EP0900238A1 - Ethylene/alpha-olefin/diene interpolymer-substituted carboxylic acid dispersant additives - Google Patents
Ethylene/alpha-olefin/diene interpolymer-substituted carboxylic acid dispersant additivesInfo
- Publication number
- EP0900238A1 EP0900238A1 EP96914644A EP96914644A EP0900238A1 EP 0900238 A1 EP0900238 A1 EP 0900238A1 EP 96914644 A EP96914644 A EP 96914644A EP 96914644 A EP96914644 A EP 96914644A EP 0900238 A1 EP0900238 A1 EP 0900238A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- ethylene
- acid
- alpha
- polymer
- dispersant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000002270 dispersing agent Substances 0.000 title claims abstract description 129
- 239000004711 α-olefin Substances 0.000 title claims abstract description 79
- 150000001993 dienes Chemical class 0.000 title claims abstract description 30
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 title claims description 75
- 239000005977 Ethylene Substances 0.000 title claims description 73
- 239000000654 additive Substances 0.000 title abstract description 75
- 150000001732 carboxylic acid derivatives Chemical class 0.000 title description 19
- 150000001412 amines Chemical class 0.000 claims abstract description 65
- 239000010687 lubricating oil Substances 0.000 claims abstract description 57
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical group OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 claims abstract description 55
- 150000002762 monocarboxylic acid derivatives Chemical group 0.000 claims abstract description 52
- 150000001298 alcohols Chemical class 0.000 claims abstract description 28
- 125000002573 ethenylidene group Chemical group [*]=C=C([H])[H] 0.000 claims abstract description 9
- 239000012434 nucleophilic reagent Substances 0.000 claims abstract description 5
- 229920000642 polymer Polymers 0.000 claims description 186
- -1 norbomadiene Chemical compound 0.000 claims description 172
- 239000000203 mixture Substances 0.000 claims description 145
- 238000006243 chemical reaction Methods 0.000 claims description 82
- 229910052751 metal Inorganic materials 0.000 claims description 70
- 239000002184 metal Substances 0.000 claims description 70
- 239000000376 reactant Substances 0.000 claims description 66
- 125000000217 alkyl group Chemical group 0.000 claims description 40
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 claims description 37
- 239000000178 monomer Substances 0.000 claims description 36
- 239000002253 acid Substances 0.000 claims description 34
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 claims description 24
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 claims description 24
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 claims description 21
- 239000012141 concentrate Substances 0.000 claims description 16
- ZSWFCLXCOIISFI-UHFFFAOYSA-N cyclopentadiene Chemical compound C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 claims description 14
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 claims description 7
- PRBHEGAFLDMLAL-GQCTYLIASA-N (4e)-hexa-1,4-diene Chemical compound C\C=C\CC=C PRBHEGAFLDMLAL-GQCTYLIASA-N 0.000 claims description 5
- INYHZQLKOKTDAI-UHFFFAOYSA-N 5-ethenylbicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(C=C)CC1C=C2 INYHZQLKOKTDAI-UHFFFAOYSA-N 0.000 claims description 4
- 150000001991 dicarboxylic acids Chemical class 0.000 claims description 4
- OJOWICOBYCXEKR-APPZFPTMSA-N (1S,4R)-5-ethylidenebicyclo[2.2.1]hept-2-ene Chemical compound CC=C1C[C@@H]2C[C@@H]1C=C2 OJOWICOBYCXEKR-APPZFPTMSA-N 0.000 claims description 3
- XTJLXXCARCJVPJ-UHFFFAOYSA-N hepta-2,4-diene Chemical compound CCC=CC=CC XTJLXXCARCJVPJ-UHFFFAOYSA-N 0.000 claims description 3
- 125000000219 ethylidene group Chemical group [H]C(=[*])C([H])([H])[H] 0.000 claims description 2
- 125000006702 (C1-C18) alkyl group Chemical group 0.000 claims 1
- 230000000996 additive effect Effects 0.000 abstract description 29
- 150000002736 metal compounds Chemical class 0.000 abstract description 26
- 150000008064 anhydrides Chemical group 0.000 abstract description 16
- 150000001414 amino alcohols Chemical class 0.000 abstract description 5
- 125000000816 ethylene group Chemical group [H]C([H])([*:1])C([H])([H])[*:2] 0.000 abstract description 2
- 125000000896 monocarboxylic acid group Chemical group 0.000 abstract 1
- 239000000463 material Substances 0.000 description 105
- 229920001577 copolymer Polymers 0.000 description 67
- 238000000034 method Methods 0.000 description 65
- 239000003921 oil Substances 0.000 description 65
- 239000000047 product Substances 0.000 description 65
- 235000019198 oils Nutrition 0.000 description 64
- 150000001875 compounds Chemical class 0.000 description 58
- 125000004432 carbon atom Chemical group C* 0.000 description 56
- 229920000098 polyolefin Polymers 0.000 description 55
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 51
- 150000002148 esters Chemical class 0.000 description 46
- 229920000768 polyamine Polymers 0.000 description 44
- 229920002367 Polyisobutene Polymers 0.000 description 42
- 239000003054 catalyst Substances 0.000 description 41
- 230000008569 process Effects 0.000 description 34
- 150000003839 salts Chemical class 0.000 description 34
- 238000006116 polymerization reaction Methods 0.000 description 32
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 31
- 229910052757 nitrogen Inorganic materials 0.000 description 31
- 238000002360 preparation method Methods 0.000 description 27
- 229940014800 succinic anhydride Drugs 0.000 description 26
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical compound ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 description 24
- 239000000243 solution Substances 0.000 description 22
- 239000002904 solvent Substances 0.000 description 22
- 238000012360 testing method Methods 0.000 description 22
- 239000010949 copper Substances 0.000 description 21
- 239000007788 liquid Substances 0.000 description 21
- 239000011572 manganese Substances 0.000 description 21
- 239000003112 inhibitor Substances 0.000 description 20
- 239000010802 sludge Substances 0.000 description 20
- 229930195733 hydrocarbon Natural products 0.000 description 19
- 150000002430 hydrocarbons Chemical class 0.000 description 19
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 18
- 125000003118 aryl group Chemical group 0.000 description 18
