide trugen, wurden mittels PCR-Analyse identifiziert . Die RNA-Expression von den integrierten Plasmiden wurde mittels Northern Analyse bestimmt.The plasmids pX7Rl and pX9Rl (described in WO 95/33062) were introduced into primary embryonic quail kidney or liver cells by means of transfer infection, as described in WO 93/07283. Four days after the transfection, the cells were trypsinized and seeded at 1/5 of the original density. The cells were replenished with FCK medium twice a week. Clonal lines were expanded and clones carrying either the 7R1, 9R1 plasmid, or both plasmids were identified by PCR analysis. RNA expression from the integrated plasmids was determined by Northern analysis.
Beispiel 7Example 7
a) Herstellung eines CELO-Virus-Genoms mit einer Mutation im ORF794 dUTPase-Gen Es wurde ein Plasmid der Bezeichnung pWüΔdut hergestellt, indem ein 540 bp AfIIII-Sacl-Fragment aus dem ORF794 in pWü-H35 (s. Beispiel 1 c) entfernt wurde. Um pCELOΔdut herzustellen, wurde pWüΔdut mit Hindlll linearisiert und unter Verwendung von alkalischer Shrimp-Phosphatase dephosphoryliert . Nach der Gelreinigung wurde die DNA mit gereinigter CELO-DNA gemischt und verwendet, um E.coli BJ5183 (Degryse, 1996) auf Ampicillinresistenz zu transformieren. Aus den erhaltenen ampicilliresistenten Bakterienkolonien wurde die DNA extrahiert und damit E.coli DH5a transformiert. Aus diesen Bakterien extrahierte DNA wurde mittels Restriktionskartierung analysiert, um rekombinante Virusplasmide zu identifizieren. Die Identität der Klone wurde mittels Restriktionskartierung bestimmt (Fig. 7; pWü-H35 ist in der Fig. mit "pWü" bezeichnet) . Der Verdau des Wildtypplasmids pWü-H35 mit Hindlll und Spei ergibt Fragmente von 2944 bp, 1607 bp und 961 bpa) Generation of a CELO virus genome with a mutation in the ORF794 dUTPase gene A plasmid called pWüΔdut was prepared by removing a 540 bp AfIIII-SacI fragment from the ORF794 in pWü-H35 (see Example 1 c). To prepare pCELOΔdut, pWüΔdut was linearized with HindIII and dephosphorylated using alkaline shrimp phosphatase. After gel purification, the DNA was mixed with purified CELO DNA and used to transform E.coli BJ5183 (Degryse, 1996) to ampicillin resistance. The DNA was extracted from the ampicilli-resistant bacterial colonies obtained and thus E.coli DH5a was transformed. DNA extracted from these bacteria was analyzed by restriction mapping to identify recombinant virus plasmids. The identity of the clones was determined by means of restriction mapping (FIG. 7; pWü-H35 is labeled "pWü" in the figure). The digestion of the wild type plasmid pWü-H35 with Hindlll and Spei gives fragments of 2944 bp, 1607 bp and 961 bp
(Spur 2) . Die Deletion, die die dUTPase verändert, wandelt das 1607 bp-Fragment in ein 1071 bp Fragment um(Lane 2). The deletion that changes the dUTPase converts the 1607 bp fragment into a 1071 bp fragment
(Spur 3; die modifizierten Fragmente sind mit einem Sternchen gekennzeichnet) . Die Plasmide, die die vollständige für CELO kodierende Sequenz oder die vollständige CELO-Sequenz plus die dUTPase-Mutation enthalten, wurden mittels Spel/Hindlll-Verdau analysiert und zeigten dieselbe Änderung des 1607 bp Fragments in ein 961 bp Fragment (Spuren 4 und 5) .(Lane 3; the modified fragments are marked with an asterisk). The plasmids containing the complete CELO coding sequence or the complete CELO sequence plus the dUTPase mutation were analyzed by Spel / HindIII digestion and showed the same change in the 1607 bp fragment to a 961 bp fragment (lanes 4 and 5) .
b) Herstellung rekombinanter CELO-Klone aus Hühnerzellenb) Production of recombinant CELO clones from chicken cells
Es wurden entweder 6 μg pCEL07 (s. Beispiel 1 d) oder 6 μg pCELOΔdut (s. oben; verdaut mit Spei) verwendet, um primäre embryonische Hühnernierenzellen (ca. 500.000 Zellen in einer 2.5 cm Vertiefung) mittels Polyethylenamin(PEI) /Adenovirus-Komplex zu transfizieren. Dazu wurde die Qiagen-gereinigte DNA mit Triton X-114 extrahiert, um Lipopolysaccharid zu entfernen, wie von Cotten et al. 1994, beschrieben. Transfektionskomplexe wurden hergestellt, indem 6 μg verdauter DNA in 250 μl 20 mM HEPES, pH 7.4, verdünnt wurden. 20 μl 10 mM PEI (Molekulargewicht 2.000, pH 7) wurden in 250 μl 20 mM HEPES, pH 7.4, verdünnt. Die PEI- Lösung wurde tropfenweise zur DNA-Lösung hinzugefügt,Either 6 μg pCEL07 (see Example 1 d) or 6 μg pCELOΔdut (see above; digested with SpeI) were used to isolate primary embryonic chicken kidney cells (approx. 500,000 cells in a 2.5 cm well) using polyethyleneamine (PEI) / adenovirus Complex to transfect. The Qiagen-purified DNA was used for this Triton X-114 extracted to remove lipopolysaccharide as described by Cotten et al. 1994. Transfection complexes were prepared by diluting 6 μg of digested DNA in 250 μl 20 mM HEPES, pH 7.4. 20 ul 10 mM PEI (molecular weight 2,000, pH 7) were diluted in 250 ul 20 mM HEPES, pH 7.4. The PEI solution was added dropwise to the DNA solution
20 min bei Raumtemperatur inkubieren gelassen und dann mit 1.5 μl einer Adenoviruspräparation (Psoralen/UV- inaktiviertes Adenovirus Typ 5 , vgl . WO 1719, 1.5 x 1012 Partikel/ml) gemischt. Nach weiteren 20 min wurde der Komplex auf die Zellen in DMEM ohne Serum (250 μl Komplex auf 1.25 ml Medium) aufgegeben. Das Medium wurde auf normales Wachstumsmedium (mit Serum) gewechselt, undAllow to incubate for 20 min at room temperature and then mix with 1.5 μl of an adenovirus preparation (psoralen / UV-inactivated adenovirus type 5, cf. WO 1719, 1.5 × 10 12 particles / ml). After a further 20 min, the complex was applied to the cells in DMEM without serum (250 μl complex on 1.25 ml medium). The medium was changed to normal growth medium (with serum), and
4 bis 5 Tage später wurden die Zellen geerntet, wieder in 100 μl HBS aufgenommen und 2 min lang sonikiert . Ein 10 μl Aliquot dieses Sonikats (Virus in Passage 1) wurde verwendet, um dieselbe Anzahl von primären embryonischen Hühnernierenzellen in einer 2.5 cm Vertiefung einer Zellkulturplatte zu infizieren. Nach weiteren 4 bis4 to 5 days later, the cells were harvested, resuspended in 100 μl HBS and sonicated for 2 minutes. A 10 ul aliquot of this sonicate (virus in passage 1) was used to infect the same number of primary embryonic chicken kidney cells in a 2.5 cm well of a cell culture plate. After another 4 to
5 Tagen wurden die Zellen gezählt, um den zytophatischen Effekt festzustellen (CPE-Endpunkt-Assay oder Plaque- Assay, Precious und Rüssel, 1985) . Die Zellen wurden geerntet (Virus in Passage 2) wie im ersten Schritt und verwendet um frische Hühnerzellen zu infizieren; die Ernte dieser Zellen ergab Viren der 3. Passage, deren Analyse in Fig. 8 dargestellt ist.The cells were counted for 5 days to determine the cytophatic effect (CPE endpoint assay or plaque assay, Precious and Rüssel, 1985). The cells were harvested (virus in passage 2) as in the first step and used to infect fresh chicken cells; harvesting these cells resulted in 3rd passage viruses, the analysis of which is shown in FIG. 8.
c) Western Blotsc) Western blots
Die Virus-infizierten Zellen wurden geerntet, in HBS wieder aufgenommen und sonikiert. Aliquots wurden mit 5x Ladepuffer (250 mM Tris-Cl, pH 6.8, 500 mM DTT, 10 % SDS, 0.5 % Bromphenolblau, 50 % Glyzerin) gemischt,The virus-infected cells were harvested, resuspended in HBS and sonicated. Aliquots were mixed with 5x loading buffer (250 mM Tris-Cl, pH 6.8, 500 mM DTT, 10% SDS, 0.5% bromophenol blue, 50% glycerin),
3 min lang auf 95°C erhitzt und dann über ein 10 % Polyacrylamidgel laufen gelassen. Die Proteine wurden auf Nitrozellulose transferiert, über Nacht in 5 % entfetteter Milch/TBST (10 mM Tris-Cl, pH 7.4, 150 mM NaCl, 0.05 % Tween-20) blockiert. Virale Proteine wurden mittels anti-CELO-Antiseren von Kaninchen (1:1000) und anti-Kaninchen-Meerrettichperoxidase (DAKO; 1:20000) nachgewiesen und mittels ECL (Amersham) sichtbar gemacht. Als Kontrolle wurde CELO-Virus (2.5 x 1012 Viruspartikel/ml) verwendet. Das Kaninchen-Serum wurde unter Verwendung von CsCl-gereinigtem CELO-Virus hergestellt und bei 60°C 30 min lang hitzeinaktiviert.Heated to 95 ° C for 3 minutes and then run over a 10% polyacrylamide gel. The proteins were transferred to nitrocellulose, blocked overnight in 5% defatted milk / TBST (10mM Tris-Cl, pH 7.4, 150mM NaCl, 0.05% Tween-20). Viral proteins were detected using anti-CELO antisera from rabbits (1: 1000) and anti-rabbit horseradish peroxidase (DAKO; 1: 20000) and visualized using ECL (Amersham). CELO virus (2.5 x 10 12 virus particles / ml) was used as a control. The rabbit serum was prepared using CsCl purified CELO virus and heat inactivated at 60 ° C for 30 minutes.
d) Extraktion von Virus-DNAd) extraction of virus DNA
Virusinfizierte Zellen wurden geerntet und in 100 μl HBS/0. l%SDS/lg/ml Proteinase K aufgenommen, bei 56°C 1 h lang inkubiert und mit Phenol/Chloroform extrahiert. Die DNA wurde mit Ethanol präzipitiert .Virus infected cells were harvested and in 100 ul HBS / 0. 1% SDS / lg / ml proteinase K was added, incubated at 56 ° C. for 1 hour and extracted with phenol / chloroform. The DNA was precipitated with ethanol.
Die durchgeführten Analysen ergaben, daß die Rekombination zwischen dem linearisierten Plasmid pWüΔdut und der CELO-DNA zwei Typen von Plasmiden lieferte. Die Rekombination an das linke Ende der dUTPase-Mutation ergab ein Wildtyp-CELO-Genom; die Rekombiation auf der rechten Seite der dUTPase-Mutation ergab ein CELO-Genom, das die dUTPase-Mutation trug.The analyzes performed showed that the recombination between the linearized plasmid pWüΔdut and the CELO DNA gave two types of plasmids. Recombination at the left end of the dUTPase mutation resulted in a wild-type CELO genome; recombination on the right side of the dUTPase mutation resulted in a CELO genome that carried the dUTPase mutation.
Die Infektion von primären embryonalen Hühnerzellen sowohl mit CELO-DNA als auch mit CELO-Δdut-DNA ergab zytopathische Effekte, die sich in Form von angeschwollenen, losgelösten Zellen nach 36 h äußerten, während Kontrollzellen (behandelt mit Lysaten von Zellen, die mit einem Leervektor (Bluescript pBS, Stratagene) transfiziert worden waren) in ihrer Morphologie gesund blieben. Die Western Blot Analyse ergab, daß CELO-Viren und CELO-Δdut-Viren, die von Plasmid-DNA produziert wird, vom in befruchteten, 9 Tage alten Hühnereiern gezüchteten Wildtyp-Virus nicht unterscheidbar ist.Infection of primary embryonic chicken cells with both CELO-DNA and CELO-Δdut-DNA showed cytopathic effects, which manifested themselves in the form of swollen, detached cells after 36 h, while control cells (treated with lysates from cells with an empty vector (Bluescript pBS, Stratagene) had been transfected) remained healthy in their morphology. Western blot analysis showed that CELO virus and CELO-Δdut virus produced by plasmid DNA are indistinguishable from wild-type virus grown in fertilized 9-day-old chicken eggs.
Insgesamt zeigen die in diesem Beispiel durchgeführten Versuche, daß pCEL07 ein viables CELO-Virus-Genom kodiert. Diese DNA liefert nach Herausschneiden mit Spei und Transfektion in primäre embryonische Hühnernierenzellen infektiöses, passagierbares Virus. Lysate von Viren der 1. und 2. Passage rufen einen zytopathischen Effekt auf primären embryonischen Hühnernierenzellen hervor. Zu beachten ist, daß diese Lysate mittels Sonikieren hergestellt wurden, was die Möglichkeit ausschließt, daß der CPE in den sekundären und tertiären Infektionen auf die Expression viraler Gene zurückzuführen ist, die von Rest-Plasmid-DNA in den Lysaten stammt; von Plasmid-DNA ist nicht zu erwarten, daß sie die zur Herstellung der Lysate verwendete Methode aushält. Außerdem wurde festgestellt, daß mit jeder Infektionsrunde eine lOOfache Amplifikation des CPE verursachenden Agens stattfindet, was im Einklang mit der Amplifizierung eines Virus ist, jedoch nicht mit der einfachen Passage von Restplasmid-DNA aus der ersten Transfektion.Overall, the experiments carried out in this example show that pCEL07 encodes a viable CELO virus genome. This DNA, after excision with Spei and transfection into primary embryonic chicken kidney cells, delivers infectious, passable virus. Lysates from 1st and 2nd passage viruses produce a cytopathic effect on primary embryonic chicken kidney cells. It should be noted that these lysates were produced by sonication, which excludes the possibility that the CPE in the secondary and tertiary infections can be attributed to the expression of viral genes which originate from residual plasmid DNA in the lysates; plasmid DNA is not expected to endure the method used to prepare the lysates. It was also found that with each round of infection there is a 100-fold amplification of the CPE-causing agent, which is in accordance with the amplification of a virus, but not with the simple passage of residual plasmid DNA from the first transfection.
Die Deletion von 540 bp im CELO-Genom, mit der Sequenzen zwischen einer AfUli-Stelle bei bp 609 und einer Sacl-Stelle bei bp 1145 entfernt und der für dUTPase kodierende offene Leserahmen zerstört wurde, lieferte ein Virus-Genom, das auch in primären embryonischen Hühnerzellen lebensfähig ist. Mit dem UTPase-Gen wurde somit ein Virus-Gen identifiziert, welches nicht für das Wachstum in Zellkultur erforderlich ist. Tabelle 1The deletion of 540 bp in the CELO genome, with which sequences between an AfUli site at bp 609 and a SacI site at bp 1145 were removed and the open reading frame coding for dUTPase was destroyed, yielded a virus genome which was also found in primary embryonic chicken cells is viable. A virus gene was therefore identified with the UTPase gene, which is not required for growth in cell culture. Table 1
CELO-Virus-Sequenzen, veröffentlicht oder aus DatenbankenCELO virus sequences, published or from databases
ERSATZBLAπ(REGEL26) REPLACEMENT BLAπ (RULE 26)
Tabelle 2B Nicht zugeordnete offene Leserahmen, größer als 99 Aminosäurereste Table 2B Unassigned open reading frames, greater than 99 amino acid residues
Tabelle 3 Rekombinante AdenovirusvakzineTable 3 Recombinant adenovirus vaccines
ERSATZBLAπ(REGEL26) REPLACEMENT BLAπ ( RULE 26)
ERSATZBLATT (REGEL 28) LiteraturlisteREPLACEMENT SHEET (RULE 28) Bibliography
Akopian, T.A., et al . , 1990, Nucleic Acids Res. 18:Akopian, T.A., et al. , 1990, Nucleic Acids Res. 18:
2825. (Corrigendum: Nucleic Acids Res 19: 424) . Akopian, T.A. , et al.,1992, Mol. Gen. Microbiol .2825. (Corrigendum: Nucleic Acids Res 19: 424). Akopian, T.A. , et al., 1992, Mol. Gen. Microbiol.
Virol. 11: 19-23. Aleström, P., et al . , 1982a, J. Virology 42:Virol. 11: 19-23. Aleström, P., et al. , 1982a, J. Virology 42:
306-310. Aleström, et al . , 1982b, Gene 18: 193-197. Anderson, J. , et al . , 1969a, J. Natl. Cancer Inst. 42306-310. Aleström, et al. , 1982b, Gene 18: 193-197. Anderson, J., et al. , 1969a, J. Natl. Cancer Inst. 42
1-7. Anderson, J. , et al . , 1969b, J. Natl. Cancer Inst. 431-7. Anderson, J., et al. , 1969b, J. Natl. Cancer Inst. 43
575-580. Anderson, C.W., et al . , 1989, Virology 172: 506-512. Bailey, A. und Mautner, V., 1994. Virology 205:575-580. Anderson, C.W., et al. , 1989, Virology 172: 506-512. Bailey, A. and Mautner, V., 1994. Virology 205:
438-452. Bennett, D.D. und Wrigth, S.E., 1987, Virus Res. 8:438-452. Bennett, D.D. and Wrigth, S.E., 1987, Virus Res. 8:
73-7. Bett, A.J., Prevec, L. und Graham, F.L., 1983,73-7. Bett, A.J., Prevec, L. and Graham, F.L., 1983,
J. Virol. 67: 5911-5921. Both et al-, 1993, Virology 193: 940-950.J. Virol. 67: 5911-5921. Both et al., 1993, Virology 193: 940-950.
Boulanger, P., et al . , 1979, J. Gen. Virol., 44:Boulanger, P., et al. , 1979, J. Gen. Virol., 44:
783-800. Bridge, E. und Ketner, G., 1989, J. Virol. 63:783-800. Bridge, E. and Ketner, G., 1989, J. Virol. 63:
631-638. Brown, P.H., et al . , 1993, Oncogene 9: 791-799. Cai, F. und Weber, J. , 1993, Virology 196: 358-362. Calnek, B. W. und Cowen,B.S., 1975, Avian Dis. 19:631-638. Brown, P.H., et al. , 1993, Oncogene 9: 791-799. Cai, F. and Weber, J., 1993, Virology 196: 358-362. Calnek, B.W. and Cowen, B.S., 1975, Avian Dis. 19:
91-103. Capado-Kimball und Barbour, 1997, J. Bacteriol. 106:91-103. Capado-Kimball and Barbour, 1997, J. Bacteriol. 106:
204-212 Caravokyri, C. und Leppard, K. N., 1995, J. Virol. 69204-212 Caravokyri, C. and Leppard, K.N., 1995, J. Virol. 69
6627-6633. Cavanagh, D., et al . , 1988, Virus Res. 11: 141-50. Charlton et al . , 1992, Arch. Virol. 123: 169-179. Chartier, C, et al . , 1996, J. Virol. 70: 4805-4810 Cheng et al . , 1992, J. Virol. 66: 6721-6727. Chengalvalva, et al . , 1994, J. Gen. Virol. 75:6627-6633. Cavanagh, D., et al. , 1988, Virus Res. 11: 141-50. Charlton et al. , 1992, Arch. Virol. 123: 169-179. Chartier, C, et al. , 1996, J. Virol. 70: 4805-4810 Cheng et al. , 1992, J. Virol. 66: 6721-6727. Chengalvalva, et al. , 1994, J. Gen. Virol. 75:
125-131. Chiocca, S., et al . , 1996, J. Virol. 70: 2939-2949 Chroboczek, J., Bieber, F. und Jacrot, B. , 1992,125-131. Chiocca, S., et al. , 1996, J. Virol. 70: 2939-2949 Chroboczek, J., Bieber, F. and Jacrot, B., 1992,
Virology 186: 280-285. Colby, W.W. und Shenk, T. , 1981, J. Virol. 39:Virology 186: 280-285. Colby, W.W. and Shenk, T., 1981, J. Virol. 39:
977-980. Cosset, F.L., et al . , 1991, Virology 185: 862-6 Cotten, M., et al . , 1993, J.Virol 67: 3777-3785. Cotten, M., et al . , 1994, Virology 205: 254-261 Cotten, M., et al . , 1994, Gene Therapy 1: 239-246 Cowen, B., et al . , 1978, Avian Diseases 22: 459-470. Cunningham, C.H., 1975, Dev. Biol. Stand. 28: 546-62. Davison, A.J., et al. , 1993, J. Mol. Biol. 234:977-980. Cosset, FL, et al. , 1991, Virology 185: 862-6 Cotten, M., et al. , 1993, J.Virol 67: 3777-3785. Cotten, M., et al. , 1994, Virology 205: 254-261 Cotten, M., et al. , 1994, Gene Therapy 1: 239-246 Cowen, B., et al. , 1978, Avian Diseases 22: 459-470. Cunningham, CH, 1975, Dev. Biol. Stand. 28: 546-62. Davison, AJ, et al. , 1993, J. Mol. Biol. 234:
1308-1316. Degryse, E., 1996, Gene 170: 45-50 Denisova, T.S., Sitnikov, B.S. und Ghibadulin, R.A.,1308-1316. Degryse, E., 1996, Gene 170: 45-50 Denisova, T.S., Sitnikov, B.S. and Ghibadulin, R.A.,
1979, Mol. Biol. (USSR) 13: 1021-1034. Descombes, P., und Schibier, U., 1991, Cell 67:1979, Mol. Biol. (USSR) 13: 1021-1034. Descombes, P., and Schibier, U., 1991, Cell 67:
569-579 Deshmukh, D.R., et al. , 1974, Am. J. Vet . Res. 35:569-579 Deshmukh, D.R., et al. , 1974, at. J. Vet. Res. 35:
1463-4. Eloit et al.,1990, J. Gen. Virol. 71: 2425-2431. Estes, M.K. und Graham, D.Y., 1985, Adv. Exp. Med.1463-4. Eloit et al., 1990, J. Gen. Virol. 71: 2425-2431. Estes, M.K. and Graham, D.Y., 1985, Adv. Exp. Med.
Biol. 185: 201-14. Everitt, E., et al . , 1973, Virology 52: 130-147. Fooks et al., 1995, Virology 210: 456-465.Biol. 185: 201-14. Everitt, E., et al. , 1973, Virology 52: 130-147. Fooks et al., 1995, Virology 210: 456-465.
Furcinitti, P.S., van Oostrum, J. und Burnett, R.M.,Furcinitti, P.S., van Oostrum, J. and Burnett, R.M.,
1989, EMBO J. 8: 3563-3570. Fynan, E.F., et al . , 1993, DNA Cell Biol. 12: 785-9. Gallichan et al . , 1993, J. Infect . Dis. 168:622-629. Gelderblom, H. und Maichle-Lauppe, I., 1982, Arch.1989, EMBO J. 8: 3563-3570. Fynan, E.F., et al. , 1993, DNA Cell Biol. 12: 785-9. Gallichan et al. , 1993, J. Infect. Dis. 168: 622-629. Gelderblom, H. and Maichle-Lauppe, I., 1982, Arch.
Virol. 72: 289-298. Ghosh-Choudhury, G., Haj-Ahmad, Y. und Graham, F.L.,Virol. 72: 289-298. Ghosh-Choudhury, G., Haj-Ahmad, Y. and Graham, F.L.,
1987, EMBO J. 6: 1733-1739. Gillen, J.R., et al . , 1974, Mechanisms in Genetic1987, EMBO J. 6: 1733-1739. Gillen, J.R., et al. , 1974, Mechanisms in Genetic
Recombination (R.F. Grell, ed.) Plenum, New York, pp.123-135 Gooding, L.R., 1992, Cell 71: 5-7. Gouvea, V. und Schnitzer, T.J., 1982, Infect.Recombination (R.F. Grell, ed.) Plenum, New York, pp. 123-135 Gooding, L.R., 1992, Cell 71: 5-7. Gouvea, V. and Schnitzer, T.J., 1982, Infect.
Immun. 38: 731-8. Gouvea, V., et al. , 1983, Virology 126: 240-7. Gräble, M. und Hearing, P., 1990, J. Virol. 64:Immune. 38: 731-8. Gouvea, V., et al. , 1983, Virology 126: 240-7. Grable, M. and Hearing, P., 1990, J. Virol. 64:
2047-2056. Gräble, M. und Hearing, P., 1992, J. Virol. 66 :2047-2056. Grable, M. and Hearing, P., 1992, J. Virol. 66:
723-731. Graham, F.L., 1990, Trends in Biotechnology 8: 85-87. Graham, F.L., et al . , 1975, Cold Spring Harbor Symp.723-731. Graham, F.L., 1990, Trends in Biotechnology 8: 85-87. Graham, F.L., et al. , 1975, Cold Spring Harbor Symp.
Quant. Biol. 39: 637-650. Graham, F.L., et al . , 1977, J. Gen. Virol. 36: 59-72. Green, M.,et al . , 1967, Proc. Natl. Acad. Sei. USA 57Quant. Biol. 39: 637-650. Graham, F.L., et al. , 1977, J. Gen. Virol. 36: 59-72. Green, M., et al. , 1967, Proc. Natl. Acad. Be. USA 57
1302-1309. Green, N.M., et al . , 1983, EMBO J. 2: 1357-1365. Guilhot, C, et al., 1993, Oncogene 8: 619-624. Haffer, K. , 1984, Avian Dis. 28: 669-76. Hanahan, D. , 1983, J. Mol. Biol. 166: 557-580 Hertmann, I., et al . , 1979, Avian Dis. 23: 863-9. Hertmann, I., et al . , 1980, Prog. Clin. Biol. Res. 47:1302-1309. Green, NM, et al. , 1983, EMBO J. 2: 1357-1365. Guilhot, C, et al., 1993, Oncogene 8: 619-624. Haffer, K., 1984, Avian Dis. 28: 669-76. Hanahan, D., 1983, J. Mol. Biol. 166: 557-580 Hertmann, I., et al. , 1979, Avian Dis. 23: 863-9. Hertmann, I., et al. , 1980, Prog. Clin. Biol. Res. 47:
125-32. Hess, M., et al., 1995, J. Mol. Biol. 252: 379-385. Hosokawa, K. und Sung, M.T., 1976, J. Virol. 17:125-32. Hess, M., et al., 1995, J. Mol. Biol. 252: 379-385. Hosokawa, K. and Sung, M.T., 1976, J. Virol. 17:
924-934. Hsu, et al., 1994, Vaccine 12: 607-612.924-934. Hsu, et al., 1994, Vaccine 12: 607-612.
Huang, D.D., et al . , 1987, Avian Dis. 31:446-54. Ignjatovic, J. und McWaters, P.G., 1991, J. Gen.Huang, D.D., et al. , 1987, Avian Dis. 31: 446-54. Ignjatovic, J. and McWaters, P.G., 1991, J. Gen.
Virol. 72: 2915-22. Javier, R., Raska, K.J. und Shenk, T., 1992, ScienceVirol. 72: 2915-22. Javier, R., Raska, K.J. and Shenk, T., 1992, Science
257: 1267-1271. Javier, R.T., 1994, J. Virol. 68: 3917-3924. Jia, W., et al., 1995, Arch. Virol. 140: 259-271. Johnson, D.C., et al . , 1988, Virology 164: 1-14. Jones, N., und Shenk, T., 1978, Cell 13: 181-188. Jones, R.F., Asch, B.B. und Yohn, D.S., 1970, Cancer257: 1267-1271. Javier, R.T., 1994, J. Virol. 68: 3917-3924. Jia, W., et al., 1995, Arch. Virol. 140: 259-271. Johnson, D.C., et al. , 1988, Virology 164: 1-14. Jones, N., and Shenk, T., 1978, Cell 13: 181-188. Jones, R.F., Asch, B.B. and Yohn, D.S., 1970, Cancer
Res. 30: 1580-1585. Kalicharran et al . , 1992, Can J. Vet Res. 56: 28-33. Kawamura, H. , Sato, T., Tsubahara, H. und Isogai, S.,Res. 30: 1580-1585. Kalicharran et al. , 1992, Can J. Vet Res. 56: 28-33. Kawamura, H., Sato, T., Tsubahara, H. and Isogai, S.,
1963, Jap. Nat. Inst. Anim. Health Quart. 3:1963, Jap. Nat. Inst. Anim. Health quart. 3:
1-10. Keeler, C.L., et al . , 1991, Avian Dis. 35: 920-9. Kidd, A.H.,et al., 1993 Virology 192: 73-84. Kodihalli, S., et al . , 1994, Vaccine 12: 1467-1472. Kozarsky, K.F. und Wilson, J.M., 1993, Current Opinion in Genetics and Development 3: 499-503. Küsters, J.G., et al . , 1990, Vaccine 8: 605-8. Larsson, S., Bellett, A.J. und Akusjarvi, G., 1986,1-10. Keeler, C.L., et al. , 1991, Avian Dis. 35: 920-9. Kidd, A.H., et al., 1993 Virology 192: 73-84. Kodihalli, S., et al. , 1994, Vaccine 12: 1467-1472. Kozarsky, K.F. and Wilson, J.M., 1993, Current Opinion in Genetics and Development 3: 499-503. Küsters, J.G., et al. , 1990, Vaccine 8: 605-8. Larsson, S., Bellett, A.J. and Akusjarvi, G., 1986,
J. Virol. 58: 600-609. Laver, W.G., Younghusband, H.B. und Wrigley, N.G.,J. Virol. 58: 600-609. Laver, W.G., Younghusband, H.B. and Wrigley, N.G.,
1971, J.A., et al . , 1989, Mol. Immunol. 26: 7-15. Li, P., Bellett, A.J.D. und Parish, C.R., 1983,1971, J.A., et al. , 1989, Mol. Immunol. 26: 7-15. Li, P., Bellett, A.J.D. and Parish, C.R., 1983,
J. Gen. Virol. 64: 1375-1379. Li, P., Bellett, A.J.D. und Parish, C.R., 1984a,J. Gen. Virol. 64: 1375-1379. Li, P., Bellett, A.J.D. and Parish, C.R., 1984a,