- 125000001183 hydrocarbyl group Chemical group 0.000 description 18
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 17
- 239000011575 calcium Substances 0.000 description 17
- 229910052791 calcium Inorganic materials 0.000 description 17
- 239000007795 chemical reaction product Substances 0.000 description 17
- 239000000446 fuel Substances 0.000 description 17
- 239000001257 hydrogen Substances 0.000 description 17
- 229910052739 hydrogen Inorganic materials 0.000 description 17
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 17
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 17
- 235000011044 succinic acid Nutrition 0.000 description 17
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 16
- 125000002947 alkylene group Chemical group 0.000 description 16
- 229910052802 copper Inorganic materials 0.000 description 16
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 15
- 239000004215 Carbon black (E152) Substances 0.000 description 15
- 125000000325 methylidene group Chemical group [H]C([H])=* 0.000 description 15
- 239000011541 reaction mixture Substances 0.000 description 15
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 14
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Natural products OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 14
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 14
- 239000002199 base oil Substances 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 13
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 description 13
- 238000010438 heat treatment Methods 0.000 description 13
- 239000003446 ligand Substances 0.000 description 13
- 150000003254 radicals Chemical class 0.000 description 13
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 12
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 12
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 12
- 239000003963 antioxidant agent Substances 0.000 description 12
- 239000003795 chemical substances by application Substances 0.000 description 12
- 239000000460 chlorine Substances 0.000 description 12
- 150000002596 lactones Chemical class 0.000 description 12
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 12
- 150000002989 phenols Chemical class 0.000 description 12
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Chemical class OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 11
- 150000002739 metals Chemical class 0.000 description 11
- 230000007935 neutral effect Effects 0.000 description 11
- 150000003624 transition metals Chemical group 0.000 description 11
- 239000011701 zinc Substances 0.000 description 11
- 238000006596 Alder-ene reaction Methods 0.000 description 10
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 10
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 10
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 10
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 10
- 150000007513 acids Chemical class 0.000 description 10
- 125000002877 alkyl aryl group Chemical group 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 10
- 239000003599 detergent Substances 0.000 description 10
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 10
- 229920001038 ethylene copolymer Polymers 0.000 description 10
- 230000001050 lubricating effect Effects 0.000 description 10
- 239000011777 magnesium Substances 0.000 description 10
- 229910052749 magnesium Inorganic materials 0.000 description 10
- 229910052717 sulfur Inorganic materials 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 229910052725 zinc Inorganic materials 0.000 description 10
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 9
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 9
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 9
- 239000004480 active ingredient Substances 0.000 description 9
- 150000001336 alkenes Chemical group 0.000 description 9
- 229910052788 barium Inorganic materials 0.000 description 9
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 9
- 229910052796 boron Inorganic materials 0.000 description 9
- 125000000753 cycloalkyl group Chemical group 0.000 description 9
- 239000012530 fluid Substances 0.000 description 9
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 9
- 230000000269 nucleophilic effect Effects 0.000 description 9
- 239000013049 sediment Substances 0.000 description 9
- RINCXYDBBGOEEQ-UHFFFAOYSA-N succinic anhydride Chemical group O=C1CCC(=O)O1 RINCXYDBBGOEEQ-UHFFFAOYSA-N 0.000 description 9
- 239000011593 sulfur Substances 0.000 description 9
- FAGUFWYHJQFNRV-UHFFFAOYSA-N tetraethylenepentamine Chemical compound NCCNCCNCCNCCN FAGUFWYHJQFNRV-UHFFFAOYSA-N 0.000 description 9
- 229910052723 transition metal Inorganic materials 0.000 description 9
- 239000005749 Copper compound Substances 0.000 description 8
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 8
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 8
- 229910019142 PO4 Inorganic materials 0.000 description 8
- 239000002585 base Substances 0.000 description 8
- 229910052793 cadmium Inorganic materials 0.000 description 8
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 8
- 150000001880 copper compounds Chemical class 0.000 description 8
- 239000003085 diluting agent Substances 0.000 description 8
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 8
- 125000000623 heterocyclic group Chemical group 0.000 description 8
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 8
- 239000000314 lubricant Substances 0.000 description 8
- 239000010688 mineral lubricating oil Substances 0.000 description 8
- 229910052760 oxygen Inorganic materials 0.000 description 8
- 150000003444 succinic acids Chemical class 0.000 description 8
- 239000008096 xylene Substances 0.000 description 8
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 7
- 125000003342 alkenyl group Chemical group 0.000 description 7
- 125000003710 aryl alkyl group Chemical group 0.000 description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- 150000001735 carboxylic acids Chemical class 0.000 description 7
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 7
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 7
- UPCIBFUJJLCOQG-UHFFFAOYSA-L ethyl-[2-[2-[ethyl(dimethyl)azaniumyl]ethyl-methylamino]ethyl]-dimethylazanium;dibromide Chemical compound [Br-].[Br-].CC[N+](C)(C)CCN(C)CC[N+](C)(C)CC UPCIBFUJJLCOQG-UHFFFAOYSA-L 0.000 description 7
- 125000000524 functional group Chemical group 0.000 description 7
- 150000004820 halides Chemical class 0.000 description 7
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 7
- 239000012968 metallocene catalyst Substances 0.000 description 7
- 238000007254 oxidation reaction Methods 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 7
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 7
- KZNICNPSHKQLFF-UHFFFAOYSA-N succinimide Chemical class O=C1CCC(=O)N1 KZNICNPSHKQLFF-UHFFFAOYSA-N 0.000 description 7
- 150000005846 sugar alcohols Polymers 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 6
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 6
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 6
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 6
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 6
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 6
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 6
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 6
- 150000001408 amides Chemical class 0.000 description 6
- 230000003078 antioxidant effect Effects 0.000 description 6
- 150000001638 boron Chemical class 0.000 description 6
- 229910052801 chlorine Inorganic materials 0.000 description 6
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 6
- 150000004985 diamines Chemical class 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 238000005227 gel permeation chromatography Methods 0.000 description 6
- 229910052736 halogen Inorganic materials 0.000 description 6
- 150000002367 halogens Chemical class 0.000 description 6
- 229920001519 homopolymer Polymers 0.000 description 6
- 230000002209 hydrophobic effect Effects 0.000 description 6
- 239000011133 lead Substances 0.000 description 6
- 239000003607 modifier Substances 0.000 description 6
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 6
- 238000006386 neutralization reaction Methods 0.000 description 6
- 230000003647 oxidation Effects 0.000 description 6
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 6
- 235000021317 phosphate Nutrition 0.000 description 6
- 229920001281 polyalkylene Polymers 0.000 description 6
- 229920001451 polypropylene glycol Polymers 0.000 description 6
- 229920006395 saturated elastomer Polymers 0.000 description 6
- 150000003335 secondary amines Chemical group 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 6
- 238000011282 treatment Methods 0.000 description 6
- 239000002966 varnish Substances 0.000 description 6
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical class COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 5
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 5
- 229920002943 EPDM rubber Polymers 0.000 description 5
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 5
- 229910021529 ammonia Inorganic materials 0.000 description 5
- 150000007942 carboxylates Chemical class 0.000 description 5
- 239000003153 chemical reaction reagent Substances 0.000 description 5
- 229910017052 cobalt Inorganic materials 0.000 description 5
- 239000010941 cobalt Substances 0.000 description 5
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 238000009472 formulation Methods 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 229910052759 nickel Inorganic materials 0.000 description 5
- 239000003208 petroleum Substances 0.000 description 5
- 230000009257 reactivity Effects 0.000 description 5
- 230000001105 regulatory effect Effects 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 125000001424 substituent group Chemical group 0.000 description 5
- 239000001384 succinic acid Substances 0.000 description 5
- 239000006228 supernatant Substances 0.000 description 5
- 239000010689 synthetic lubricating oil Substances 0.000 description 5
- 229920001897 terpolymer Polymers 0.000 description 5
- AFFLGGQVNFXPEV-UHFFFAOYSA-N 1-decene Chemical compound CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 4
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 4
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 4
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 4
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 4
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- WQDUMFSSJAZKTM-UHFFFAOYSA-N Sodium methoxide Chemical compound [Na+].[O-]C WQDUMFSSJAZKTM-UHFFFAOYSA-N 0.000 description 4
- 239000012190 activator Substances 0.000 description 4
- 125000001931 aliphatic group Chemical group 0.000 description 4
- 230000029936 alkylation Effects 0.000 description 4
- 238000005804 alkylation reaction Methods 0.000 description 4
- 125000003368 amide group Chemical group 0.000 description 4
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 4
- 150000001642 boronic acid derivatives Chemical class 0.000 description 4
- 229910052794 bromium Inorganic materials 0.000 description 4
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 238000004132 cross linking Methods 0.000 description 4
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 4
- 150000001990 dicarboxylic acid derivatives Chemical class 0.000 description 4
- 235000014113 dietary fatty acids Nutrition 0.000 description 4
- NAGJZTKCGNOGPW-UHFFFAOYSA-N dithiophosphoric acid Chemical compound OP(O)(S)=S NAGJZTKCGNOGPW-UHFFFAOYSA-N 0.000 description 4
- 239000000194 fatty acid Substances 0.000 description 4
- 229930195729 fatty acid Natural products 0.000 description 4
- 150000004679 hydroxides Chemical class 0.000 description 4
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 4
- 150000003949 imides Chemical class 0.000 description 4
- 230000005764 inhibitory process Effects 0.000 description 4
- 239000002480 mineral oil Substances 0.000 description 4
- 150000002763 monocarboxylic acids Chemical class 0.000 description 4
- 125000005609 naphthenate group Chemical group 0.000 description 4
- 125000004433 nitrogen atom Chemical group N* 0.000 description 4
- 229910017464 nitrogen compound Inorganic materials 0.000 description 4
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 4
- 229920001155 polypropylene Polymers 0.000 description 4
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 4
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- 230000035484 reaction time Effects 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 4
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 4
- 150000003623 transition metal compounds Chemical class 0.000 description 4