J. Gen. Virol. 65:1803-1815. Li, P., Bellett, A.J.D. und Parish, C.R., 1984b,J. Gen. Virol. 65: 1803-1815. Li, P., Bellett, A.J.D. and Parish, C.R., 1984b,
J. Virol. 52: 638-649. Li, P., Bellett, A.J.D. und Parish, C.R., 1984c,J. Virol. 52: 638-649. Li, P., Bellett, A.J.D. and Parish, C.R., 1984c,
J. Virol. 65: 1817-1825. Maizel, J.V., et al . , 1968, Virology 36: 126-136. Malkinson, M., et al . , 1992, Arch. Virol. 127: 169-84. Mancini, L.O., et al . , 1970a, Arch. für gesamteJ. Virol. 65: 1817-1825. Maizel, J.V., et al. , 1968, Virology 36: 126-136. Malkinson, M., et al. , 1992, Arch. Virol. 127: 169-84. Mancini, L.O., et al. , 1970a, arch. For entire
Virusforschung 30: 257-260. Mancini, L. O., et all, 1970b, Arch. für gesamteVirus Research 30: 257-260. Mancini, L.O., et all, 1970b, Arch. For Entire
Virusforschung 30: 261-262. Mangel, W., et al . , 1993, Nature 361: 274-275. Maniatis, T., et al . , 1989, Molecular cloning, A laboratory Manual, Second Edition. Cold SpringVirus Research 30: 261-262. Mangel, W., et al. , 1993, Nature 361: 274-275. Maniatis, T., et al. , 1989, Molecular cloning, A laboratory Manual, Second Edition. Cold Spring
Habor University Press, Cold Spring Habor, NY. Marshall, et al . , 1990, J. Infect. Dis. 162:Habor University Press, Cold Spring Habor, NY. Marshall, et al. , 1990, J. Infect. Dis. 162:
1177-1181. Mautner, V., 1989, Adenoviridae. in: Porterfield ed.1177-1181. Mautner, V., 1989, Adenoviridae. in: Porterfield ed.
Andrewes' Viruses of Vertebrates. pp. 249-282.Andrewes' Viruses of Vertebrates. pp. 249-282.
London: Baillierre Tindall. McFerran, J.B. und Adair, B.M., 1977, Avian PathologyLondon: Baillierre Tindall. McFerran, J.B. and Adair, B.M., 1977, Avian Pathology
6: 189-217. McCracken, R.M. und Adair, B.M., 1993, Avian adenoviruses. in "Viral Infections of Vertebrates"6: 189-217. McCracken, R.M. and Adair, B.M., 1993, Avian adenoviruses. in "Viral Infections of Vertebrates"
(volume 3. Viral Infections of Birds) Eds. J.B.(volume 3. Viral Infections of Birds) Eds. J.B.
McFerran und M.S. McNulty, Elsevior ScientificMcFerran and M.S. McNulty, Elsevior Scientific
Publishers. Amsterdam. Mittal, S.K., et al . , 1995, J. Gen. Virol. 76:Publishers. Amsterdam. Mittal, S.K., et al. , 1995, J. Gen. Virol. 76:
93-102. Moran, E., 1993, the FASEB J. 7: 880-885. Moran, E., 1994, Seminars in Virology 5: 327-340. Morrison, T, et al., 1990, Microb. Pathog. 9: 387-96 Moscovici, C, et al . , 1977, Cell 11: 95-103. Natuk, et al . , 1993, AIDS Res. Hum Retroviruses . 9:93-102. Moran, E., 1993, the FASEB J. 7: 880-885. Moran, E., 1994, Seminars in Virology 5: 327-340. Morrison, T, et al., 1990, Microb. Pathog. 9: 387-96 Moscovici, C, et al. , 1977, Cell 11: 95-103. Natuk, et al. , 1993, AIDS Res. Hum Retroviruses. 9:
395-404 Ni, Y., und Kemp, M.C., 1992, J. Gen. Virol. 73:395-404 Ni, Y., and Kemp, M.C., 1992, J. Gen. Virol. 73:
3107-13. Nicholas, R.A. , et al . , 1987, Arch. Virol. 96: 283-7. Oliner, J.D., et al . , 1993, Nucleic Acids Research 21:3107-13. Nicholas, R.A. , et al. , 1987, Arch. Virol. 96: 283-7. Oliner, J.D., et al. , 1993, Nucleic Acids Research 21:
5192-5197 Pieniazek, N.J., et al . , 1990, Nucl . Acids Res. 18:5192-5197 Pieniazek, N.J., et al. , 1990, Nucl. Acids Res. 18:
1901. Plank, C. , et al . , 1992, Bioconjugate Chemistry 3:1901. Plank, C., et al. , 1992, Bioconjugate Chemistry 3:
533-539 Precious, B. und Russell, W.C., 1985, Virology, ed.533-539 Precious, B. and Russell, W.C., 1985, Virology, ed.
Mahy, B.W.J., IRL Press, Oxford, Washington, DC,Mahy, B.W.J., IRL Press, Oxford, Washington, DC,
193-205. Rao, L., et al . , 1992, Proc. Natl. Acad. Sei. USA 89:193-205. Rao, L., et al. , 1992, Proc. Natl. Acad. Be. USA 89:
7742-7746. Raviprakash, K.S., et al . , 1989, J. Virol. 63:7742-7746. Raviprakash, K.S., et al. , 1989, J. Virol. 63:
5455-5458. Roberts,R.J. , et al . , 1986, A consensus sequence for the adenovirus-2 genome. (in) Doerfler,W. (Ed.);5455-5458. Roberts, R.J. , et al. , 1986, A consensus sequence for the adenovirus-2 genome. (in) Doerfler, W. (Ed.);
Adenovirus DNA: 1-51; Martinus Nijhoff Publishing,Adenovirus DNA: 1-51; Martinus Nijhoff Publishing,
Boston. Ruley, H.E., 1983, Nature 304: 602-606. Sarma, P.S., Huebner, R.J. und Lane, W.T., 1965,Boston. Ruley, H.E., 1983, Nature 304: 602-606. Sarma, P.S., Huebner, R.J. and Lane, W.T., 1965,
Science 149: 1108. Schnitzlein, W.M., et al . , 1988, Virus Res. 10: 65-75. Scott, S.D., et al . , 1989, J. Gen. Virol. 70: 3055-65. Shafren, D.R. und Tannock, G.A. , 1991, J. Gen.Science 149: 1108. Schnitzlein, W.M., et al. , 1988, Virus Res. 10: 65-75. Scott, S.D., et al. , 1989, J. Gen. Virol. 70: 3055-65. Shafren, D.R. and Tannock, G.A. , 1991, J. Gen.
Virol. 72: 2713-9. Sheppard, M. und Trist, H., 1992, Virology 188:Virol. 72: 2713-9. Sheppard, M. and Trist, H., 1992, Virology 188:
881-886. Shinagawa, M. , et al . , 1983, Virology 125: 491-495. Stouten, P.F.W. , et al. , 1992, J. Mol. Biol. 226:881-886. Shinagawa, M., et al. , 1983, Virology 125: 491-495. Stouten, PFW, et al. , 1992, J. Mol. Biol. 226:
1073-1084. Tagaya, Y., et al . , 1989, Embo J. 8: 757-764. Taylor, J., et al . , 1995, Vaccine 13: 539-549. Traenckner, E., B-M. , et al . , 1995, Embo J. 14:1073-1084. Tagaya, Y., et al. , 1989, Embo J. 8: 757-764. Taylor, J., et al. , 1995, Vaccine 13: 539-549. Traenckner, E., B-M. , et al. , 1995, Embo J. 14:
2876-2883. Trapnell, B.C. und Gorziglia, M. , 1994, Current2876-2883. Trapnell, B.C. and Gorziglia, M., 1994, Current
Opinion in Biotechnology 5: 617-625. Treanor, J.J., et al . , 1991, Vaccine 9: 459-501. Tripathy, D.N. und Schnitzlein, W.M. , 1991, AvianOpinion in Biotechnology 5: 617-625. Treanor, J.J., et al. , 1991, Vaccine 9: 459-501. Tripathy, D.N. and Schnitzlein, W.M. , 1991, Avian
Dis. 35: 186-91. Van den Ende, M., Don, P. und Kipps, A. , 1949,Dis. 35: 186-91. Van den Ende, M., Don, P. and Kipps, A., 1949,
J. Gen. Microbiol. 3: 174-183. Van der Eb, A.J., et al . , 1980, Cold Spring HarborJ. Gen. Microbiol. 3: 174-183. Van der Eb, A.J., et al. , 1980, Cold Spring Harbor
Symp. Quant. Biol. 44: 383-399. Vrati, S., et al . , 1995, Virology 209: 400-408. Wagner, E., et al . , 1992, Proc. Natl. Acad. Sei.Symp. Quant. Biol. 44: 383-399. Vrati, S., et al. , 1995, Virology 209: 400-408. Wagner, E., et al. , 1992, Proc. Natl. Acad. Be.
USA 89: 6099-6103. Weber, J.M., 1995, Current Topics in Microbiology andUSA 89: 6099-6103. Weber, J.M., 1995, Current Topics in Microbiology and
Immunology 199/1. eds. W. Doerfler und P. Böhm.Immunology 199/1. eds. W. Doerfler and P. Böhm.
Springer-Verlag, Heidelberg-Berlin. Weber, J. und Anderson, C.W., 1988, J. Virol. 62:Springer publishing house, Heidelberg-Berlin. Weber, J. and Anderson, C.W., 1988, J. Virol. 62:
1741-1745. Webster, A. , Hay, R. und Kemp, G., 1993, Cell 72:1741-1745. Webster, A., Hay, R. and Kemp, G., 1993, Cell 72:
97-104. Webster, A., Leith, I.R. und Hay, R.T., 1994,97-104. Webster, A., Leith, I.R. and Hay, R.T., 1994,
J. Virol. 68: 7292-7300. Weinberg, D.H. und Ketner, G., 1983, Proc. Natl. Acad.J. Virol. 68: 7292-7300. Weinberg, D.H. and Ketner, G., 1983, Proc. Natl. Acad.
Sei. USA 80: 5383-5386. White, E., 1994, Seminars in Virology 5: 341-348. Wold, W.S.M. und Gooding, L.R., 1991, Virology 184,Be. USA 80: 5383-5386. White, E., 1994, Seminars in Virology 5: 341-348. Wold, W.S.M. and Gooding, L.R., 1991, Virology 184,
1-8. Yates, V.J., und Fry, D.E., 1957, Amer. J. Vet .1-8. Yates, V.J., and Fry, D.E., 1957, Amer. J. Vet.
Res. 18: 657-660.Res. 18: 657-660.
Zheng, et al . , 1993, Vaccine 11: 1191-1198. Zheng, et al. , 1993, Vaccine 11: 1191-1198.
SEQUENZPROTOKOLLSEQUENCE LOG
(1) AU-GEMEINE ANGABEN:(1) AU-GENERAL INFORMATION:
(i) ANMELDER:(i) APPLICANT:
(A) NAME: Boehringer Ingelheim International GmbH(A) NAME: Boehringer Ingelheim International GmbH
(B) STRASSE: Binger Strasse 173(B) STREET: Binger Strasse 173
(C) ORT: Ingelheim am Rhein(C) LOCATION: Ingelheim am Rhein
(E) LAND: Deutschland(E) COUNTRY: Germany
(F) POSTLEITZAHL: 55216(F) POSTAL NUMBER: 55216
(G) TELEFON: 06132/772282 (H) TELEFAX: 06132/774377(G) TELEPHONE: 06132/772282 (H) TELEFAX: 06132/774377
(ii) BEZEICHNUNG DER ERFINDUNG: CELO Virus (iii) ANZAHL DER SEQUENZEN: 39(ii) NAME OF THE INVENTION: CELO Virus (iii) NUMBER OF SEQUENCES: 39
(iv) COMPUTER-LESBARE FASSUNG:(iv) COMPUTER READABLE VERSION:
(A) DA'l'i-NlKAGER: Flqppy disk(A) DA'l'i-NlKAGER: Flqppy disk
(B) COMPUTER: IBM PC compatible(B) COMPUTER: IBM PC compatible
(C) BETRIEBSSYSTEM: PC-DOS/MS-DOS(C) OPERATING SYSTEM: PC-DOS / MS-DOS
LOCUS AAU46933 43804 bp DNALOCUS AAU46933 43804 bp DNA
GENBANK ACCESSION Nr: U46933GENBANK ACCESSION No: U46933
QUELLE Hühner Adenovirus CELO. ORGANISMUS Hühner Adenovirus CELO Virus; dsDNA Virus;SOURCE Chickens Adenovirus CELO. ORGANISM chickens adenovirus CELO virus; dsDNA virus;
Adenoviridae; Aviadenovirus.Adenoviridae; Aviadenovirus.
ZEITSCHRIFT J. Virol. 70 (5) , 2939-2949 (1996) TITEL The complete DNA sequence and genomic organization of the avian adenovirus CELOJOURNAL J. Virol. 70 (5), 2939-2949 (1996) TITLE The complete DNA sequence and genomic organization of the avian adenovirus CELO
AUTOREN Chiocca,S., Kurzbauer,R. , Schaffner,G. ,AUTHORS Chiocca, S., Kurzbauer, R. , Conductor, G. .
Baker,A. , Mautner,V. und Cotten,M.Baker, A. , Mautner, V. and Cotten, M.
MERKMALE Lage/QualifiersCHARACTERISTICS Location / Qualifiers
Quelle 1..43804Source 1..43804
Organismus Hühner Adenovirus CELO Stamm"Phelps (ATCC VR-432) " CDS 794 . . 1330Organism chickens adenovirus CELO strain "Phelps (ATCC VR-432)" CDS 794. , 1330
Bemerkung: ORF1Note: ORF1
Translation:MDPFGSSSVPPCSTSDLPEPKLYFVRLSPHATranslation: MDPFGSSSVPPCSTSDLPEPKLYFVRLSPHA
VPPVRATHGAAGYDLFSAYDIKVPARGRALVPTDLVFQFPPGCVPPVRATHGAAGYDLFSAYDIKVPARGRALVPTDLVFQFPPGC
YGRIAPRSGLAAKFFIDVGAGVIDPDYRGNVSWLFNFSESSFYGRIAPRSGLAAKFFIDVGAGVIDPDYRGNVSWLFNFSESSF
NIRRGDRVAQLILERIMVPELSELTQLGETDRGASGFGSTGMGNIRRGDRVAQLILERIMVPELSELTQLGETDRGASGFGSTGMG
AVDRNQRSVLEWLTPGSRAVDRNQRSVLEWLTPGSR
CDS Komplementär (1191..1514)CDS Complementary (1191..1514)
Bemerkung: ORF15Note: ORF15
Translation:MVASCHTLTIIPKEARSNCYRAYSRASCWCC LRTDNVRMCRRPPQNLLASVQRSRLRRKGPINGNQGSAIPTQS ADCGLQHPYLWTRNPTPRGLSRLAASVPTAPEPTranslation: MVASCHTLTIIPKEARSNCYRAYSRASCWCC LRTDNVRMCRRPPQNLLASVQRSRLRRKGPINGNQGSAIPTQS ADCGLQHPYLWTRNPTPRGLSRLAASVPTAPEP
CDS 1999..2829CDS 1999..2829
Bemerkung: ORF2Note: ORF2
Translation:MSRESERYWTLVHALIDRGWSREQWQMVDPTranslation: MSRESERYWTLVHALIDRGWSREQWQMVDP
AQYQFYHRSKQRGFKVRHILRDVIRHMCWSRTLLDYMSSASTPAQYQFYHRSKQRGFKVRHILRDVIRHMCWSRTLLDYMSSASTP
SPDDVLRNPLYQLLLCNGYNPAWGTALIRWAGHQSNRNTVWISPDDVLRNPLYQLLLCNGYNPAWGTALIRWAGHQSNRNTVWI
RGTPMSGAPYLAQAIAYCSPLVGSVDWRNKSNPFEGCPDSLVFRGTPMSGAPYLAQAIAYCSPLVGSVDWRNKSNPFEGCPDSLVF
WWDGGYVYDCCVGLVKQVFRGEHVILPPEGLRGPNPCSELFRTWWDGGYVYDCCVGLVKQVFRGEHVILPPEGLRGPNPCSELFRT
PVLMYSQADICMTRLRSGELSAEHAVGLRDCMYLIRLTEDFDCPVLMYSQADICMTRLRSGELSAEHAVGLRDCMYLIRLTEDFDC
AGGISCADVKQFVAWSREHPGEVRETHELKAGGISCADVKQFVAWSREHPGEVRETHELK
CDS Komplementär (2892..3374)CDS Complementary (2892..3374)
Bemerkung: ORF14Note: ORF14
Translation:MYPFKHSPHCITDEECDLQLRSFCSWIRVIE MRCTDWTIQYICSCETPRSLFCLSLIRVLTAHWAKTWNFVAQ HDHQPQLPLNLILYTYATHCRLCNLNPALEQIYTAVTVARRQG AYTRLEGQTLYVCLPRDIVNYPCIACFYHLLLRLPVAINFHVITranslation: MYPFKHSPHCITDEECDLQLRSFCSWIRVIE MRCTDWTIQYICSCETPRSLFCLSLIRVLTAHWAKTWNFVAQ HDHQPQLPLNLILYTYATHCRLCNLNPALEQIYTAVTVARRQG AYTRLEGQTLYVVRLACPFYHLVCLPRPIVNH
CDS Komplementär (3549..4568)CDS Complementary (3549..4568)
Bemerkung: ORF13Note: ORF13
Translation:MTTTPCALSYARTKECSVPARGPPHAMLVTH HMTYNSLPQCTKRRRESQSSLSSEEEQIASCIPDTPSPCLFPS TSPMDQLVERLFVEGVAHEVQWNFPSKNLIPTYERERVLEALK ERFGPGQSLINQLPSEEPDTLKAAFYNVCDNWFHQMMEAEGYE GKVAANAILRWLRGELNTLVLCGGRLSNAKSLFNALCACFPLA ISDSRINSILSLGEIAPHASLYCLPFVDEKPDPLMLHFMEGNA ATCRLNKKTFHIPSTPMLIHCADLSLANEFTARNTWFFLTGD HTKTPPCYHPRKELRDFVANAAACACLMTLHCKRDNKLCNPCI RTPLQNQ CDS 3781 . . 4095Translation: MTTTPCALSYARTKECSVPARGPPHAMLVTH HMTYNSLPQCTKRRRESQSSLSSEEEQIASCIPDTPSPCLFPS TSPMDQLVERLFVEGVAHEVQWNFPSKNLIPTYERERVLEALK ERFGPGQSLINQLPSEEPDTLKAAFYNVCDNWFHQMMEAEGYE GKVAANAILRWLRGELNTLVLCGGRLSNAKSLFNALCACFPLA ISDSRINSILSLGEIAPHASLYCLPFVDEKPDPLMLHFMEGNA ATCRLNKKTFHIPSTPMLIHCADLSLANEFTARNTWFFLTGD HTKTPPCYHPRKELRDFVANAAACACLMTLHCKRDNKLCNPCI RTPLQNQ CDS 3781. , 4095
Bemerkung: ORF3Note: ORF3
Translation:MGVEGMWNVFLFSLQVAALPSIKCSINGSGFTranslation: MGVEGMWNVFLFSLQVAALPSIKCSINGSGF
SSTKGRQYREAWGAISPSDSMELIRLSEIASGKHAHKALKRLLSSTKGRQYREAWGAISPSDSMELIRLSEIASGKHAHKALKRLL
ALESLPPQSTRVFSSPRSHRRMALAATFPSALESLPPQSTRVFSSPRSHRRMALAATFPS
CDS Komplementär (4462..5094)CDS Complementary (4462..5094)
Bemerkung: ORF12Note: ORF12
Translation:MLEAEGYNAPVAIYAIYLWMSAMSISRLCHY TNTLYWGEPSSAADIFTASILRLFQFVLTANINAFDFGQYAR QQDLVKMLYFPCTAHCNTFKDPVANQLLKGRSFTTMTRDGLVD ISEKKCLVRLYQLPHPEHLPTAPDEHIIIRFYEPANGCGFFLG ELSRYIHRIHQLQADNDNDALRALLCENKGMLCSRSWTSPCNA CHSSHDITranslation: MLEAEGYNAPVAIYAIYLWMSAMSISRLCHY TNTLYWGEPSSAADIFTASILRLFQFVLTANINAFDFGQYAR QQDLVKMLYFPCTAHCNTFKDPVANQLLKGRSFTTMTRDGLVD ISEKKCLVRLYQLPHFFFPTGDHLIFI
CDS Komplementär (5366..6685)CDS Complementary (5366..6685)
Produkt : IVa2Product: IVa2
Translation:MSTQIPARQETYDPSQSSGTKTPSHPYDGNP TRSYPKRNAGKFTTYSSQMIAPRKRKAWEYEEEEYEASRDFYQ RVTSWYDGAVDLAPQLFREQHFPSYDEFYSLGGVNEKFLEAHE EVKAQEQMDSRYLQHGQLPSINMGKQPIIGVIYGPTGSGKSHL LRALISCNMLDPIPETVIFITPEKNMIPPIEQTSWNLQLVEAN FDCREDGTIAPKTSTFRPEFMEMTYEEATAPEHLNIDHPDNIY VKVSKRGPVAIIMDECMDKLCSGSSVSVLFHALPSKLFARSAH CTAFYIFWLHNMAPRTAIGNVPTLKVNAKMHILSCHIPQFQF ARFLYAFAHNISKDLWLLKAYFSFLQQNQRFSWVMYTPDPVS ESFRWCSIDQQYSIIPLNVNIQERFLKTAKSIIKFSETHRKQL ERNPKLTDLEKLSPPGTFQETTranslation: MSTQIPARQETYDPSQSSGTKTPSHPYDGNP TRSYPKRNAGKFTTYSSQMIAPRKRKAWEYEEEEYEASRDFYQ RVTSWYDGAVDLAPQLFREQHFPSYDEFYSLGGVNEKFLEAHE EVKAQEQMDSRYLQHGQLPSINMGKQPIIGVIYGPTGSGKSHL LRALISCNMLDPIPETVIFITPEKNMIPPIEQTSWNLQLVEAN FDCREDGTIAPKTSTFRPEFMEMTYEEATAPEHLNIDHPDNIY VKVSKRGPVAIIMDECMDKLCSGSSVSVLFHALPSKLFARSAH CTAFYIFWLHNMAPRTAIGNVPTLKVNAKMHILSCHIPQFQF ARFLYAFAHNISKDLWLLKAYFSFLQQNQRFSWVMYTPDPVS ESFRWCSIDQQYSIIPLNVNIQERFLKTAKSIIKFSETHRKQL ERNPKLTDLEKLSPPGTFQET
CDS 5963.-6373CDS 5963.-6373
Bemerkung: ORF4Note: ORF4
Translation:MVDVEMFGCGGLLVSHLHKFGTERACLRGDGTranslation: MVDVEMFGCGGLLVSHLHKFGTERACLRGDG
AVFPAVEIGLDQLQVPGRLFDGWNHVLFRSDEDDRFGDRVQHVAVFPAVEIGLDQLQVPGRLFDGWNHVLFRSDEDDRFGDRVQHV
ARDERPQQMRLAGSGGSVDDPDDGLLAHVDGRQLSVLEVATVHARDERPQQMRLAGSGGSVDDPDDGLLAHVDGRQLSVLEVATVH
LFLGFNFFVGFEKLLINAP CDS Komplementär (6501..9866)LFLGFNFFVGFEKLLINAP CDS Complementary (6501..9866)
Produkt: E2b polProduct: E2b pol
Translation:MLIAKNVTGEWVWITSRTPVQQCPTCGRHWV RRHSCNERRSAFYYHAVQGSGSDLWQHVHFSCPAQHPHIRQLY ITYDIETYTVFEKKGKRMHPFMLCFMLSGDPQLVSRAERLARQ DDRLKALDEGFYWLDSHPGEVARRFRNFRSRLQIEFAQNLVDR YAAANRDYCDQLVKDGKYGSVHKIPYELFEKPTSPLSLPDNFY SVDIWLGHNICKFDELLLATELVERRDLFPEACKCDRSFMPR VGRLLFNDIIFRMPNPNYVKKDASRVERWSRGIVSHQDARSVF VRFMVRDTLQLTSGAKLSKAAAAYALDLCKGHCPYEAINEFIS TGRFHADADGFPVERYWEDPSVIAEQKNLWQKEHPGQQYDIVQ ACLEYCMQDVRVTQKLAHTLHDSYDAYFQRELGMEGHFNIFVR PTIPSNTHAFWKQLTFSNYVREQRATCPPSVPEPPKKKGRTKK KKQPSPDYVAEVYAPHRPMFKYIRQALRGGRCYPNVLGPYLKP VYVFDICGMYASALTHPMPHGMPLDPKFTAQHVEELNRLLTNE SHLSYFDARIKPSILKIEAYPPPPEMLDPLPPICSRRGGRLVW TNEALYDEWTVIDILTLHNRGWRVQVLHDEMNIVFPEWKTLC ADYVTKNILAKEKADREKNEVIRSISKMLSNALYGAFATNMDT TRIIFEQDLSEADKKNIYEGTEIVKHVTLLNDDSFNGTEVTLE NAPNPFSEESLRQQFRYADDPEQEEPEAEEDGEEEGDDSDRES ARKPKNALTEDDPLVAVDLEVEATLATGPYIPEGELSSAHYAR ANETRFKPMRLLEATPEALTVLHLESLDKQVANKRYATQIACF VLGWSRAFFSEWCDILYGPDRGVHILRREEPRSLYGDTDSLFV TETGYHRMKSRGAHRIKTESTRLTFDPENPGLYWACDCDIKCK ACGSDTYSSETIFLAPKLYGLKNSICVNEQCRTVGPGKIRSKG HRQSELIYDTLLRCWRRHEDVQFGAQSNIPELHTRRTIFKTTL LNKVSRYDPFTIHNEQLTRVLRPWKDLTLYEHGDYLYPYDNEH PNPRTTGDVRPVPIVGHEDPLAPLRWEPYAFLSEEECGQVHDL LFADDSSQEAESLGVTranslation: MLIAKNVTGEWVWITSRTPVQQCPTCGRHWV RRHSCNERRSAFYYHAVQGSGSDLWQHVHFSCPAQHPHIRQLY ITYDIETYTVFEKKGKRMHPFMLCFMLSGDPQLVSRAERLARQ DDRLKALDEGFYWLDSHPGEVARRFRNFRSRLQIEFAQNLVDR YAAANRDYCDQLVKDGKYGSVHKIPYELFEKPTSPLSLPDNFY SVDIWLGHNICKFDELLLATELVERRDLFPEACKCDRSFMPR VGRLLFNDIIFRMPNPNYVKKDASRVERWSRGIVSHQDARSVF VRFMVRDTLQLTSGAKLSKAAAAYALDLCKGHCPYEAINEFIS TGRFHADADGFPVERYWEDPSVIAEQKNLWQKEHPGQQYDIVQ ACLEYCMQDVRVTQKLAHTLHDSYDAYFQRELGMEGHFNIFVR PTIPSNTHAFWKQLTFSNYVREQRATCPPSVPEPPKKKGRTKK KKQPSPDYVAEVYAPHRPMFKYIRQALRGGRCYPNVLGPYLKP VYVFDICGMYASALTHPMPHGMPLDPKFTAQHVEELNRLLTNE SHLSYFDARIKPSILKIEAYPPPPEMLDPLPPICSRRGGRLVW TNEALYDEWTVIDILTLHNRGWRVQVLHDEMNIVFPEWKTLC ADYVTKNILAKEKADREKNEVIRSISKMLSNALYGAFATNMDT TRIIFEQDLSEADKKNIYEGTEIVKHVTLLNDDSFNGTEVTLE NAPNPFSEESLRQQFRYADDPEQEEPEAEEDGEEEGDDSDRES ARKPKNALTEDDPLVAVDLEVEATLATGPYIPEGELSSAHYAR ANETRFKPMRLLEATPEALTVLHLESLDKQVANKRYATQIACF VLGWSRAFFSEWCDILYGPDRGVHILRREEPRSLYGDTDSLFV TETGYHRMKSRGAHRIKTESTRLTFDPENPGLYWACDCDIKCK ACGSDTYSSETIFLAPKLYGLKNSICVNEQCRTV GPGKIRSKG HRQSELIYDTLLRCWRRHEDVQFGAQSNIPELHTRRTIFKTTL LNKVSRYDPFTIHNEQLTRVLRPWKDLTLYEHGDYLYPYDNEH PNPRTTGDVRPVPIVGHEDPLAPHDLEWFGVVQQ
ERSATZBLAπ(REGEL26) CDS Komplementär (10269..11996)REPLACEMENT BLAπ (RULE 26) CDS Complementary (10269..11996)
Produkt: E2b pTPProduct: E2b pTP
Translation:MQLRDLAPRSPNVAAPPYNGLPPPHLLLGYQ AMHRALNDYLFDNRVFMQIGYDSPPQRPRRLFWTCLTDCSYAV NVGQYMRFLDLDNFHGTFTQMHNAVLMDRVAADMGRAHLRGRG IDVGRHGQVLPQLDAEHHSLLSGNGAGGLQEGVLMRTASAADA ELLAAIRQLRVALCHYLFCYAYDLFQTEERYRFLPGSDVFLEP NWLSYFAEAFAELDTQQLVRDAERKFRGRRDVEEPTETMARCF MSTLASDAVSLAGTGLSGGAITLCSRRVTDRTGLRPRDRHGRA ITASEARRIRPRAVRAFVDRLPRVTRRRRRPPSPAPPPEEIEE AAMEVEEPEEEEEELLDEVIRTALEAIGALQDELSGAARRHEL FRFANDFYRMLLTARDAGLMGESFLRKWVLYFFLAEHIASTLY YLYSHFIANREFRRYVDVLTLQVLWGWDVNAQQVFKRIWSEQ SNPATIFETLWERILRDFLMMVERTGQFEGMDDADQQLFLSDI QYRDRSGDIEEVLKQLNLSEELIDSIDISFRIKFKGIVAIATN EEIKANLRRVLRHRREDIEAAARRGQPLTranslation: MQLRDLAPRSPNVAAPPYNGLPPPHLLLGYQ AMHRALNDYLFDNRVFMQIGYDSPPQRPRRLFWTCLTDCSYAV NVGQYMRFLDLDNFHGTFTQMHNAVLMDRVAADMGRAHLRGRG IDVGRHGQVLPQLDAEHHSLLSGNGAGGLQEGVLMRTASAADA ELLAAIRQLRVALCHYLFCYAYDLFQTEERYRFLPGSDVFLEP NWLSYFAEAFAELDTQQLVRDAERKFRGRRDVEEPTETMARCF MSTLASDAVSLAGTGLSGGAITLCSRRVTDRTGLRPRDRHGRA ITASEARRIRPRAVRAFVDRLPRVTRRRRRPPSPAPPPEEIEE AAMEVEEPEEEEEELLDEVIRTALEAIGALQDELSGAARRHEL FRFANDFYRMLLTARDAGLMGESFLRKWVLYFFLAEHIASTLY YLYSHFIANREFRRYVDVLTLQVLWGWDVNAQQVFKRIWSEQ SNPATIFETLWERILRDFLMMVERTGQFEGMDDADQQLFLSDI QYRDRSGDIEEVLKQLNLSEELIDSIDISFRIKFKGIVAIATN EEIKANLRRVLRHRREDIEAAARRGQPL
CDS 12193..13329CDS 12193..13329
Gen: LlGen: Ll
Produkt: Ll 52KProduct: Ll 52K
Translation:MHPVLQSVRNASVSAGGPHQQQPQQQQHGVS SVRRPPSPPRYPAQHAYPGAGATPTAGRGDFDGALDPDEGPVA CGLAAGAGVDEVRMRERDAARRATVPEINLFKARRDWPNGDY ERDLMYHSGQAIDIDRQRVLTPEDFKGSEPAFTPAVNHMRAAE LKRAAEQTAFGEELRNTCHQTRIRTALLRPEIGAGIYYLYDFV QTYLEHPDGRVKLNPQLVLVAQHAGNTMLAQRLWAIAEEKNAW LRDLIEMAYMIVNDPYLNTEQQLSAICTTWELSMKYAKLAAK NGYPSMAQMAKAQEFFYRVMQAVLDLGVQVGVYNNRPARYRQK RMSEIPQMTDAEYMFGLTQALESRPPQGESFADEGPSESDDED DFI Gen 12193..15043Translation: MHPVLQSVRNASVSAGGPHQQQPQQQQHGVS SVRRPPSPPRYPAQHAYPGAGATPTAGRGDFDGALDPDEGPVA CGLAAGAGVDEVRMRERDAARRATVPEINLFKARRDWPNGDY ERDLMYHSGQAIDIDRQRVLTPEDFKGSEPAFTPAVNHMRAAE LKRAAEQTAFGEELRNTCHQTRIRTALLRPEIGAGIYYLYDFV QTYLEHPDGRVKLNPQLVLVAQHAGNTMLAQRLWAIAEEKNAW LRDLIEMAYMIVNDPYLNTEQQLSAICTTWELSMKYAKLAAK NGYPSMAQMAKAQEFFYRVMQAVLDLGVQVGVYNNRPARYRQK RMSEIPQMTDAEYMFGLTQALESRPPQGESFADEGPSESDDED DFI Gen 12193..15043
Gen: Ll Gen: Ll
CDS 133 16 . . 15043CDS 133 16. . 15043
Gen : LlGen: Ll
Produkt: Ll lilaProduct: Ll purple
Translation:MTSSDTFLALAPYGRQEVADALSSLPDGKDA RSLRHAPYANRLIKLQSAMVPPKVDGTSERVAEIVKGLAEQGA IYPDQMGAIHSDLLNRAYTWNSMGVQESIQALVNDVIHGQNRT LQDELARTKEIANASLLTQFFDSLYKTVDRGQRNFEGFKKLLR LFVNNVPNAEVYGSSGSFSVQINLGGSSQNINLTNAFENLKPI WGARWDAVNNPRIGALLTPNTRALLFFVSSFYDYGAMEPGSYL DNIMRLYKEAIRADVDAEGDAIMELGEAGANLNLRFNDYKDTL NYLLQNREWPDTAPLELSAEQEMLLKYLMRQLRQALKDGVPA DISISTMTQYLDPRLYQTNKVFVEKLQNYLLAAQARNPVYYRL LVLDPNWRPPAGLYTGNYVIPDRYDFEDVQSELEYAGPSRDEY FDDSLFAPGPQRRLNSAEEAQLERDIESLTGHIDEELGVQSQA GWLADHRLPVAFDGALΞLTERNAYNTPLPPDSHMRSRSSSVAS DLGLLNLSGTGGPGFFASLRPSIGSRQPTGTAVGLRPTTPYSG SGCMRGTGLARKVLNPAASRRGRKLRFYTranslation: MTSSDTFLALAPYGRQEVADALSSLPDGKDA RSLRHAPYANRLIKLQSAMVPPKVDGTSERVAEIVKGLAEQGA IYPDQMGAIHSDLLNRAYTWNSMGVQESIQALVNDVIHGQNRT LQDELARTKEIANASLLTQFFDSLYKTVDRGQRNFEGFKKLLR LFVNNVPNAEVYGSSGSFSVQINLGGSSQNINLTNAFENLKPI WGARWDAVNNPRIGALLTPNTRALLFFVSSFYDYGAMEPGSYL DNIMRLYKEAIRADVDAEGDAIMELGEAGANLNLRFNDYKDTL NYLLQNREWPDTAPLELSAEQEMLLKYLMRQLRQALKDGVPA DISISTMTQYLDPRLYQTNKVFVEKLQNYLLAAQARNPVYYRL LVLDPNWRPPAGLYTGNYVIPDRYDFEDVQSELEYAGPSRDEY FDDSLFAPGPQRRLNSAEEAQLERDIESLTGHIDEELGVQSQA GWLADHRLPVAFDGALΞLTERNAYNTPLPPDSHMRSRSSSVAS DLGLLNLSGTGGPGFFASLRPSIGSRQPTGTAVGLRPTTPYSG SGCMRGTGLARKVLNPAASRRGRKLRFY
Spezielles Merkmal 15080Special feature 15080
Bemerkung: L2 region penton base splice acceptor siteNote: L2 region penton base splice acceptor site
CDS 15110..16657CDS 15110..16657
Gen: L2Gen: L2
Produkt : PentonbasisProduct: Penton base
Translation:MYRSLRPPTSIPPPPPSGPSPYPAMINGYPP DVPVGSPANGDAELFVPLQRVMPPTGGRNSIRYRNYAPCQNTT KFFYVDNKLSDLDTYNEDANHSNFRTTVIHNQDLDPSTAATET IQLDNRSCWGGELKTAVKTNCPNISSFFQSDTVRVRLMSKRDP GGTDPDAGVNNPPGAEYKWYDLRIPEGNYALNEIIDLLNEGIV QLYLQEGRQNNVLKSDIGVKFDTRYLDLLKDPVTGLVTPGTYV YKGYHPDIILLPGCAVDFTFSRLSLLLGIAKREPYSKGFTITY EDLQGGNVPALLDLSSVQVDDQDEDVIWADARPLLKDSKGVS YNVITTGVTQPQTAYRSWLLAYHTLDSPARNKTLLTVPDMAGG IGAMYTSMPDTFTAPAGFKEDNTTNLCPWAMNLFPSFNKVFY QGASAYVQRLENATQSATAAFNRFPENEILKQAPPMNVSSVCD NQPAWQQGVLPLKNSLSGLQRVLITDDRRRPIPYVYKTIATV QPRVLSSSTLQTranslation: MYRSLRPPTSIPPPPPSGPSPYPAMINGYPP DVPVGSPANGDAELFVPLQRVMPPTGGRNSIRYRNYAPCQNTT KFFYVDNKLSDLDTYNEDANHSNFRTTVIHNQDLDPSTAATET IQLDNRSCWGGELKTAVKTNCPNISSFFQSDTVRVRLMSKRDP GGTDPDAGVNNPPGAEYKWYDLRIPEGNYALNEIIDLLNEGIV QLYLQEGRQNNVLKSDIGVKFDTRYLDLLKDPVTGLVTPGTYV YKGYHPDIILLPGCAVDFTFSRLSLLLGIAKREPYSKGFTITY EDLQGGNVPALLDLSSVQVDDQDEDVIWADARPLLKDSKGVS YNVITTGVTQPQTAYRSWLLAYHTLDSPARNKTLLTVPDMAGG IGAMYTSMPDTFTAPAGFKEDNTTNLCPWAMNLFPSFNKVFY QGASAYVQRLENATQSATAAFNRFPENEILKQAPPMNVSSVCD NQPAWQQGVLPLKNSLSGLQRVLITDDRRRPIPYVYKTIATV QPRVLSSSTLQ
Gen 15110..17495Gen 15110..17495
Gen: L2Gen: L2
ERSATZBLATT (RttaüL 26) CDS 16679..16897 Gen: L2REPLACEMENT SHEET (RttaüL 26) CDS 16679..16897 Gen: L2
Produkt: L2pVIIProduct: L2pVII
Translation:MSILISPSDNRGWGANMRYRRRASMRGVGRR RLTLRQLLGLGSRRRRRSRPTTVSNRLVWSTRRRSSRRRRTranslation: MSILISPSDNRGWGANMRYRRRASMRGVGRR RLTLRQLLGLGSRRRRRSRPTTVSNRLVWSTRRRSSRRRRR
CDS 16929..17495CDS 16929..17495
Gen: L2Gen: L2
Produkt: L2 mu (pX, 11K)Product: L2 mu (pX, 11K)
Translation:MCAVAIHRSDWMPSVLLTGGRTAKGKKRAS RRRVKVPKLPKGARRKRASVTPVPTVATATASERAALTNLARR LQRGDYAAWRPADYTSPAVSEAARAAASSGTPATARDLATGTL ARAVPMTGTGGRRRKRTATRRRSLKGGFLPALIPIIAAAIGAI PGIAGTAVGIANLKEQQRQFNKIYGDKK polyA_site 17526Translation: MCAVAIHRSDWMPSVLLTGGRTAKGKKRAS RRRVKVPKLPKGARRKRASVTPVPTVATATASERAALTNLARR LQRGDYAAWRPADYTSPAVSEAARAAASSGTPATARDLATGTL ARAVPMTKTGATIFGKI
CDS 17559..18230CDS 17559..18230
Gen: L3Gen: L3
Produkt: L3 pVIProduct: L3 pVI
Translation:MDYAALSPHLGGWALRDHHIGDSSLRGGAIN WGNLGSRITSALNSTGRWLYNTGNRFVHSNTFNQIKQGIQDSG VIRNVANLAGETLGALTDIGRLKLQQDLEKLRRKALGEEGPAT QAELQALIQALQAQVAAGEPPAAPAAPAPAPPLVPTTRPIPEM VTEVKPPVTSSAPAVPVDVPTTLEMRPPPPKRRRKRARPGQWR ARLDSLSGTGVATATRRMCY Gen 17559..21754Translation: MDYAALSPHLGGWALRDHHIGDSSLRGGAIN WGNLGSRITSALNSTGRWLYNTGNRFVHSNTFNQIKQGIQDSG VIRNVANLAGETLGALTDIGRLKLQQDLEKLRRKALGEEGPAT QAELQALIQALQAQVAAGEPPAAPAAPAPAPPLVPTTRPIPEM VTEVKPPVTSSAPAVPVDVPTTLEMRPPPPKRRRKRARPGQWR ARLDSLSGTGVATATRRMCY gene 17559..21754
Gen: L3 Spezielles Merkmal 18261Gen: L3 special trait 18261
Gen: L3 Bemerkung: hexon splice acceptor siteGen: L3 Remark: hexon splice acceptor site
ERSATZBLRI i (KLÜLL 2Ö) CDS 18289..21117ERSATZBLRI i (KLÜLL 2Ö) CDS 18289..21117
Gen: L3Gen: L3
Produkt : L3 hexonProduct: L3 hexon
Translation:MTALTPDLTTATPRLQYFHIAGPGTREYLSE DLQQFISATGSYFDLKNKFRQTWAPTRNVTTEKAQRLQIRFY PIQTDDTPNSYRVRYSVNVGDSWVLDMGATYFDIKGVLDRGPS FKPYGGTAYNPLAPREAIFNTWVESTGPQTNWGQMTNVYTNQ TRNDKTATLQQVNSISGWPNVNLGPGLSQLASRADVDNIGW GRFAKVDSAGVKQAYGAYVKPVKDDGSQSLNQTAYWLMDNGGT NYLGALAVEDYTQTLSYPDTVLVTPPTAYQQVNSGTMRACRPN YIGFRDNFINLLYHDSGVCSGTLNSERSGMNVWELQDRNTEL SYQYMLADMMSRHHYFALWNQAVDQYDHDVRVFNNDGYEEGVP TYAFLPDGHGAGEDNGPDLSNVKIYTNGQQDKGNWAGTVSTQ LNFGTIPSYEIDIAAATRRNFIMSNIADYLPDKYKFSIRGFDP VTDNIDPTTYFYMNRRVPLTNWDLFTNIGARWSVDQMDNVNP FNHHRNWGLKYRSQLLGNSRYCRFHIQVPQKYFAIKNLLLLPG TYTYEWVLRKDPNMILQSSLGNDLRADGAQIVYTEVNLMANFM PMDHNTSNQLELMLRNATNDQTFADYLGAKNALYNVPAGSTLL TINIPARTWEGMRGWSFTRLKASETPQLGAQYDVGFKYSGSIP YSDGTFYLSHTFRSMSVLFDTSINWPGNDRLLTPNLFEIKRPV ATDSEGFTMSQCDMTKDWFLVQMATNYNYVYNGYRFWPDRHYF HYDFLRNFDPMSRQGPNFLDTTLYDLVSSTPWNDTGSQPSQD NVRNNSGFIAPRSWPVWTAQQGEAWPANWPYPLIGNDAISSNQ TVNYKKFLCDNYLWTVPFSSDFMYMGELTDLGQNPMYTNNSHS MVINFELDPMDENTYVYMLYGVFDTVRVNQPERNVLAMAYFRT PFATGNAV Spezielles Merkmal 21102Translation: MTALTPDLTTATPRLQYFHIAGPGTREYLSE DLQQFISATGSYFDLKNKFRQTWAPTRNVTTEKAQRLQIRFY PIQTDDTPNSYRVRYSVNVGDSWVLDMGATYFDIKGVLDRGPS FKPYGGTAYNPLAPREAIFNTWVESTGPQTNWGQMTNVYTNQ TRNDKTATLQQVNSISGWPNVNLGPGLSQLASRADVDNIGW GRFAKVDSAGVKQAYGAYVKPVKDDGSQSLNQTAYWLMDNGGT NYLGALAVEDYTQTLSYPDTVLVTPPTAYQQVNSGTMRACRPN YIGFRDNFINLLYHDSGVCSGTLNSERSGMNVWELQDRNTEL SYQYMLADMMSRHHYFALWNQAVDQYDHDVRVFNNDGYEEGVP TYAFLPDGHGAGEDNGPDLSNVKIYTNGQQDKGNWAGTVSTQ LNFGTIPSYEIDIAAATRRNFIMSNIADYLPDKYKFSIRGFDP VTDNIDPTTYFYMNRRVPLTNWDLFTNIGARWSVDQMDNVNP FNHHRNWGLKYRSQLLGNSRYCRFHIQVPQKYFAIKNLLLLPG TYTYEWVLRKDPNMILQSSLGNDLRADGAQIVYTEVNLMANFM PMDHNTSNQLELMLRNATNDQTFADYLGAKNALYNVPAGSTLL TINIPARTWEGMRGWSFTRLKASETPQLGAQYDVGFKYSGSIP YSDGTFYLSHTFRSMSVLFDTSINWPGNDRLLTPNLFEIKRPV ATDSEGFTMSQCDMTKDWFLVQMATNYNYVYNGYRFWPDRHYF HYDFLRNFDPMSRQGPNFLDTTLYDLVSSTPWNDTGSQPSQD NVRNNSGFIAPRSWPVWTAQQGEAWPANWPYPLIGNDAISSNQ TVNYKKFLCDNYLWTVPFSSDFMYMGELTDLGQNPMYTNNSHS MVINFELDPMDENTYVYMLYGVFDTVRVNQPERNVLAMAYFRT PFATGNAV Special feature 21102