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 4
- PAPBSGBWRJIAAV-UHFFFAOYSA-N ε-Caprolactone Chemical compound O=C1CCCCCO1 PAPBSGBWRJIAAV-UHFFFAOYSA-N 0.000 description 4
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 3
- JRZJOMJEPLMPRA-UHFFFAOYSA-N 1-nonene Chemical compound CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 3
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 3
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 3
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 3
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 3
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 3
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 3
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical class C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 3
- 229910002651 NO3 Inorganic materials 0.000 description 3
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 3
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical class C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 3
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- 150000001447 alkali salts Chemical class 0.000 description 3
- 150000001341 alkaline earth metal compounds Chemical class 0.000 description 3
- 150000001342 alkaline earth metals Chemical class 0.000 description 3
- 125000003545 alkoxy group Chemical group 0.000 description 3
- 125000004414 alkyl thio group Chemical group 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 125000003277 amino group Chemical group 0.000 description 3
- 125000000732 arylene group Chemical group 0.000 description 3
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 3
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical class OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 3
- 229910052810 boron oxide Inorganic materials 0.000 description 3
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 239000006227 byproduct Substances 0.000 description 3
- CXKCTMHTOKXKQT-UHFFFAOYSA-N cadmium oxide Inorganic materials [Cd]=O CXKCTMHTOKXKQT-UHFFFAOYSA-N 0.000 description 3
- CFEAAQFZALKQPA-UHFFFAOYSA-N cadmium(2+);oxygen(2-) Chemical compound [O-2].[Cd+2] CFEAAQFZALKQPA-UHFFFAOYSA-N 0.000 description 3
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 3
- 239000000920 calcium hydroxide Substances 0.000 description 3
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 3
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 3
- 239000000292 calcium oxide Substances 0.000 description 3
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(II) oxide Inorganic materials [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 3
- 125000001142 dicarboxylic acid group Chemical group 0.000 description 3
- 150000005690 diesters Chemical class 0.000 description 3
- 238000004821 distillation Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000032050 esterification Effects 0.000 description 3
- 238000005886 esterification reaction Methods 0.000 description 3
- 239000000295 fuel oil Substances 0.000 description 3
- 239000001530 fumaric acid Substances 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 125000005842 heteroatom Chemical group 0.000 description 3
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 3
- 230000007062 hydrolysis Effects 0.000 description 3
- 238000006460 hydrolysis reaction Methods 0.000 description 3
- 150000002440 hydroxy compounds Chemical class 0.000 description 3
- 238000010348 incorporation Methods 0.000 description 3
- 239000000543 intermediate Substances 0.000 description 3
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 3
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 3
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 3
- 239000011976 maleic acid Substances 0.000 description 3
- 125000005395 methacrylic acid group Chemical class 0.000 description 3
- 235000010446 mineral oil Nutrition 0.000 description 3
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 3
- 150000002830 nitrogen compounds Chemical class 0.000 description 3
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 150000002924 oxiranes Chemical class 0.000 description 3
- 230000000737 periodic effect Effects 0.000 description 3
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 3
- 229920001983 poloxamer Polymers 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 229960002317 succinimide Drugs 0.000 description 3
- CXWXQJXEFPUFDZ-UHFFFAOYSA-N tetralin Chemical compound C1=CC=C2CCCCC2=C1 CXWXQJXEFPUFDZ-UHFFFAOYSA-N 0.000 description 3
- 239000004034 viscosity adjusting agent Substances 0.000 description 3
- 150000003752 zinc compounds Chemical class 0.000 description 3
- 239000011787 zinc oxide Substances 0.000 description 3
- MGAXYKDBRBNWKT-UHFFFAOYSA-N (5-oxooxolan-2-yl)methyl 4-methylbenzenesulfonate Chemical compound C1=CC(C)=CC=C1S(=O)(=O)OCC1OC(=O)CC1 MGAXYKDBRBNWKT-UHFFFAOYSA-N 0.000 description 2
- OOCCDEMITAIZTP-QPJJXVBHSA-N (E)-cinnamyl alcohol Chemical compound OC\C=C\C1=CC=CC=C1 OOCCDEMITAIZTP-QPJJXVBHSA-N 0.000 description 2
- CIRMGZKUSBCWRL-LHLOQNFPSA-N (e)-10-[2-(7-carboxyheptyl)-5,6-dihexylcyclohex-3-en-1-yl]dec-9-enoic acid Chemical compound CCCCCCC1C=CC(CCCCCCCC(O)=O)C(\C=C\CCCCCCCC(O)=O)C1CCCCCC CIRMGZKUSBCWRL-LHLOQNFPSA-N 0.000 description 2
- MFEVGQHCNVXMER-UHFFFAOYSA-L 1,3,2$l^{2}-dioxaplumbetan-4-one Chemical compound [Pb+2].[O-]C([O-])=O MFEVGQHCNVXMER-UHFFFAOYSA-L 0.000 description 2
- ZGEGCLOFRBLKSE-UHFFFAOYSA-N 1-Heptene Chemical compound CCCCCC=C ZGEGCLOFRBLKSE-UHFFFAOYSA-N 0.000 description 2
- RMSGQZDGSZOJMU-UHFFFAOYSA-N 1-butyl-2-phenylbenzene Chemical group CCCCC1=CC=CC=C1C1=CC=CC=C1 RMSGQZDGSZOJMU-UHFFFAOYSA-N 0.000 description 2
- CRSBERNSMYQZNG-UHFFFAOYSA-N 1-dodecene Chemical compound CCCCCCCCCCC=C CRSBERNSMYQZNG-UHFFFAOYSA-N 0.000 description 2
- TXBCBTDQIULDIA-UHFFFAOYSA-N 2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(CO)(CO)COCC(CO)(CO)CO TXBCBTDQIULDIA-UHFFFAOYSA-N 0.000 description 2
- JCBPETKZIGVZRE-UHFFFAOYSA-N 2-aminobutan-1-ol Chemical compound CCC(N)CO JCBPETKZIGVZRE-UHFFFAOYSA-N 0.000 description 2
- 125000003504 2-oxazolinyl group Chemical class O1C(=NCC1)* 0.000 description 2
- KGIGUEBEKRSTEW-UHFFFAOYSA-N 2-vinylpyridine Chemical class C=CC1=CC=CC=N1 KGIGUEBEKRSTEW-UHFFFAOYSA-N 0.000 description 2
- YYPNJNDODFVZLE-UHFFFAOYSA-N 3-methylbut-2-enoic acid Chemical compound CC(C)=CC(O)=O YYPNJNDODFVZLE-UHFFFAOYSA-N 0.000 description 2
- RSPAIISXQHXRKX-UHFFFAOYSA-L 5-butylcyclopenta-1,3-diene;zirconium(4+);dichloride Chemical compound Cl[Zr+2]Cl.CCCCC1=CC=C[CH-]1.CCCCC1=CC=C[CH-]1 RSPAIISXQHXRKX-UHFFFAOYSA-L 0.000 description 2
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- KXDHJXZQYSOELW-UHFFFAOYSA-N Carbamic acid Chemical class NC(O)=O KXDHJXZQYSOELW-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 229910021503 Cobalt(II) hydroxide Inorganic materials 0.000 description 2
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 2
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical class OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 2
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 2
- ZRALSGWEFCBTJO-UHFFFAOYSA-N Guanidine Chemical compound NC(N)=N ZRALSGWEFCBTJO-UHFFFAOYSA-N 0.000 description 2
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical class ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 2
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 229910000003 Lead carbonate Inorganic materials 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 2
- JPYPZXAFEOFGSM-UHFFFAOYSA-N O.[B]=O Chemical compound O.[B]=O JPYPZXAFEOFGSM-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 229920002873 Polyethylenimine Polymers 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- VKCLPVFDVVKEKU-UHFFFAOYSA-N S=[P] Chemical class S=[P] VKCLPVFDVVKEKU-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 2
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical compound ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 2
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 2
- NIONDZDPPYHYKY-UHFFFAOYSA-N Z-hexenoic acid Natural products CCCC=CC(O)=O NIONDZDPPYHYKY-UHFFFAOYSA-N 0.000 description 2
- FMRLDPWIRHBCCC-UHFFFAOYSA-L Zinc carbonate Chemical compound [Zn+2].[O-]C([O-])=O FMRLDPWIRHBCCC-UHFFFAOYSA-L 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- XXROGKLTLUQVRX-UHFFFAOYSA-N allyl alcohol Chemical compound OCC=C XXROGKLTLUQVRX-UHFFFAOYSA-N 0.000 description 2
- 125000006294 amino alkylene group Chemical group 0.000 description 2
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- RQPZNWPYLFFXCP-UHFFFAOYSA-L barium dihydroxide Chemical compound [OH-].[OH-].[Ba+2] RQPZNWPYLFFXCP-UHFFFAOYSA-L 0.000 description 2
- 229910001863 barium hydroxide Inorganic materials 0.000 description 2
- IWOUKMZUPDVPGQ-UHFFFAOYSA-N barium nitrate Chemical compound [Ba+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O IWOUKMZUPDVPGQ-UHFFFAOYSA-N 0.000 description 2
- AYJRCSIUFZENHW-DEQYMQKBSA-L barium(2+);oxomethanediolate Chemical compound [Ba+2].[O-][14C]([O-])=O AYJRCSIUFZENHW-DEQYMQKBSA-L 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 239000004327 boric acid Substances 0.000 description 2
- 150000001639 boron compounds Chemical class 0.000 description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 2
- 239000001273 butane Substances 0.000 description 2
- 125000004369 butenyl group Chemical group C(=CCC)* 0.000 description 2
- KPWJBEFBFLRCLH-UHFFFAOYSA-L cadmium bromide Chemical compound Br[Cd]Br KPWJBEFBFLRCLH-UHFFFAOYSA-L 0.000 description 2
- 229910000011 cadmium carbonate Inorganic materials 0.000 description 2
- YKYOUMDCQGMQQO-UHFFFAOYSA-L cadmium dichloride Chemical compound Cl[Cd]Cl YKYOUMDCQGMQQO-UHFFFAOYSA-L 0.000 description 2
- PLLZRTNVEXYBNA-UHFFFAOYSA-L cadmium hydroxide Chemical compound [OH-].[OH-].[Cd+2] PLLZRTNVEXYBNA-UHFFFAOYSA-L 0.000 description 2
- GKDXQAKPHKQZSC-UHFFFAOYSA-L cadmium(2+);carbonate Chemical compound [Cd+2].[O-]C([O-])=O GKDXQAKPHKQZSC-UHFFFAOYSA-L 0.000 description 2
- ZCCIPPOKBCJFDN-UHFFFAOYSA-N calcium nitrate Chemical compound [Ca+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ZCCIPPOKBCJFDN-UHFFFAOYSA-N 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 230000021523 carboxylation Effects 0.000 description 2
- 238000006473 carboxylation reaction Methods 0.000 description 2
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- GVPFVAHMJGGAJG-UHFFFAOYSA-L cobalt dichloride Chemical compound [Cl-].[Cl-].[Co+2] GVPFVAHMJGGAJG-UHFFFAOYSA-L 0.000 description 2
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 description 2
- 229910000428 cobalt oxide Inorganic materials 0.000 description 2
- ZOTKGJBKKKVBJZ-UHFFFAOYSA-L cobalt(2+);carbonate Chemical compound [Co+2].[O-]C([O-])=O ZOTKGJBKKKVBJZ-UHFFFAOYSA-L 0.000 description 2
- ASKVAEGIVYSGNY-UHFFFAOYSA-L cobalt(ii) hydroxide Chemical compound [OH-].[OH-].[Co+2] ASKVAEGIVYSGNY-UHFFFAOYSA-L 0.000 description 2
- 229940097267 cobaltous chloride Drugs 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- YEOCHZFPBYUXMC-UHFFFAOYSA-L copper benzoate Chemical compound [Cu+2].[O-]C(=O)C1=CC=CC=C1.[O-]C(=O)C1=CC=CC=C1 YEOCHZFPBYUXMC-UHFFFAOYSA-L 0.000 description 2
- OPQARKPSCNTWTJ-UHFFFAOYSA-L copper(ii) acetate Chemical compound [Cu+2].CC([O-])=O.CC([O-])=O OPQARKPSCNTWTJ-UHFFFAOYSA-L 0.000 description 2
- LDHQCZJRKDOVOX-NSCUHMNNSA-N crotonic acid Chemical compound C\C=C\C(O)=O LDHQCZJRKDOVOX-NSCUHMNNSA-N 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 2
- 125000000640 cyclooctyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 2
- 125000000058 cyclopentadienyl group Chemical group C1(=CC=CC1)* 0.000 description 2
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 2
- JJCFRYNCJDLXIK-UHFFFAOYSA-N cyproheptadine Chemical compound C1CN(C)CCC1=C1C2=CC=CC=C2C=CC2=CC=CC=C21 JJCFRYNCJDLXIK-UHFFFAOYSA-N 0.000 description 2
- HLDSGDSONVKDSR-UHFFFAOYSA-N dec-2-enethioamide Chemical compound CCCCCCCC=CC(N)=S HLDSGDSONVKDSR-UHFFFAOYSA-N 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 230000000994 depressogenic effect Effects 0.000 description 2
- JQZRVMZHTADUSY-UHFFFAOYSA-L di(octanoyloxy)tin Chemical compound [Sn+2].CCCCCCCC([O-])=O.CCCCCCCC([O-])=O JQZRVMZHTADUSY-UHFFFAOYSA-L 0.000 description 2
- IUNMPGNGSSIWFP-UHFFFAOYSA-N dimethylaminopropylamine Chemical compound CN(C)CCCN IUNMPGNGSSIWFP-UHFFFAOYSA-N 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 125000000532 dioxanyl group Chemical group 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- LQZZUXJYWNFBMV-UHFFFAOYSA-N dodecan-1-ol Chemical compound CCCCCCCCCCCCO LQZZUXJYWNFBMV-UHFFFAOYSA-N 0.000 description 2
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- 230000007717 exclusion Effects 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000013020 final formulation Substances 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-L fumarate(2-) Chemical compound [O-]C(=O)\C=C\C([O-])=O VZCYOOQTPOCHFL-OWOJBTEDSA-L 0.000 description 2