Gen: L3Gen: L3
Bemerkung: protease splice acceptor site Spezielles Merkmal 21123Remark: protease splice acceptor site Special feature 21123
Gen: L3Gen: L3
Bemerkung: protease splice acceptor site Note: protease splice acceptor site
CDS 21134 . . 21754CDS 21134. . 21754
Gen : L3Gen: L3
Produkt : L3 proteaseProduct: L3 protease
Translation:MSGTTETQLRDLLSSMHLRHRFLGVFDKSFP GFLDPHVPASAIVNTGSRASGGMHWIGFAFDPAAGRCYMFDPF GWSDQKLWELYRVKYNAFMRRTGLRQPDRCFTLVRSTEAVQCP CSAACGLFSALFIVSFDRYRSKPMDGNPVIDTWGVKHENMNS PPYRDILHRNQERTYYWWTKNSAYFRAHQEELRRETALNALPE NHV polyA_site 21767 polyA_site 21824 polyA_site 21836 polyA_site 21882Translation: MSGTTETQLRDLLSSMHLRHRFLGVFDKSFP GFLDPHVPASAIVNTGSRASGGMHWIGFAFDPAAGRCYMFDPF GWSDQKLWELYRVKYNAFMRRTGLRQPDRCFTLVRSTEAVQCP CSAACGLFSALFIVSFDRYRSKPMDGNPVIDTWGVKHENMNS PPYRDILHRNQERTYYWWTKNSAYFRAHQEELRRETALNALPE NHV polyA_site 21767 21824 polyA_site polyA_site 21836 21882 polyA_site
CDS Komplementär (21899..23224)CDS Complementary (21899..23224)
Produkt: E2a DBPProduct: E2a DBP
Translation:MERTPKRAHGFRSTKPVKRTAEVMMEEEEEE VEWAPGRGATRKKVSRREESPSPVRRVTRRRETWDDEENAS DEESPEAPLSDPWYGAQRAMATVASICEALDLQWQGASVRPD DSIWTKMGGTYVRKKHPEFRLTFSSYDSFNAQVGRFLAAVIYS RAGLEPKFVPGGAHVWRHGWFPALQEPFPKCMHGVDMVTKPRT VELNPSSEAGKRALAEQNGVIEKNRFGRQVWLRFDANAVCYK DQEHSGFPHPHAHGSCAMVFSDAAKAVSAMRHDIDWTKALYPN ADKRRAEECVLISTNCNCNYASDRAISGRQFCKMTPYKLNGTD DITRDMVESRPDMKAHKKNPHTMVFTCCNPQAASGGAGRGLKK TEKTCAWRLSAMDLRYAYVFATELFTAVMGSSEPTHVPEFRWN ESYAFKTEVLAPVSPIASDDPFATranslation: MERTPKRAHGFRSTKPVKRTAEVMMEEEEEE VEWAPGRGATRKKVSRREESPSPVRRVTRRRETWDDEENAS DEESPEAPLSDPWYGAQRAMATVASICEALDLQWQGASVRPD DSIWTKMGGTYVRKKHPEFRLTFSSYDSFNAQVGRFLAAVIYS RAGLEPKFVPGGAHVWRHGWFPALQEPFPKCMHGVDMVTKPRT VELNPSSEAGKRALAEQNGVIEKNRFGRQVWLRFDANAVCYK DQEHSGFPHPHAHGSCAMVFSDAAKAVSAMRHDIDWTKALYPN ADKRRAEECVLISTNCNCNYASDRAISGRQFCKMTPYKLNGTD DITRDMVESRPDMKAHKKNPHTMVFTCCNPQAASGGAGRGLKK TEKTCAWRLSAMDLRYAYVFATELFTAVMGSSEPTHVPEFRWN ESYAFKTEVLAPVSPIASDDPFA
Spezielles Merkmal 23608Special feature 23608
Bemerkung: 100K splice acceptor siteNote: 100K splice acceptor site
Spezielles Merkmal 23649Special feature 23649
Bemerkung: 100K splice acceptor site Note: 100K splice acceptor site
CDS 23680..26634CDS 23680..26634
Gen: L4Gen: L4
Produkt: L4 10OKProduct: L4 10OK
Translation:MADKITREEKTIATLDLVLRVWDAGNWDVF SKRLVRYTREQYGIELPEDIGDLPDTSEVSKVLLSHLGEDKAV LSAYRIAELTQPSEMDRAKVTEGGLAVLNASRDESEAQNPSNP EPESIESDAVEDLGVAAESDPSDDEPDPEPEYDHREADHDSDA DSGYYSADGGRPGTPVDEEPQDDSPSSEETASTVIEEAQTSAS NDSHDDDTHRDDGSASEEDLERDALVAPADPFPNLRKCFERQA MMLTGALKDAADTADPPETLSVDSVQRQLERFVFNPDRRVPAE HLEVRYNFYPPFLTPKAIASYHIFAVTASIPLSCKANRSGSDL LAKAKESTFFKRLPKWRLGIEIDDGLGTEVTAVTELEEAKMVP LKDDVSRLQWAKMRGEHIRFFSYPSLHMPPKISRMLMETLLQP FADENQKAEEALPCLSDEEVLAIVDPTGRLHGEDALKAVEKRR AAVTMAVRYTATLELMERVFREPSMVKKMQEVLHHTFHHGFVA LVRETAKVNLSNYATFHGLTYNNPLNNCIMSKLLEGADKEDYV VDSIYLFLVLTWQTAMGMWQQAIDDMTIQMYTEVFTKNKYRLY SLPNPTAIGKAIVDILMDYDRLTEEMRKALPNFTCQSQITAFR HFLLERSNIPAVAAPFMPSDFVPLAYKQSPPLLWDQVYLLQLA FYLTKHGGYLWEAPEEEANNPSNRTYCPCNLCSPHRMPGHNAA LHNEILAIGTFEIRSPDGKTFKLTPELWTNAYLDKFDAEDFHP FTVFHYPENASRFASTLKACVTQSPEILSLIRQIQESREEFLL TKGKGVYKDPNTGETISRQPRDTARAQHAGDGQALPAPGAYTT GGNRAETAPAGAVRLAPDYQDGQFPIAKVGPHYHGPKNVRRED QGYRGGPGGVRGEREWLSRRAGGRRFGRRNTRQSGYNERANR YFGRGGGGSVRGQQGEHPTTSPSASEPPAPSRILARGTPPSPE RRDRQEETranslation: MADKITREEKTIATLDLVLRVWDAGNWDVF SKRLVRYTREQYGIELPEDIGDLPDTSEVSKVLLSHLGEDKAV LSAYRIAELTQPSEMDRAKVTEGGLAVLNASRDESEAQNPSNP EPESIESDAVEDLGVAAESDPSDDEPDPEPEYDHREADHDSDA DSGYYSADGGRPGTPVDEEPQDDSPSSEETASTVIEEAQTSAS NDSHDDDTHRDDGSASEEDLERDALVAPADPFPNLRKCFERQA MMLTGALKDAADTADPPETLSVDSVQRQLERFVFNPDRRVPAE HLEVRYNFYPPFLTPKAIASYHIFAVTASIPLSCKANRSGSDL LAKAKESTFFKRLPKWRLGIEIDDGLGTEVTAVTELEEAKMVP LKDDVSRLQWAKMRGEHIRFFSYPSLHMPPKISRMLMETLLQP FADENQKAEEALPCLSDEEVLAIVDPTGRLHGEDALKAVEKRR AAVTMAVRYTATLELMERVFREPSMVKKMQEVLHHTFHHGFVA LVRETAKVNLSNYATFHGLTYNNPLNNCIMSKLLEGADKEDYV VDSIYLFLVLTWQTAMGMWQQAIDDMTIQMYTEVFTKNKYRLY SLPNPTAIGKAIVDILMDYDRLTEEMRKALPNFTCQSQITAFR HFLLERSNIPAVAAPFMPSDFVPLAYKQSPPLLWDQVYLLQLA FYLTKHGGYLWEAPEEEANNPSNRTYCPCNLCSPHRMPGHNAA LHNEILAIGTFEIRSPDGKTFKLTPELWTNAYLDKFDAEDFHP FTVFHYPENASRFASTLKACVTQSPEILSLIRQIQESREEFLL TKGKGVYKDPNTGETISRQPRDTARAQHAGDGQALPAPGAYTT GGNRAETAPAGAVRLAPDYQDGQFPIAKVGPHYHGPKNVRRED QGYRGGPGGVRGEREWLSRRAGGRRFGRRNTRQSGYNERANR YFGRGGGGSVRGQQGEHPTTSPSASEPPAPSRIL ARGTPPSPE RRDRQEE
Gen 23680..27886Gen 23680.27886
Gen: L4 Gen: L4
CDS 27149..27886CDS 27149..27886
Gen: L4Gen: L4
Produkt: L4 pVIIIProduct: L4 pVIII
Translation:MNLMNATPTEYVWKYNPVSGIPAGAQQNYGA TIDWVLPGGTGFAIATNDIRRQTLNPAVTRAITARFEAESDQQ PYASPHETNVIAANVLDSGYPKSGLYPLELSGNQRVQLAGGLM VGRTEGRMQLAGGLTEGRVQLSGGFHGRPLVRGRSRRPPRWCG AELTGNGLPEQAEVTSDTYKYFLRTQGPSQWEEPGVFSQRQF MTTFLPSWPHPFDSTNPGDFPAQYSAIYKGRTAFEDTFWDW polyA_site 27920Translation: MNLMNATPTEYVWKYNPVSGIPAGAQQNYGA TIDWVLPGGTGFAIATNDIRRQTLNPAVTRAITARFEAESDQQ PYASPHETNVIAANVLDSGYPKSGLYPLELSGNQRVQLAGGLM VGRTEGRMQLAGGLTEGRVQLSGGFHGRPLVRGRSRRPPRWCG AELTGNGLPEQAEVTSDTYKYFLRTQGPSQWEEPGVFSQRQF MTTFLPSWPHPFDSTNPGDFPAQYSAIYKGRTAFEDTFWDW polyA_site 27920
Spezielles Merkmal 28315Special feature 28315
Bemerkung: fiber splice acceptor siteNote: fiber splice acceptor site
Spezielles Merkmal 28341Special feature 28341
Bemerkung: fiber splice acceptor siteNote: fiber splice acceptor site
Gen 28363..31768Gen 28363..31768
Gen: L5Gen: L5
CDS 28363..30495CDS 28363..30495
Gen: L5Gen: L5
Produkt: L5 fiber 1Product: L5 fiber 1
Translation:MTSPLTLSQRALALKTDSTLTLNTQGQLGVS LTPGDGLVLNTNGLSINADPQTLAFNNSGALEVNLDPDGPWSK TATGIDLRLDPTTLEVDNWELGVKLDPDEAIDSGPDGLCLNLD ETLLLATNSTSGKTELGVHLNTSGPITADDQGIDLDVDPNTMQ VNTGPSGGMLAVKLKSGGGLTADPDGISVTATVAPPSISATAP LTYTSGTIALTTDTQTMQVNSNQLAVKLKTGGGLTADADGISV SVAPTPTISASPPLTYTNGQIGLSIGDQSLQVSSGQLQVKLKS QGGIQQSTQGLGVAVDQTLKIVSNTLEVNTDPSGPLTSGNNGL SLAAVTPLAVSSAGVTLNYQSPLTVTSNSLGLSIAAPLQAGAQ GLTVNTMEPLSASAQGIQLHYGQGFQWAGTLQLLTNPPIWS SRGFTLLYTPAFTVSNNMLGLNVDGTDCVAISSAGLQIRKEAP LYVTSGSTPALALKYSSDFTITNGALALANSGGGGSSTPEVAT YHCGDNLLESYDIFASLPNTNAAKVAAYCRLAAAGGWSGTIQ VTSYAGRWPKVGNSVTDGIKFAIWSPPMDKDPRSNLSQWLGA TVFPAGATTALFSPNPYGSLNTITTLPSIASDWYVPESNLVTY TKIHFKPTGSQQLQLASGELWAAAKSPVQTTKYELIYLGFTL KQNSSGTNFFDPNASSDLSFLTPPIPFTYLGYYQ Spezielles Merkmal 30511Translation: MTSPLTLSQRALALKTDSTLTLNTQGQLGVS LTPGDGLVLNTNGLSINADPQTLAFNNSGALEVNLDPDGPWSK TATGIDLRLDPTTLEVDNWELGVKLDPDEAIDSGPDGLCLNLD ETLLLATNSTSGKTELGVHLNTSGPITADDQGIDLDVDPNTMQ VNTGPSGGMLAVKLKSGGGLTADPDGISVTATVAPPSISATAP LTYTSGTIALTTDTQTMQVNSNQLAVKLKTGGGLTADADGISV SVAPTPTISASPPLTYTNGQIGLSIGDQSLQVSSGQLQVKLKS QGGIQQSTQGLGVAVDQTLKIVSNTLEVNTDPSGPLTSGNNGL SLAAVTPLAVSSAGVTLNYQSPLTVTSNSLGLSIAAPLQAGAQ GLTVNTMEPLSASAQGIQLHYGQGFQWAGTLQLLTNPPIWS SRGFTLLYTPAFTVSNNMLGLNVDGTDCVAISSAGLQIRKEAP LYVTSGSTPALALKYSSDFTITNGALALANSGGGGSSTPEVAT YHCGDNLLESYDIFASLPNTNAAKVAAYCRLAAAGGWSGTIQ VTSYAGRWPKVGNSVTDGIKFAIWSPPMDKDPRSNLSQWLGA TVFPAGATTALFSPNPYGSLNTITTLPSIASDWYVPESNLVTY TKIHFKPTGSQQLQLASGELWAAAKSPVQTTKYELIYLGFTL KQNSSGTNFFDPNASSDLSFLTPPIPFTYLGYYQ Special feature 30511
Gen: L5Gen: L5
Bemerkung : fiber splice acceptor siteNote: fiber splice acceptor site
ERSATZBLAπ (REGEL 26) CDS 30536 . . 31768REPLACEMENT BLAπ (RULE 26) CDS 30536. , 31768
Gen : L5Gen: L5
Produkt : L5 fiber 2Product: L5 fiber 2
Translation:MADQKRKLADPDAEAPTGKMARAGPGELDLV YPFWYQVAAPTEITPPFLDPNGPLYSTDGLLNVRLTAPLVIIR QSNGNAIGVKTDGSITVNADGALQIGISTAGPLTTTANGIDLN IDPKTLWDGSSGKNVLGVLLKGQGALQSSAQGIGVAVDESLQ IVDNTLEVKVDAAGPLAVTAAGVGLQYDNTQFKVTNGTLQLYQ APTSSVAAFTSGTIGLSSPTGNFVSSSNNPFNGSYFLQQINTM GMLTTSLYVKVDTTTMGTRPTGAVNENARYFTVWVSSFLTQCN PSNIGQGTLEPSNISMTSFEPARNPISPPVFNMNQNIPYYASR FGVLESYRPIFTGSLNTGSIDVRMQVTPVLATNNTTYNLIAFT FQCASAGLFNPTVNGTVAIGPWHTCPAARAPVTV polyA_site 31770Translation: MADQKRKLADPDAEAPTGKMARAGPGELDLV YPFWYQVAAPTEITPPFLDPNGPLYSTDGLLNVRLTAPLVIIR QSNGNAIGVKTDGSITVNADGALQIGISTAGPLTTTANGIDLN IDPKTLWDGSSGKNVLGVLLKGQGALQSSAQGIGVAVDESLQ IVDNTLEVKVDAAGPLAVTAAGVGLQYDNTQFKVTNGTLQLYQ APTSSVAAFTSGTIGLSSPTGNFVSSSNNPFNGSYFLQQINTM GMLTTSLYVKVDTTTMGTRPTGAVNENARYFTVWVSSFLTQCN PSNIGQGTLEPSNISMTSFEPARNPISPPVFNMNQNIPYYASR FGVLESYRPIFTGSLNTGSIDVRMQVTPVLATNNTTYNLIAFT FQCASAGLFNPTVNGTVAIGPWHTCPAARAPVTV polyA_site 31770
CDS Komplementär (31812..32429)CDS Complementary (31812..32429)
Bemerkung: ORF22Note: ORF22
Translation:MNDEQILEMVLQHQQRRQQEAEREEEVGDDM EDDEDDDGLQMPTPLHAYQLLCYDSFELHFGGCACHGLPLHRM GLSACHLAPSDLATYVWARLEDDLNVAGVYFVAMWASPGFSDF SPVFMQRPIGNVCGMLIHVDLHSRLPFLIAVSRLGEAGGSPCL YMRKIDVDLDTQRVHFYTEDWFSEFANLLYYWQMSEWKHLAER MQTranslation: MNDEQILEMVLQHQQRRQQEAEREEEVGDDM EDDEDDDGLQMPTPLHAYQLLCYDSFELHFGGCACHGLPLHRM GLSACHLAPSDLATYVWARLEDDLNVAGVYFVAMWASPGFSDF SPVFMQRPIGNVCGMLIHVDLHSRLPFLIAVSRLGEAGGSPCL YMRKIDVDLDTQRVHFYTEDWFSEFANLLYYWQMSEWKHLAER MQ
CDS Komplementär (32735..33058)CDS Complementary (32735..33058)
Bemerkung: ORF21Note: ORF21
Translation:MCTGSTGSLIPSVSDSANSVRRGNLSLCSVL LSWLICAMCLWNDARESLVNVRIANYVFDFAVLWTLLARVLGP PGRPVLQQHHPVQLPVPTEPSVFVKLCNQRVRLTranslation: MCTGSTGSLIPSVSDSANSVRRGNLSLCSVL LSWLICAMCLWNDARESLVNVRIANYVFDFAVLWTLLARVLGP PGRPVLQQHHPVQLPVPTEPSVFVKLCNQRVRL
CDS Komplementär (32892..33707)CDS Complementary (32892..33707)
Bemerkung: ORF20Note: ORF20
Translation:MERLNEYRINRAVASLRCFDNDLMRRLHSSV TVLVTVRSAKFVCFKRRDYVLMNCIVRIVSALHLNRAEKTALL HYLSRRLLFITPGMKYDLEPWMLARRKTDFKFFTTGFLIAEKI SVKMALRSMSFEVSFSQVPSSVPFVRSPWLMNACRVTVTATI MVETISRSSAVTQPVCLRSMLRVMVSPELWPIVSQGLCYFPGY RRLSYANVEEWVFHVHGKYGESHPECFGQCKQCSTRQPLΞLFC SAQLAYLRNVFMERRARVAGERPYSTranslation: MERLNEYRINRAVASLRCFDNDLMRRLHSSV TVLVTVRSAKFVCFKRRDYVLMNCIVRIVSALHLNRAEKTALL HYLSRRLLFITPGMKYDLEPWMLARRKTDFKFFTTGFLIAEKI SVKMALRSMSFEVSFSQVPSSVPFVRSPWLMNACRVTVTATI MVETISRSSAVTQPVCLRSMLRVMVSPELWPIVSQGLCYFPGY RRLSYANVEEWVFHVHGKYGESHPECFGQCKQCSTRQPLΞLFC SAQLAYLRNVFMERRARVAGERPYS
ERSATZBUTT (REGEL 26) CDS 33030..33476REPLACEMENT BUTT (RULE 26) CDS 33030..33476
Bemerkung: ORF5Note: ORF5
Translation:MRLPVLPVHMKYPLFDVSVGQPTVTGEVTQS LRHDRPQFRRHHHAEHASQADGLGHGAAARNSFHHDGGRHGHA TRIHENNRRPHKRNRRRHLRKGHLKAHRAESHLYGYLLRNQKA CGEKLKICLPASKHPRFQWLHPRCNKKQPTTranslation: MRLPVLPVHMKYPLFDVSVGQPTVTGEVTQS LRHDRPQFRRHHHAEHASQADGLGHGAAARNSFHHDGGRHGHA TRIHENNRRPHKRNRRRHLRKGHLKAHRAESHLYGYLLRNQLKPGEKLHQQKPKKKLPRQK
CDS 33169..33483CDS 33169..33483
Bemerkung: ORF6Note: ORF6
Translation:MLLRQTGWVTALLREIVSTMMVAVTVTRHAFTranslation: MLLRQTGWVTALLREIVSTMMVAVTVTRHAF
MRTTGDRTKGTDEGTCEKDTSKLIERRAIFTDIFSAIRKPWKMRTTGDRTKGTDEGTCEKDTSKLIERRAIFTDIFSAIRKPWK
NLKSVFLRASIHGSKSYFIPGVIKSNLRERNLKSVFLRASIHGSKSYFIPGVIKSNLRER
CDS Komplementär (34238..35599)CDS Complementary (34238..35599)
Bemerkung: ORF19Note: ORF19
Translation.-MRGFVPPTSSPDRGSKKVGRIVALDPPLESF QGYRMDLHTKGLNLLLSSGGHWSANRDADSVISRDDADYVWI ASSIGSYGFDRPIGDEYIRSDLTGQKHEACESRAWWKGQICAW SYSGRRHCEDVHIPFDFLRSDGLCYHIMAPLTFMKALDTHQAD QLLSMHGSVPSAWSAYVTGRDYSQPTQYYTEEVADWRMLLRED DMASSYLLLWTEGNAAELWTYDPYYTKTIGMEHGYSVRWYFI RDRNVGEAPIVLYARGGGVLKFIRLYKGRGTLTSLGARAMTTQ EVTEFTCFRTHTYYFTGTKKYDCHPGGHRFDVPRWRSHINVSA HHLPVPPKCGCLKFPKLFKDYVIFDHPNWGRAGEYVSLGPWS TGLQAWTFKPQPRRHRWLATYWDACSNTKRRVGIDVRTDRK NHMVWLKADKPVSREMWFVSEVDWRVYVTWLSPETranslation.-MRGFVPPTSSPDRGSKKVGRIVALDPPLESF QGYRMDLHTKGLNLLLSSGGHWSANRDADSVISRDDADYVWI ASSIGSYGFDRPIGDEYIRSDLTGQKHEACESRAWWKGQICAW SYSGRRHCEDVHIPFDFLRSDGLCYHIMAPLTFMKALDTHQAD QLLSMHGSVPSAWSAYVTGRDYSQPTQYYTEEVADWRMLLRED DMASSYLLLWTEGNAAELWTYDPYYTKTIGMEHGYSVRWYFI RDRNVGEAPIVLYARGGGVLKFIRLYKGRGTLTSLGARAMTTQ EVTEFTCFRTHTYYFTGTKKYDCHPGGHRFDVPRWRSHINVSA HHLPVPPKCGCLKFPKLFKDYVIFDHPNWGRAGEYVSLGPWS TGLQAWTFKPQPRRHRWLATYWDACSNTKRRVGIDVRTDRK NHMVWLKADKPVSREMWFVSEVDWRVYVTWLSPE
CDS Komplementär (35536..36144)CDS Complementary (35536..36144)
Bemerkung: ORF18Note: ORF18
Translation:MSALSSCFNGSDSRWDPPYPKADVRRLMGTY SPDFPSWPKLIVWWNETFLTFSDGPWWSQMRRLGVLDGKDSG ELIILVQDMYPDVCPLINRARYDGTYKWTSEMMRKILRMHTIM TPESPVILLDWTNQLRDICKKVDALLWGQDVRGPAYYAVRTTA HFFTEFKDHRIHCIGMSLGGTVCAALSRQLLVRTEGQKRLAATranslation: MSALSSCFNGSDSRWDPPYPKADVRRLMGTY SPDFPSWPKLIVWWNETFLTFSDGPWWSQMRRLGVLDGKDSG ELIILVQDMYPDVCPLINRARYDGTYKWTSEMMRKILRMHTIM TPESPVILLDWDVALLTVGTQKV
CDS 35629..36024CDS 35629..36024
Bemerkung: ORF7Note: ORF7
Translation:MNSMVLELRKKMSSGPDCVIGRPPHILPPQKTranslation: MNSMVLELRKKMSSGPDCVIGRPPHILPPQK
GVYLLTNISQLIGPVQQNDRGLWRHNGMHTQNLSHHFTGPFICGVYLLTNISQLIGPVQQNDRGLWRHNGMHTQNLSHHFTGPFIC
AVIARPINKRTHIGIHVLNQNNELPAIFTIQYPEPPHLTDNPGAVIARPINKRTHIGIHVLNQNNELPAIFTIQYPEPPHLTDNPG
AVRKSQKSLIPPYNAVRKSQKSLIPPYN
ERSATZBUπ (REGEL 26) CDS 37391..38239ERSATZBUπ (RULE 26) CDS 37391..38239
Bemerkung: ORF8Note: ORF8
Translation:MARNPFRMFPGDLPYYMGTISFTSWPVDPSTranslation: MARNPFRMFPGDLPYYMGTISFTSWPVDPS
QRNPTTSLREMVTTGLIFNPNLTGEQLREYSFSPLVSMGRKAIQRNPTTSLREMVTTGLIFNPNLTGEQLREYSFSPLVSMGRKAI
FADYEGPQRIIHVTIRGRSAEPKTPSEALIMMEKAVRGAFAVPFADYEGPQRIIHVTIRGRSAEPKTPSEALIMMEKAVRGAFAVP
DWVAREYSDPLPHGITHVGDLGFPIGSVHALKMALDTLKIHVPDWVAREYSDPLPHGITHVGDLGFPIGSVHALKMALDTLKIHVP
RGVGVPGYEGLCGTTTIKAPRQYRLLTTGVFTKKDLKRTLPEPRGVGVPGYEGLCGTTTIKAPRQYRLLTTGVFTKKDLKRTLPEP
FFSRFFNQTPEVCAIKTGKNPFSTEIWCMTLGGDSPAPERNEPFFSRFFNQTPEVCAIKTGKNPFSTEIWCMTLGGDSPAPERNEP
RNPHSLQDWARLGVMETCLRMSRRGLGSRHHPYHSLRNPHSLQDWARLGVMETCLRMSRRGLGSRHHPYHSL
CDS Komplementär (38717..39256)CDS Complementary (38717..39256)
Bemerkung: ORF17Note: ORF17
Translation:MPLYLCFGAAAPVSILWREELFWGFVAAVKR RWHTVYARTNVDIQYPMAYCVGIQSLSPCKCHVTVWCLTFLD LRMSAINEATKIMRAFFKTFFYHHGKVPRGRWFKLYRNDWCKD PNLTVGNYIVASGALPLMLGWARSTGLRFSTFTYSDEALWSHR RRDRRLARRREKLENKVSGTranslation: MPLYLCFGAAAPVSILWREELFWGFVAAVKR RWHTVYARTNVDIQYPMAYCVGIQSLSPCKCHVTVWCLTFLD LRMSAINEATKIMRAFFKTFFYHHGKVPRGRWFKLYRNDWCKD PNLTVGNYIVASSTALPLRSWARDRDEGLLVRGSKL
CDS Komplementär (39286..39705)CDS Complementary (39286..39705)
Bemerkung: ORF16Note: ORF16
Translation:MYYFHLRVTLMEPNLAVFHDLKLTVINAWES LTVEMLSHYSVDYLFRLEEFAGVYSASIFLPTHKVDWTFLKRA VALLRECIWRRFECTQVPRGVASIYAVRNTWTPSANRVARHFV KRGALVGMQPCLHECTYERDACTranslation: MYYFHLRVTLMEPNLAVFHDLKLTVINAWES LTVEMLSHYSVDYLFRLEEFAGVYSASIFLPTHKVDWTFLKRA VALLRECIWRRFECTQVPRGVASIYAVRNTWTPSANRVARHFV KRGALVGMQPCLH
CDS 40037..41002CDS 40037..41002
Bemerkung: ORF9Note: ORF9
Translation:MEPPHNSPVPFSIAKMGNPTLLLLSGLLSLTTranslation: MEPPHNSPVPFSIAKMGNPTLLLLSGLLSLT
QAISIGEHENKTRHVIVWRHSSSHQCSDWRTVTEWFPPQKGNPQAISIGEHENKTRHVIVWRHSSSHQCSDWRTVTEWFPPQKGNP
VRPPYTQRVSLDTANNTLTVKPFETNNGCWETTSQGINHPPTTVRPPYTQRVSLDTANNTLTVKPFETNNGCWETTSQGINHPPTT
IQYRVWNITTTPTIQTINITKITVREGEDFTLYGPVSETMSIIIQYRVWNITTTPTIQTINITKITVREGEDFTLYGPVSETMSII
EWEFIKDVTPQFILQYYLSINSTIVYASYQGRVTFNPGKNTLTEWEFIKDVTPQFILQYYLSINSTIVYASYQGRVTFNPGKNTLT
LKGAKTTDSGTYKSTVNLDQVSVHNFRVGVTPIEKKEEATAETLKGAKTTDSGTYKSTVNLDQVSVHNFRVGVTPIEKKEEATAET
PASKPTPIPRVRADARSTALWVGLALCILTVIPALIGWYFRDRPASKPTPIPRVRADARSTALWVGLALCILTVIPALIGWYFRDR
LCVPDPIIELEIPGQPHVTIHILKGPDDDCETLCVPDPIIELEIPGQPHVTIHILKGPDDDCET
ERSATZBLAπ(REGEL26) CDS 41002..41853REPLACEMENT BLAπ (RULE 26) CDS 41002..41853
Bemerkung: ORF10Note: ORF10
Translation:MIDKRNKKAVTHISTCLCHSSIPIYGDSPFL NTHRAAMDPRPLVLLLLLASHISTFRQMYFEGETIHFPMGIYG NETTLYMNDIILEGTRANTTTRTISLTTTKKNAGTNLYTVISE TGHNATYLITVQPLGQSIHHAYTWAGNTFTLQGQVFEHGNYTR WVRLENAEPKLIISWALSNRTINKGPAYTANMDFDPGNNTLTL HPVLITDAGIFQCVIDQQTNLTLTINFTVSENPPIVAHLDIHK TISRTIAICSCLLIAVIAVLCCLRQLNVNGRGNSEMITranslation: MIDKRNKKAVTHISTCLCHSSIPIYGDSPFL NTHRAAMDPRPLVLLLLLASHISTFRQMYFEGETIHFPMGIYG NETTLYMNDIILEGTRANTTTRTISLTTTKKNAGTNLYTVISE TGHNATYLITVQPLGQSIHHAYTWAGNTFTLQGQVFEHGNYTR WVRLENAEPKLIISWALSNRTINKGPAYTANMDFDPGNNTLTL HPVLITDAGIFQCVIDQQTNLTLTINFTVSENPPIVAHLDIHK TISRTIAICSCLLIAVIAVLCCLRQLNVNGRGNSEMI
CDS 41958..42365CDS 41958..42365
Beme rkung : ORF 11Comment: ORF 11
Translation : MLLLTWLLVGVTLAADHPTLYAPKGGSIEL GVGAKQKGQYKFEWRFGNLKIVIAEMSSTNQLEIKFPDNGFQN RSEFNPTKHNLTIHNASYEDSGTYSLHQEENDGTEHTDNFKVI VQGMSLYTYLQYALISPITranslation: MLLLTWLLVGVTLAADHPTLYAPKGGSIEL GVGAKQKGQYKFEWRFGNLKIVIAEMSSTNQLEIKFPDNGFQN RSEFNPTKHNLTIHNASYEDSGTYSLHQEENDGTEHTDNFKTIVQQMSLY
ERSATZBLAπ (REGEL 26) 1 gatgatgtat aataacctca aaaactaacg cagtcataac cggccataac cgcacggtgtREPLACEMENT BLAπ (RULE 26) 1 gatgatgtat aataacctca aaaactaacg cagtcataac cggccataac cgcacggtgt
61 cactcgggta caaattatga attcgatctt tggacttttc gacgcgccca gtgactgtac61 cactcgggta caaattatga attcgatctt tggacttttc gacgcgccca gtgactgtac
121 tttattgcgc caattcacca cgcccgggag atttcgaaat tgctatttcc gtgcagttcc121 tttattgcgc caattcacca cgcccgggag atttcgaaat tgctatttcc gtgcagttcc
181 gcattccgaa gtacaattta accggtttta tgggtgttcg gtgtttttct agcttaatca181 gcattccgaa gtacaattta accggtttta tgggtgttcg gtgtttttct agcttaatca
241 ttgtttttag acgacacagt gggtatctgt tttcgcttgg acttggctcc gctttgtgaa241 ttgtttttag acgacacagt gggtatctgt tttcgcttgg acttggctcc gctttgtgaa
301 aattcaactc gatccaacat tttccttatt gatggaaggc ttttattatt tgcacaacag301 aattcaactc gatccaacat tttccttatt gatggaaggc ttttattatt tgcacaacag
361 acatcgcgct atttacacag aacgcaaagt gctgtctttt ttattccttg ttccgggtac361 acatcgcgct atttacacag aacgcaaagt gctgtctttt ttattccttg ttccgggtac
421 atcttttatt gctagtgcct cgcctatttt tagtcacgta tcttccttgt tctatagcta421 atcttttatt gctagtgcct cgcctatttt tagtcacgta tcttccttgt tctatagcta
481 tatattcacg cggttttcgg tctctcctca ctcggcagat gacttcggaa gagaagctgc481 tatattcacg cggttttcgg tctctcctca ctcggcagat gacttcggaa gagaagctgc
541 agagttcgtc tccggagacc ggcctcgccg ctgtcgtcct gcaaagcccc cttgaggtac541 agagttcgtc tccggagacc ggcctcgccg ctgtcgtcct gcaaagcccc cttgaggtac
601 gtgtgcctgc cgttcttcct cctccagtgc gaattgacat ctaccgctac ccaggctttc601 gtgtgcctgc cgttcttcct cctccagtgc gaattgacat ctaccgctac ccaggctttc
661 cgccaacgga gaccatctgg cacggtctca tcacgcagac tgagttaaac caggctttgg661 cgccaacgga gaccatctgg cacggtctca tcacgcagac tgagttaaac caggctttgg
721 agagcatcgt tgagcaattg tagtaagtgt cagtccctat ttttctgttt tttcttgtat721 agagcatcgt tgagcaattg daytaagtgt cagtccctat ttttctgttt tttcttgtat
781 ttcctcttag acgatggacc cgttcggttc ttcttcagtc cctccgtgct ctacatcaga781 ttcctcttag acgatggacc cgttcggttc ttcttcagtc cctccgtgct ctacatcaga
841 ccttcccgaa cccaagctct atttcgtccg cttgtcaccc catgcagtgc ctccagttag841 ccttcccgaa cccaagctct atttcgtccg cttgtcaccc catgcagtgc ctccagttag
901 ggctacgcac ggagctgcag gatacgattt gtttagcgct tacgacatta aagtgcctgc901 ggctacgcac ggagctgcag gatacgattt gtttagcgct tacgacatta aagtgcctgc
961 tcgcggtcgg gcgctagttc ccacagattt agtttttcaa tttccgcccg gctgttacgg961 tcgcggtcgg gcgctagttc ccacagattt agtttttcaa tttccgcccg gctgttacgg
1021 tcggattgct cctcgctcgg gcttggccgc caaatttttc attgacgtcg gagcgggtgt1021 tcggattgct cctcgctcgg gcttggccgc caaatttttc attgacgtcg gagcgggtgt
1081 tatcgatccc gattaccgcg ggaacgttag cgtggttttg ttcaatttct ccgagagctc1081 tatcgatccc gattaccgcg ggaacgttag cgtggttttg ttcaatttct ccgagagctc
1141 gttcaacatc aggcgaggcg atagggtagc acagcttatt ctggagcgta ttatggttcc1141 gttcaacatc aggcgaggcg atagggtagc acagcttatt ctggagcgta ttatggttcc
1201 ggagctgtcg gaactgacgc agctaggcga gacagaccgc ggggcgtcgg gtttcgggtc 1261 cacaggtatg ggtgctgtag accgcaatca gcgctctgtg ttggaatggc tgacccctgg 1321 ttcccgttga taggaccctt gcgacgaagt cgacttcgct gtacgcttgc aagcagattt1201 ggagctgtcg gaactgacgc agctaggcga gacagaccgc ggggcgtcgg gtttcgggtc 1261 cacaggtatg ggtgctgtag accgcaatca gcgctctgtg ttggaatggc tgacccctgg 1321 ttccccttgactgacgcttggggggctctg
1381 tgagggggac gacgacacat acggacattg tctgtgcgaa ggcagcacca gcaagaggcc 1441 ctgctgtacg ctctgtaaca gttactgcgt gcttctttag gtatgattgt gagcgtgtgg 1501 cagctcgcga ccatcgcgat tgagttttgc gataagtggg tggggaaata ctacagattc 1561 cgaccgtatc atgagagact tttgcttatg cagagtcggc aagctttgga aaggagcttg 1621 cgccgctgcg taagtgaagt tggacctccg ccagagcctc tagaatagcg atggagtccg 1681 gcgcacgtgg tgcttcctga ctttctgcac cattaccgtg gtgtttctgg ccttctttct 1741 gcagaaactt ctcaactaca tagatttcag agatagcgac tgcacagaat gtttttttgt 1801 gtagttgaca ggactatgga ccagacagca acccatacag ctttgattct tctgatcgtc 1861 ttgacggtgt tcacgggcgc ggtggtagct ttgatgttgt atattgcgat aactggactt 1921 ccttgctcta tgctttgctc tcaataaaga ttttcagaat ggtgattcta tggtattttg 1981 tcttttttct agacagtcat gtcgcgtgag tctgaacgtt actggacttt ggtgcacgct 2041 ctgattgatc ggggtgtagt cagccgtgaa cagtggcaaa tggttgaccc tgcgcaatac 2101 cagttctacc accgctccaa acagaggggt tttaaggtcc gtcacattct tcgtgatgtg 2161 attcgccaca tgtgttggtc tcggactctg ttagattata tgtcctcggc ctcgacacct 2221 agtccggacg atgtattacg caatcccctg tatcagttgc tgttatgtaa tggatataac 2281 cccgctgttg tggggacagc gctgatccgg tgggcgggcc atcagagcaa ccgtaacact 2341 gtttggattc gaggcacccc tatgtccgga gctccgtact tggcacaggc tatcgcgtac 2401 tgctctcccc tcgtagggag cgttgattgg cgcaacaagt ctaacccatt cgaagggtgt 2461 ccagatagtc tggtgttttg gtgggacggc ggttatgttt atgattgttg tgtgggtctg 2521 gtgaagcagg tgttccgggg agaacatgtt attttgcctc ctgagggctt gcgtggcccc 2581 aacccgtgct ctgaactctt caggacccca gtcttgatgt acagccaggc ggatatttgt 2641 atgactaggc tgagatcagg ggaactaagt gcagagcatg cggtgggcct cagggattgt 2701 atgtacctga tccgtttgac agaagatttt gactgcgcgg gtggtatatc gtgtgcagat 2761 gtcaaacagt ttgtggcgtg gagccgcgaa caccctgggg aggttcgcga gacccacgaa 2821 ctcaaataaa aattcgggac ttctgtgtac gttccttttc atgtttatta aacactgttc 2881 tttcgagtga gtcatatcac gtggaagtta attgcgactg ggagccgcag aagcaggtgg 2941 taaaagcaag ctatgcaggg atagtttacg atgtcccttg gaagacagac atagagtgtt 3001 tgtccttcca gtcgcgtgta ggcgccttgg cgccgcgcaa cggttactgc tgtatatatt 3061 tgttcgaggg cagggttcaa gttgcataac ctgcagtgag tagcatatgt gtataagatg1381 tgagggggac gacgacacat acggacattg tctgtgcgaa ggcagcacca gcaagaggcc 1441 ctgctgtacg ctctgtaaca gttactgcgt gcttctttag gtatgattgt gagcgtgtgg 1501 cagctcgcga ccatcgcgat tgagttttgc gataagtggg tggggaaata ctacagattc 1561 cgaccgtatc atgagagact tttgcttatg cagagtcggc aagctttgga aaggagcttg 1621 cgccgctgcg taagtgaagt tggacctccg ccagagcctc tagaatagcg atggagtccg 1681 gcgcacgtgg tgcttcctga ctttctgcac cattaccgtg gtgtttctgg ccttctttct 1741 gcagaaactt ctcaactaca tagatttcag agatagcgac tgcacagaat gtttttttgt 1801 gtagttgaca ggactatgga ccagacagca acccatacag ctttgattct tctgatcgtc 1861 ttgacggtgt tcacgggcgc ggtggtagct ttgatgttgt atattgcgat aactggactt 1921 ccttgctcta tgctttgctc tcaataaaga ttttcagaat ggtgattcta tggtattttg 1981 tcttttttct agacagtcat gtcgcgtgag tctgaacgtt actggacttt ggtgcacgct 2041 ctgattgatc ggggtgtagt cagccgtgaa cagtggcaaa tggttgaccc tgcgcaatac 2101 cagttctacc accgctccaa acagaggggt tttaaggtcc gtcacattct tcgtgatgtg 2161 attcgccaca tgtgttggtc tcggactctg ttagattata tgtcctcggc ctcgacacct 2221 a gtccggacg atgtattacg caatcccctg tatcagttgc tgttatgtaa tggatataac 2281 cccgctgttg tggggacagc gctgatccgg tgggcgggcc atcagagcaa ccgtaacact 2341 gtttggattc gaggcacccc tatgtccgga gctccgtact tggcacaggc tatcgcgtac 2401 tgctctcccc tcgtagggag cgttgattgg cgcaacaagt ctaacccatt cgaagggtgt 2461 ccagatagtc tggtgttttg gtgggacggc ggttatgttt atgattgttg tgtgggtctg 2521 gtgaagcagg tgttccgggg agaacatgtt attttgcctc ctgagggctt gcgtggcccc 2581 aacccgtgct ctgaactctt caggacccca gtcttgatgt acagccaggc ggatatttgt 2641 atgactaggc tgagatcagg ggaactaagt gcagagcatg cggtgggcct cagggattgt 2701 atgtacctga tccgtttgac agaagatttt gactgcgcgg gtggtatatc gtgtgcagat 2761 gtcaaacagt ttgtggcgtg gagccgcgaa caccctgggg aggttcgcga gacccacgaa 2821 ctcaaataaa aattcgggac ttctgtgtac gttccttttc atgtttatta aacactgttc 2881 tttcgagtga gtcatatcac gtggaagtta attgcgactg ggagccgcag aagcaggtgg 2941 taaaagcaag ctatgcaggg atagtttacg atgtcccttg gaagacagac atagagtgtt 3001 tgtccttcca gtcgcgtgta ggcgccttgg cgccgcgcaa cggttactgc tgtatatatt 3061 tgttcga ggg cagggttcaa gttgcataac ctgcagtgag tagcatatgt gtataagatg