- 238000007306 functionalization reaction Methods 0.000 description 2
- 125000002541 furyl group Chemical group 0.000 description 2
- 229920000578 graft copolymer Polymers 0.000 description 2
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 2
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 2
- 125000000743 hydrocarbylene group Chemical group 0.000 description 2
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 239000003999 initiator Substances 0.000 description 2
- 229910052740 iodine Inorganic materials 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 2
- QWTDNUCVQCZILF-UHFFFAOYSA-N isopentane Chemical compound CCC(C)C QWTDNUCVQCZILF-UHFFFAOYSA-N 0.000 description 2
- 229910000464 lead oxide Inorganic materials 0.000 description 2
- 229910021514 lead(II) hydroxide Inorganic materials 0.000 description 2
- 238000004811 liquid chromatography Methods 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 2
- 229910052808 lithium carbonate Inorganic materials 0.000 description 2
- FUJCRWPEOMXPAD-UHFFFAOYSA-N lithium oxide Chemical compound [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 description 2
- 229910001947 lithium oxide Inorganic materials 0.000 description 2
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 2
- 239000001095 magnesium carbonate Substances 0.000 description 2
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 2
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 2
- 239000000347 magnesium hydroxide Substances 0.000 description 2
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- KRPXAHXWPZLBKL-UHFFFAOYSA-L magnesium;diphenoxide Chemical compound [Mg+2].[O-]C1=CC=CC=C1.[O-]C1=CC=CC=C1 KRPXAHXWPZLBKL-UHFFFAOYSA-L 0.000 description 2
- XDKQUSKHRIUJEO-UHFFFAOYSA-N magnesium;ethanolate Chemical compound [Mg+2].CC[O-].CC[O-] XDKQUSKHRIUJEO-UHFFFAOYSA-N 0.000 description 2
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 2
- WNJYXPXGUGOGBO-UHFFFAOYSA-N magnesium;propan-1-olate Chemical compound CCCO[Mg]OCCC WNJYXPXGUGOGBO-UHFFFAOYSA-N 0.000 description 2
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- UAEPNZWRGJTJPN-UHFFFAOYSA-N methylcyclohexane Chemical compound CC1CCCCC1 UAEPNZWRGJTJPN-UHFFFAOYSA-N 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000000051 modifying effect Effects 0.000 description 2
- 150000005673 monoalkenes Chemical class 0.000 description 2
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 2
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 2
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 150000004780 naphthols Chemical class 0.000 description 2
- 230000003472 neutralizing effect Effects 0.000 description 2
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 description 2
- 229910000480 nickel oxide Inorganic materials 0.000 description 2
- 229910000008 nickel(II) carbonate Inorganic materials 0.000 description 2
- ZULUUIKRFGGGTL-UHFFFAOYSA-L nickel(ii) carbonate Chemical compound [Ni+2].[O-]C([O-])=O ZULUUIKRFGGGTL-UHFFFAOYSA-L 0.000 description 2
- BFDHFSHZJLFAMC-UHFFFAOYSA-L nickel(ii) hydroxide Chemical compound [OH-].[OH-].[Ni+2] BFDHFSHZJLFAMC-UHFFFAOYSA-L 0.000 description 2
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 2
- 239000002736 nonionic surfactant Substances 0.000 description 2
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 2
- 229940049964 oleate Drugs 0.000 description 2
- UPWOEMHINGJHOB-UHFFFAOYSA-N oxo(oxocobaltiooxy)cobalt Chemical compound O=[Co]O[Co]=O UPWOEMHINGJHOB-UHFFFAOYSA-N 0.000 description 2
- YEXPOXQUZXUXJW-UHFFFAOYSA-N oxolead Chemical compound [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 description 2
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 2
- 125000005702 oxyalkylene group Chemical group 0.000 description 2
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- AQSJGOWTSHOLKH-UHFFFAOYSA-N phosphite(3-) Chemical class [O-]P([O-])[O-] AQSJGOWTSHOLKH-UHFFFAOYSA-N 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 229910001392 phosphorus oxide Inorganic materials 0.000 description 2
- LFGREXWGYUGZLY-UHFFFAOYSA-N phosphoryl Chemical class [P]=O LFGREXWGYUGZLY-UHFFFAOYSA-N 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 150000004885 piperazines Chemical class 0.000 description 2
- 125000005936 piperidyl group Chemical group 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000002798 polar solvent Substances 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 229920005652 polyisobutylene succinic anhydride Polymers 0.000 description 2
- 230000000379 polymerizing effect Effects 0.000 description 2
- 229920005862 polyol Polymers 0.000 description 2
- 229910000027 potassium carbonate Inorganic materials 0.000 description 2
- BDAWXSQJJCIFIK-UHFFFAOYSA-N potassium methoxide Chemical compound [K+].[O-]C BDAWXSQJJCIFIK-UHFFFAOYSA-N 0.000 description 2
- CHWRSCGUEQEHOH-UHFFFAOYSA-N potassium oxide Chemical compound [O-2].[K+].[K+] CHWRSCGUEQEHOH-UHFFFAOYSA-N 0.000 description 2
- 229910001950 potassium oxide Inorganic materials 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 125000004368 propenyl group Chemical group C(=CC)* 0.000 description 2
- AOHJOMMDDJHIJH-UHFFFAOYSA-N propylenediamine Chemical compound CC(N)CN AOHJOMMDDJHIJH-UHFFFAOYSA-N 0.000 description 2
- 238000010926 purge Methods 0.000 description 2
- KIDHWZJUCRJVML-UHFFFAOYSA-N putrescine Chemical compound NCCCCN KIDHWZJUCRJVML-UHFFFAOYSA-N 0.000 description 2
- 125000004309 pyranyl group Chemical group O1C(C=CC=C1)* 0.000 description 2
- 125000003373 pyrazinyl group Chemical group 0.000 description 2
- 125000004076 pyridyl group Chemical group 0.000 description 2
- 229920005604 random copolymer Polymers 0.000 description 2
- 239000012429 reaction media Substances 0.000 description 2
- 238000007127 saponification reaction Methods 0.000 description 2
- 229940116351 sebacate Drugs 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-L sebacate(2-) Chemical compound [O-]C(=O)CCCCCCCCC([O-])=O CXMXRPHRNRROMY-UHFFFAOYSA-L 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- 125000000467 secondary amino group Chemical group [H]N([*:1])[*:2] 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- NDVLTYZPCACLMA-UHFFFAOYSA-N silver oxide Chemical compound [O-2].[Ag+].[Ag+] NDVLTYZPCACLMA-UHFFFAOYSA-N 0.000 description 2
- 238000001542 size-exclusion chromatography Methods 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- KKCBUQHMOMHUOY-UHFFFAOYSA-N sodium oxide Chemical compound [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 2
- 229910001948 sodium oxide Inorganic materials 0.000 description 2
- IATRAKWUXMZMIY-UHFFFAOYSA-N strontium oxide Chemical compound [O-2].[Sr+2] IATRAKWUXMZMIY-UHFFFAOYSA-N 0.000 description 2
- TYFQFVWCELRYAO-UHFFFAOYSA-N suberic acid Chemical compound OC(=O)CCCCCCC(O)=O TYFQFVWCELRYAO-UHFFFAOYSA-N 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 150000003871 sulfonates Chemical class 0.000 description 2
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 description 2
- FWMUJAIKEJWSSY-UHFFFAOYSA-N sulfur dichloride Chemical class ClSCl FWMUJAIKEJWSSY-UHFFFAOYSA-N 0.000 description 2
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 2
- 229920006029 tetra-polymer Polymers 0.000 description 2
- VDZOOKBUILJEDG-UHFFFAOYSA-M tetrabutylammonium hydroxide Chemical compound [OH-].CCCC[N+](CCCC)(CCCC)CCCC VDZOOKBUILJEDG-UHFFFAOYSA-M 0.000 description 2
- 125000003718 tetrahydrofuranyl group Chemical group 0.000 description 2
- 150000003553 thiiranes Chemical class 0.000 description 2
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 description 2
- 238000004448 titration Methods 0.000 description 2
- 125000003944 tolyl group Chemical group 0.000 description 2
- 125000002889 tridecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- XFNJVJPLKCPIBV-UHFFFAOYSA-N trimethylenediamine Chemical compound NCCCN XFNJVJPLKCPIBV-UHFFFAOYSA-N 0.000 description 2
- 239000010913 used oil Substances 0.000 description 2
- 239000001993 wax Substances 0.000 description 2
- 238000004260 weight control Methods 0.000 description 2
- VNDYJBBGRKZCSX-UHFFFAOYSA-L zinc bromide Chemical compound Br[Zn]Br VNDYJBBGRKZCSX-UHFFFAOYSA-L 0.000 description 2
- 239000011667 zinc carbonate Substances 0.000 description 2
- 235000004416 zinc carbonate Nutrition 0.000 description 2
- 229910000010 zinc carbonate Inorganic materials 0.000 description 2
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 2
- BHHYHSUAOQUXJK-UHFFFAOYSA-L zinc fluoride Chemical compound F[Zn]F BHHYHSUAOQUXJK-UHFFFAOYSA-L 0.000 description 2
- UGZADUVQMDAIAO-UHFFFAOYSA-L zinc hydroxide Chemical compound [OH-].[OH-].[Zn+2] UGZADUVQMDAIAO-UHFFFAOYSA-L 0.000 description 2
- 229910021511 zinc hydroxide Inorganic materials 0.000 description 2
- 229940007718 zinc hydroxide Drugs 0.000 description 2
- UAYWVJHJZHQCIE-UHFFFAOYSA-L zinc iodide Chemical compound I[Zn]I UAYWVJHJZHQCIE-UHFFFAOYSA-L 0.000 description 2
- ONDPHDOFVYQSGI-UHFFFAOYSA-N zinc nitrate Chemical compound [Zn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ONDPHDOFVYQSGI-UHFFFAOYSA-N 0.000 description 2
- ZOICEQJZAWJHSI-UHFFFAOYSA-N (2,3,4,5,6-pentafluorophenyl)boron Chemical compound [B]C1=C(F)C(F)=C(F)C(F)=C1F ZOICEQJZAWJHSI-UHFFFAOYSA-N 0.000 description 1
- NIONDZDPPYHYKY-SNAWJCMRSA-N (2E)-hexenoic acid Chemical compound CCC\C=C\C(O)=O NIONDZDPPYHYKY-SNAWJCMRSA-N 0.000 description 1
- OBETXYAYXDNJHR-SSDOTTSWSA-M (2r)-2-ethylhexanoate Chemical compound CCCC[C@@H](CC)C([O-])=O OBETXYAYXDNJHR-SSDOTTSWSA-M 0.000 description 1
- GGQQNYXPYWCUHG-RMTFUQJTSA-N (3e,6e)-deca-3,6-diene Chemical compound CCC\C=C\C\C=C\CC GGQQNYXPYWCUHG-RMTFUQJTSA-N 0.000 description 1
- ALSTYHKOOCGGFT-KTKRTIGZSA-N (9Z)-octadecen-1-ol Chemical compound CCCCCCCC\C=C/CCCCCCCCO ALSTYHKOOCGGFT-KTKRTIGZSA-N 0.000 description 1
- ZQHJVIHCDHJVII-OWOJBTEDSA-N (e)-2-chlorobut-2-enedioic acid Chemical compound OC(=O)\C=C(\Cl)C(O)=O ZQHJVIHCDHJVII-OWOJBTEDSA-N 0.000 description 1
- XLYMOEINVGRTEX-ONEGZZNKSA-N (e)-4-ethoxy-4-oxobut-2-enoic acid Chemical compound CCOC(=O)\C=C\C(O)=O XLYMOEINVGRTEX-ONEGZZNKSA-N 0.000 description 1
- WVRIPRILKKOIQL-FPLPWBNLSA-N (z)-3-cyclohexylbut-2-enoic acid Chemical compound OC(=O)/C=C(/C)C1CCCCC1 WVRIPRILKKOIQL-FPLPWBNLSA-N 0.000 description 1
- WBYWAXJHAXSJNI-VOTSOKGWSA-M .beta-Phenylacrylic acid Natural products [O-]C(=O)\C=C\C1=CC=CC=C1 WBYWAXJHAXSJNI-VOTSOKGWSA-M 0.000 description 1
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 1
- KNKRKFALVUDBJE-UHFFFAOYSA-N 1,2-dichloropropane Chemical compound CC(Cl)CCl KNKRKFALVUDBJE-UHFFFAOYSA-N 0.000 description 1
- 150000004869 1,3,4-thiadiazoles Chemical class 0.000 description 1
- BZJTUOGZUKFLQT-UHFFFAOYSA-N 1,3,5,7-tetramethylcyclooctane Chemical group CC1CC(C)CC(C)CC(C)C1 BZJTUOGZUKFLQT-UHFFFAOYSA-N 0.000 description 1
- ZXSQEZNORDWBGZ-UHFFFAOYSA-N 1,3-dihydropyrrolo[2,3-b]pyridin-2-one Chemical compound C1=CN=C2NC(=O)CC2=C1 ZXSQEZNORDWBGZ-UHFFFAOYSA-N 0.000 description 1
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 1
- 229940035437 1,3-propanediol Drugs 0.000 description 1
- OCJBOOLMMGQPQU-UHFFFAOYSA-N 1,4-dichlorobenzene Chemical compound ClC1=CC=C(Cl)C=C1 OCJBOOLMMGQPQU-UHFFFAOYSA-N 0.000 description 1
- VQOXUMQBYILCKR-UHFFFAOYSA-N 1-Tridecene Chemical compound CCCCCCCCCCCC=C VQOXUMQBYILCKR-UHFFFAOYSA-N 0.000 description 1
- RIJVOTKRVIPNIZ-UHFFFAOYSA-N 1-[4-(2-aminoethyl)piperazin-1-yl]propan-2-ol Chemical compound CC(O)CN1CCN(CCN)CC1 RIJVOTKRVIPNIZ-UHFFFAOYSA-N 0.000 description 1
- JTPNRXUCIXHOKM-UHFFFAOYSA-N 1-chloronaphthalene Chemical compound C1=CC=C2C(Cl)=CC=CC2=C1 JTPNRXUCIXHOKM-UHFFFAOYSA-N 0.000 description 1
- JHYYINIEKJKMDD-UHFFFAOYSA-N 1-ethenyl-3,3-dimethylpyrrolidin-2-one Chemical compound CC1(C)CCN(C=C)C1=O JHYYINIEKJKMDD-UHFFFAOYSA-N 0.000 description 1
- DJABNVJZYFGAJE-UHFFFAOYSA-N 1-ethenyl-5-ethylpyrrolidin-2-one Chemical compound CCC1CCC(=O)N1C=C DJABNVJZYFGAJE-UHFFFAOYSA-N 0.000 description 1
- HQGPZXPTJWUDQR-UHFFFAOYSA-N 1-ethenyl-5-methylpyrrolidin-2-one Chemical compound CC1CCC(=O)N1C=C HQGPZXPTJWUDQR-UHFFFAOYSA-N 0.000 description 1
- PBGPBHYPCGDFEZ-UHFFFAOYSA-N 1-ethenylpiperidin-2-one Chemical class C=CN1CCCCC1=O PBGPBHYPCGDFEZ-UHFFFAOYSA-N 0.000 description 1
- GQEZCXVZFLOKMC-UHFFFAOYSA-N 1-hexadecene Chemical compound CCCCCCCCCCCCCCC=C GQEZCXVZFLOKMC-UHFFFAOYSA-N 0.000 description 1
- KJCVRFUGPWSIIH-UHFFFAOYSA-N 1-naphthol Chemical compound C1=CC=C2C(O)=CC=CC2=C1 KJCVRFUGPWSIIH-UHFFFAOYSA-N 0.000 description 1
- HMPUKFGKTNAIRX-UHFFFAOYSA-N 1-prop-1-en-2-ylpyrrolidin-2-one Chemical compound CC(=C)N1CCCC1=O HMPUKFGKTNAIRX-UHFFFAOYSA-N 0.000 description 1
- HFDVRLIODXPAHB-UHFFFAOYSA-N 1-tetradecene Chemical compound CCCCCCCCCCCCC=C HFDVRLIODXPAHB-UHFFFAOYSA-N 0.000 description 1