ERSATZBLAπ(REGEL28) 3121 agattaagag ggagttgggg ctggtggtcg tgttgagcaa cgaaattgac gaccgttttg 3181 gcccagtgag ctgtaagcac tcggatgagg gataaacaaa agagggaacg gggtgtctcg 3241 cagctgcaga tgtactggat agtccagtcg gtacatcgca tctcaataac tcttatccag 3301 ctgcagaatg acctgagctg gaggtcacac tcttcgtccg taatgcagtg gggcgagtgc 3361 ttgaaggggt acatctgtct tttaaggaga aagagtagga aatcgggatc tgtgattagg 3421 gtaatgccca cgcgcgtgaa caggggctcg atgtagatat gccaactgtg ttggggctcg 3481 tcctcatcgt tgtcactatc ccaaacaagg tcgcacgact cgaatgtctg taaaacatca 3541 aaagtttatt actgattttg aagaggggta cgtatacagg ggttacagag tttattatcg 3601 cgtttgcaat gcagtgtcat taagcaagca caagcggcag cattagcaac aaagtcgcgt 3661 agctctttgc gcgggtggta gcatggaggg gtcttggtgt ggtctcctgt gaggaagaag 3721 acgaccgtgt tccgcgccgt gaactcgttg gcgagcgaga ggtccgcgca gtggattagc 3781 atgggggtcg aggggatgtg gaacgttttc ttattcagcc tgcaggtggc agcattgcct 3841 tccataaagt gcagcatcaa cgggtccggc ttctcgtcta cgaagggcag acagtatagaREPLACEMENT BLAπ (RULE 28) 3121 agattaagag ggagttgggg ctggtggtcg tgttgagcaa cgaaattgac gaccgttttg 3181 gcccagtgag ctgtaagcac tcggatgagg gataaacaaa agagggaacg gggtgtctcg 3241 cagctgcaga tgtactggat agtccagtcg gtacatcgca tctcaataac tcttatccag 3301 ctgcagaatg acctgagctg gaggtcacac tcttcgtccg taatgcagtg gggcgagtgc 3361 ttgaaggggt acatctgtct tttaaggaga aagagtagga aatcgggatc tgtgattagg 3421 gtaatgccca cgcgcgtgaa caggggctcg atgtagatat gccaactgtg ttggggctcg 3481 tcctcatcgt tgtcactatc ccaaacaagg tcgcacgact cgaatgtctg taaaacatca 3541 aaagtttatt actgattttg aagaggggta cgtatacagg ggttacagag tttattatcg 3601 cgtttgcaat gcagtgtcat taagcaagca caagcggcag cattagcaac aaagtcgcgt 3661 agctctttgc gcgggtggta gcatggaggg gtcttggtgt ggtctcctgt gaggaagaag 3721 acgaccgtgt tccgcgccgt gaactcgttg gcgagcgaga ggtccgcgca gtggattagc 3781 atgggggtcg aggggatgtg gaacgttttc ttattcagcc tgcaggtggc agcattgcct 3841 tccataaagt gcagcatcaa cgggtccggc ttctcgtcta cgaagggcag acagtataga
3901 gaggcgtggg gtgcgatttc gcccagtgat agtatggagt tgattcggct gtcggagatc 3961 gcgagcggga aacacgcgca taaggcatta aagagactct tggcgttgga aagtcttcct 4021 ccgcagagca cgagggtgtt tagttctcct cggagccatc ggaggatggc gttagctgcc3901 gaggcgtggg gtgcgatttc gcccagtgat agtatggagt tgattcggct gtcggagatc 3961 gcgagcggga aacacgcgca taaggcatta aagagactct tggcgttgga aagtcttcct 4021 ccgcagagca cgagggtgtt tagttctcct cggagccatc ggaggatggc gttagctgcc
4081 acttttccct cgtagccttc ggcttccatc atctgatgga accagttgtc gcagacgttg 4141 tagaacgcag ccttgagggt gtcgggctct tcggagggta actggttaat gaggctctgt 4201 ccgggtccga accgttcctt gagggcttcg agtacacgct ctcgttcgta ggtgggtatg 4261 aggttcttgg acgggaagtt ccactggact tcgtgtgcta caccttcgac aaacaaccgt 4321 tcaaccaact gatccatggg ggacgtggac ggaaataagc agggtgaagg ggtgtctgga 4381 atgcaggatg ctatttgctc ctcttcgcta cttaaagacg actgagactc gcgtcgcctc 4441 ttggtgcact gtgggagaga attatatgtc atgtgatgag tgacaagcat tgcatgggga 4501 ggtccacgag cgggaacaga gcattccttt gttctcgcat aggagagcgc gcaaggcgtc 4561 gttgtcatta tctgcctgta attggtgtat gcgatgaatg tagcgggaga gctctcccag 4621 aaagaacccg cagccgttgg cgggttcgta gaacctaata atgatatgtt cgtcgggagc 4681 agtgggcaga tgttcgggat gggggagctg atataagcgg acgaggcatt ttttctcact 4741 gatgtccacg agaccgtcgc gggtcattgt ggtgaatgac ctgcctttca gcagctggtt 4801 agcaacggga tctttgaacg tgttacaatg agctgtgcag gggaaataaa gcatcttgac 4861 taaatcttgc tgtctggcgt actggccaaa gtcgaacgcg ttaatgttgg cagtgaggac 4921 aaattggaat aatctgagga tggatgcagt gaatatatct gcggcagagg aaggttctcc 4981 tacgacatag agcgtgttag tataatggca caggcgacta atgctcatgg cagacatcca 5041 cagataaatg gcgtagatgg ctaccggagc attgtaacct tcggcttcta gcatggctcg 5101 gagatctctt tgtgaggaca gctcgaagcc ttgcagattg aaattgatcg tttgactgag 5161 cccgtagctg cagtataatt tgcgcgcttc ttccagaagc gcgggggcga ccgattcgaa 5221 tagttcagca tcttggggat accgagtgag ccaatctttg taggtaaaga tgttgtttcg 5281 ctggagatcg aatattagcc tgtgtgtgac taaatcgtcg tcgtcttctc ccgtgtggcg 5341 gttcctgagt ctcttaacgc tatccttaag tttcctgaaa cgttcctggg ggagaaagtt 5401 tttcgagatc ggttagtttg gggtttctct ctaactgctt tctatgtgtt tcgctaaatt 5461 tgatgataga tttggctgtt ttcaggaatc tctcctgaat gttaacattg agagggatga 5521 tcgagtactg ctgatctata ctgcaccacc taaaggactc ggatactggg tccggagtgt 5581 acatgaccca gctgaaccgc tggttctgct gcaggaagga aaagtaagct ttgagaagga 5641 caacgaggtc cttcgagatg ttgtgtgcga acgcatagag gaacctagcg aactggaatt 5701 ggggaatatg acaggatagg atgtgcattt tcgcgttcac tttgagggtg ggaacgtttc 5761 ctatcgcggt gcgcggtgcc atgttgtgca agactacgaa aatgtagaag gctgtacagt 5821 gggcagagcg agcaaagagc ttagaaggaa gggcgtgaaa gaggacagag acgctggagc 5881 ctgaacagag cttatccatg cactcgtcca tgataatggc gacgggtccc cgcttggaga 5941 ctttcacgta aatgttgtct ggatggtcga tgttgagatg ttcgggtgcg gtggcctcct 6001 cgtaagtcat ctccataaat tcgggacgga acgtgcttgt cttaggggcg atggtgccgt 6061 cttccctgca gtcgaaattg gcctcgacca gctgcaggtt ccaggacgtc tgttcgatgg 6121 gtggaatcat gttcttttcc ggagtgatga agatgaccgt ttcggggatc gggtccaaca 6181 tgttgcacga gatgagcgcc cgcagcagat gcgacttgcc ggatccggtg ggtccgtaga 6241 tgaccccgat gatgggctgc ttgcccatgt tgatggacgg cagctgtccg tgttggaggt 6301 agcgactgtc catctgttcc tgggctttaa cttcttcgtg ggcttcgaga aacttctcat4081 acttttccct cgtagccttc ggcttccatc atctgatgga accagttgtc gcagacgttg 4141 tagaacgcag ccttgagggt gtcgggctct tcggagggta actggttaat gaggctctgt 4201 ccgggtccga accgttcctt gagggcttcg agtacacgct ctcgttcgta ggtgggtatg 4261 aggttcttgg acgggaagtt ccactggact tcgtgtgcta caccttcgac aaacaaccgt 4321 tcaaccaact gatccatggg ggacgtggac ggaaataagc agggtgaagg ggtgtctgga 4381 atgcaggatg ctatttgctc ctcttcgcta cttaaagacg actgagactc gcgtcgcctc 4441 ttggtgcact gtgggagaga attatatgtc atgtgatgag tgacaagcat tgcatgggga 4501 ggtccacgag cgggaacaga gcattccttt gttctcgcat aggagagcgc gcaaggcgtc 4561 gttgtcatta tctgcctgta attggtgtat gcgatgaatg tagcgggaga gctctcccag 4621 aaagaacccg cagccgttgg cgggttcgta gaacctaata atgatatgtt cgtcgggagc 4681 agtgggcaga tgttcgggat gggggagctg atataagcgg acgaggcatt ttttctcact 4741 gatgtccacg agaccgtcgc gggtcattgt ggtgaatgac ctgcctttca gcagctggtt 4801 agcaacggga tctttgaacg tgttacaatg agctgtgcag gggaaataaa gcatcttgac 4861 taaatcttgc tgtctggcgt actggccaaa gtcgaacgcg ttaatgttgg cagtgaggac 4921 a aattggaat aatctgagga tggatgcagt gaatatatct gcggcagagg aaggttctcc 4981 tacgacatag agcgtgttag tataatggca caggcgacta atgctcatgg cagacatcca 5041 cagataaatg gcgtagatgg ctaccggagc attgtaacct tcggcttcta gcatggctcg 5101 gagatctctt tgtgaggaca gctcgaagcc ttgcagattg aaattgatcg tttgactgag 5161 cccgtagctg cagtataatt tgcgcgcttc ttccagaagc gcgggggcga ccgattcgaa 5221 tagttcagca tcttggggat accgagtgag ccaatctttg taggtaaaga tgttgtttcg 5281 ctggagatcg aatattagcc tgtgtgtgac taaatcgtcg tcgtcttctc ccgtgtggcg gttcctgagt 5341 ctcttaacgc tatccttaag tttcctgaaa cgttcctggg ggagaaagtt 5401 tttcgagatc ggttagtttg gggtttctct ctaactgctt tctatgtgtt tcgctaaatt 5461 tgatgataga tttggctgtt ttcaggaatc tctcctgaat gttaacattg agagggatga 5521 tcgagtactg ctgatctata ctgcaccacc taaaggactc ggatactggg tccggagtgt 5581 acatgaccca gctgaaccgc tggttctgct gcaggaagga aaagtaagct ttgagaagga 5641 caacgaggtc cttcgagatg ttgtgtgcga acgcatagag gaacctagcg aactggaatt 5701 ggggaatatg acaggatagg atgtgcattt tcgcgttcac tttgagggtg ggaacgtttc 5761 ctatcgc ggt gcgcggtgcc atgttgtgca agactacgaa aatgtagaag gctgtacagt 5821 gggcagagcg agcaaagagc ttagaaggaa gggcgtgaaa gaggacagag acgctggagc 5881 ctgaacagag cttatccatg cactcgtcca tgataatggc gacgggtccc cgcttggaga 5941 ctttcacgta aatgttgtct ggatggtcga tgttgagatg ttcgggtgcg gtggcctcct 6001 cgtaagtcat ctccataaat tcgggacgga acgtgcttgt cttaggggcg atggtgccgt 6061 cttccctgca gtcgaaattg gcctcgacca gctgcaggtt ccaggacgtc tgttcgatgg 6121 gtggaatcat gttcttttcc ggagtgatga agatgaccgt ttcggggatc gggtccaaca 6181 tgttgcacga gatgagcgcc cgcagcagat gcgacttgcc ggatccggtg ggtccgtaga 6241 tgaccccgat gatgggctgc ttgcccatgt tgatggacgg cagctgtccg tgttggaggt 6301 agcgactgtc catctgttcc tggctctctggtcctt
ERSATZBLAπ(REGEL26) 6361 taacgccccc taggctgtag aactcgtcgt aggaggggaa gtgttgctcg cggaagagct 6421 gcggtgctag gtcgacagct ccgtcgtacc agctggtgac gcgctggtag aagtcccgcg 6481 aggcttcgta ctcttcttcc tcatactccc aggctttccg cttcctggga gctatcatct 6541 gcgaagagta ggtcgtgaac ttgcccgcat tcctcttcgg ataggaacgc gtagggttcc 6601 catcgtaggg gtgcgagggg gtcttcgtgc ccgacgattg ggacgggtcg tacgtctcct 6661 gtcgtgcggg gatttgggtg ctcattgtcg taggggtaca ggtagtcccc gtgctcgtat 6721 agggtgaggt ccttccacgg acgcagcact cgcgtgagct gctcgttgtg aatggtgaaa 6781 gggtcgtagc gactgacctt gttcagaagc gtggttttaa agatggttct ccgcgtgtgt 6841 agctctggga tgttgctctg cgctccgaat tgcacgtcct cgtgtctacg ccaacagcgc 6901 agcagcgtgt cgtagatgag ttcggactgc ctgtgtccct tcgatctgat tttcccgggt 6961 cctaccgtgc ggcactgttc gttgacgcag attgagtttt tcagtccgta cagttttggc 7021 gctaggaaga tggtttccga gctgtacgtg tcacttccgc aggctttgca cttgatgtcg 7081 caatcgcagg cccagtagag gccgggattt tctggatcga aagtcagtcg agtggattct 7141 gttttgattc ggtgcgcgcc gcggcttttc atgcgatgat agcctgtttc tgtgacgaac 7201 aggctgtcgg tatcgccata gaggctgcgc ggctcctccc ttcgcaggat gtgcactcct 7261 ctgtccggtc cgtacaggat gtcacaccac tcgctgaaga aggccctcga ccagcccagc 7321 acgaagcagg cgatttgcgt ggcgtatctt ttgtttgcca cctgcttgtc caggctttcc 7381 agatggagca cggttagggc ttctggtgtg gcttcgagga gacgcatagg tttaaaccgg 7441 gtctcgttag cgcgagcgta gtgggcggag cttagctccc cctcgggtat ataagggccc 7501 gtcgcgaggg tcgcctcgac ttccaggtct acggcgacga gaggatcgtc ttcggtaagt 7561 gcgtttttcg gcttacgggc actctcgcga tcgctgtcgt ctccttcttc ttccccatcc 7621 tcttctgctt cgggctcttc ctgttcgggg tcgtctgcgt agcggaactg ttgtcgtaga 7681 ctctcctcac tgaaggggtt aggcgcgttt tcgagggtga cttccgttcc gttgaacgag 7741 tcgtcattga gcagcgtgac gtgtttgacg atttcagtgc cttcgtagat gtttttctta 7801 tctgcttccg agaggtcctg ttcaaagatg atgcgcgtgg tgtccatgtt ggtggcaaac 7861 gcaccgtaca gcgcgttgct cagcattttg gagatggatc gaatcacttc gttcttctcg 7921 cgatcggctt tttctttggc gaggatgttt ttcgtgacgt agtcggcaca tagcgttttc 7981 cattccggaa aaacaatgtt catctcgtca tggaggacct ggactcgcca tccccggttg 8041 tgcagcgtga ggatatctat gacggtgacc acctcgtcgt agagagcctc gttggtccag 8101 accagtctgc ctcccctccg ggagcagatg ggagggagtg ggtctaacat ttcgggcggg 8161 ggagggtagg cttctatttt caggatggaa ggcttgatac gcgcatcgaa gtagctcaga 8221 tgcgattcgt tggtcagcag ccggttgagc tcctccacgt gctgcgcggt aaattttgga 8281 tctaggggca ttccgtgggg catggggtgg gtgagggcgg aagcgtacat gccgcagatg 8341 tcaaagacgt agacgggttt caggtaaggt ccgagcacgt tggggtagca tcgtccgccg 8401 cggagcgctt ggcgtatgta tttgaacatg gggcggtggg gggcgtagac ttcggccacg 8461 tagtcggggg agggttgttt tttctttttg gttcgacctt tctttttggg gggttcgggg 8521 acggagggag ggcatgtcgc acgctgttcg cggacgtaat tggaaaaggt aagttgcttc 8581 caaaaggcat gagtgttgct ggggatggtg ggccgcacga agatgttaaa atggccttcc 8641 atccctagtt ctcgttggaa ataggcgtcg tagctgtcgt gtaacgtgtg ggccagcttt 8701 tgggtgacgc ggacgtcctg catgcagtat tcgaggcacg cttggacgat gtcgtactgc 8761 tggcccgggt gttctttctg ccatagattc ttctgttcag cgatgacgga tgggtcttcc 8821 cagtaccttt cgacaggaaa gccgtcggcg tccgcgtgaa agcgccccgt ggaaatgaat 8881 tcgttgatgg cctcgtatgg gcaatgtccc ttgcagaggt ctagcgcgta ggctgccgcg 8941 gctttggaga gtttggcccc gctggtgagc tgtagagtgt ctcgcaccat gaaccgcaca 9001 aataccgagc gcgcatcctg atgggacacg atcccgcgag accagcgttc tacgcgggag 9061 gcgtctttct tcacgtagtt ggggtttggc atgcggaaaa tgatatcatt gaacagaagg 9121 cgaccgacgc gaggcatgaa ggatcgatca catttgcacg cttccgggaa taggtccctg 9181 cgctcgacga gttccgtggc taagaggagt tcatcgaact tacatatgtt gtgacctagc 9241 actacgatgt ctacggaata aaagttatcc gggagggaga ggggggaggt gggtttctcgREPLACEMENT BLAπ (RULE 26) 6361 taacgccccc taggctgtag aactcgtcgt aggaggggaa gtgttgctcg cggaagagct 6421 gcggtgctag gtcgacagct ccgtcgtacc agctggtgac gcgctggtag aagtcccgcg 6481 aggcttcgta ctcttcttcc tcatactccc aggctttccg cttcctggga gctatcatct 6541 gcgaagagta ggtcgtgaac ttgcccgcat tcctcttcgg ataggaacgc gtagggttcc 6601 catcgtaggg gtgcgagggg gtcttcgtgc ccgacgattg ggacgggtcg tacgtctcct 6661 gtcgtgcggg gatttgggtg ctcattgtcg taggggtaca ggtagtcccc gtgctcgtat 6721 agggtgaggt ccttccacgg acgcagcact cgcgtgagct gctcgttgtg aatggtgaaa 6781 gggtcgtagc gactgacctt gttcagaagc gtggttttaa agatggttct ccgcgtgtgt 6841 agctctggga tgttgctctg cgctccgaat tgcacgtcct cgtgtctacg ccaacagcgc 6901 agcagcgtgt cgtagatgag ttcggactgc ctgtgtccct tcgatctgat tttcccgggt 6961 cctaccgtgc ggcactgttc gttgacgcag attgagtttt tcagtccgta cagttttggc 7021 gctaggaaga tggtttccga gctgtacgtg tcacttccgc aggctttgca cttgatgtcg 7081 caatcgcagg cccagtagag gccgggattt tctggatcga aagtcagtcg agtggattct 7141 gttttgattc ggtgcgcgcc gcggcttttc atgcgatgat agcctgtttc tgtgacgaac 7201 a ggctgtcgg tatcgccata gaggctgcgc ggctcctccc ttcgcaggat gtgcactcct 7261 ctgtccggtc cgtacaggat gtcacaccac tcgctgaaga aggccctcga ccagcccagc 7321 acgaagcagg cgatttgcgt ggcgtatctt ttgtttgcca cctgcttgtc caggctttcc 7381 agatggagca cggttagggc ttctggtgtg gcttcgagga gacgcatagg tttaaaccgg 7441 gtctcgttag cgcgagcgta gtgggcggag cttagctccc cctcgggtat ataagggccc 7501 gtcgcgaggg tcgcctcgac ttccaggtct acggcgacga gaggatcgtc ttcggtaagt 7561 gcgtttttcg gcttacgggc actctcgcga tcgctgtcgt ctccttcttc ttccccatcc 7621 tcttctgctt cgggctcttc ctgttcgggg tcgtctgcgt agcggaactg ttgtcgtaga 7681 ctctcctcac tgaaggggtt aggcgcgttt tcgagggtga cttccgttcc gttgaacgag 7741 tcgtcattga gcagcgtgac gtgtttgacg atttcagtgc cttcgtagat gtttttctta 7801 tctgcttccg agaggtcctg ttcaaagatg atgcgcgtgg tgtccatgtt ggtggcaaac 7861 gcaccgtaca gcgcgttgct cagcattttg gagatggatc gaatcacttc gttcttctcg 7921 cgatcggctt tttctttggc gaggatgttt ttcgtgacgt agtcggcaca tagcgttttc 7981 cattccggaa aaacaatgtt catctcgtca tggaggacct ggactcgcca tccccggttg 8041 tgcagcg tga ggatatctat gacggtgacc acctcgtcgt agagagcctc gttggtccag 8101 accagtctgc ctcccctccg ggagcagatg ggagggagtg ggtctaacat ttcgggcggg 8161 ggagggtagg cttctatttt caggatggaa ggcttgatac gcgcatcgaa gtagctcaga 8221 tgcgattcgt tggtcagcag ccggttgagc tcctccacgt gctgcgcggt aaattttgga 8281 tctaggggca ttccgtgggg catggggtgg gtgagggcgg aagcgtacat gccgcagatg 8341 tcaaagacgt agacgggttt caggtaaggt ccgagcacgt tggggtagca tcgtccgccg 8401 cggagcgctt ggcgtatgta tttgaacatg gggcggtggg gggcgtagac ttcggccacg 8461 tagtcggggg agggttgttt tttctttttg gttcgacctt tctttttggg gggttcgggg 8521 acggagggag ggcatgtcgc acgctgttcg cggacgtaat tggaaaaggt aagttgcttc 8581 caaaaggcat gagtgttgct ggggatggtg ggccgcacga agatgttaaa atggccttcc 8641 atccctagtt ctcgttggaa ataggcgtcg tagctgtcgt gtaacgtgtg ggccagcttt 8701 tgggtgacgc ggacgtcctg catgcagtat tcgaggcacg cttggacgat gtcgtactgc 8761 tggcccgggt gttctttctg ccatagattc ttctgttcag cgatgacgga tgggtcttcc 8821 cagtaccttt cgacaggaaa gccgtcggcg tccgcgtgaa agcgccccgt ggaaatgaat 8881 tcgttgatgg cc tcgtatgg gcaatgtccc ttgcagaggt ctagcgcgta ggctgccgcg 8941 gctttggaga gtttggcccc gctggtgagc tgtagagtgt ctcgcaccat gaaccgcaca 9001 aataccgagc gcgcatcctg atgggacacg atcccgcgag accagcgttc tacgcgggag 9061 gcgtctttct tcacgtagtt ggggtttggc atgcggaaaa tgatatcatt gaacagaagg 9121 cgaccgacgc gaggcatgaa ggatcgatca catttgcacg cttccgggaa taggtccctg 9181 cgctcgacga gttccgtggc taagaggagt tcatcgaact tacatatgtt gtgacctagc 9241 actacgatgt ctacggaata aaagttatcc gggagggaga ggggggaggt gggtttctcg
9301 aagagctcgt acggtatttt gtgaacggag ccgtactttc cgtccttgac tagctggtcg 9361 caataatctc ggttggcagc cgcgtagcgg tcgactagat tttgggcaaa ttctatttgc9301 aagagctcgt acggtatttt gtgaacggag ccgtactttc cgtccttgac tagctggtcg 9361 caataatctc ggttggcagc cgcgtagcgg tcgactagat tttgggcaaa ttctatttgc
9421 agacgggacc tgaagttgcg aaaccttctg gcaacctcgc ccggatggct gtctagccaa 9481 tagaagcctt cgtcgagggc tttgagacgg tcgtcctgcc gtgctaagcg ttcggcgcgg 9541 gagaccagct gggggtctcc gctgagcatg aagcacaaca taaacggatg catgcgcttg9421 agacgggacc tgaagttgcg aaaccttctg gcaacctcgc ccggatggct gtctagccaa 9481 tagaagcctt cgtcgagggc tttgagacgg tcgtcctgcc gtgctaagcgttcggcccgggcggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
ERSATZBLAπ(REGEL20) 9601 cctttctttt cgaacacggt atacgtctcg atatcgtagg tgatgtacaa ctgacgtatg 9661 tgggggtgtt gggctggaca ggagaagtgg acgtgctgcc acaaatcgct gcccgatccc 9721 tggacggcgt ggtagtagaa ggcagagcgg cgttcgttgc acgagtgtcg tctgacccag 9781 tgtcggccgc aggtgggaca ctgttgaacc ggagtgcggc tggtgatcca gacccattct 9841 ccggtgacgt ttttggcgat gagcatgggg ggaagggcgg gatgttcgga gatgtgcacg 9901 gtccgcaggc gcgctgtttt gcctttaaag ttgatgacgg tgacctgggc gggcttaaag 9961 tcggggaggg agcgttcggg gtctcgggca tagtgcagat agtctattcg gtcgtagcct 10021 ctggctctct tagacagcag gaagcggtgg gtgcgtagga atttcttgag acctatgggg 10081 aatacagtgg gttggaagcg gaagggctgt tcctcgatgt aatagacgtt tgtgcgtagg 10141 gggttgcccc ggaagctctt gaagtacttt cgggtctctt ccagccgttt agcggaaatg 10201 gttcggatga cgtgcgaatc ggggcccagc acgctgtccg tgaggggagg ccccgcgtct 10261 gcttccattt acagaggctg acctcgtcgc gccgccgctt cgatgtcttc gcggcggtgg 10321 cggagcacgc gtctgaggtt ggctttgatc tcctcgttgg tagcgatggc tacgatgcct 10381 ttaaatttga tgcggaaact gatgtcgatg ctatcgatca gctcttcgct gaggttgagc 10441 tgcttcagca cttcttcgat gtcaccggag cggtctctgt attgaatatc agagagaaac 10501 agttgttggt ccgcatcgtc catgccttcg aattgacccg tccgttcgac catcataaga 10561 aaatcgcgta atatacgttc ccacagggtt tcgaatatgg tggcggggtt ggattgctcg 10621 ctccatatgc gtttaaaaac ctgctgcgcg ttgacgtccc atcccacgac gagtacttgt 10681 aaggtcagga cgtcgacgta ccggcggaac tcgcggttgg cgatgaagtg gctgtacagg 10741 tagtagagtg tagaggcgat atgttcggct aagaagaagt acagcaccca cttgcgcagg 10801 aacgactctc ccatgagtcc cgcgtcgcgc gcggtcagga gcatgcggta gaagtcgttg 10861 gcaaacctga agagttcgtg tctccgggcg gccccgctga gctcgtcttg cagtgccccg 10921 atggcttcga gcgctgtgcg aatcacctcg tctaacagct cttcttcctc ctcttctggt 10981 tcttctactt ccatggcggc ttcttctatt tcttcgggag ggggcgcggg ggaggggggt 11041 ctccgtcgcc gccgcgtgac gcggggcagg cggtctacga aggcccgcac ggcacggggc 11101 ctaatgcggc gcgcttcgga cgcggtgatg gctctgccgt ggcggtctct agggcgcagg 11161 ccggtgcggt cggttacccg ccggctgcag agggtgatgg cgcctcctga cagacccgtt 11221 cctgctaagg aaacggcgtc gctcgctaga gtgctcatga aacatctcgc cattgtttcc 11281 gtaggttcct ctacgtcccg tcttcctcga aacttgcgct cggcatcccg caccagttgc 11341 tgggtgtcta gctccgcgaa ggcttccgcg aagtaggaga gccagtttgg ttcaaggaac 11401 acatcggatc caggtaagaa ccgatatctt tcttccgttt gaaatagatc atatgcgtag 11461 cagaatagat agtggcagag ggcgactctt agttggcgga tggcggcgag cagttcggcg 11521 tcggcggcag aggccgttcg catgaggacg ccttcttgca agccacccgc tccgttgccc 11581 gacagtaggc tgtggtgttc ggcgtcgagc tgcggcaaca cttgtccgtg acggcctacg 11641 tcgattcccc tacctcgcag atgcgcccgg cccatgtccg cggccacgcg gtccatgagt 11701 acggcgttgt gcatctgcgt gaacgtaccg tgaaagttgt cgagatcgag aaatcgcatg 11761 tactgcccta cattgacggc gtaggagcag tcggtcagac aggtccaaaa gaggcgtctg 11821 ggtctttggg gtgggctatc gtaacctatc tgcataaaaa cgcggttgtc gaaaaggtaa 11881 tcgttgagcg cgcggtgcat agcttggtac ccgaggagaa ggtgcggcgg cggcaatccg 11941 ttgtagggcg gcgcggcgac gttcggcgat cgcggcgcga ggtctcggag ttgcattaaa 12001 cggtagtcgt acacccggct gacgagaaac acgcttcggg ggtggaccag ggctggttct 12061 tcccgaacga ggacatagtc agcggtgatg acgggttcgc agaagcggac ggtggctaga 12121 ctctgtccgg tgagatccgc gaagactctg taagcctgaa attgagcccc tgacgttttt 12181 agaccgctcg taatgcaccc cgtcctgcaa agcgttcgaa acgcgagcgt gagcgccgga 12241 ggaccccatc aacagcaacc gcagcagcaa cagcacggtg tgtcgtcggt ccgtcgtcct 12301 ccttcaccac cccgatatcc cgcacaacat gcctatcccg gcgcgggcgc gacacccacg 12361 gcaggacgag gcgatttcga cggcgcgctt gatcccgatg aaggaccggt cgcgtgcggg 12421 ctggcggccg gggccggtgt ggacgaagtt agaatgaggg agcgggacgc cgcgcggcga 12481 gccacggtgc ccgagatcaa tctttttaag gctcgacgtg acgtggtgcc caatggggat 12541 tacgagaggg atctgatgta ccactcggga caggcaatcg atatcgatcg gcaacgtgtg 12601 ctcactccgg aagactttaa ggggtccgag ccggctttca cgccggctgt caaccatatg 12661 cgcgcggccg agttgaagag ggcggctgag cagacggcat ttggggagga attgaggaat 12721 acctgccatc agacccgcat ccgcacggct ctgttaaggc ccgagatcgg agcgggaatc 12781 tactatctgt acgatttcgt ccagacttat ctggagcatc cggacggtcg ggtgaagctcERS A TZBLAπ (RULE 20) 9601 cctttctttt cgaacacggt atacgtctcg atatcgtagg tgatgtacaa ctgacgtatg 9661 tgggggtgtt gggctggaca ggagaagtgg acgtgctgcc acaaatcgct gcccgatccc 9721 tggacggcgt ggtagtagaa ggcagagcgg cgttcgttgc acgagtgtcg tctgacccag 9781 tgtcggccgc aggtgggaca ctgttgaacc ggagtgcggc tggtgatcca gacccattct 9841 ccggtgacgt ttttggcgat gagcatgggg ggaagggcgg gatgttcgga gatgtgcacg 9901 gtccgcaggc gcgctgtttt gcctttaaag ttgatgacgg tgacctgggc gggcttaaag 9961 tcggggaggg agcgttcggg gtctcgggca tagtgcagat agtctattcg gtcgtagcct 10021 ctggctctct tagacagcag gaagcggtgg gtgcgtagga atttcttgag acctatgggg 10081 aatacagtgg gttggaagcg gaagggctgt tcctcgatgt aatagacgtt tgtgcgtagg 10141 gggttgcccc ggaagctctt gaagtacttt cgggtctctt ccagccgttt agcggaaatg 10201 gttcggatga cgtgcgaatc ggggcccagc acgctgtccg tgaggggagg ccccgcgtct 10261 gcttccattt acagaggctg acctcgtcgc gccgccgctt cgatgtcttc gcggcggtgg 10321 cggagcacgc gtctgaggtt ggctttgatc tcctcgttgg tagcgatggc tacgatgcct 10381 ttaaatttga tgcggaaact gatgtcgatg ctatcgatca gctcttcgct gaggttgagc 10441 tgcttcagca cttcttcgat gtcaccggag cggtctctgt attgaatatc agagagaaac 10501 agttgttggt ccgcatcgtc catgccttcg aattgacccg tccgttcgac catcataaga 10561 aaatcgcgta atatacgttc ccacagggtt tcgaatatgg tggcggggtt ggattgctcg 10621 ctccatatgc gtttaaaaac ctgctgcgcg ttgacgtccc atcccacgac gagtacttgt 10681 aaggtcagga cgtcgacgta ccggcggaac tcgcggttgg cgatgaagtg gctgtacagg 10741 tagtagagtg tagaggcgat atgttcggct aagaagaagt acagcaccca cttgcgcagg 10801 aacgactctc ccatgagtcc cgcgtcgcgc gcggtcagga gcatgcggta gaagtcgttg 10861 gcaaacctga agagttcgtg tctccgggcg gccccgctga gctcgtcttg cagtgccccg 10921 atggcttcga gcgctgtgcg aatcacctcg tctaacagct cttcttcctc ctcttctggt 10981 tcttctactt ccatggcggc ttcttctatt tcttcgggag ggggcgcggg ggaggggggt 11041 ctccgtcgcc gccgcgtgac gcggggcagg cggtctacga aggcccgcac ggcacggggc 11101 ctaatgcggc gcgcttcgga cgcggtgatg gctctgccgt ggcggtctct agggcgcagg 11161 ccggtgcggt cggttacccg ccggctgcag agggtgatgg cgcctcctga cagacccgtt 11221 cctgctaagg aaacggcgtc gctcgctaga gtgctcatga aacatctcgc ca ttgtttcc 11281 gtaggttcct ctacgtcccg tcttcctcga aacttgcgct cggcatcccg caccagttgc 11341 tgggtgtcta gctccgcgaa ggcttccgcg aagtaggaga gccagtttgg ttcaaggaac 11401 acatcggatc caggtaagaa ccgatatctt tcttccgttt gaaatagatc atatgcgtag 11461 cagaatagat agtggcagag ggcgactctt agttggcgga tggcggcgag cagttcggcg 11521 tcggcggcag aggccgttcg catgaggacg ccttcttgca agccacccgc tccgttgccc 11581 gacagtaggc tgtggtgttc ggcgtcgagc tgcggcaaca cttgtccgtg acggcctacg 11641 tcgattcccc tacctcgcag atgcgcccgg cccatgtccg cggccacgcg gtccatgagt 11701 acggcgttgt gcatctgcgt gaacgtaccg tgaaagttgt cgagatcgag aaatcgcatg 11761 tactgcccta cattgacggc gtaggagcag tcggtcagac aggtccaaaa gaggcgtctg 11821 ggtctttggg gtgggctatc gtaacctatc tgcataaaaa cgcggttgtc gaaaaggtaa 11881 tcgttgagcg cgcggtgcat agcttggtac ccgaggagaa ggtgcggcgg cggcaatccg 11941 ttgtagggcg gcgcggcgac gttcggcgat cgcggcgcga ggtctcggag ttgcattaaa 12001 cggtagtcgt acacccggct gacgagaaac acgcttcggg ggtggaccag ggctggttct 12061 tcccgaacga ggacatagtc agcggtgatg acgggttcgc agaag cggac ggtggctaga 12121 ctctgtccgg tgagatccgc gaagactctg taagcctgaa attgagcccc tgacgttttt 12181 agaccgctcg taatgcaccc cgtcctgcaa agcgttcgaa acgcgagcgt gagcgccgga 12241 ggaccccatc aacagcaacc gcagcagcaa cagcacggtg tgtcgtcggt ccgtcgtcct 12301 ccttcaccac cccgatatcc cgcacaacat gcctatcccg gcgcgggcgc gacacccacg 12361 gcaggacgag gcgatttcga cggcgcgctt gatcccgatg aaggaccggt cgcgtgcggg 12421 ctggcggccg gggccggtgt ggacgaagtt agaatgaggg agcgggacgc cgcgcggcga 12481 gccacggtgc ccgagatcaa tctttttaag gctcgacgtg acgtggtgcc caatggggat 12541 tacgagaggg atctgatgta ccactcggga caggcaatcg atatcgatcg gcaacgtgtg 12601 ctcactccgg aagactttaa ggggtccgag ccggctttca cgccggctgt caaccatatg 12661 cgcgcggccg agttgaagag ggcggctgag cagacggcat ttggggagga attgaggaat 12721 acctgccatc agacccgcat ccgcacggct ctgttaaggc ccgagatcgg agcgggaatc 12781 tactatctgt acgatttcgt ccagacttat ctggagcatc cggacggtcg ggtgaagctc
ERSATZBLAπ(REGEL26) 12841 aatcctcagc tggtgttggt ggctcagcac gcgggcaata ctatgctggc gcagcgcttg 12901 tgggccatcg cagaggagaa gaatgcgtgg ttgagagatt tgatagagat ggcgtacatg 12961 atcgtgaacg atccgtacct caatacggag cagcagctgt cggccatctg cacgacggtg 13021 gtcgagttga gcatgaaata cgccaagttg gccgccaaga acggttaccc gtccatggcg 13081 cagatggcta aggcgcagga atttttctac cgggtcatgc aagcggtgct cgatttaggt 13141 gtccaagtgg gggtgtataa caaccgacca gctcggtacc gtcagaagcg catgagcgag 13201 attccgcaga tgactgacgc cgagtacatg ttcggtttga cccaggcgct ggagagcagg 13261 cctccgcagg gcgaatcttt tgccgacgag gggccgtcag aatcggacga cgaggatgac 13321 ttcatctgat acgtttctgg ctcttgcgcc ctacgggcgt caggaggtgg cggacgccct 13381 cagttcgctc ccagatggca aggacgcgcg gtcgctacgt catgcaccct acgcaaatcg 13441 cctcatcaaa ctccagagcg ccatggtgcc tccaaaagtg gacggtactt ccgagcgggt 13501 ggccgaaatc gtgaaagggc tagccgagca aggcgccatc taccccgatc agatgggcgc 13561 gatccactca gatttgctta atcgagctta cacgtggaat tccatggggg tgcaggagag 13621 catccaggcg ctggtcaacg acgtgatcca cggacagaac cggacattgc aagacgagct 13681 tgcgcggacg aaagaaatag cgaatgcttc gctcttgacc caatttttcg attccctgta 13741 caaaacggtg gatcgtgggc agcgaaattt tgagggcttt aagaaacttt tgcgtctttt 13801 cgtgaataac gtgccgaatg ccgaagtgta cgggtcttcg gggtccttta gcgtgcagat 13861 aaatcttggc ggatctagtc aaaacatcaa tctgaccaat gcgtttgaga atttgaagccREPLACEMENT BLAπ (RULE 26) 12841 aatcctcagc tggtgttggt ggctcagcac gcgggcaata ctatgctggc gcagcgcttg 12901 tgggccatcg cagaggagaa gaatgcgtgg ttgagagatt tgatagagat ggcgtacatg 12961 atcgtgaacg atccgtacct caatacggag cagcagctgt cggccatctg cacgacggtg 13021 gtcgagttga gcatgaaata cgccaagttg gccgccaaga acggttaccc gtccatggcg 13081 cagatggcta aggcgcagga atttttctac cgggtcatgc aagcggtgct cgatttaggt 13141 gtccaagtgg gggtgtataa caaccgacca gctcggtacc gtcagaagcg catgagcgag 13201 attccgcaga tgactgacgc cgagtacatg ttcggtttga cccaggcgct ggagagcagg 13261 cctccgcagg gcgaatcttt tgccgacgag gggccgtcag aatcggacga cgaggatgac 13321 ttcatctgat acgtttctgg ctcttgcgcc ctacgggcgt caggaggtgg cggacgccct 13381 cagttcgctc ccagatggca aggacgcgcg gtcgctacgt catgcaccct acgcaaatcg 13441 cctcatcaaa ctccagagcg ccatggtgcc tccaaaagtg gacggtactt ccgagcgggt 13501 ggccgaaatc gtgaaagggc tagccgagca aggcgccatc taccccgatc agatgggcgc 13561 gatccactca gatttgctta atcgagctta cacgtggaat tccatggggg tgcaggagag 13621 catccaggcg ctggtcaacg acgtgatcca cggacagaac cggacattgc aag acgagct 13681 tgcgcggacg aaagaaatag cgaatgcttc gctcttgacc caatttttcg attccctgta 13741 caaaacggtg gatcgtgggc agcgaaattt tgagggcttt aagaaacttt tgcgtctttt 13801 cgtgaataac gtgccgaatg ccgaagtgta cgggtcttcg gggtccttta gcgtgcagat 13861 aaatcttggc ggatctagtc aaaacatcaa tctgaccaat gcgtttgaga atttgaagcc
13921 gatatggggc gcacggtggg acgcggtgaa taatcctcgc atcggggcgc ttctgacacc 13981 caacactcga gcgttgttgt ttttcgtgag ctctttttac gactacgggg ctatggagcc 14041 cggtagttac ttggacaata tcatgaggct gtacaaggag gctatcagag ccgatgtgga 14101 cgcggagggt gatgccatta tggagctcgg ggaggcgggc gcaaatctca acttgcggtt 14161 caacgattac aaggacacac taaactacct cctgcaaaat cgagaggttg tacccgacac 14221 ggctccgctg gagctgagcg cggagcagga aatgctcttg aagtacctga tgaggcaact 14281 acgacaggct cttaaggacg gggtcccggc ggacatttct atcagtacca tgactcagta 14341 cctagatcct aggctgtatc agacgaacaa ggtgttcgtg gagaaattgc aaaactacct 14401 gttggcggct caggcgcgca atcctgtgta ttaccgactg ttggtgctgg accccaactg 14461 gcggcctccg gcaggcctat atacgggtaa ttacgtgata cccgaccgct acgactttga 14521 ggacgtgcag agcgagcttg aatacgcggg tccctccaga gacgagtatt tcgatgattc 14581 tttgttcgca ccaggtcctc agcgccgctt aaattcggcc gaggaggctc aattggagcg13921 gatatggggc gcacggtggg acgcggtgaa taatcctcgc atcggggcgc ttctgacacc 13981 caacactcga gcgttgttgt ttttcgtgag ctctttttac gactacgggg ctatggagcc 14041 cggtagttac ttggacaata tcatgaggct gtacaaggag gctatcagag ccgatgtgga 14101 cgcggagggt gatgccatta tggagctcgg ggaggcgggc gcaaatctca acttgcggtt 14161 caacgattac aaggacacac taaactacct cctgcaaaat cgagaggttg tacccgacac 14221 ggctccgctg gagctgagcg cggagcagga aatgctcttg aagtacctga tgaggcaact 14281 acgacaggct cttaaggacg gggtcccggc ggacatttct atcagtacca tgactcagta 14341 cctagatcct aggctgtatc agacgaacaa ggtgttcgtg gagaaattgc aaaactacct 14401 gttggcggct caggcgcgca atcctgtgta ttaccgactg ttggtgctgg accccaactg 14461 gcggcctccg gcaggcctat atacgggtaa ttacgtgata cccgaccgct acgactttga 14521 ggacgtgcag agcgagcttg aatacgcggg tccctccaga gacgagtatt tcgatgattc 14581 tttgttcgca ccaggtcctc agcgccgctt aaattcggcc gaggaggctc aattggagcg
14641 tgacatcgaa tctttgaccg gccacattga cgaagagctg ggcgtccaat ctcaggctgg 14701 ctggctcgcc gatcaccgcc tgcctgtcgc gttcgatggc gctctcagcc ttaccgaacg 14761 caacgcctac aacacgccgt tgccccccga ttcccacatg cgtagccgtt ctagctccgt 14B21 cgctagcgat cttgggctat tgaacctatc tgggacgggg ggaccgggct ttttcgctag 14881 tctgcggcct tccatcggca gccgtcaacc gaccggcacg gccgtgggcc tccgcccgac 14941 gacaccgtac agcggttcgg ggtgtatgag gggcaccggt ctggcgcgca aagttttaaa 15001 cccggccgcg tcgcgccggg ggcgcaagct acggttctac tgaaccctag actctgacga 15061 agaaacttaa aaacgcttac cgccatttcg ccgcgcagaa gttggaagga tgtaccggag 15121 cctgcgaccg ccgacgtcga ttcctcctcc gcctccctct ggtccctcgc cttatccggc 15181 gatgatcaac ggatatcccc cggatgtgcc ggtggggtca cctgccaacg gagatgcgga 15241 gctgttcgtg ccgctccaga gggtgatgcc gcctacgggt ggacggaaca gcattagata 15301 ccggaattat gcgccgtgcc aaaacaccac caagtttttt tacgtagaca ataagctgag 15361 cgacttagac acctacaacg aggacgcgaa tcacagcaat tttaggacga cagtcattca 15421 taatcaggac ttagacccgt caacggccgc cacagagacc attcagctcg acaataggtc 15481 gtgttggggc ggagagctaa aaacagcggt gaaaaccaat tgcccgaaca tcagctcgtt 15541 tttccaaagt gatacagtgc gcgtgcgtct gatgagcaag cgcgatccgg ggggtaccga 15601 cccagacgcg ggggtgaaca acccacccgg ggccgagtac aagtggtatg atctgaggat 15661 tcccgaaggt aactacgcgt tgaacgagat cattgacctt ttgaacgaag gcatcgtcca 15721 gctgtacctg caggaggggc gccaaaacaa tgtgctcaag agcgatatcg gggttaagtt 15781 cgatacgcgg tatctggatt tgctgaagga ccccgtgacg gggctggtga cgcccggcac 15841 ctacgtttac aaaggatacc atcccgacat catcctcctc cccggctgcg cggtcgactt 15901 tacgttcagc aggcttagtc ttctgctcgg tatcgcgaag cgcgagccct actcgaaggg 15961 gtttacgatt acttacgaag atcttcaagg agggaacgtg cccgcgctgc tcgatctgtc 16021 ctccgtgcag gtagacgatc aagacgagga cgtgatcgtg gtggcagacg caaggcctct14641 tgacatcgaa tctttgaccg gccacattga cgaagagctg ggcgtccaat ctcaggctgg 14701 ctggctcgcc gatcaccgcc tgcctgtcgc gttcgatggc gctctcagcc ttaccgaacg 14761 caacgcctac aacacgccgt tgccccccga ttcccacatg cgtagccgtt ctagctccgt 14B21 cgctagcgat cttgggctat tgaacctatc tgggacgggg ggaccgggct ttttcgctag 14881 tctgcggcct tccatcggca gccgtcaacc gaccggcacg gccgtgggcc tccgcccgac 14941 gacaccgtac agcggttcgg ggtgtatgag gggcaccggt ctggcgcgca aagttttaaa 15001 cccggccgcg tcgcgccggg ggcgcaagct acggttctac tgaaccctag actctgacga 15061 agaaacttaa aaacgcttac cgccatttcg ccgcgcagaa gttggaagga tgtaccggag 15121 cctgcgaccg ccgacgtcga ttcctcctcc gcctccctct ggtccctcgc cttatccggc 15181 gatgatcaac ggatatcccc cggatgtgcc ggtggggtca cctgccaacg gagatgcgga 15241 gctgttcgtg ccgctccaga gggtgatgcc gcctacgggt ggacggaaca gcattagata 15301 ccggaattat gcgccgtgcc aaaacaccac caagtttttt tacgtagaca ataagctgag 15361 cgacttagac acctacaacg aggacgcgaa tcacagcaat tttaggacga cagtcattca 15421 taatcaggac ttagacccgt caacggccgc cacagagacc attcagctcg aca ataggtc 15481 gtgttggggc ggagagctaa aaacagcggt gaaaaccaat tgcccgaaca tcagctcgtt 15541 tttccaaagt gatacagtgc gcgtgcgtct gatgagcaag cgcgatccgg ggggtaccga 15601 cccagacgcg ggggtgaaca acccacccgg ggccgagtac aagtggtatg atctgaggat 15661 tcccgaaggt aactacgcgt tgaacgagat cattgacctt ttgaacgaag gcatcgtcca 15721 gctgtacctg caggaggggc gccaaaacaa tgtgctcaag agcgatatcg gggttaagtt 15781 cgatacgcgg tatctggatt tgctgaagga ccccgtgacg gggctggtga cgcccggcac 15841 ctacgtttac aaaggatacc atcccgacat catcctcctc cccggctgcg cggtcgactt 15901 tacgttcagc aggcttagtc ttctgctcgg tatcgcgaag cgcgagccct actcgaaggg 15961 gtttacgatt acttacgaag atcttcaagg agggaacgtg cccgcgctgc tcgatctgtc 16021 ctccgtgccag gtagacgagggtggagacgagggt
ERSATZBLATT(REGELä§) 16081 tttaaaagac tccaagggcg tttcctataa cgtgatcacc actggcgtga ctcaaccgca 16141 aaccgcttat cggtcttggc tccttgccta ccacaccctg gactcccccg cgcgcaataa 16201 aacgttattg actgttccgg atatggcagg tggtatcggc gctatgtaca catcgatgcc 16261 ggacacgttt accgcacctg ccggatttaa ggaagacaat acgaccaacc tttgtcctgt 16321 ggtggccatg aacctgttcc cgagtttcaa taaggtattt taccagggcg cgtccgccta 16381 cgtgcagcgc ttagaaaatg ccacgcaatc cgcaacggcc gctttcaacc ggtttcccga 16441 aaacgaaatt ctaaagcagg ccccacccat gaatgtttcc tcggtgtgtg ataaccaacc 16501 cgccgtcgtt cagcagggtg tgctaccgct gaagaattct ctgtctggcc tacagcgcgt 16561 gttgatcacc gacgaccggc gccgtcccat tccatacgtg tacaaaacca tcgccaccgt 16621 gcaaccgcgc gttttgagca gttcaaccct gcagtgagga gcggaaggat tttcaaacat 16681 gtccattctg atttcaccca gtgataacag aggttgggga gcaaacatgc gttaccgccg 16741 tagagcatcc atgcgcgggg tcggtcgccg tcgtctcacc ctgaggcagc tattgggtct 16801 ggggtctcgc cggagacggc gatccaggcc cacgaccgtc agtaaccgtt tggtggttgt 16861 gagcacccgc cgccgctctt cccgaagacg ccgatgaagc aagcagctga tgagatgttc 16921 ttctgactat gtgtgccgtc gctatacaca ggagcgacgt cgttatgcct tccgttcttt 16981 tgaccggcgg gcggaccgcc aagggcaaga agagagcctc tcgtcgtcga gtgaaagtgc 17041 ctaagttgcc taagggagcg cgccgaaagc gtgcgtcggt gacgccggtc cctaccgtag 17101 ctaccgcgac cgcttccgag cgcgcggctc tgacgaacct agccagacgg ctccagcgcg 17161 gcgactacgc cgcttggagg cccgccgact acacgtcacc ggccgtttcc gaggcggctc 17221 gcgcagccgc ctcgtccggc acccccgcga ccgcgaggga tctcgcgacg ggaaccctcg 17281 ctcgcgccgt gcccatgacg ggtaccggcg gaaggcggcg caagcgcacc gctacccgcc 17341 gccgatctct gaaggggggc ttcctgccgg ctctgatacc tatcattgcg gccgctatcg 17401 gcgccattcc gggcatcgca ggcaccgccg tgggcatcgc caatctgaag gagcagcaga 17461 gacagtttaa taagatttac ggggacaaaa agtgatgctg actggacgca ctaaaaggcc 17521 ctttcaataa acgcgttttt gtagaaccgg ctcgcgtcat ggactacgct gcgctatcac 17581 cgcatctcgg tgggtgggcc ctgagagacc accacatcgg cgactctagc ttgagagggg 17641 gagccatcaa ctggggcaac ctcgggtcgc gcataaccag cgcgctgaac tccaccggtc 17701 gctggctgta taacaccggc aaccgcttcg tgcattcgaa cactttcaac cagattaaac 17761 aaggcataca agacagcggg gtcatacgca acgtggctaa tttggccgga gagacgctgg 17821 gggccctgac cgacatcggc cggttgaagt tgcaacagga tctggagaag ctgcggcgta 17881 aagctttggg ggaggaaggt ccagcgaccc aggccgaact gcaggctctc attcaggccc 17941 tgcaggcgca agtggctgcc ggagagccgc ccgccgcacc cgcggcgccg gcgccggccc 18001 cgccgctcgt gcccaccact cgtcctattc ccgaaatggt aacggaggtt aagcctcccg 18061 ttacgtcttc ggcgccagcc gtccccgtag acgtgccgac cacgctggaa atgcgacctc 18121 cgccgcccaa gcgcaggcgc aagagggcac gaccgggaca atggagggca cgcttggaca 18181 gcctctcggg taccggagta gcgaccgcca ctagacgtat gtgttactaa aattccgtcg 18241 ttccgctatg tctaattttt agctcaccgg ttgtctcccg aaggcgtcat gactgcgctt 18301 actcccgacc tgaccacggc gacgccgcgg ctgcagtact ttcatatcgc gggccctggc 18361 acccgagagt atctatccga ggatctccag cagtttatct cggccacggg gagctacttt 18421 gacttgaaaa acaaattcag gcagacggtc gtagctccca ctcgcaatgt caccaccgaa 18481 aaggcacaac gtctgcagat cagattctac ccgatccaga cggatgacac gccaaacagc 18541 tatcgcgtgc gctacagcgt caacgttggg gacagctggg tgttggacat gggggcgacc 18601 tacttcgaca taaagggtgt gctggaccgc ggaccttcct tcaagccgta cggcggaacg 18661 gcttataatc cccttgcgcc aagagaagct attttcaaca cctgggtgga gagcactggt 18721 cctcagacca atgtggtggg acagatgacc aacgtgtaca caaatcagac caggaacgac 18781 aagacggcca cgcttcagca ggtcaatagc atctccgggg tggttcccaa cgtcaacctg 18841 ggacccggcc tcagtcaact agcatcccgg gccgacgtgg ataatattgg cgtggtggga 18901 cgtttcgcca aggtagactc agcgggcgtg aagcaggcgt acggagccta tgtcaagccc 18961 gtgaaggacg acgggtctca gtctctgaac cagaccgcgt actggctgat ggacaacgga 19021 ggtaccaact atctgggtgc cctggctgtg gaagactaca ctcagaccct gagttacccc 19081 gataccgtgc tcgtgacccc tcccaccgct taccagcaag tcaactccgg caccatgcgg 19141 gcatgcaggc ccaactacat cggcttccga gacaacttta tcaacctact gtaccacgac 19201 tcgggcgtct gcagcggaac gctcaactcc gagcgctccg gcatgaacgt ggtcgtggaa 19261 ctccaggaca gaaacacaga actgagttac cagtacatgc tggcggacat gatgtcccgtREPLACEMENT SHEET (REGELä§) 16081 tttaaaagac tccaagggcg tttcctataa cgtgatcacc actggcgtga ctcaaccgca 16141 aaccgcttat cggtcttggc tccttgccta ccacaccctg gactcccccg cgcgcaataa 16201 aacgttattg actgttccgg atatggcagg tggtatcggc gctatgtaca catcgatgcc 16261 ggacacgttt accgcacctg ccggatttaa ggaagacaat acgaccaacc tttgtcctgt 16321 ggtggccatg aacctgttcc cgagtttcaa taaggtattt taccagggcg cgtccgccta 16381 cgtgcagcgc ttagaaaatg ccacgcaatc cgcaacggcc gctttcaacc ggtttcccga 16441 aaacgaaatt ctaaagcagg ccccacccat gaatgtttcc tcggtgtgtg ataaccaacc 16501 cgccgtcgtt cagcagggtg tgctaccgct gaagaattct ctgtctggcc tacagcgcgt 16561 gttgatcacc gacgaccggc gccgtcccat tccatacgtg tacaaaacca tcgccaccgt 16621 gcaaccgcgc gttttgagca gttcaaccct gcagtgagga gcggaaggat tttcaaacat 16681 gtccattctg atttcaccca gtgataacag aggttgggga gcaaacatgc gttaccgccg 16741 tagagcatcc atgcgcgggg tcggtcgccg tcgtctcacc ctgaggcagc tattgggtct 16801 ggggtctcgc cggagacggc gatccaggcc cacgaccgtc agtaaccgtt tggtggttgt 16861 gagcacccgc cgccgctctt cccgaagacg ccgatgaagc aagcagctga tga gatgttc 16921 ttctgactat gtgtgccgtc gctatacaca ggagcgacgt cgttatgcct tccgttcttt 16981 tgaccggcgg gcggaccgcc aagggcaaga agagagcctc tcgtcgtcga gtgaaagtgc 17041 ctaagttgcc taagggagcg cgccgaaagc gtgcgtcggt gacgccggtc cctaccgtag 17101 ctaccgcgac cgcttccgag cgcgcggctc tgacgaacct agccagacgg ctccagcgcg 17161 gcgactacgc cgcttggagg cccgccgact acacgtcacc ggccgtttcc gaggcggctc 17221 gcgcagccgc ctcgtccggc acccccgcga ccgcgaggga tctcgcgacg ggaaccctcg 17281 ctcgcgccgt gcccatgacg ggtaccggcg gaaggcggcg caagcgcacc gctacccgcc 17341 gccgatctct gaaggggggc ttcctgccgg ctctgatacc tatcattgcg gccgctatcg 17401 gcgccattcc gggcatcgca ggcaccgccg tgggcatcgc caatctgaag gagcagcaga 17461 gacagtttaa taagatttac ggggacaaaa agtgatgctg actggacgca ctaaaaggcc 17521 ctttcaataa acgcgttttt gtagaaccgg ctcgcgtcat ggactacgct gcgctatcac 17581 cgcatctcgg tgggtgggcc ctgagagacc accacatcgg cgactctagc ttgagagggg 17641 gagccatcaa ctggggcaac ctcgggtcgc gcataaccag cgcgctgaac tccaccggtc 17701 gctggctgta taacaccggc aaccgcttcg tgcattcgaa cacttt CAAC cagattaaac 17761 aaggcataca agacagcggg gtcatacgca acgtggctaa tttggccgga gagacgctgg 17821 gggccctgac cgacatcggc cggttgaagt tgcaacagga tctggagaag ctgcggcgta 17881 aagctttggg ggaggaaggt ccagcgaccc aggccgaact gcaggctctc attcaggccc 17941 tgcaggcgca agtggctgcc ggagagccgc ccgccgcacc cgcggcgccg gcgccggccc 18001 cgccgctcgt gcccaccact cgtcctattc ccgaaatggt aacggaggtt aagcctcccg 18061 ttacgtcttc ggcgccagcc gtccccgtag acgtgccgac cacgctggaa atgcgacctc 18121 cgccgcccaa gcgcaggcgc aagagggcac gaccgggaca atggagggca cgcttggaca 18181 gcctctcggg taccggagta gcgaccgcca ctagacgtat gtgttactaa aattccgtcg 18241 ttccgctatg tctaattttt agctcaccgg ttgtctcccg aaggcgtcat gactgcgctt 18301 actcccgacc tgaccacggc gacgccgcgg ctgcagtact ttcatatcgc gggccctggc 18361 acccgagagt atctatccga ggatctccag cagtttatct cggccacggg gagctacttt 18421 gacttgaaaa acaaattcag gcagacggtc gtagctccca ctcgcaatgt caccaccgaa 18481 aaggcacaac gtctgcagat cagattctac ccgatccaga cggatgacac gccaaacagc 18541 tatcgcgtgc gctacagcgt caacgttggg gacagctgg g tgttggacat gggggcgacc 18601 tacttcgaca taaagggtgt gctggaccgc ggaccttcct tcaagccgta cggcggaacg 18661 gcttataatc cccttgcgcc aagagaagct attttcaaca cctgggtgga gagcactggt 18721 cctcagacca atgtggtggg acagatgacc aacgtgtaca caaatcagac caggaacgac 18781 aagacggcca cgcttcagca ggtcaatagc atctccgggg tggttcccaa cgtcaacctg 18841 ggacccggcc tcagtcaact agcatcccgg gccgacgtgg ataatattgg cgtggtggga 18901 cgtttcgcca aggtagactc agcgggcgtg aagcaggcgt acggagccta tgtcaagccc 18961 gtgaaggacg acgggtctca gtctctgaac cagaccgcgt actggctgat ggacaacgga 19021 ggtaccaact atctgggtgc cctggctgtg gaagactaca ctcagaccct gagttacccc 19081 gataccgtgc tcgtgacccc tcccaccgct taccagcaag tcaactccgg caccatgcgg 19141 gcatgcaggc ccaactacat cggcttccga gacaacttta tcaacctact gtaccacgac 19201 tcgggcgtct gcagcggaac gctcaactcc gagcgctccg gcatgaacgt ggtcgtggaa 19261 ctccaggaca gaaacacaga actgagttac cagtacatgc tggcggacat gatgtcccgt
ERSATZBLATT (REG& g§) 19321 catcactact tcgcgctgtg gaaccaggcc gtcgaccagt acgaccacga cgtgcgcgtc 19381 ttcaacaacg acggctacga agagggcgtg cctacttacg ccttcctgcc cgacgggcac 19441 ggggcgggcg aagacaacgg tcccgacctc agcaatgtca aaatttacac caacggacag 19501 caagataagg gcaacgtggt ggccggaacg gtttccacac agctcaattt cggtaccatt 19561 ccctcctacg agatcgacat tgctgctgcc accaggcgca acttcatcat gagcaacatt 19621 gccgactacc tgcccgacaa atacaagttt agcattcgcg gtttcgaccc tgttacagac 19681 aacatcgacc ctaccaccta cttttacatg aatcgcaggg ttcccttgac caacgtggta 19741 gacctgttta ccaacattgg tgccagatgg tccgtggacc agatggacaa cgtcaatccc 19801 ttcaaccacc accgtaactg ggggttgaag tacaggtctc agctgctcgg aaacagcaga 19861 tactgccgtt tccatattca ggtgccgcag aaatactttg ccatcaagaa tctgctcctg 19921 ttgcccggca cctacactta cgagtgggtc ctcagaaagg atcccaacat gattctgcag 19981 tccagccttg gcaacgactt gcgcgcggac ggcgcgcaga tcgtgtatac cgaggtgaac 20041 cttatggcca atttcatgcc catggaccac aataccagca accagctgga gctgatgttg 20101 cgcaacgcta ccaacgacca gaccttcgcg gactacttgg gcgccaagaa cgctctctac 20161 aacgttccgg ccggctccac gctgctgacc atcaatattc ccgccagaac atgggagggt 20221 atgcggggct ggtcttttac ccgcctcaag gcctcggaga cgccccagct gggcgctcag 20281 tacgacgtcg gtttcaagta ttcaggctcc attccctatt cggatggcac cttttacctg 20341 tcccacacgt tccgcagtat gagcgtgttg tttgatacct ctatcaactg gcctggcaac 20401 gaccgtctgc tcacacctaa cctgttcgag atcaagaggc cagtggccac cgacagcgaa 20461 ggcttcacta tgtcgcagtg cgacatgacc aaggactggt tcctcgtgca gatggccacc 20521 aactacaact acgtgtacaa cggttatagg ttctggcctg acagacacta cttccactat 20581 gacttcctac gcaacttcga ccccatgtcg cgtcagggcc ccaacttcct ggacaccacg 20641 ctgtacgacc tggtgtccag cactcccgtt gttaacgaca ccggctcaca gccgtctcag 20701 gacaacgtgc gtaacaactc cggctttatc gcccctcgca gctggcccgt atggaccgca 20761 cagcagggcg aagcctggcc cgctaactgg ccgtacccgc tgatcgggaa cgacgccatc 20821 agttccaacc aaaccgtcaa ctacaagaag ttcctgtgcg ataactacct ctggaccgtg 20881 ccgttcagct cggactttat gtatatggga gagctgaccg atctgggtca gaaccccatg 20941 tacacaaaca actcccatag catggttatc aactttgagt tggaccccat ggatgagaat 21001 acttacgtgt acatgctgta cggggtattt gataccgttc gcgtgaacca gcccgagcgt 21061 aacgtgctag ccatggctta cttccgtacg cctttcgcca caggcaacgc tgtgtaaaaa 21121 aaagacggct gggatgtcgg gaaccaccga gacccaactg cgggacctgc tgtcctctat 21181 gcacctgcgg caccgcttcc tgggtgtttt tgacaaaagt ttcccaggat ttctcgatcc 21241 gcacgtgccc gcctcagcta tcgtcaacac cggctcccgg gcctccggag gtatgcactg 21301 gatcgggttc gcgttcgacc ctgccgcagg acgatgttac atgtttgacc ctttcgggtg 21361 gtcagaccag aagctgtggg agttatacag agtcaagtac aacgctttca tgcgtcggac 21421 cggcttacgg cagcccgatc gctgttttac cctggtccgt tctaccgagg ccgtgcagtg 21481 cccctgctcg gccgcttgtg ggctttttag tgcccttttt atcgtctctt tcgaccgtta 21541 ccggtcgaag cccatggatg gcaatcccgt gatcgacacc gtagtcggtg tgaagcacga 21601 aaatatgaat tctccgccct accgcgacat cctgcaccgt aaccaagagc gcacctatta 21661 ctggtggacc aagaatagcg cctattttcg tgctcatcaa gaggaactcc gacgagaaac 21721 ggcccttaac gccctacctg aaaatcacgt ttaatgaccg actgtaaata aagaacgacg 21781 cacacacgta ctgtacatat ttgtgaatag agcaaccgtt tattagataa acgtcaataa 21841 atgccgaccg atagaccgac aaggctcttc actggcttta tttaaagaaa caaaaggatt 21901 aagcgaacgg gtcgtcactg gcgatgggcg agactggcgc caacacctcc gttttaaagg 21961 cgtacgactc gttccaacgg aactcaggca catgtgtggg ctctgaagaa cccatcacgg 22021 cagtaaacag ctccgtagca aagacgtacg cgtagcgcag atccatggcc gacagacgcc 22081 aggcgcaggt tttttcggtc ttcttcagac cgcggcctgc tccgcccgac gccgcctgcg 22141 ggttgcagca ggtgaacacc atggtatgcg ggtttttctt gtgagccttc atatcgggcc 22201 tgctctcgac catgtcgcga gtaatgtcgt ctgtgccgtt gagcttataa ggagtcattt 22261 tacagaactg tctccctgaa atggctcgat cggaggcgta gttgcagttg caattggttg 22321 agatgaggac acattcctct gcccggcgct tgtccgcgtt ggggtaaagc gccttcgtcc 22381 agtctatgtc gtgacgcatc gcgctgaccg ccttggcggc gtcggaaaag accatggcgc 22441 aactgccgtg cgcgtgggga tgagggaagc cgctgtgctc ctgatccttg tagcacaccg 22501 cgttcgcgtc gaacctgagc accaccacct gtcgtccaaa ccggttcttc tcgattacgcREPLACEMENT SHEET (REG & g§) 19321 catcactact tcgcgctgtg gaaccaggcc gtcgaccagt acgaccacga cgtgcgcgtc 19381 ttcaacaacg acggctacga agagggcgtg cctacttacg ccttcctgcc cgacgggcac 19441 ggggcgggcg aagacaacgg tcccgacctc agcaatgtca aaatttacac caacggacag 19501 caagataagg gcaacgtggt ggccggaacg gtttccacac agctcaattt cggtaccatt 19561 ccctcctacg agatcgacat tgctgctgcc accaggcgca acttcatcat gagcaacatt 19621 gccgactacc tgcccgacaa atacaagttt agcattcgcg gtttcgaccc tgttacagac 19681 aacatcgacc ctaccaccta cttttacatg aatcgcaggg ttcccttgac caacgtggta 19741 gacctgttta ccaacattgg tgccagatgg tccgtggacc agatggacaa cgtcaatccc 19801 ttcaaccacc accgtaactg ggggttgaag tacaggtctc agctgctcgg aaacagcaga 19861 tactgccgtt tccatattca ggtgccgcag aaatactttg ccatcaagaa tctgctcctg 19921 ttgcccggca cctacactta cgagtgggtc ctcagaaagg atcccaacat gattctgcag 19981 tccagccttg gcaacgactt gcgcgcggac ggcgcgcaga tcgtgtatac cgaggtgaac 20041 cttatggcca atttcatgcc catggaccac aataccagca accagctgga gctgatgttg 20101 cgcaacgcta ccaacgacca gaccttcgcg gactacttgg gcgccaagaa cgc tctctac 20161 aacgttccgg ccggctccac gctgctgacc atcaatattc ccgccagaac atgggagggt 20221 atgcggggct ggtcttttac ccgcctcaag gcctcggaga cgccccagct gggcgctcag 20281 tacgacgtcg gtttcaagta ttcaggctcc attccctatt cggatggcac cttttacctg 20341 tcccacacgt tccgcagtat gagcgtgttg tttgatacct ctatcaactg gcctggcaac 20401 gaccgtctgc tcacacctaa cctgttcgag atcaagaggc cagtggccac cgacagcgaa 20461 ggcttcacta tgtcgcagtg cgacatgacc aaggactggt tcctcgtgca gatggccacc 20521 aactacaact acgtgtacaa cggttatagg ttctggcctg acagacacta cttccactat 20581 gacttcctac gcaacttcga ccccatgtcg cgtcagggcc ccaacttcct ggacaccacg 20641 ctgtacgacc tggtgtccag cactcccgtt gttaacgaca ccggctcaca gccgtctcag 20701 gacaacgtgc gtaacaactc cggctttatc gcccctcgca gctggcccgt atggaccgca 20761 cagcagggcg aagcctggcc cgctaactgg ccgtacccgc tgatcgggaa cgacgccatc 20821 agttccaacc aaaccgtcaa ctacaagaag ttcctgtgcg ataactacct ctggaccgtg 20881 ccgttcagct cggactttat gtatatggga gagctgaccg atctgggtca gaaccccatg 20941 tacacaaaca actcccatag catggttatc aactttgagt tggacc ccat ggatgagaat 21001 acttacgtgt acatgctgta cggggtattt gataccgttc gcgtgaacca gcccgagcgt 21061 aacgtgctag ccatggctta cttccgtacg cctttcgcca caggcaacgc tgtgtaaaaa 21121 aaagacggct gggatgtcgg gaaccaccga gacccaactg cgggacctgc tgtcctctat 21181 gcacctgcgg caccgcttcc tgggtgtttt tgacaaaagt ttcccaggat ttctcgatcc 21241 gcacgtgccc gcctcagcta tcgtcaacac cggctcccgg gcctccggag gtatgcactg 21301 gatcgggttc gcgttcgacc ctgccgcagg acgatgttac atgtttgacc ctttcgggtg 21361 gtcagaccag aagctgtggg agttatacag agtcaagtac aacgctttca tgcgtcggac 21421 cggcttacgg cagcccgatc gctgttttac cctggtccgt tctaccgagg ccgtgcagtg 21481 cccctgctcg gccgcttgtg ggctttttag tgcccttttt atcgtctctt tcgaccgtta 21541 ccggtcgaag cccatggatg gcaatcccgt gatcgacacc gtagtcggtg tgaagcacga 21601 aaatatgaat tctccgccct accgcgacat cctgcaccgt aaccaagagc gcacctatta 21661 ctggtggacc aagaatagcg cctattttcg tgctcatcaa gaggaactcc gacgagaaac 21721 ggcccttaac gccctacctg aaaatcacgt ttaatgaccg actgtaaata aagaacgacg 21781 cacacacgta ctgtacatat ttgtgaatag agcaaccgt t tattagataa acgtcaataa 21841 atgccgaccg atagaccgac aaggctcttc actggcttta tttaaagaaa caaaaggatt 21901 aagcgaacgg gtcgtcactg gcgatgggcg agactggcgc caacacctcc gttttaaagg 21961 cgtacgactc gttccaacgg aactcaggca catgtgtggg ctctgaagaa cccatcacgg 22021 cagtaaacag ctccgtagca aagacgtacg cgtagcgcag atccatggcc gacagacgcc 22081 aggcgcaggt tttttcggtc ttcttcagac cgcggcctgc tccgcccgac gccgcctgcg 22141 ggttgcagca ggtgaacacc atggtatgcg ggtttttctt gtgagccttc atatcgggcc 22201 tgctctcgac catgtcgcga gtaatgtcgt ctgtgccgtt gagcttataa ggagtcattt 22261 tacagaactg tctccctgaa atggctcgat cggaggcgta gttgcagttg caattggttg 22321 agatgaggac acattcctct gcccggcgct tgtccgcgtt ggggtaaagc gccttcgtcc 22381 agtctatgtc gtgacgcatc gcgctgaccg ccttggcggc gtcggaaaag accatggcgc 22441 aactgccgtg cgcgtgggga tgagggaagc cgctgtgctc ctgatccttg tagcacaccg 22501 cgttcgcgtc gaacctgagc accaccacct gtcgtccaaa ccggttcttc tcgattacgc
ERSATZBLAπ(REGEL26) 22561 cgttctgttc ggccagagcc ctctttcccg cctcgctaga cgggttcaac tccacggtac 22621 gaggtttcgt caccatgtcc acaccgtgca tgcatttcgg gaagggctcc tggagcgctg 22681 ggaaccagcc atggcgccaa acgtgcgccc ctccgggcac gaacttgggc tccagacccg 22741 cgcggctgta gataacggct gccaggaacc gccctacctg agcgttgaaa gagtcgtagc 22801 tagaaaaggt caggcgaaat tcgggatgct ttttgcgaac gtatgtaccc cccattttgg 22861 tccaaatgga gtcgtcgggg cgcacgctgg ctccctgcca ctgtaggtcg agagcttcgcERS A TZBLAπ (RULE 26) 22561 cgttctgttc ggccagagcc ctctttcccg cctcgctaga cgggttcaac tccacggtac 22621 gaggtttcgt caccatgtcc acaccgtgca tgcatttcgg gaagggctcc tggagcgctg 22681 ggaaccagcc atggcgccaa acgtgcgccc ctccgggcac gaacttgggc tccagacccg 22741 cgcggctgta gataacggct gccaggaacc gccctacctg agcgttgaaa gagtcgtagc 22801 tagaaaaggt caggcgaaat tcgggatgct ttttgcgaac gtatgtaccc cccattttgg 22861 tccaaatgga gtcgtcgggg cgcacgctgg ctccctgcca ctgtaggtcg agagcttcgc
22921 agatgctggc gacggtggcc atggcgcgtt gcgcgccgta gaccacgggg tctgacagag 22981 gggcctccgg ggattcctcg tcgctggcgt tttcttcgtc atcgacaacg gtttcccgcc22921 agatgctggc gacggtggcc atggcgcgtt gcgcgccgta gaccacgggg tctgacagag 22981 gggcctccgg ggattcctcg tcgctggcgt tttcttcgtc atcgacaacg gtttcccgcc
23041 ggcgggtaac tcgccttacg ggggatgggg actcctcgcg gcggctgacc ttcttgcgag 23101 tcgcgcctcg gcccggggcg accacttcca cttcttcctc ctcctcttcc atcatgactt 23161 ctgccgttct cttgacaggc ttggtgctgc gaaagccatg agctcttttc ggggttcttt 23221 ccatgacttc tgcttcggtg acgggatctc gcgtttcaaa aagttcttgc tctccctcct 23281 cttcagagtc agggactact gccggagagg gtggaagcgt cttttgaagc ttcctgggac 23341 ctatagggta aagttaacgc ccatcgtcag cgagaccacg cctcgctggc cgatgggatc 23401 acgagacacg ataaaagacc gcgaccaaaa cactcttggg gctagtatcc ctacccgggt 23461 gcgagcgtgg cagatcttcg ctcttctgct tctccagtgg attctcgggg tctttcggcc 23521 ccgtcggtct ctggggtggg agaggcctgc tcctccctct gtttgacttg attaccgtcg 23581 acggcccggg ctcttcgagg tccacgaagt ccgccacgtc ttcgtcgctg ctgatcgtct 23641 ctgggtgaag cgtttctgcc atcgtggctg tcatcgaaaa tggcagacaa gattacccga 23701 gaggaaaaaa ccatagcgac gctggacctc gtgttacgcg tggtcgtcga tgctggtaac 23761 tgggacgtgt tctcgaaacg tttggttcgc tacacacgcg aacagtacgg aatcgagctg 23821 cccgaagata tcggggactt accggacaca tctgaggtct cgaaagtgct gttgagtcat 23881 ttgggggaag acaaggcggt actgtccgcg taccgaatcg cggaactgac gcaaccttcc23041 ggcgggtaac tcgccttacg ggggatgggg actcctcgcg gcggctgacc ttcttgcgag 23101 tcgcgcctcg gcccggggcg accacttcca cttcttcctc ctcctcttcc atcatgactt 23161 ctgccgttct cttgacaggc ttggtgctgc gaaagccatg agctcttttc ggggttcttt 23221 ccatgacttc tgcttcggtg acgggatctc gcgtttcaaa aagttcttgc tctccctcct 23281 cttcagagtc agggactact gccggagagg gtggaagcgt cttttgaagc ttcctgggac 23341 ctatagggta aagttaacgc ccatcgtcag cgagaccacg cctcgctggc cgatgggatc 23401 acgagacacg ataaaagacc gcgaccaaaa cactcttggg gctagtatcc ctacccgggt 23461 gcgagcgtgg cagatcttcg ctcttctgct tctccagtgg attctcgggg tctttcggcc 23521 ccgtcggtct ctggggtggg agaggcctgc tcctccctct gtttgacttg attaccgtcg 23581 acggcccggg ctcttcgagg tccacgaagt ccgccacgtc ttcgtcgctg ctgatcgtct 23641 ctgggtgaag cgtttctgcc atcgtggctg tcatcgaaaa tggcagacaa gattacccga 23701 gaggaaaaaa ccatagcgac gctggacctc gtgttacgcg tggtcgtcga tgctggtaac 23761 tgggacgtgt tctcgaaacg tttggttcgc tacacacgcg aacagtacgg aatcgagctg 23821 cccgaagata tcggggactt accggacaca tctgaggtct cgaaagtgct gtt gagtcat 23881 ttgggggaag acaaggcggt actgtccgcg taccgaatcg cggaactgac gcaaccttcc
23941 gaaatggacc gcgctaaggt cacagaggga ggcctggccg tacttaacgc gagtcgcgat 24001 gaaagcgaag ctcagaaccc ctcgaacccc gaacccgaga gcatcgagag cgacgccgta 24061 gaggatctcg gcgttgcagc agagagcgac cctagcgatg acgaacccga cccagaaccc 24121 gagtatgacc atcgagaggc ggatcatgac tctgatgcgg atagcggata ctattcggca 24181 gatgggggac gacctggaac accagtggac gaggagcccc aggacgattc tccctcttcc 24241 gaggagaccg catccactgt catcgaagaa gcgcagacta gcgctagcaa cgattctcat 24301 gacgacgaca ctcaccgcga cgacggcagt gcttctgaag aggatctcga gcgggacgcc 24361 ctcgtggccc cggccgatcc ttttcccaac ttgcggaagt gtttcgagcg ccaagccatg 24421 atgctgaccg gggcgttaaa agacgccgcg gacacggctg atccgccaga aacgctctcc 24481 gtcgacagcg tgcaaaggca gctcgaacgc ttcgtcttta accccgaccg ccgcgtgccc 24541 gccgaacact tggaggtacg ctacaatttc taccctcctt tcctcacccc caaggccatc 24601 gcgagctatc acatctttgc cgtcaccgct tccatccctc taagctgcaa agccaaccgc 24661 agcggcagcg accttctagc caaagcaaaa gagagcactt tcttcaaacg cttacctaaa 24721 tggcgtctcg ggatagagat cgacgacggg ttgggaacgg aagtcacggc ggtaacagag 24781 ctggaagagg caaaaatggt tccgttaaag gacgacgtgt ctcgtctgca gtgggcaaaa 24841 atgcgcggcg agcacattcg cttcttcagc tacccgtcgc tgcacatgcc tcccaaaatt 24901 tcccgcatgc tgatggaaac gctgttgcaa ccgttcgcgg acgaaaacca aaaggcggaa23941 gaaatggacc gcgctaaggt cacagaggga ggcctggccg tacttaacgc gagtcgcgat 24001 gaaagcgaag ctcagaaccc ctcgaacccc gaacccgaga gcatcgagag cgacgccgta 24061 gaggatctcg gcgttgcagc agagagcgac cctagcgatg acgaacccga cccagaaccc 24121 gagtatgacc atcgagaggc ggatcatgac tctgatgcgg atagcggata ctattcggca 24181 gatgggggac gacctggaac accagtggac gaggagcccc aggacgattc tccctcttcc 24241 gaggagaccg catccactgt catcgaagaa gcgcagacta gcgctagcaa cgattctcat 24301 gacgacgaca ctcaccgcga cgacggcagt gcttctgaag aggatctcga gcgggacgcc 24361 ctcgtggccc cggccgatcc ttttcccaac ttgcggaagt gtttcgagcg ccaagccatg 24421 atgctgaccg gggcgttaaa agacgccgcg gacacggctg atccgccaga aacgctctcc 24481 gtcgacagcg tgcaaaggca gctcgaacgc ttcgtcttta accccgaccg ccgcgtgccc 24541 gccgaacact tggaggtacg ctacaatttc taccctcctt tcctcacccc caaggccatc 24601 gcgagctatc acatctttgc cgtcaccgct tccatccctc taagctgcaa agccaaccgc 24661 agcggcagcg accttctagc caaagcaaaa gagagcactt tcttcaaacg cttacctaaa 24721 tggcgtctcg ggatagagat cgacgacggg ttgggaacgg aagtcacggc ggt aacagag 24781 ctggaagagg approx
24961 gaggcacttc cctgtctgtc ggacgaggaa gtgctggcca tcgtggaccc gacagggcgc 25021 ctccacggcg aggacgcgct caaggccgtg gaaaagcgga gggccgcggt cactatggcg 25081 gtacgctaca ccgcgaccct cgaactcatg gaacgcgtgt tccgcgaacc gtctatggtc 25141 aaaaagatgc aggaggtcct ccaccatacc ttccaccacg gcttcgtcgc cctggtacgc 25201 gaaaccgcaa aagtcaacct gagcaactat gcgaccttcc atgggcttac ctacaacaac 25261 cccctgaaca actgcatcat gtccaagctc ctagaaggag cagacaagga ggactatgtg 25321 gtggactcga tctacctttt cttggtcctg acgtggcaaa cggctatggg tatgtggcag 25381 caggccatag acgatatgac tatccagatg tacaccgagg tctttaccaa gaataagtac 25441 aggctgtact cgctgcccaa cccgaccgcc atcggcaagg ccatcgtgga catcctcatg 25501 gactacgacc ggctcaccga ggaaatgcgg aaagcgctgc ccaacttcac ctgtcagagc 25561 cagattactg ccttccgcca ttttctactg gaacggtcca acatcccagc ggtcgccgcg 25621 cctttcatgc caagcgactt tgtgcctctg gcttacaagc agagccctcc cctcctctgg 25681 gaccaggtct atctgctgca gctggccttc tatctcacta agcacggagg ctacctgtgg 25741 gaagccccgg aggaagaggc caacaacccg tccaaccgga cttactgtcc ttgcaatctc 25801 tgcagtccgc accggatgcc aggtcacaat gcggcattgc acaacgagat tctggctatc 25861 ggaacgttcg agatccgcag tccggacggg aagaccttca agctcacgcc tgagctgtgg 25921 accaacgcat acctcgacaa atttgacgcc gaggacttcc acccgttcac ggtgttccac 25981 tatcccgaga acgcatcgcg gttcgcatcc actctaaaag catgcgtcac gcagagcccc 26041 gaaatcttga gcctgattcg ccagattcag gaatcgaggg aggagtttct gctcaccaag 26101 ggcaaggggg tgtacaaaga cccgaacacc ggagaaacca tctccagaca gccccgggac 26161 actgcccgcg cgcagcacgc tggagacggt caagctctac cagcccctgg agcctatacc 26221 accggaggaa atagagcgga gacagcgcct gctggagctg tacggcttgc cccggactac 26281 caagacgggc agtttcctat cgcgaaagtc ggcccgcact accatggccc aaagaatgtt 26341 agacgagaag accagggtta cagaggcggg cccggaggtg tacggggaga gcgcgaggtc 26401 gtcctttcac gaagagcagg aggaagacgt ttcggacgga gaaacactag gcagtcagga 26461 tacaacgaac gggctaaccg atatttcgga agaggaggag gaggatctgt tcgagggcaa 26521 caaggagaac atcccaccac ctcgccgtcc gcctcggaac cgccggctcc gagccgcata 26581 ctcgctcgag gaacccctcc ttcccccgag cgccgcgacc gacaagaaga gtaagaaagt 26641 cccaaaaagg cgaggtaaat atcgcagctg ggctaagcac cgcgtggcga tatgccaggc 26701 acttcgcgat gcggtctttg accgcaaaaa ggcgggcgaa atcctcaagc ggggtcaccg 26761 gctcttcgtg cccgctactg tcataggcta ctatgctcgc aaactctctc cctcatttct 26821 cgctcctctc tccagccaca ccgcacccct cctcccacca aaaaaacacc ggcgctaagg 26881 ctgtgcgtct gcgccaagat ccggtgccgc agcacatcgc ggacctcaga ggggaaatac 26941 tcgacatcct gttggaaatc gagtcgtacg cccgccgccg tcccgaccgc cacgtgtcca 27001 ttcgcaacag aacgcgcgaa agcatcaccc gaaaactgca ttacgagaaa aatgaagata 27061 agcttacccg tatgaagagc gatgctatca agttgctcgc tctctggcag accgtttaac 27121 tcgtgttcct ttatagccct tcggaaccat gaacctgatg aacgccacac ccaccgaata 27181 cgtatggaag tacaacccag tctccggcat tcccgccggc gcgcaacaga attacggcgc 27241 cactatagac tgggtgttgc caggaggaac cggtttcgca atagcaacca acgacattcg 27301 aagacaaacc cttaacccgg ccgtgacccg tgcaattacc gcgcgttttg aagctgagtc 27361 agaccagcaa ccgtacgcta gccctcacga gaccaatgtt atcgcggcca atgtcctcga 27421 ctcgggttat cccaaatccg gtctctaccc attagagctc agcggcaatc agcgcgtaca 27481 gctggcaggc ggcctaatgg taggtcgcac tgagggcagg atgcaattag cgggcggttt 27541 aacagaagga agagtgcaac tttctggagg tttccacgga cggccgttgg ttagagggcg 27601 gagcagaaga ccgcccagat ggtgcggcgc cgaactgact gggaacggac tgcccgagca 27661 agccgaagtc acttctgaca cttacaagta cttcctgaga acacagggtc ccagccaagt 27721 ggttgaagag cccggcgtct tttcgcaaag acaatttatg actaccttcc tcccctccgt 27781 tgtccctcat cccttcgaca gcaccaaccc cggcgatttc cccgcgcagt acagtgccat 27841 ctacaaaggc cgcacggcct tcgaagacac cttttgggac tggtgaagcg caccttttgt 27901 tggcgatgct ccgtttcgca ataaatttct tccaattctc tgtcgttaaa cggctcccgt 27961 ctggtcactg tcacgcgctc gccgccctcg ctcgtcaccc gcgcgcggta ccgtcgcctc 28021 agccagaata caaaaccggg gttcaggggt tcgtcgaacc gtaccacagc ctggtcgttt 28081 aatctcaacc aatattttct agggttcgac atcatgaacg aggaggttcc cctaaagcgt 28141 gtcagccctg acgaaaccga gacggttccc aaaaaaccgc gaaccgacgt tcgcgacacc 28201 gtcagggccg gcactgacga cacggtagat ctcgtgtacc ctttttggtg gaatctcgga 28261 acgggagggg gcggaggagg aggaggcggg ggcggcggca gtggaacctc tctccagccc 28321 aatgacccgc tttacgccgc cagcgggacc atcaacctac gcatgacatc cccgctaacg 28381 ttgtcacaac gagccttggc tctcaaaacg gacagcaccc tcaccctcaa cacgcaaggc 28441 cagctggocg tcagcctcac ccccggagac gggctcgtcc tcaacaccaa cgggctcagc 28501 atcaacgcag acccgcaaac cctcgcattc aacaacagcg gggcgctcga agtcaaccta 28561 gaccccgacg gaccctggtc taaaaccgcc acggggatcg atctgcgtct agatccgacg 28621 acgctcgaag tagacaattg ggaactagga gtcaagctcg atcccgacga agccatcgat 28681 tccgggcccg acggtctctg cctcaacctg gacgagactc tgctgctcgc caccaacagc 28741 acatccggca aaacggagct cggggtacac ctcaacacca gcggtcccat tactgcggac 28801 gaccagggca tcgacctgga cgtcgatccc aacaccatgc aggtgaacac aggaccttcc 28861 ggaggcatgc tggccgtcaa actcaaatct ggcggcgggc tcaccgctga ccccgacggt 28921 atctcggtca cggccaccgt cgcgcctccg tccatcagtg cgacagctcc tctcacctac 28981 accagcggca ccattgcact cactacggat acgcaaacga tgcaagtcaa cagcaaccaa24961 gaggcacttc cctgtctgtc ggacgaggaa gtgctggcca tcgtggaccc gacagggcgc 25021 ctccacggcg aggacgcgct caaggccgtg gaaaagcgga gggccgcggt cactatggcg 25081 gtacgctaca ccgcgaccct cgaactcatg gaacgcgtgt tccgcgaacc gtctatggtc 25141 aaaaagatgc aggaggtcct ccaccatacc ttccaccacg gcttcgtcgc cctggtacgc 25201 gaaaccgcaa aagtcaacct gagcaactat gcgaccttcc atgggcttac ctacaacaac 25261 cccctgaaca actgcatcat gtccaagctc ctagaaggag cagacaagga ggactatgtg 25321 gtggactcga tctacctttt cttggtcctg acgtggcaaa cggctatggg tatgtggcag 25381 caggccatag acgatatgac tatccagatg tacaccgagg tctttaccaa gaataagtac 25441 aggctgtact cgctgcccaa cccgaccgcc atcggcaagg ccatcgtgga catcctcatg 25501 gactacgacc ggctcaccga ggaaatgcgg aaagcgctgc ccaacttcac ctgtcagagc 25561 cagattactg ccttccgcca ttttctactg gaacggtcca acatcccagc ggtcgccgcg 25621 cctttcatgc caagcgactt tgtgcctctg gcttacaagc agagccctcc cctcctctgg 25681 gaccaggtct atctgctgca gctggccttc tatctcacta agcacggagg ctacctgtgg 25741 gaagccccgg aggaagaggc caacaacccg tccaaccgga cttactgtcc ttg caatctc 25801 tgcagtccgc accggatgcc aggtcacaat gcggcattgc acaacgagat tctggctatc 25861 ggaacgttcg agatccgcag tccggacggg aagaccttca agctcacgcc tgagctgtgg 25921 accaacgcat acctcgacaa atttgacgcc gaggacttcc acccgttcac ggtgttccac 25981 tatcccgaga acgcatcgcg gttcgcatcc actctaaaag catgcgtcac gcagagcccc 26041 gaaatcttga gcctgattcg ccagattcag gaatcgaggg aggagtttct gctcaccaag 26101 ggcaaggggg tgtacaaaga cccgaacacc ggagaaacca tctccagaca gccccgggac 26161 actgcccgcg cgcagcacgc tggagacggt caagctctac cagcccctgg agcctatacc 26221 accggaggaa atagagcgga gacagcgcct gctggagctg tacggcttgc cccggactac 26281 caagacgggc agtttcctat cgcgaaagtc ggcccgcact accatggccc aaagaatgtt 26341 agacgagaag accagggtta cagaggcggg cccggaggtg tacggggaga gcgcgaggtc 26401 gtcctttcac gaagagcagg aggaagacgt ttcggacgga gaaacactag gcagtcagga 26461 tacaacgaac gggctaaccg atatttcgga agaggaggag gaggatctgt tcgagggcaa 26521 caaggagaac atcccaccac ctcgccgtcc gcctcggaac cgccggctcc gagccgcata 26581 ctcgctcgag gaacccctcc ttcccccgag cgccgcgacc gacaagaaga gta agaaagt 26641 cccaaaaagg cgaggtaaat atcgcagctg ggctaagcac cgcgtggcga tatgccaggc 26701 acttcgcgat gcggtctttg accgcaaaaa ggcgggcgaa atcctcaagc ggggtcaccg 26761 gctcttcgtg cccgctactg tcataggcta ctatgctcgc aaactctctc cctcatttct 26821 cgctcctctc tccagccaca ccgcacccct cctcccacca aaaaaacacc ggcgctaagg 26881 ctgtgcgtct gcgccaagat ccggtgccgc agcacatcgc ggacctcaga ggggaaatac 26941 tcgacatcct gttggaaatc gagtcgtacg cccgccgccg tcccgaccgc cacgtgtcca 27001 ttcgcaacag aacgcgcgaa agcatcaccc gaaaactgca ttacgagaaa aatgaagata 27061 agcttacccg tatgaagagc gatgctatca agttgctcgc tctctggcag accgtttaac 27121 tcgtgttcct ttatagccct tcggaaccat gaacctgatg aacgccacac ccaccgaata 27181 cgtatggaag tacaacccag tctccggcat tcccgccggc gcgcaacaga attacggcgc 27241 cactatagac tgggtgttgc caggaggaac cggtttcgca atagcaacca acgacattcg 27301 aagacaaacc cttaacccgg ccgtgacccg tgcaattacc gcgcgttttg aagctgagtc 27361 agaccagcaa ccgtacgcta gccctcacga gaccaatgtt atcgcggcca atgtcctcga 27421 ctcgggttat cccaaatccg gtctctaccc attagagctc agcggc AATC agcgcgtaca 27481 gctggcaggc ggcctaatgg taggtcgcac tgagggcagg atgcaattag cgggcggttt 27541 aacagaagga agagtgcaac tttctggagg tttccacgga cggccgttgg ttagagggcg 27601 gagcagaaga ccgcccagat ggtgcggcgc cgaactgact gggaacggac tgcccgagca 27661 agccgaagtc acttctgaca cttacaagta cttcctgaga acacagggtc ccagccaagt 27721 ggttgaagag cccggcgtct tttcgcaaag acaatttatg actaccttcc tcccctccgt 27781 tgtccctcat cccttcgaca gcaccaaccc cggcgatttc cccgcgcagt acagtgccat 27841 ctacaaaggc cgcacggcct tcgaagacac cttttgggac tggtgaagcg caccttttgt 27901 tggcgatgct ccgtttcgca ataaatttct tccaattctc tgtcgttaaa cggctcccgt 27961 ctggtcactg tcacgcgctc gccgccctcg ctcgtcaccc gcgcgcggta ccgtcgcctc 28021 agccagaata caaaaccggg gttcaggggt tcgtcgaacc gtaccacagc ctggtcgttt 28081 aatctcaacc aatattttct agggttcgac atcatgaacg aggaggttcc cctaaagcgt 28141 gtcagccctg acgaaaccga gacggttccc aaaaaaccgc gaaccgacgt tcgcgacacc 28201 gtcagggccg gcactgacga cacggtagat ctcgtgtacc ctttttggtg gaatctcgga 28261 acgggagggg gcggaggagg aggaggcggg ggcggcggc a gtggaacctc tctccagccc 28321 aatgacccgc tttacgccgc cagcgggacc atcaacctac gcatgacatc cccgctaacg 28381 ttgtcacaac gagccttggc tctcaaaacg gacagcaccc tcaccctcaa cacgcaaggc 28441 cagctggocg tcagcctcac ccccggagac gggctcgtcc tcaacaccaa cgggctcagc 28501 atcaacgcag acccgcaaac cctcgcattc aacaacagcg gggcgctcga agtcaaccta 28561 gaccccgacg gaccctggtc taaaaccgcc acggggatcg atctgcgtct agatccgacg 28621 acgctcgaag tagacaattg ggaactagga gtcaagctcg atcccgacga agccatcgat 28681 tccgggcccg acggtctctg cctcaacctg gacgagactc tgctgctcgc caccaacagc 28741 acatccggca aaacggagct cggggtacac ctcaacacca gcggtcccat tactgcggac 28801 gaccagggca tcgacctgga cgtcgatccc aacaccatgc aggtgaacac aggaccttcc 28861 ggaggcatgc tggccgtcaa actcaaatct ggcggcgggc tcaccgctga ccccgacggt 28921 atctcggtca cggccaccgt cgcgcctccg tccatcagtg cgacagctcc tctcacctac 28981 accagcggca ccattgcact cactacggat acgcaaacga tgcaagtcaa cagcaaccaa
ERSATZBLAπ(REGEL28) 29041 ctggccgtga agctcaaaac gggaggcggt ctgacggctg acgcggacgg aatctccgtt 29101 tcggttgcac cgaccccgac gatcagcgct tctcccccgc taacctacac caacgggcaa 29161 atagggctct ctatcggaga ccaaagcctc caagtcagct ctggacagct ccaagtcaaa 29221 ctgaaaagcc agggcggtat tcaacagagc acgcaggggc tgggagtggc ggttgatcaa 29281 acccttaaga ttgtgtctaa cacgctcgag gtcaacacgg acccgagcgg acccctcacc 29341 agcggcaaca acggtctcag cttagcggcc gtcacacccc tagcagtgtc ttccgccggc 29401 gtcaccctga actatcagtc ccctcttaca gtcacgagta actctctcgg gctctccata 29461 gccgcgccac tccaggcggg tgcgcaaggc ttgacggtaa acacgatgga acccttgagc 29521 gcctcggcgc agggcatcca gctgcactac ggacagggat ttcaggtcgt cgcgggcacg 29581 ctgcagctgc tcactaatcc ccccatcgtt gtctcatccc gcgggttcac cttactctac 29641 actcccgcct tcacggtgag caacaatatg ttggggttga atgtagacgg cactgactgc 29701 gtggctatca gttcagccgg cctacagatc cgtaaggaag ccccgctgta cgtgacctcg 29761 ggaagcactc cagcattagc ccttaagtac agctccgact ttaccattac caatggtgcg 29821 ctcgcgttag cgaacagcgg cggaggagga agttccacac ccgaggtggc cacctatcac 29881 tgcggggata acctactcga gtcctacgac atcttcgcct ctctacccaa caccaacgcgERS A TZBLAπ (RULE 28) 29041 ctggccgtga agctcaaaac gggaggcggt ctgacggctg acgcggacgg aatctccgtt 29101 tcggttgcac cgaccccgac gatcagcgct tctcccccgc taacctacac caacgggcaa 29161 atagggctct ctatcggaga ccaaagcctc caagtcagct ctggacagct ccaagtcaaa 29221 ctgaaaagcc agggcggtat tcaacagagc acgcaggggc tgggagtggc ggttgatcaa 29281 acccttaaga ttgtgtctaa cacgctcgag gtcaacacgg acccgagcgg acccctcacc 29341 agcggcaaca acggtctcag cttagcggcc gtcacacccc tagcagtgtc ttccgccggc 29401 gtcaccctga actatcagtc ccctcttaca gtcacgagta actctctcgg gctctccata 29461 gccgcgccac tccaggcggg tgcgcaaggc ttgacggtaa acacgatgga acccttgagc 29521 gcctcggcgc agggcatcca gctgcactac ggacagggat ttcaggtcgt cgcgggcacg 29581 ctgcagctgc tcactaatcc ccccatcgtt gtctcatccc gcgggttcac cttactctac 29641 actcccgcct tcacggtgag caacaatatg ttggggttga atgtagacgg cactgactgc 29701 gtggctatca gttcagccgg cctacagatc cgtaaggaag ccccgctgta cgtgacctcg 29761 ggaagcactc cagcattagc ccttaagtac agctccgact ttaccattac caatggtgcg 29821 ctcgcgttag cgaacagcgg cggaggagga agttccacac ccgaggtggc cac ctatcac 29881 tgcggggata acctactcga gtcctacgac atcttcgcct ctctacccaa caccaacgcg
29941 gctaaggtgg cggcttactg ccgtttagct gctgcaggtg gcgtggtcag cgggaccatt29941 gctaaggtgg cggcttactg ccgtttagct gctgcaggtg gcgtggtcag cgggaccatt
30001 caagtgacaa gctatgccgg acgatggcct aaagtgggca acagcgttac ggacggcatc 30061 aaatttgcca tcgtcgtgtc tccccccatg gacaaagacc cacgatcgaa cctcagtcag 30121 tggctgggtg ccaccgtatt ccctgcgggc gcgactactg ctctcttctc acccaacccg 30181 tacggctccc tcaacaccat caccacactg ccatccatcg cctcggactg gtacgtgccc 30241 gagtccaacc tggtcacgta taccaagatc cattttaaac caacggggtc gcagcagctg 30301 cagctcgcga gcggagaact cgttgttgca gcggcgaaat cgcccgtgca gacgacgaaa 30361 tacgaattga tctatctggg atttacgctt aagcagaact cctcgggtac caacttcttc 30421 gatcccaatg cctcctccga tctatccttt ctgacaccac cgattccgtt tacttatctg 30481 gggtactatc aatgaacttg ttaactcctg cagcagcagc agcagcagca gcagcatggc 30541 tgaccagaaa aggaagctgg cggatccgga tgccgaggct ccgacgggca agatggcccg 30601 cgcgggtccg ggagaactgg acctcgtcta ccctttctgg taccaagtag ccgctcccac 30661 ggaaatcaca cctccgttct tggacccgaa cggtcccctg tactccacgg acggcttgtt 30721 gaacgtcagg ctcacggcac ccctcgttat catccgtcaa tctaacggca acgcgatcgg 30781 ggtcaagacc gacggaagca ttaccgtcaa tgcggacggc gcgctgcaga tcggaatcag 30841 cacggccgga cctctcacca ctaccgccaa cggcatcgat cttaatatcg atcccaaaac 30901 cctggtcgtt gacggtagca gcggcaagaa cgtcttggga gtgcttctga aaggacaggg 30961 ggcgctacag agcagcgcgc aaggcatagg cgttgccgtc gacgagtctc tacaaatcgt 31021 cgataacacc ttggaagtga aggtagatgc tgcaggtccg ctcgccgtca cagcagccgg 31081 cgtagggttg cagtacgaca acacccaatt taaagtcacg aatgggactt tgcaactgta 31141 ccaagcgccc actagcagcg tggccgcatt tacatccggg acgatcggct tgtcctcccc30001 caagtgacaa gctatgccgg acgatggcct aaagtgggca acagcgttac ggacggcatc 30061 aaatttgcca tcgtcgtgtc tccccccatg gacaaagacc cacgatcgaa cctcagtcag 30121 tggctgggtg ccaccgtatt ccctgcgggc gcgactactg ctctcttctc acccaacccg 30181 tacggctccc tcaacaccat caccacactg ccatccatcg cctcggactg gtacgtgccc 30241 gagtccaacc tggtcacgta taccaagatc cattttaaac caacggggtc gcagcagctg 30301 cagctcgcga gcggagaact cgttgttgca gcggcgaaat cgcccgtgca gacgacgaaa 30361 tacgaattga tctatctggg atttacgctt aagcagaact cctcgggtac caacttcttc 30421 gatcccaatg cctcctccga tctatccttt ctgacaccac cgattccgtt tacttatctg 30481 gggtactatc aatgaacttg ttaactcctg cagcagcagc agcagcagca gcagcatggc 30541 tgaccagaaa aggaagctgg cggatccgga tgccgaggct ccgacgggca agatggcccg 30601 cgcgggtccg ggagaactgg acctcgtcta ccctttctgg taccaagtag ccgctcccac 30661 ggaaatcaca cctccgttct tggacccgaa cggtcccctg tactccacgg acggcttgtt 30721 gaacgtcagg ctcacggcac ccctcgttat catccgtcaa tctaacggca acgcgatcgg 30781 ggtcaagacc gacggaagca ttaccgtcaa tgcggacggc gcgctgcaga tcg gaatcag 30841 cacggccgga cctctcacca ctaccgccaa cggcatcgat cttaatatcg atcccaaaac 30901 cctggtcgtt gacggtagca gcggcaagaa cgtcttggga gtgcttctga aaggacaggg 30961 ggcgctacag agcagcgcgc aaggcatagg cgttgccgtc gacgagtctc tacaaatcgt 31021 cgataacacc ttggaagtga aggtagatgc tgcaggtccg ctcgccgtca cagcagccgg 31081 cgtagggttg cagtacgaca acacccaatt taaagtcacg aatgggactt tgcaactgta 31141 ccaagcgccc actagcagcg tggccgcatt tacatccggg acgatcggct tgtcctcccc
31201 tacgggcaat tttgtgagct ctagcaacaa cccgtttaac gggagctact tcctgcagca 31261 gatcaatacc atgggcatgc tgactacctc gctctacgtc aaagtcgaca caaccaccat 31321 gggtacgcgt cccacgggcg cggtaaacga gaacgcgcga tactttaccg tctgggtgag31201 tacgggcaat tttgtgagct ctagcaacaa cccgtttaac gggagctact tcctgcagca 31261 gatcaatacc atgggcatgc tgactacctc gctctacgtc aaagtcgaca caaccaccat 31321 gggtacgcgt cccacgtaggcggggtc
31381 ctccttcctc acgcagtgca acccctcgaa catcggtcaa gggaccctag agccaagcaa 31441 catcagtatg acctcttttg aacccgccag aaaccccatc tcacctcccg tgttcaatat 31501 gaaccaaaac ataccctact acgcttcccg attcggggta ctggagtctt accggcctat 31561 cttcaccggc tcgctcaaca cgggaagtat cgacgtacgg atgcaagtga cgcccgtcct 31621 cgccaccaac aacacgacct acaatctcat cgcctttacc ttccaatgcg ccagtgccgg 31681 actgttcaat cccaccgtga acggcaccgt ggccatcgga ccggtggtgc atacctgtcc 31741 cgctgcccgc gcccccgtta cggtctgaac aataaagaca aggtgaacca tttatacagt 31801 ctcacgtctc tttattgcat acgctccgct aaatgtttcc attcgctcat ttgccagtaa 31861 tacagcagat tcgcaaactc actgaaccaa tcttctgtat aaaaatgtac gcgctgcgtg 31921 tccaaatcaa catcaatttt cctcatatac agacaggggc tgccacccgc ctcccccaag 31981 cgcgacaccg caattaggaa tggtagcctg ctgtgcaggt ccacgtgaat taacatcccg 32041 cacacgttcc cgatcggtcg ctgcataaat actggagaga aatcgctaaa ccccggtgac 32101 gcccacatag ccacgaagta cacccctgcc acattcaagt catcctccaa cctggcccaa 32161 acataagtgg ccaaatcgga aggagccagg tggcaagccg ataaccccat acgatgcaaa 32221 ggtaacccgt ggcaagcgca tcccccgaaa tgaagttcga aagaatcgta acacagtagc 32281 tgataggcat gaagcggcgt cggcatctga agaccgtcat catcttcgtc gtcttccatg 32341 tcatccccaa cttcctcctc gcgctccgct tcctgttggc ggcgctgctg gtgctgcagc 32401 accatctcca ggatctgctc gtcgttcatc ttaatccgga attatcgcgt acggatgttc 32461 ctcgtcgtcc gaactgacaa cagaaggcgg aggagctgtc agtggtgctg tagaggctaa 32521 cgatgctgca gcaccggtct cttgcaattc gaaataccaa gggttgctac tgacggtcca 32581 gttcccgccc cgtgaaccag gccagcggga aatcggtgca ggtaggggat ccggtgaagg 32641 agaccgggaa tggagggaag gaactgcgag atccttatcc actcgataca aaccgtataa 32701 cagggagccc aacgccaggt acaccaggaa cgtactacaa acgaacacgc tgattacaaa 32761 gtttaacgaa gacagatggt tctgtaggaa caggaagctg cacaggatga tgctgctgta 32821 ggacagggcg accaggaggg ccaagaactc gcgccaatag cgtccacaac actgcaaaat 32881 caaacacgta attagctata cggacgttca ccagcgactc tcgcgcgtcg ttccataaac 32941 acattgcgca gataagccaa ctgagcagaa cagaacagag agagaggttg ccgcgtcgaa 33001 cactgtttgc actgtccgaa acactcggga tgagactccc cgtacttccc gtgcacatga 33061 aatacccact cttcgacgtt agcgtaggac aaccgacggt aaccggggaa gtaacacagt 33121 ccctgcgaca cgatcggcca cagttccggc gacaccatca cgcggagcat gcttctcagg 33181 cagacgggtt gggtcacggc gctgctgcga gaaatagttt ccaccatgat ggtggccgtc 33241 acggtcacgc gacacgcatt catgagaaca accggagacc gcacaaaagg aacagacgaa 33301 ggcacttgcg aaaaggacac ctcaaagctc atcgagcgga gagccatctt tacggatatc 33361 ttctccgcaa tcagaaagcc tgtggtgaaa aacttaaaat ctgtcttcct gcgagcaagc 33421 atccacggtt ccaagtcgta cttcatccca ggtgtaataa aaagcaacct acgtgagagg 33481 tagtgcagca gggcggtctt ctctgcccgg ttcaggtgaa gggcactcac aatccggact 33541 atgcaattca tgagtacgta gtctcgccgt ttgaaacaca caaactttgc gctgcgtacc 33601 gtcactagca ccgtgacaga actatgcaat cgcctcatca gatcattatc gaaacaccgc 33661 aagctagcca cggctctatt tatgcggtac tcgttcagtc tctccatttc ctcctgtcga 33721 caagttggat cgtgacgtag gagaaaacta aaccatatta ctcctacttc gttatgaaag 33781 ccacaagctc tgctgacggt taaagactcc ttaagaaaga aaaggtagta cagtcaagct 33841 gacccataca ggtgaacccg ccccaagtca cgtaagtcaa ctcaccgaaa gaggacacag 33901 agccatatcc gctgcttcaa agctttattg acgggtctaa aggcgtaaag aaaagaagaa 33961 tttaccgttc tgcatctcaa accccaccac cacgcgaaaa agtccgaacg atgctgcagc 34021 accgttcacg caaaagtccc ggacgcgcac aaataaaccc ttaatcccga taacggtgct 34081 gcagcaccgt cacgctgctg cagcatcgtc agacgtttat gacatgcagc cgattccgtg 34141 cggatttatg gtcccataac ggttccaggt cctttcgttg ctgcagcacc gtttcacgta 34201 aagaagctgt acaggtcaaa ctggtccgga ttactgatta ttcgggggag agccacgtga 34261 cgtagactcg aacgacgtcc acttccgata caaaccacat ctctctggac acaggcttgt 34321 ccgccttgag ccaaaccatg tgattcttcc ggtccgttct gacgtcaatg ccgacacgcc 34381 tcttggtgtt tgaacaggca tcccagtacg tagccaggac cactcggtga cgtcgaggtt 34441 gaggtttaaa ggtcactacg gcctgtaacc cggtactcca gggccctaaa ctaacatatt 34501 ctccggccct gcccactaca ttcgggtgat caaatatgac ataatcctta aacaatttgg 34561 ggaacttcaa acagccacat ttgggcggga caggaagatg gtgcgcagaa acattgatat 34621 gagagcgcca tctagggaca tcaaagcggt gcccgcctgg atggcaatcg tacttcttag 34681 ttccggtaaa gtaataggtg tgagtccgga aacacgtaaa ctccgtcact tcctgtgtcg 34741 tcattgccct cgcccctagt gacgtcagag tgccacgccc cttgtacagt ctaataaatt 34801 ttaatacacc cccgccccta gcatataaaa caatgggagc ctcgcccaca ttcctatccc 34861 taataaaata ccatctgacc gaatacccgt gttccatccc tattgtttta gtataataag 34921 ggtcataagt ccacaactcc gcggcattgc cctctgtcac caccaacagc aaataggaag 34981 atgccatgtc atcctctcgt aaaagcatcc tccaatcagc tacctcttcc gtgtagtact 35041 gagttggctg actgtaatca cgccccgtga cgtaggctga ccacgcggaa ggaacacttc 35101 cgtgcatgct cagtagctgg tcagcctggt gagtatccag ggccttcata aaggtcaaag 35161 gcgccataat gtgataacac agtccatccg atcggaggaa atcaaaggga atatgtacat 35221 cttcacaatg gcgcctccca gaataagacc atgcacagat ttgacctttc caccaagcac 35281 gtgactcgca agcctcatgt ttttgaccag tcagatcgct ccgtatatac tcgtctccta 35341 ttggtcgatc aaaaccgtac gaaccaatac tagacgcaat caccactacg taatccgcgt 35401 catccctaga gataacacta tccgcatccc tattggctga ccaatgacca ccggaagaca 35461 gcaaaaggtt taaccctttt gtgtgtaagt ccatcctata accctggaaa ctttccaatg31381 ctccttcctc acgcagtgca acccctcgaa catcggtcaa gggaccctag agccaagcaa 31441 catcagtatg acctcttttg aacccgccag aaaccccatc tcacctcccg tgttcaatat 31501 gaaccaaaac ataccctact acgcttcccg attcggggta ctggagtctt accggcctat 31561 cttcaccggc tcgctcaaca cgggaagtat cgacgtacgg atgcaagtga cgcccgtcct 31621 cgccaccaac aacacgacct acaatctcat cgcctttacc ttccaatgcg ccagtgccgg 31681 actgttcaat cccaccgtga acggcaccgt ggccatcgga ccggtggtgc atacctgtcc 31741 cgctgcccgc gcccccgtta cggtctgaac aataaagaca aggtgaacca tttatacagt 31801 ctcacgtctc tttattgcat acgctccgct aaatgtttcc attcgctcat ttgccagtaa 31861 tacagcagat tcgcaaactc actgaaccaa tcttctgtat aaaaatgtac gcgctgcgtg 31921 tccaaatcaa catcaatttt cctcatatac agacaggggc tgccacccgc ctcccccaag 31981 cgcgacaccg caattaggaa tggtagcctg ctgtgcaggt ccacgtgaat taacatcccg 32041 cacacgttcc cgatcggtcg ctgcataaat actggagaga aatcgctaaa ccccggtgac 32101 gcccacatag ccacgaagta cacccctgcc acattcaagt catcctccaa cctggcccaa 32161 acataagtgg ccaaatcgga aggagccagg tggcaagccg ataaccccat acg atgcaaa 32221 ggtaacccgt ggcaagcgca tcccccgaaa tgaagttcga aagaatcgta acacagtagc 32281 tgataggcat gaagcggcgt cggcatctga agaccgtcat catcttcgtc gtcttccatg 32341 tcatccccaa cttcctcctc gcgctccgct tcctgttggc ggcgctgctg gtgctgcagc 32401 accatctcca ggatctgctc gtcgttcatc ttaatccgga attatcgcgt acggatgttc 32461 ctcgtcgtcc gaactgacaa cagaaggcgg aggagctgtc agtggtgctg tagaggctaa 32521 cgatgctgca gcaccggtct cttgcaattc gaaataccaa gggttgctac tgacggtcca 32581 gttcccgccc cgtgaaccag gccagcggga aatcggtgca ggtaggggat ccggtgaagg 32641 agaccgggaa tggagggaag gaactgcgag atccttatcc actcgataca aaccgtataa 32701 cagggagccc aacgccaggt acaccaggaa cgtactacaa acgaacacgc tgattacaaa 32761 gtttaacgaa gacagatggt tctgtaggaa caggaagctg cacaggatga tgctgctgta 32821 ggacagggcg accaggaggg ccaagaactc gcgccaatag cgtccacaac actgcaaaat 32881 caaacacgta attagctata cggacgttca ccagcgactc tcgcgcgtcg ttccataaac 32941 acattgcgca gataagccaa ctgagcagaa cagaacagag agagaggttg ccgcgtcgaa 33001 cactgtttgc actgtccgaa acactcggga tgagactccc cgtacttccc gtgcacatga 33061 aatacccact cttcgacgtt agcgtaggac aaccgacggt aaccggggaa gta acacagt 33121 ccctgcgaca cgatcggcca cagttccggc gacaccatca cgcggagcat gcttctcagg 33181 cagacgggtt gggtcacggc gctgctgcga gaaatagttt ccaccatgat ggtggccgtc 33241 acggtcacgc gacacgcatt catgagaaca accggagacc gcacaaaagg aacagacgaa 33301 ggcacttgcg aaaaggacac ctcaaagctc atcgagcgga gagccatctt tacggatatc 33361 ttctccgcaa tcagaaagcc tgtggtgaaa aacttaaaat ctgtcttcct gcgagcaagc 33421 atccacggtt ccaagtcgta cttcatccca ggtgtaataa aaagcaacct acgtgagagg 33481 tagtgcagca gggcggtctt ctctgcccgg ttcaggtgaa gggcactcac aatccggact 33541 atgcaattca tgagtacgta gtctcgccgt ttgaaacaca caaactttgc gctgcgtacc 33601 gtcactagca ccgtgacaga actatgcaat cgcctcatca gatcattatc gaaacaccgc 33661 aagctagcca cggctctatt tatgcggtac tcgttcagtc tctccatttc ctcctgtcga 33721 caagttggat cgtgacgtag gagaaaacta aaccatatta ctcctacttc gttatgaaag 33781 ccacaagctc tgctgacggt taaagactcc ttaagaaaga aaaggtagta cagtcaagct 33841 gacccataca ggtgaacccg ccccaagtca cgtaagtcaa ctcaccgaaa gaggacacag 33901 agccatatcc gctgcttcaa agctttattg acgggtctaa aggcgt AAAG aaaagaagaa 33961 tttaccgttc tgcatctcaa accccaccac cacgcgaaaa agtccgaacg atgctgcagc 34021 accgttcacg caaaagtccc ggacgcgcac aaataaaccc ttaatcccga taacggtgct 34081 gcagcaccgt cacgctgctg cagcatcgtc agacgtttat gacatgcagc cgattccgtg 34141 cggatttatg gtcccataac ggttccaggt cctttcgttg ctgcagcacc gtttcacgta 34201 aagaagctgt acaggtcaaa ctggtccgga ttactgatta ttcgggggag agccacgtga 34261 cgtagactcg aacgacgtcc acttccgata caaaccacat ctctctggac acaggcttgt 34321 ccgccttgag ccaaaccatg tgattcttcc ggtccgttct gacgtcaatg ccgacacgcc 34381 tcttggtgtt tgaacaggca tcccagtacg tagccaggac cactcggtga cgtcgaggtt 34441 gaggtttaaa ggtcactacg gcctgtaacc cggtactcca gggccctaaa ctaacatatt 34501 ctccggccct gcccactaca ttcgggtgat caaatatgac ataatcctta aacaatttgg 34561 ggaacttcaa acagccacat ttgggcggga caggaagatg gtgcgcagaa acattgatat 34621 gagagcgcca tctagggaca tcaaagcggt gcccgcctgg atggcaatcg tacttcttag 34681 ttccggtaaa gtaataggtg tgagtccgga aacacgtaaa ctccgtcact tcctgtgtcg 34741 tcattgccct cgcccctagt gacgtcagag tgccacgcc c cttgtacagt ctaataaatt 34801 ttaatacacc cccgccccta gcatataaaa caatgggagc ctcgcccaca ttcctatccc 34861 taataaaata ccatctgacc gaatacccgt gttccatccc tattgtttta gtataataag 34921 ggtcataagt ccacaactcc gcggcattgc cctctgtcac caccaacagc aaataggaag 34981 atgccatgtc atcctctcgt aaaagcatcc tccaatcagc tacctcttcc gtgtagtact 35041 gagttggctg actgtaatca cgccccgtga cgtaggctga ccacgcggaa ggaacacttc 35101 cgtgcatgct cagtagctgg tcagcctggt gagtatccag ggccttcata aaggtcaaag 35161 gcgccataat gtgataacac agtccatccg atcggaggaa atcaaaggga atatgtacat 35221 cttcacaatg gcgcctccca gaataagacc atgcacagat ttgacctttc caccaagcac 35281 gtgactcgca agcctcatgt ttttgaccag tcagatcgct ccgtatatac tcgtctccta 35341 ttggtcgatc aaaaccgtac gaaccaatac tagacgcaat caccactacg taatccgcgt 35401 catccctaga gataacacta tccgcatccc tattggctga ccaatgacca ccggaagaca 35461 gcaaaaggtt taaccctttt gtgtgtaagt ccatcctata accctggaaa ctttccaatg
JRSATZBLAπ(REGEL2β) 35521 ggggatctag cgccactatg cggccaacct tttttgaccc tctgtccgga ctagaagttg 35581 gcgggacaaa gccgcgcata cagtgccccc tagcgacatc cctatgcaat gaattcgatg 35641 gtccttgaac tccgtaaaaa aatgagcagt ggtcctgact gcgtaatagg ccggccccct 35701 cacatcctgc ccccacaaaa gggcgtctac cttcttacaa atatctctca gctgattggt 35761 ccagtccaac agaatgaccg gggactctgg cgtcataatg gtatgcatac gcaaaatctt 35821 tctcatcatt tcactggtcc atttatatgt gccgtcatag cgcgccctat taataagcgg 35881 acacacatcg ggatacatgt cctgaaccag aataatgagc tccccgctat ctttaccatc 35941 caataccccg agccgccgca tttgactgac aacccagggg ccgtccgaaa aagtcaaaaa 36001 agtctcattc caccatacaa ttaacttggg ccacgaagga aaatccggcg aataggtgcc 36061 catcaagcgc ctgacgtcag ccttaggata tggcggatcc catctggaat ccgacccatt 36121 aaagcacgaa gatagggcag acatcggcca atggccagga gaatgggtag aattaataag 36181 gactccgcct ccatttccga gcttttaaaa aaaagagaaa atggaaatca gccaagagac 36241 caccaccccg tgattggatg attggtcatc agaagatcga taagggaatt tattttctgg 36301 gagccccccc cccccctact cctatttaaa aaataaccct ttcctcacca agctcagaag 36361 acagaggagg agagtagagc gccgctcaga ggtcatccgc cgagagaaaa tcccgcgcag 36421 agaacagagc tctcaggtag gggtctggag ctctctggaa aaatcgcggg ctcttataca 36481 cttactctcc gcccattcga aagccgcgcc tgactagagt acacactata aattccattc 36541 cggtgactta ctactaggcg ctggccactt atcaaaagaa acagttctaa gaataggaca 36601 aagtccaacc gcaataaaac acccttgtca aacatgataa gagtgttctc gagaaggtac 36661 tggaaaagca aacagtccaa ctcccaagtt aaatattacg caaagaggcg taacgagaaa 36721 agactagaaa gtgtaaacac acctctccta gttatatata aacccagcgg ggcagtccct 36781 agaagaacac tacctcaatc cagttacaca ttaacccggg aacctattat tgattaacta 36841 gacagtactt cctcattttc tactggaact ttccactgcc ctccggggat tttccattgg 36901 caatcattaa cttgactttg tactttatgt ttactctcca tagcaacgca ccttatatgg 36961 aaaatatgct cctccccgga ccgcccatcg taccacctga gcaggtaggc tgtacctttt 37021 cctattggcc cattatgagc tcacctggtt aatcatatac ccgctccgcc tatataggta 37081 gcataccggg acaggttccc tcacagtcta ttgcagactg ccgaagagag aggagctccg 37141 cataggactg ggaccagaac cccgagactc tgccggtaat attttaattt catttaatcg 37201 aatcaaataa atcaaaaatc aactcaaacc catgattctc aatggaaatt tcttgtgatt 37261 ttctttcgcg cgcgaccacc ccctatggca cccccctgta cacccccctg tacacccccc 37321 tgtacaaggg aacctacccc cctgtacagc gaccaccccc catggacacc cccctgtaca 37381 ttctacaggt atggcccgca acccattccg catgttccct ggggaccttc catactacat 37441 ggggaccatt tcctttactt cggtggtccc tgtggaccct agccagcgga atcccaccac 37501 tagccttaga gaaatggtga ccaccggcct gatttttaac cctaacctga ccggcgagca 37561 actgcgggaa tactcattca gccccctagt gtccatgggg agaaaggcaa tcttcgcaga 37621 ctacgagggt ccccagcgca ttatccacgt taccattagg gggcgctccg cggaacccaa 37681 gacccccagt gaggccctca ttatgatgga gaaggcggtc cgtggcgcgt tcgcggttcc 37741 tgattgggtg gccagggaat actcggatcc cctcccccac ggcataaccc acgtggggga 37801 cctgggcttc cccattggtt ccgtgcatgc cctgaagatg gcgctagaca cactgaagat 37861 ccatgtccct cgcggagtgg gggtccctgg ctatgagggt ctctgtggga ccaccaccat 37921 caaagccccc cgacaatatc ggctcctgac cactggagtt ttcaccaaaa aagatctgaa 37981 aagaacactt ccagaaccat tcttcagccg attttttaac caaactcccg aagtttgtgc 38041 catcaagact ggcaaaaatc cgttttctac agaaatttgg tgtatgactc tcggcgggga 38101 tagccccgcc cccgagagaa atgaacccag aaatccccat tctctccaag attgggcaag 38161 actgggtgtc atggaaacct gcctacgtat gagtaggcgg ggactcgggt ctcggcacca 38221 cccctaccat tctctgtaac caatccctga ataaagattt gcataacaga actttgactc 38281 ctccttttat gtgggtgggg taatgggcgg cacttggggg taatggcggt tcctattgga 38341 tgggtaacac cgactccgcc ctacaaagtt aatgattgat ttttcggact tagaaaaatt 38401 tcgactgtca cctggatgtt tttccccact taacctctag ggggagatag atcgcgtcca 38461 aggggaggag ctcaataccg gaccgcctat taggtgtggc ttcgggctcc gcctagtggg 38521 aggagacagg aaaaccacgc ctagtgacgc tgggtcaaag tccaagggga gtggtttatg 38581 cgcaccgcct tggggcgtgg tttgggcggc gcaaggtaac ccttggactg ggaggagact 38641 tctgtccctt gggcgtgtca aacaggtaaa ccccacccgc gcgattaatg attaattttt 38701 cggacttaga aaattttcaa cctgatactt tattttcaag cttttcccgc cgacgggcaa 38761 gcctcctatc tctccgtcta tgactccaca gagcctcatc tgaatatgta aatgtgctga 38821 accgcaaccc cgtagaccgc gcccacccca gcatcaaagg taacgccccc gatgccacaa 38881 tgtaattacc cactgttaaa ttaggatcct tacaccaatc atttctgtac aatttaaacc 38941 accgcccacg cgggactttc ccgtggtggt agaaaaaggt tttgaaaaac gcgcgcatta 39001 ttttcgtggc ttcattaata gcggacatgc gcagatccag aaaggtcaga cacaccacca 39061 cggtcacatg acatttgcat ggagacaggg attggatacc gacacaatac gccatcggat 39121 actgaatgtc cacattggtc cgtgcatata cagtgtgcca cctcctcttg accgcagcca 39181 cgaatcccca gaagagttct tcccgccaca aaatcgaaac cggggcggcg gccccaaagc 39241 acaaatacaa aggcatcctc ctgaggctct agaaaaaaca actcattaac aggcatcccg 39301 ctcataggta cattcgtgta aacagggctg catgccaacc aatgccccgc gttttacaaa 39361 gtgacgggcc accctattgg cggagggggt ccacgtattg cgcaccgcgt aaatagaagc 39421 cacccctcgc ggaacctgtg tacattcaaa tctcctccaa atacattcgc gcagtaaagc 39481 caccgccctt ttcaagaaag tccaatcaac cttatgcgtg ggcaaaaaaa tagaagctga 39541 atataccccc gcaaactcct ccaatcggaa caggtaatct acactatagt gggacagcat 39601 ctcaacagtt aaactttccc aggcatttat caccgtcaat ttcagatcat ggaatacggc 39661 caagttaggc tccatcaagg tcacgcggag gtggaagtaa tacatcccga aataccctgt 39721 taaaaaaaat agaaaaatga actaaccgac aataagatcg gcagtaccca gtttcgatct 39781 ggggacctcc ggagtgcaag tccgacgctc ttacggctga gctacactgt cgatcttgat 39841 ccgctagggt acgcagtccg gagaagaaat atactaagtg agacccggtc ctatatatacJRSATZBLAπ (RULE2β) 35521 ggggatctag cgccactatg cggccaacct tttttgaccc tctgtccgga ctagaagttg 35581 gcgggacaaa gccgcgcata cagtgccccc tagcgacatc cctatgcaat gaattcgatg 35641 gtccttgaac tccgtaaaaa aatgagcagt ggtcctgact gcgtaatagg ccggccccct 35701 cacatcctgc ccccacaaaa gggcgtctac cttcttacaa atatctctca gctgattggt 35761 ccagtccaac agaatgaccg gggactctgg cgtcataatg gtatgcatac gcaaaatctt 35821 tctcatcatt tcactggtcc atttatatgt gccgtcatag cgcgccctat taataagcgg 35881 acacacatcg ggatacatgt cctgaaccag aataatgagc tccccgctat ctttaccatc 35941 caataccccg agccgccgca tttgactgac aacccagggg ccgtccgaaa aagtcaaaaa 36001 agtctcattc caccatacaa ttaacttggg ccacgaagga aaatccggcg aataggtgcc 36061 catcaagcgc ctgacgtcag ccttaggata tggcggatcc catctggaat ccgacccatt 36121 aaagcacgaa gatagggcag acatcggcca atggccagga gaatgggtag aattaataag 36181 gactccgcct ccatttccga gcttttaaaa aaaagagaaa atggaaatca gccaagagac 36241 caccaccccg tgattggatg attggtcatc agaagatcga taagggaatt tattttctgg 36301 gagccccccc cccccctact cctatttaaa aaataaccct ttcctcacca agc tcagaag 36361 acagaggagg agagtagagc gccgctcaga ggtcatccgc cgagagaaaa tcccgcgcag 36421 agaacagagc tctcaggtag gggtctggag ctctctggaa aaatcgcggg ctcttataca 36481 cttactctcc gcccattcga aagccgcgcc tgactagagt acacactata aattccattc 36541 cggtgactta ctactaggcg ctggccactt atcaaaagaa acagttctaa gaataggaca 36601 aagtccaacc gcaataaaac acccttgtca aacatgataa gagtgttctc gagaaggtac 36661 tggaaaagca aacagtccaa ctcccaagtt aaatattacg caaagaggcg taacgagaaa 36721 agactagaaa gtgtaaacac acctctccta gttatatata aacccagcgg ggcagtccct 36781 agaagaacac tacctcaatc cagttacaca ttaacccggg aacctattat tgattaacta 36841 gacagtactt cctcattttc tactggaact ttccactgcc ctccggggat tttccattgg 36901 caatcattaa cttgactttg tactttatgt ttactctcca tagcaacgca ccttatatgg 36961 aaaatatgct cctccccgga ccgcccatcg taccacctga gcaggtaggc tgtacctttt 37021 cctattggcc cattatgagc tcacctggtt aatcatatac ccgctccgcc tatataggta 37081 gcataccggg acaggttccc tcacagtcta ttgcagactg ccgaagagag aggagctccg 37141 cataggactg ggaccagaac cccgagactc tgccggtaat atttta ATTT catttaatcg 37201 aatcaaataa atcaaaaatc aactcaaacc catgattctc aatggaaatt tcttgtgatt 37261 ttctttcgcg cgcgaccacc ccctatggca cccccctgta cacccccctg tacacccccc 37321 tgtacaaggg aacctacccc cctgtacagc gaccaccccc catggacacc cccctgtaca 37381 ttctacaggt atggcccgca acccattccg catgttccct ggggaccttc catactacat 37441 ggggaccatt tcctttactt cggtggtccc tgtggaccct agccagcgga atcccaccac 37501 tagccttaga gaaatggtga ccaccggcct gatttttaac cctaacctga ccggcgagca 37561 actgcgggaa tactcattca gccccctagt gtccatgggg agaaaggcaa tcttcgcaga 37621 ctacgagggt ccccagcgca ttatccacgt taccattagg gggcgctccg cggaacccaa 37681 gacccccagt gaggccctca ttatgatgga gaaggcggtc cgtggcgcgt tcgcggttcc 37741 tgattgggtg gccagggaat actcggatcc cctcccccac ggcataaccc acgtggggga 37801 cctgggcttc cccattggtt ccgtgcatgc cctgaagatg gcgctagaca cactgaagat 37861 ccatgtccct cgcggagtgg gggtccctgg ctatgagggt ctctgtggga ccaccaccat 37921 caaagccccc cgacaatatc ggctcctgac cactggagtt ttcaccaaaa aagatctgaa 37981 aagaacactt ccagaaccat tcttcagccg attttttaa c caaactcccg aagtttgtgc 38041 catcaagact ggcaaaaatc cgttttctac agaaatttgg tgtatgactc tcggcgggga 38101 tagccccgcc cccgagagaa atgaacccag aaatccccat tctctccaag attgggcaag 38161 actgggtgtc atggaaacct gcctacgtat gagtaggcgg ggactcgggt ctcggcacca 38221 cccctaccat tctctgtaac caatccctga ataaagattt gcataacaga actttgactc 38281 ctccttttat gtgggtgggg taatgggcgg cacttggggg taatggcggt tcctattgga 38341 tgggtaacac cgactccgcc ctacaaagtt aatgattgat ttttcggact tagaaaaatt 38401 tcgactgtca cctggatgtt tttccccact taacctctag ggggagatag atcgcgtcca 38461 aggggaggag ctcaataccg gaccgcctat taggtgtggc ttcgggctcc gcctagtggg 38521 aggagacagg aaaaccacgc ctagtgacgc tgggtcaaag tccaagggga gtggtttatg 38581 cgcaccgcct tggggcgtgg tttgggcggc gcaaggtaac ccttggactg ggaggagact 38641 tctgtccctt gggcgtgtca aacaggtaaa ccccacccgc gcgattaatg attaattttt 38701 cggacttaga aaattttcaa cctgatactt tattttcaag cttttcccgc cgacgggcaa 38761 gcctcctatc tctccgtcta tgactccaca gagcctcatc tgaatatgta aatgtgctga 38821 accgcaaccc cgtagaccgc gcccacccca gcatcaaagg taacgccccc gatgccacaa 38881 tgtaattacc cactgttaaa ttaggatcct tacaccaatc atttctgtac aatttaaacc 38941 accgcccacg cgggactttc ccgtggtggt agaaaaaggt tttgaaaaac gcgcgcatta 39001 ttttcgtggc ttcattaata gcggacatgc gcagatccag aaaggtcaga cacaccacca 39061 cggtcacatg acatttgcat ggagacaggg attggatacc gacacaatac gccatcggat 39121 actgaatgtc cacattggtc cgtgcatata cagtgtgcca cctcctcttg accgcagcca 39181 cgaatcccca gaagagttct tcccgccaca aaatcgaaac cggggcggcg gccccaaagc 39241 acaaatacaa aggcatcctc ctgaggctct agaaaaaaca actcattaac aggcatcccg 39301 ctcataggta cattcgtgta aacagggctg catgccaacc aatgccccgc gttttacaaa 39361 gtgacgggcc accctattgg cggagggggt ccacgtattg cgcaccgcgt aaatagaagc 39421 cacccctcgc ggaacctgtg tacattcaaa tctcctccaa atacattcgc gcagtaaagc 39481 caccgccctt ttcaagaaag tccaatcaac cttatgcgtg ggcaaaaaaa tagaagctga 39541 atataccccc gcaaactcct ccaatcggaa caggtaatct acactatagt ggg acagcat 39601 ctcaacagtt aaactttccc aggcatttat caccgtcaat ttcagatcat ggaatacggc 39661 caagttaggc tccatcaagg tcacgcggag gtggaagtaa tacatcccga aataccctgt 39721 taaaaaaaat agaaaaatga actaaccgac aataagatcg gcagtaccca gtttcgatct 39781 ggggacctcc ggagtgcaag tccgacgctc ttacggctga gctacactgt cgatcttgat 39841 ccgctagggt acgcagtccg gagaagaaat atactaagtg agacccggtc ctatatatac
39901 aggttggttc aaaggaacct ttgtacccat taaaacaggt gcgtgactgt agaagccaca 39961 cccctacctg taccgataag gcacaccctg agcaaacaaa ccataaaggt atacttcctt 40021 attcagacag gtataaatgg aacctccgca caacagtccg gtaccatttt ccatcgcgaa 40081 aatgggcaac cctactctgc tccttctttc aggtctcctt tctctgaccc aggccatttc 40141 catcggagaa cacgaaaaca aaacccggca tgtgattgta tggcggcact cctcctccca 40201 ccaatgctct gattggagaa cagtcacgga atggttcccg ccccaaaaag gcaacccggt 40261 gagaccaccc tacacccagc gggtttccct ggatacggca aacaataccc tcacggtaaa39901 aggttggttc aaaggaacct ttgtacccat taaaacaggt gcgtgactgt agaagccaca 39961 cccctacctg taccgataag gcacaccctg agcaaacaaa ccataaaggt atacttcctt 40021 attcagacag gtataaatgg aacctccgca caacagtccg gtaccatttt ccatcgcgaa 40081 aatgggcaac cctactctgc tccttctttc aggtctcctt tctctgaccc aggccatttc 40141 catcggagaa cacgaaaaca aaacccggca tgtgattgta tggcggcact cctcctccca 40201 ccaatgctct gattggagaa cagtcacgga atggttcccg ccccaaaaag gcaacccggt 40261 gagaccaccc tacacccagc gggtttccct ggatacggca aacaataccc tcacggtaaa
40321 acccttcgag acaaacaacg ggtgttggga aactacgtca caaggcatta accatccacc 40381 aaccaccatt cagtaccggg tatggaacat caccaccacg cccaccatac agacaatcaa 40441 cattaccaaa ataactgttc gggaggggga ggactttacc ttatacggac ctgtgtccga 40501 aaccatgagt attatcgaat gggaattcat caaggatgtc acgccccagt tcatcctcca 40561 atactatctc tccattaact ctactattgt gtacgcaagc taccaaggga gagttacctt 40621 taaccccggt aaaaacacac taaccttaaa aggcgcgaag accaccgaca gcggcaccta 40681 caagtccacg gtgaacctcg accaggtatc cgtccacaac ttccgagtag gagtcacgcc 40741 catcgagaaa aaagaagaag ctaccgcaga gacacctgcc agcaagccca cgcccatacc 40801 acgtgtccga gcggatgctc gaagtactgc cctatgggtt ggacttgccc tttgcatcct 40861 gactgttata cccgccctta ttgggtggta cttcagagat aggctctgtg ttcccgatcc 40921 aatcattgaa ctggaaatcc ccggacaacc ccatgtaaca atacacatat tgaaaggtcc 40981 cgatgatgat tgcgaaactt aatgattgac aaacgtaata aaaaagctgt gacgcacata 41041 agtacgtgtc tgtgtcattc atccatacct atatatggtg atagcccctt cctcaataca 41101 caccgagccg cgatggaccc cagaccactt gttctgctcc tcctcctagc gtcccatata 41161 agtacattcc ggcaaatgta ctttgaaggg gaaaccatcc atttccctat gggcatatat 41221 ggaaatgaga ccaccctcta tatgaatgac atcatcctgg aaggaacacg cgccaatacg 41281 accacccgta caatcagcct cacgaccacc aagaagaatg cgggaactaa cctgtacact 41341 gtgatctccg aaacgggaca caacgccacc tatctgataa ctgtacaacc gctgggacaa 43'01 tcgatacacc acgcctacac ttgggctgga aatactttta ccttacaagg acaggtattt 4. -51 gaacacggta attatacacg atgggtgcgg ctggagaatg cggaaccgaa actcattatc 41...1 agctgggcat tgtccaacag aacaataaac aaaggaccgg cctatactgc aaacatggac 41581 tttgatcccg gaaacaacac cctcactctc caccctgtgc tgataacaga tgccgggatt 41641 ttccaatgcg tcattgatca gcaaacaaac ctaaccctca ccataaactt tacagtctcc 41701 gagaatccac caatcgtagc acacctggat atccataaaa ctatttctag aacaattgcc 41761 atttgtagct gtttgcttat cgcggtaatt gcggtcttgt gttgcctacg tcagctcaat 41821 gtaaacgggc ggggaaattc cgaaatgata taaaacaata aagcagtgtg cgtcatggaa 41881 acttttctca ggtgcttcct cattcacaca ggtatatata gggaatggaa aattagacag 41941 atacccacac cggaacaatg ctacttctca cagtagttct gttggtgggg gtcaccctcg40321 acccttcgag acaaacaacg ggtgttggga aactacgtca caaggcatta accatccacc 40381 aaccaccatt cagtaccggg tatggaacat caccaccacg cccaccatac agacaatcaa 40441 cattaccaaa ataactgttc gggaggggga ggactttacc ttatacggac ctgtgtccga 40501 aaccatgagt attatcgaat gggaattcat caaggatgtc acgccccagt tcatcctcca 40561 atactatctc tccattaact ctactattgt gtacgcaagc taccaaggga gagttacctt 40621 taaccccggt aaaaacacac taaccttaaa aggcgcgaag accaccgaca gcggcaccta 40681 caagtccacg gtgaacctcg accaggtatc cgtccacaac ttccgagtag gagtcacgcc 40741 catcgagaaa aaagaagaag ctaccgcaga gacacctgcc agcaagccca cgcccatacc 40801 acgtgtccga gcggatgctc gaagtactgc cctatgggtt ggacttgccc tttgcatcct 40861 gactgttata cccgccctta ttgggtggta cttcagagat aggctctgtg ttcccgatcc 40921 aatcattgaa ctggaaatcc ccggacaacc ccatgtaaca atacacatat tgaaaggtcc 40981 cgatgatgat tgcgaaactt aatgattgac aaacgtaata aaaaagctgt gacgcacata 41041 agtacgtgtc tgtgtcattc atccatacct atatatggtg atagcccctt cctcaataca 41101 caccgagccg cgatggaccc cagaccactt gttctgctcc tcctcctagc gtc ccatata 41161 agtacattcc ggcaaatgta ctttgaaggg gaaaccatcc atttccctat gggcatatat 41221 ggaaatgaga ccaccctcta tatgaatgac atcatcctgg aaggaacacg cgccaatacg 41281 accacccgta caatcagcct cacgaccacc aagaagaatg cgggaactaa cctgtacact 41341 gtgatctccg aaacgggaca caacgccacc tatctgataa ctgtacaacc gctgggacaa 43'01 tcgatacacc acgcctacac ttgggctgga aatactttta ccttacaagg acaggtattt 4. -51 gaacacggta attatacacg atgggtgcgg ctggagaatg cggaaccgaa actcattatc 41st ..1 agctgggcat tgtccaacag aacaataaac aaaggaccgg cctatactgc aaacatggac 41581 tttgatcccg gaaacaacac cctcactctc caccctgtgc tgataacaga tgccgggatt 41641 ttccaatgcg tcattgatca gcaaacaaac ctaaccctca ccataaactt tacagtctcc 41701 gagaatccac caatcgtagc acacctggat atccataaaa ctatttctag aacaattgcc 41761 atttgtagct gtttgcttat cgcggtaatt gcggtcttgt gttgcctacg tcagctcaat 41821 gtaaacgggc ggggaaattc cgaaatgata taaaacaata aagcagtgtg cgtcatggaa 41881 acttttctca ggtgcttcct cattcacaca ggtatatata gggaatggaa aattagacag 41941 atacccacac cggaacaatg ctacttctca cagtagttct gttg gtgggg gtcaccctcg
kERSATZBLAπ(REGEL26) 42001 ctgcggacca tcctactcta tacgctccga aagggggcag tatagaattg ggtgtggggg 42061 ctaaacagaa agggcaatac aaatttgaat ggcggtttgg aaatctaaaa attgtgatag 42121 ccgaaatgtc atccactaac caattagaaa tcaaatttcc cgataacggt ttccaaaatc 42181 gatccgagtt taaccccacc aaacataact taaccattca taatgccagc tacgaggaca 42241 gcggaaccta ctcactccac caggaagaaa atgatggcac ggaacacacg gacaacttca 42301 aagtgattgt tcaaggtatg tcattatata catatttaca atatgcatta atatcaccta 42361 tctaatagag cattaattat ccagacccga ttccacgccc tgaagtcaag ggaaccacta 42421 tgcaaatcaa cgggaaaact ttcaccaata tatcctgcca tctaccggcc ggttcctacg 42481 gcaatgtctc ctggcattgg aattataccg acccaatcat agtcgggtac gaaaatcaga 42541 gcatgctcgt tggaccttta ggggtaatgt attcatgtac ggcatccaat caagtctcaa 42601 aaaactccag tgcaataagt atggacaccg ccgaaccatc agagagtaag tagcgccctc 42661 tatagacatt atatagaata taactgaaca cattaagaaa cctctgtaat tatttatagg 42721 agcggagtgc gcatatacag gatacattgc gggcattata atcttaggag tgctttgcat 42781 attgttcatt tacctatatg caaatacccc tgaagtgcgg cagagaataa ccgaccaatt 42841 agaaaagctt ctcggaacat tctgtgacgt cagtatagaa gacggaatac cggaacgcac 42901 cagaagaaac aaaaaaagaa tcatcttaaa ggagccctcc cataggtgga tctggattca 42961 gtcatttgca taatatgctg tgtcataacc gccaccatca ccatagcaat cattgggcgt 43021 aagtattgtg acgtaagaaa aggcatgtct aaaaaaacgg tcactcacca taatgctgcc 43081 cccgataggt tgcgaccgcc ttccggagtt tgacgtagta tgcccgcgag actggatcgg 43141 atttcaaagc aagtgctact acttttcgga gtcagagtcc aattggagtg aagccgaaaa 43201 attttgtaga cagcaagagg cggagctagc agttcggcgt tccgaggagg aaaaggtaaa 43261 aagttaaatt ccaggaaact cctaattccc cgaaaaatta caaaaattaa cggagaccct 43321 ttacaggagt tccttctgcg ccaatgcgga acaggaacta actggctggg cgtaaccagg 43381 aagtcgaagg acggagctga ttgggtggat gcatcgtacg atgattacgt accatggtga 43441 gtcatgttat acgtcacatc cgggatgtga cgtatgcgga agttgatccg ggagtgaaaa 43501 cccggaagta acctgttaat ttgcatacag gtatgaaatt cggggaggcg gagactgcgt 43561 gtatttaaat ggagaccgag tgacgtcagc ctactgtgat acccagaagc tatttgtctg 43621 ttcctgtcaa gattcgtatt cgtattggtt agaaaacaaa taaatcaata aactaattta 43681 tgatatcatt catatttatg ggtgtggttt tattatgcgt cataaaacta ttttgcgtat 43741 agcgacacgc tgcggttatg gccggttatg actgcgttag tttttgaggt tattatacat 43801 catc k REPLACEMENT BLAπ (RULE 26) 42001 ctgcggacca tcctactcta tacgctccga aagggggcag tatagaattg ggtgtggggg 42061 ctaaacagaa agggcaatac aaatttgaat ggcggtttgg aaatctaaaa attgtgatag 42121 ccgaaatgtc atccactaac caattagaaa tcaaatttcc cgataacggt ttccaaaatc 42181 gatccgagtt taaccccacc aaacataact taaccattca taatgccagc tacgaggaca 42241 gcggaaccta ctcactccac caggaagaaa atgatggcac ggaacacacg gacaacttca 42301 aagtgattgt tcaaggtatg tcattatata catatttaca atatgcatta atatcaccta 42361 tctaatagag cattaattat ccagacccga ttccacgccc tgaagtcaag ggaaccacta 42421 tgcaaatcaa cgggaaaact ttcaccaata tatcctgcca tctaccggcc ggttcctacg 42481 gcaatgtctc ctggcattgg aattataccg acccaatcat agtcgggtac gaaaatcaga 42541 gcatgctcgt tggaccttta ggggtaatgt attcatgtac ggcatccaat caagtctcaa 42601 aaaactccag tgcaataagt atggacaccg ccgaaccatc agagagtaag tagcgccctc 42661 tatagacatt atatagaata taactgaaca cattaagaaa cctctgtaat tatttatagg 42721 agcggagtgc gcatatacag gatacattgc gggcattata atcttaggag tgctttgcat 42781 attgttcatt tacctatatg caaatacccc tgaagtgcgg cagagaataa ccg accaatt 42841 agaaaagctt ctcggaacat tctgtgacgt cagtatagaa gacggaatac cggaacgcac 42901 cagaagaaac aaaaaaagaa tcatcttaaa ggagccctcc cataggtgga tctggattca 42961 gtcatttgca taatatgctg tgtcataacc gccaccatca ccatagcaat cattgggcgt 43021 aagtattgtg acgtaagaaa aggcatgtct aaaaaaacgg tcactcacca taatgctgcc 43081 cccgataggt tgcgaccgcc ttccggagtt tgacgtagta tgcccgcgag actggatcgg 43141 atttcaaagc aagtgctact acttttcgga gtcagagtcc aattggagtg aagccgaaaa 43201 attttgtaga cagcaagagg cggagctagc agttcggcgt tccgaggagg aaaaggtaaa 43261 aagttaaatt ccaggaaact cctaattccc cgaaaaatta caaaaattaa cggagaccct 43321 ttacaggagt tccttctgcg ccaatgcgga acaggaacta actggctggg cgtaaccagg 43381 aagtcgaagg acggagctga ttgggtggat gcatcgtacg atgattacgt accatggtga 43441 gtcatgttat acgtcacatc cgggatgtga cgtatgcgga agttgatccg ggagtgaaaa 43501 cccggaagta acctgttaat ttgcatacag gtatgaaatt cggggaggcg gagactgcgt 43561 gtatttaaat ggagaccgag tgacgtcagc ctactgtgat acccagaagc tatttgtctg 43621 ttcctgtcaa gattcgtatt cgtattggtt agaaaacaaa taaatc aata aactaattta 43681 tgatatcatt catatttatg ggtgtggttt tattatgcgt cataaaacta ttttgcgtat 43741 agcgacacgc tgcggttatg gccggttatg actgcgttag tttttgaggt tattatacat 43801 catc
ERSATZBLAπ (REGEL 26) REPLACEMENT BLAπ (RULE 26)

Claims

Patentansprüche claims
1. CELO-Virus, erhalten durch in vi tro Manipulation einer Plasmid-klonierten CELO-Virus-DNA.1. CELO virus obtained by in vitro manipulation of a plasmid cloned CELO virus DNA.
2. CELO-Virus nach Anspruch 1, dadurch gekennzeichnet, daß es den linken und rechten invertierten terminalen Repeat sowie das Verpackungssignal enthält und in davon verschiedenen Regionen der CELO-Virus-DNA Modifikationen in Form von Insertionen und/oder Deletionen und/oder Mutationen aufweist .2. CELO virus according to claim 1, characterized in that it contains the left and right inverted terminal repeat and the packaging signal and in different regions thereof the CELO virus DNA has modifications in the form of insertions and / or deletions and / or mutations .
3. CELO-Virus nach Anspruch 2, dadurch gekennzeichnet, daß es Modifikationen aufweist, die auf einem Abschnitt der CELO-Virus-DNA liegen, der die Nukleotide von ca. 201 - ca. 5.000 umfaßt und/oder auf einem Abschnitt, der die Nukleotide von ca. 31.800 - ca. 43.734 umfaßt und/oder auf einem Abschnitt, der die Nukleotide von ca. 28.114 -3. CELO virus according to claim 2, characterized in that it has modifications which are located on a section of the CELO virus DNA, which comprises the nucleotides from about 201 - about 5,000 and / or on a section which the Nucleotides of approx. 31,800 - approx. 43,734 and / or on a section which contains the nucleotides of approx. 28,114 -
30.495 umfaßt.30,495 comprises.
4. CELO-Virus-DNA, enthalten auf einem Plasmid, das in Bakterien oder Hefe replizierbar ist und nach Einbringen in Zellen, gegebenfalls gemeinsam mit einem Plasmid, das ein der CELO-Virus-DNA gegebenenalls fehlendes, für die Entstehung reifer Viruspartikel erforderliches Gen komplementiert, Viruspartikel liefert.4. CELO virus DNA, contained on a plasmid which is replicable in bacteria or yeast and, after introduction into cells, optionally together with a plasmid which contains a gene which is possibly missing from the CELO virus DNA and is required for the development of mature virus particles complemented, delivers virus particles.
5. CELO-Virus nach einem der Ansprüche 2 bis 4 oder davon abgeleitete CELO-Virus-DNA, enthaltend Fremd- DNA. 5. CELO virus according to any one of claims 2 to 4 or derived therefrom CELO virus DNA containing foreign DNA.
6. CELO-Virus oder CELO-Virus-DNA nach Anspruch 5, enthaltend als Fremd-DNA eine für ein therapeutisch wirksames Protein kodierende DNA.6. CELO virus or CELO virus DNA according to claim 5, containing as foreign DNA a coding for a therapeutically active protein DNA.
7. CELO-Virus oder CELO-Virus-DNA nach Anspruch 6, enthaltend als Fremd-DNA eine für ein immunstimulierendes Protein kodierende DNA.7. CELO virus or CELO virus DNA according to claim 6, containing as foreign DNA a coding for an immunostimulating protein DNA.
8. CELO-Virus oder CELO-Virus-DNA nach Anspruch 7, enthaltend eine für ein Zytokin kodierende DNA.8. CELO virus or CELO virus DNA according to claim 7, containing a DNA coding for a cytokine.
9. CELO-Virus oder CELO-Virus-DNA nach Anspruch 5, enthaltend als Fremd-DNA eine DNA, kodierend für ein Tumorantigen oder ein Fragment davon.9. CELO virus or CELO virus DNA according to claim 5, containing as foreign DNA a DNA coding for a tumor antigen or a fragment thereof.
10. CELO-Virus oder CELO-Virus-DNA nach Anspruch 5, enthaltend als Fremd-DNA eine DNA, kodierend für ein von einem Humanpathogen abgeleitetes Antigen.10. CELO virus or CELO virus DNA according to claim 5, containing as foreign DNA a DNA coding for an antigen derived from a human pathogen.
11. CELO-Virus oder CELO-Virus-DNA nach Anspruch 5, enthaltend als Fremd-DNA eine DNA, kodierend für ein von einem Tierpathogen abgeleitetes Antigen.11. CELO virus or CELO virus DNA according to claim 5, containing as foreign DNA a DNA coding for an antigen derived from an animal pathogen.
12. CELO-Virus oder CELO-Virus-DNA nach Anspruch 11, enthaltend als Fremd-DNA eine DNA, kodierend für ein von einem Vogelpathogen abgeleitetes Antigen.12. CELO virus or CELO virus DNA according to claim 11, containing as foreign DNA a DNA coding for an antigen derived from a bird pathogen.
13. CELO-Virus oder CELO-Virus-DNA nach Anspruch 5, enthaltend als Fremd-DNA eine DNA, kodierend für einen Liganden für Säugetierzellen.13. CELO virus or CELO virus DNA according to claim 5, containing as foreign DNA a DNA coding for a ligand for mammalian cells.
14. CELO-Virus oder CELO-Virus-DNA nach einem der Ansprüche 5 bis 13, dadurch gekennzeichnet, daß sie die Fremd-DNA in der Fsel-Schnittstelle bei Position 35.693 bzw. über diese Schnittstelle hinweg oder in der Nähe dieser Schnittstelle enthält. 14. CELO virus or CELO virus DNA according to any one of claims 5 to 13, characterized in that it contains the foreign DNA in the Fsel interface at position 35.693 or over this interface or in the vicinity of this interface.
15. CELO-Virus oder CELO-Virus-DNA nach einem der Ansprüche 5 bis 13, dadurch gekennzeichnet, daß sie die Fremd-DNA auf einem Abschnitt enthält, der die Nukleotide von ca. 28.114 - 30.495 umfaßt, der das Faser 1 Gen enthält .15. CELO virus or CELO virus DNA according to one of claims 5 to 13, characterized in that it contains the foreign DNA on a section which comprises the nucleotides of approximately 28.114-30.495 which contains the fiber 1 gene .
16. CELO-Virus oder CELO-Virus-DNA nach einem der Ansprüche 5 bis 13, dadurch gekennzeichnet, daß sie die Fremd-DNA im Bereich des Leserahmens bei Nukleotid 794 enthält, der für dUTPase kodiert.16. CELO virus or CELO virus DNA according to one of claims 5 to 13, characterized in that it contains the foreign DNA in the region of the reading frame at nucleotide 794, which codes for dUTPase.
17. Verfahren zur Herstellung von rekombinantem CELO- Virus oder rekombinanter CELO-Virus-DNA nach einem der Ansprüche 2 bis 16, dadurch gekennzeichnet, daß man das auf einem Plasmid enthaltene CELO-Virus- Genom oder Abschnitte davon genetisch manipuliert .17. A process for the production of recombinant CELO virus or recombinant CELO virus DNA according to any one of claims 2 to 16, characterized in that the CELO virus genome or sections thereof contained on a plasmid is genetically manipulated.
18. Verfahren nach Anspruch 17, dadurch gekennzeichnet, daß man das auf einem Plasmid enthaltene CELO-Virus- Genom oder Abschnitte davon in einem Bereich manipuliert, der verschieden ist vom linken und rechten invertierten terminalen Repeat sowie dem Verpackungssignal.18. The method according to claim 17, characterized in that the CELO virus genome contained on a plasmid or sections thereof are manipulated in an area which is different from the left and right inverted terminal repeat and the packaging signal.
19. Verfahren nach Anspruch 17 oder 18, dadurch gekennzeichnet, daß man Insertionen und/oder Deletionen durchführt.19. The method according to claim 17 or 18, characterized in that one carries out insertions and / or deletions.
20. Verfahren nach Anspruch 19, dadurch gekennzeichnet, daß man ein Fremdgen in eine natürlich vorkommende oder künstlich eingeführte Restriktionschnittstelle auf einem Abschnitt der CELO-Virus-DNA inseriert, der eine Sequenz enthält, die für die Replikation des Virus in der Wirtszelle nicht erforderlich ist oder komplementiert werden kann. 20. The method according to claim 19, characterized in that a foreign gene is inserted into a naturally occurring or artificially introduced restriction site on a section of the CELO virus DNA which contains a sequence which is not required for the replication of the virus in the host cell or can be complemented.
21. Verfahren nach Anspruch 20, dadurch gekennzeichnet, daß man zusätzlich zur Insertion eine Deletion in einem anderen Bereich der CELO-Virus-DNA vornimmt, der eine Sequenz enthält, die für die Replikation des Virus in der Wirtszelle nicht erforderlich ist oder komplementiert werden kann.21. The method according to claim 20, characterized in that, in addition to the insertion, a deletion is carried out in another region of the CELO virus DNA which contains a sequence which is not required or can be complemented for the replication of the virus in the host cell .
22. Verfahren nach Anspruch 17 oder 18, dadurch gekennzeichnet, daß die Manipulation durch Rekombination vorgenommen wird.22. The method according to claim 17 or 18, characterized in that the manipulation is carried out by recombination.
23. Verfahren nach Anspruch 22, dadurch gekennzeichnet, daß man mittels Polymerasekettenreaktion erhaltene DNA-Moleküle rekombiniert .23. The method according to claim 22, characterized in that recombining DNA molecules obtained by means of polymerase chain reaction.
24. Verfahren nach Anspruch 22, dadurch gekennzeichnet, daß man mittels Ligation erhaltene DNA-Moleküle rekombiniert .24. The method according to claim 22, characterized in that recombining DNA molecules obtained by ligation.
25. Verfahren nach Anspruch 22, dadurch gekennzeichnet, daß man mittels Klonierung in Bakterien erhaltene DNA-Moleküle rekombiniert.25. The method according to claim 22, characterized in that recombining DNA molecules obtained by cloning in bacteria.
26. Verfahren zur Herstellung von rekombinanter CELO- Virus-DNA nach Anspruch 25, dadurch gekennzeichnet, daß man ein CELO-Virus-DNA-Fragment, enthaltend zwei Restriktionsstellen, in ein bakterielles Plasmid kloniert, daß man zwischen diese auf dem Plasmid nur einmal vorkommenden Restriktionsstellen die Fremd- DNA inseriert, daß man das die Fremd-DNA enthaltende Fragment aus dem Plasmid herausschneidet und mit einem Plasmid mischt, das die gesamte CELO-Virus-DNA enthält und das an einer nur einmal vorkommenden Restriktionsschnittstelle geschnitten wurde, und daß man mit diesem Gemisch von DNA-Molekülen Bakterien transformiert und die Bakterien züchtet, wobei durch Rekombination der DNA-Moleküle ein Plasmid erhalten wird, das die gesamte CELO-Virus-DNA mit der Fremd- DNA als Insert enthält.26. A process for the production of recombinant CELO virus DNA according to claim 25, characterized in that a CELO virus DNA fragment, containing two restriction sites, is cloned into a bacterial plasmid that occurs only once between them on the plasmid Restriction sites inserted the foreign DNA by cutting out the fragment containing the foreign DNA from the plasmid and mixing it with a plasmid which contains the entire CELO virus DNA and which was cut at a unique restriction site, and that with this mixture of DNA molecules bacteria transformed and the bacteria grown, a plasmid is obtained by recombination of the DNA molecules, which contains the entire CELO virus DNA with the foreign DNA as an insert.
27. Verfahren nach einem der Anspruch 20 bis 26, dadurch gekennzeichnet, daß man als Fremd-DNA ein Reportergen inseriert .27. The method according to any one of claims 20 to 26, characterized in that a reporter gene is inserted as foreign DNA.
28. Verfahren nach Anspruch 27, dadurch gekennzeichnet, daß das Reportergen eine Restriktionsschnittstelle aufweist, in welche in einem zusätzlichen Schritt eine in einem der Ansprüche 6 bis 13 definierte Fremd-DNA inseriert wird.28. The method according to claim 27, characterized in that the reporter gene has a restriction site, in which, in an additional step, a foreign DNA defined in one of claims 6 to 13 is inserted.
29. Verfahren zur Herstellung von CELO-Virus, dadurch gekennzeichnet, daß man Vogelzellen mit einem Plasmid, enthaltend CELO-Virus oder davon abgeleitete DNA, definiert in einem der Ansprüche 1 bis 16, transformiert, die Zellen kultiviert und die CELO-Viruspartikel erntet .29. A method for producing CELO virus, characterized in that bird cells are transformed with a plasmid containing CELO virus or DNA derived therefrom, defined in one of claims 1 to 16, the cells are cultivated and the CELO virus particles are harvested.
30. Verfahren nach Anspruch 29, dadurch gekennzeichnet, daß der CELO-Virus-DNA Sequenzen fehlen, die für die Entstehung reifer Viruspartikel erforderlich sind und daß man die fehlenden DNA-Sequenzen komplementiert .30. The method according to claim 29, characterized in that the CELO virus DNA sequences are missing, which are necessary for the formation of mature virus particles and that the missing DNA sequences are complemented.
31. Verfahren nach Anspruch 30, dadurch gekennzeichnet, daß man als Vogelzellen Helferzellen einsetzt, die das bzw. die fehlenden Gene komplementieren.31. The method according to claim 30, characterized in that helper cells which complement the missing gene or genes are used as avian cells.
32. Helferzellen, enthaltend, in ihrem Genom integriert, CELO-Virusgene. 32. Helper cells containing, integrated in their genome, CELO virus genes.
33. Helferzellen nach Anspruch 32, daß die Zellen Vogelzellen sind.33. helper cells according to claim 32, that the cells are avian cells.
34. Verfahren nach Anspruch 30, dadurch gekennzeichnet, daß man die Zellen außerdem mit einem Plasmid transformiert, das das bzw. die der CELO-Virus-DNA fehlende, für die Entstehung reifer Viruspartikel erforderliche Gen komplementiert.34. The method according to claim 30, characterized in that the cells are also transformed with a plasmid which complements the missing gene or the CELO virus DNA, necessary for the formation of mature virus particles.
35. Verfahren nach Anspruch 30, dadurch gekennzeichnet, daß man die Zellen außerdem mit einem Helfervirus infiziert, das das bzw. die der CELO-Virus-DNA fehlende, für die Entstehung reifer Viruspartikel erforderliche Gen komplementiert.35. The method according to claim 30, characterized in that the cells are also infected with a helper virus which complements the missing gene or the CELO virus DNA, necessary for the formation of mature virus particles.
36. Arzneimittel zur Anwendung in der Gentherapie, enthaltend ein CELO-Virus nach Anspruch 6.36. Medicament for use in gene therapy, containing a CELO virus according to claim 6.
37. Vakzine gegen Infektionskrankheiten des Menschen, enthaltend ein CELO-Virus nach Anspruch 10.37. Vaccine against human infectious diseases, containing a CELO virus according to claim 10.
38. Vakzine gegen Infektionskrankheiten von Tieren, enthaltend ein CELO-Virus nach Anspruch 11.38. vaccine against infectious diseases of animals, containing a CELO virus according to claim 11.
39. Vakzine gegen Infektionskrankheiten von Vögeln, enthaltend ein CELO-Virus nach Anspruch 12.39. vaccine against infectious diseases of birds, containing a CELO virus according to claim 12.
40. CELO-Virus nach Anspruch 7, 8 oder 9 für die Herstellung von Krebsvakzinen. 40. CELO virus according to claim 7, 8 or 9 for the manufacture of cancer vaccines.
EP97919383A 1996-04-20 1997-04-18 Chicken embryo lethal orphan (celo) virus Withdrawn EP0904394A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19615803 1996-04-20
DE19615803A DE19615803A1 (en) 1996-04-20 1996-04-20 CELO virus
PCT/EP1997/001944 WO1997040180A1 (en) 1996-04-20 1997-04-18 Chicken embryo lethal orphan (celo) virus

Publications (1)

Publication Number Publication Date
EP0904394A1 true EP0904394A1 (en) 1999-03-31

Family

ID=7791954

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97919383A Withdrawn EP0904394A1 (en) 1996-04-20 1997-04-18 Chicken embryo lethal orphan (celo) virus

Country Status (6)

Country Link
US (2) US6335016B1 (en)
EP (1) EP0904394A1 (en)
JP (1) JP2000509268A (en)
CA (1) CA2252835A1 (en)
DE (1) DE19615803A1 (en)
WO (1) WO1997040180A1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6296852B1 (en) * 1993-04-14 2001-10-02 Commonwealth Scientific And Industrial Research Organisation Recombinant avian adenovirus vector
DE19615803A1 (en) 1996-04-20 1997-10-23 Boehringer Ingelheim Int CELO virus
FR2767335B1 (en) * 1997-08-14 2001-09-28 Ct Nat D Etudes Veterinaires E RECOMBINANT CELO AVIAN ADENOVIRUS AS A VACCINE VECTOR
IL122626A0 (en) * 1997-12-16 1998-08-16 Abic Ltd Nucleic acids encoding hev structural proteins hev structural proteins encoded thereby and uses thereof
EP1070122A4 (en) * 1998-03-11 2004-11-10 Univ Texas Induction of apoptic or cytotoxic gene expression by adenoviral mediated gene codelivery
EP1001030A1 (en) * 1998-09-22 2000-05-17 Boehringer Ingelheim International GmbH Recombinant CELO virus and CELO virus DNA
US6841158B1 (en) * 1998-09-22 2005-01-11 Boehringer Ingelheim International Gmbh Recombinant celo virus and celo virus DNA
US6797506B1 (en) * 1999-10-13 2004-09-28 Boehringer Ingelheim International Gmbh Recombinant, replication defective CELO virus and CELO virus DNA
EP1092780A1 (en) * 1999-10-13 2001-04-18 Boehringer Ingelheim International GmbH Recombiant, replication defective CELO virus and CELO virus DNA
CA2410971C (en) * 2000-05-31 2007-12-18 Brian K. Courtney Embolization protection system for vascular procedures
US8435225B2 (en) * 2000-06-02 2013-05-07 Fox Hollow Technologies, Inc. Embolization protection system for vascular procedures
JP4326942B2 (en) * 2001-07-17 2009-09-09 フォックス・ホロー・テクノロジーズ・インコーポレーテッド Liquid exchange system for local irrigation and aspiration with controlled liquid volume
US7858766B2 (en) 2003-03-04 2010-12-28 Abic Biological Laboratories Teva Ltd. Subunits of the adenovirus fiber protein and uses thereof as vaccines
US20100150958A1 (en) * 2008-12-15 2010-06-17 Vectogen Pty Ltd. Methods and Compositions for Use of a Coccidiosis Vaccine
CN102495209B (en) * 2011-11-15 2014-04-02 广西壮族自治区兽医研究所 33K protein-based FAVI antibody indirect enzyme-linked immuno sorbent assay (ELISA) kit and application thereof
EP2839841A1 (en) 2013-08-19 2015-02-25 Veterinärmedizinische Universität Wien Fowl adenovirus vaccine
EA201890274A1 (en) * 2015-07-10 2018-08-31 Юниверсити Оф Гуэлф VECTOR SYSTEM FROM ADENOVIRUS 9 BIRDS (FADV-9) AND RELATED METHODS
US20230140994A1 (en) * 2020-03-29 2023-05-11 Greffex, Inc. Replication-deficient avian adenoviral vectors, their design and uses

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ244306A (en) 1991-09-30 1995-07-26 Boehringer Ingelheim Int Composition for introducing nucleic acid complexes into eucaryotic cells, complex containing nucleic acid and endosomolytic agent, peptide with endosomolytic domain and nucleic acid binding domain and preparation
RU2031122C1 (en) * 1992-09-07 1995-03-20 Владимир Иванович Грабко Method of insertion of heteroduplex dna into genome of adenovirus celo and recombinant adenoviral vector celo/puc19
DE4311651A1 (en) 1993-04-08 1994-10-13 Boehringer Ingelheim Int Virus for the transport of foreign DNA into higher eukaryotic cells
EP1650310A1 (en) 1993-04-14 2006-04-26 Commonwealth Scientific And Industrial Research Organisation Recombinant avian adenovirus vector
AU709148B2 (en) 1994-05-30 1999-08-19 Boehringer Ingelheim International Gmbh Method for introducing foreign matter into higher eukaryotic cells
DE4426429A1 (en) 1994-07-26 1996-02-01 Boehringer Ingelheim Int Method for introducing DNA into higher eukaryotic cells
DE19615803A1 (en) 1996-04-20 1997-10-23 Boehringer Ingelheim Int CELO virus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9740180A1 *

Also Published As

Publication number Publication date
US6773709B2 (en) 2004-08-10
DE19615803A1 (en) 1997-10-23
JP2000509268A (en) 2000-07-25
CA2252835A1 (en) 1997-10-30
US20020081279A1 (en) 2002-06-27
WO1997040180A1 (en) 1997-10-30
US6335016B1 (en) 2002-01-01

Similar Documents

Publication Publication Date Title
DE69633565T2 (en) PACKAGING SYSTEMS FOR HUMAN RECOMBINANT ADENOVIRES FOR USE IN GE NTHERAPY
EP0904394A1 (en) Chicken embryo lethal orphan (celo) virus
DE69425989T3 (en) New complementation cell lines for defective adenoviral vectors
DE69534902T2 (en) Recombinant viral DNA vector for transfecting animal cells
DE69518910T4 (en) METHOD OF GENERATING VIRAL VECTORS AT LEAST 20KB BY INTERMOLECULAR HOMOLOGOUS RECOMBINATION IN A PROKARYOTIC CELL
RU2222600C2 (en) Adenovirus-recombinant carrying adenoviral vector structure (variants), method for recovery function of protein p53 in tumor cell with deficiency of natural p53, method for producing adenovirus-recombinant
DE60035124T2 (en) AN ONCOLYTIC ADENOVIRUS
DE60014489T3 (en) Adenovirus-derived gene transfer vehicles containing at least one type adenovirus type 35 element
DE69726759T2 (en) CYTOPATIC VIRUSES FOR THE THERAPY AND PROPHYLAXIS OF NEOPLASIA
DE69914382T2 (en) Using the reading frames of the adenoviral E4 region to improve gene expression
JPH08507076A (en) Cytotoxic virus for the treatment and prevention of neoplasia
JPH09510601A (en) Episomal expression vector for human gene therapy
KR0153005B1 (en) Recombinant marek's disease virus
JPH08501703A (en) Defective recombinant adenovirus vector and use in gene therapy
DE69828167T2 (en) RECOMBINANT ADENOVIRAL VECTORS CONTAINING A SPLICE SEQUENCE
DE69839403T2 (en) ADENOVIRAL VECTORS AND A METHOD OF REDUCING HOMOLOGOUS RECOMBINATION
EP1851239A1 (en) Replication-deficient rna viruses as vaccines
DE69333057T2 (en) Recombinant adenovirus vaccines
DE69725882T2 (en) ADENOVIRUS E4 PROTEINS FOR INDUCTION OF CELL DEATH
DE69934421T2 (en) SELECTIVE-REPLICATING VIRAL VECTORS
DE60117053T2 (en) PREPARATION OF RECOMBINANT ARTIFICIAL YEAST CHROMOSOME CONTAINING THE GENOME OF HUMAN CYTOMEGALOVIRUS
DE69929530T2 (en) ATTENUATED HORSE HERPESVIRUS
DE69838644T2 (en) METHOD FOR PRODUCING A RECOMBINANT BOVINE ADENOVIRUS VECTOR
DE69535093T2 (en) DEFECTIVE RECOMBINANT ADENOVIRES WITH INACTIVATED GEN IV A 2
JPH02502693A (en) Viral vector system and method for producing the same for introducing foreign DNA expression products into poultry

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19981120

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BOEHRINGER INGELHEIM INTERNATIONAL GMBH

17Q First examination report despatched

Effective date: 20031001

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20040413