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 description 1
- KXWMAKFZZMYBFC-UHFFFAOYSA-N 2,3-dimethylbut-2-enedithioic acid Chemical compound CC(C)=C(C)C(S)=S KXWMAKFZZMYBFC-UHFFFAOYSA-N 0.000 description 1
- XEYIIGJKDUYYJU-UHFFFAOYSA-N 2,3-dimethylbut-2-enethioamide Chemical compound CC(C)=C(C)C(N)=S XEYIIGJKDUYYJU-UHFFFAOYSA-N 0.000 description 1
- ZTYWTMBCVLZXNX-UHFFFAOYSA-N 2,3-dimethylbut-2-enethioic s-acid Chemical compound CC(C)=C(C)C(O)=S ZTYWTMBCVLZXNX-UHFFFAOYSA-N 0.000 description 1
- WAMHDKQIQKMQOT-UHFFFAOYSA-N 2,4,4-trimethylpentan-2-ylsulfanylbenzene Chemical compound CC(C)(C)CC(C)(C)SC1=CC=CC=C1 WAMHDKQIQKMQOT-UHFFFAOYSA-N 0.000 description 1
- GIAFURWZWWWBQT-UHFFFAOYSA-N 2-(2-aminoethoxy)ethanol Chemical compound NCCOCCO GIAFURWZWWWBQT-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- QXHDYMUPPXAMPQ-UHFFFAOYSA-N 2-(4-aminophenyl)ethanol Chemical compound NC1=CC=C(CCO)C=C1 QXHDYMUPPXAMPQ-UHFFFAOYSA-N 0.000 description 1
- BIOCRZSYHQYVSG-UHFFFAOYSA-N 2-(4-ethenylphenyl)-n,n-diethylethanamine Chemical compound CCN(CC)CCC1=CC=C(C=C)C=C1 BIOCRZSYHQYVSG-UHFFFAOYSA-N 0.000 description 1
- YEVQZPWSVWZAOB-UHFFFAOYSA-N 2-(bromomethyl)-1-iodo-4-(trifluoromethyl)benzene Chemical compound FC(F)(F)C1=CC=C(I)C(CBr)=C1 YEVQZPWSVWZAOB-UHFFFAOYSA-N 0.000 description 1
- PTJWCLYPVFJWMP-UHFFFAOYSA-N 2-[[3-hydroxy-2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(CO)(CO)COCC(CO)(CO)COCC(CO)(CO)CO PTJWCLYPVFJWMP-UHFFFAOYSA-N 0.000 description 1
- IOAOAKDONABGPZ-UHFFFAOYSA-N 2-amino-2-ethylpropane-1,3-diol Chemical compound CCC(N)(CO)CO IOAOAKDONABGPZ-UHFFFAOYSA-N 0.000 description 1
- 229940058020 2-amino-2-methyl-1-propanol Drugs 0.000 description 1
- BKMMTJMQCTUHRP-UHFFFAOYSA-N 2-aminopropan-1-ol Chemical compound CC(N)CO BKMMTJMQCTUHRP-UHFFFAOYSA-N 0.000 description 1
- CYEJMVLDXAUOPN-UHFFFAOYSA-N 2-dodecylphenol Chemical compound CCCCCCCCCCCCC1=CC=CC=C1O CYEJMVLDXAUOPN-UHFFFAOYSA-N 0.000 description 1
- OHAHNWHDCLIFSX-UHFFFAOYSA-N 2-ethenyl-4-ethylpyridine Chemical compound CCC1=CC=NC(C=C)=C1 OHAHNWHDCLIFSX-UHFFFAOYSA-N 0.000 description 1
- WVNIWWGCVMYYJZ-UHFFFAOYSA-N 2-ethenyl-4-methylpyridine Chemical compound CC1=CC=NC(C=C)=C1 WVNIWWGCVMYYJZ-UHFFFAOYSA-N 0.000 description 1
- YQUDMNIUBTXLSX-UHFFFAOYSA-N 2-ethenyl-5-ethylpyridine Chemical compound CCC1=CC=C(C=C)N=C1 YQUDMNIUBTXLSX-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- YIWUKEYIRIRTPP-UHFFFAOYSA-N 2-ethylhexan-1-ol Chemical compound CCCCC(CC)CO YIWUKEYIRIRTPP-UHFFFAOYSA-N 0.000 description 1
- DEQJBORXLQWRGV-UHFFFAOYSA-N 2-hydroxypropanoic acid;iron Chemical compound [Fe].CC(O)C(O)=O.CC(O)C(O)=O DEQJBORXLQWRGV-UHFFFAOYSA-N 0.000 description 1
- XFQQQDFYTFBFHZ-UHFFFAOYSA-N 2-methylbut-2-enedithioic acid Chemical compound CC=C(C)C(S)=S XFQQQDFYTFBFHZ-UHFFFAOYSA-N 0.000 description 1
- PKDWJTRLBYSCSO-UHFFFAOYSA-N 2-methylbut-2-enethioamide Chemical compound CC=C(C)C(N)=S PKDWJTRLBYSCSO-UHFFFAOYSA-N 0.000 description 1
- ODUFYPDSOLVGNH-UHFFFAOYSA-N 2-methylbut-2-enethioic s-acid Chemical compound CC=C(C)C(O)=S ODUFYPDSOLVGNH-UHFFFAOYSA-N 0.000 description 1
- MBUYPXLAUKPVQD-UHFFFAOYSA-N 2-methylidenebutanethioamide Chemical compound CCC(=C)C(N)=S MBUYPXLAUKPVQD-UHFFFAOYSA-N 0.000 description 1
- FCCLIAFBBVSFAJ-UHFFFAOYSA-N 2-methylidenepentanedithioic acid Chemical compound CCCC(=C)C(S)=S FCCLIAFBBVSFAJ-UHFFFAOYSA-N 0.000 description 1
- SRJXRMVZJBAXMS-UHFFFAOYSA-N 2-methylidenepentanethioamide Chemical compound CCCC(=C)C(N)=S SRJXRMVZJBAXMS-UHFFFAOYSA-N 0.000 description 1
- QEWDGVCCDAUMGT-UHFFFAOYSA-N 2-methylidenepentanethioic s-acid Chemical compound CCCC(=C)C(O)=S QEWDGVCCDAUMGT-UHFFFAOYSA-N 0.000 description 1
- AQZWEFBJYQSQEH-UHFFFAOYSA-N 2-methyloxaluminane Chemical compound C[Al]1CCCCO1 AQZWEFBJYQSQEH-UHFFFAOYSA-N 0.000 description 1
- BGJROZDLRVAFMG-UHFFFAOYSA-N 2-methylprop-2-enethioamide Chemical compound CC(=C)C(N)=S BGJROZDLRVAFMG-UHFFFAOYSA-N 0.000 description 1
- KSJKFYTZUCKVFT-UHFFFAOYSA-N 2-pentadecyl-4,5-dihydro-1h-imidazole Chemical compound CCCCCCCCCCCCCCCC1=NCCN1 KSJKFYTZUCKVFT-UHFFFAOYSA-N 0.000 description 1
- UOVRTKIXTDSWHT-UHFFFAOYSA-N 2-propan-2-ylhex-2-enethioamide Chemical compound CCCC=C(C(C)C)C(N)=S UOVRTKIXTDSWHT-UHFFFAOYSA-N 0.000 description 1
- RMFDYPHRHDJAEB-UHFFFAOYSA-N 2-propan-2-ylhex-2-enethioic s-acid Chemical compound CCCC=C(C(C)C)C(O)=S RMFDYPHRHDJAEB-UHFFFAOYSA-N 0.000 description 1
- VRZIYOIUUSTAQF-UHFFFAOYSA-N 2-propan-2-ylhex-2-enoic acid Chemical compound CCCC=C(C(C)C)C(O)=O VRZIYOIUUSTAQF-UHFFFAOYSA-N 0.000 description 1
- RGVIYLQXUDJMCP-UHFFFAOYSA-N 2-tridecylphenol Chemical class CCCCCCCCCCCCCC1=CC=CC=C1O RGVIYLQXUDJMCP-UHFFFAOYSA-N 0.000 description 1
- FQHYQCXMFZHLAE-UHFFFAOYSA-N 25405-85-0 Chemical compound CC1(C)C2(OC(=O)C=3C=CC=CC=3)C1C1C=C(CO)CC(C(C(C)=C3)=O)(O)C3C1(O)C(C)C2OC(=O)C1=CC=CC=C1 FQHYQCXMFZHLAE-UHFFFAOYSA-N 0.000 description 1
- WXBXVVIUZANZAU-UHFFFAOYSA-N 2E-decenoic acid Natural products CCCCCCCC=CC(O)=O WXBXVVIUZANZAU-UHFFFAOYSA-N 0.000 description 1
- BUBVLQDEIIUIQG-UHFFFAOYSA-N 3,4,5-tris(phenylmethoxy)-6-(phenylmethoxymethyl)oxan-2-one Chemical group C=1C=CC=CC=1COC1C(OCC=2C=CC=CC=2)C(OCC=2C=CC=CC=2)C(=O)OC1COCC1=CC=CC=C1 BUBVLQDEIIUIQG-UHFFFAOYSA-N 0.000 description 1
- NUCFNMOPTGEHQA-UHFFFAOYSA-N 3-bromo-2h-pyrazolo[4,3-c]pyridine Chemical compound C1=NC=C2C(Br)=NNC2=C1 NUCFNMOPTGEHQA-UHFFFAOYSA-N 0.000 description 1
- CXJAFLQWMOMYOW-UHFFFAOYSA-N 3-chlorofuran-2,5-dione Chemical compound ClC1=CC(=O)OC1=O CXJAFLQWMOMYOW-UHFFFAOYSA-N 0.000 description 1
- ABODSDXAMFIYSQ-UHFFFAOYSA-N 3-cyclohexyl-2-methylpent-2-enedithioic acid Chemical compound SC(=S)C(C)=C(CC)C1CCCCC1 ABODSDXAMFIYSQ-UHFFFAOYSA-N 0.000 description 1
- IMNCELZXNHSGKR-UHFFFAOYSA-N 3-cyclohexyl-2-methylpent-2-enethioamide Chemical compound NC(=S)C(C)=C(CC)C1CCCCC1 IMNCELZXNHSGKR-UHFFFAOYSA-N 0.000 description 1
- HDMFXDQDAPUJFV-UHFFFAOYSA-N 3-cyclohexyl-2-methylpent-2-enoic acid Chemical compound OC(=O)C(C)=C(CC)C1CCCCC1 HDMFXDQDAPUJFV-UHFFFAOYSA-N 0.000 description 1
- SKWBEYAAPGORHQ-UHFFFAOYSA-N 3-cyclohexylbut-2-enedithioic acid Chemical compound SC(=S)C=C(C)C1CCCCC1 SKWBEYAAPGORHQ-UHFFFAOYSA-N 0.000 description 1
- REQNPKPKELQCTE-UHFFFAOYSA-N 3-cyclohexylbut-2-enethioamide Chemical compound NC(=S)C=C(C)C1CCCCC1 REQNPKPKELQCTE-UHFFFAOYSA-N 0.000 description 1
- JIGLNVYUIFPWQK-UHFFFAOYSA-N 3-cyclohexylbut-2-enethioic s-acid Chemical compound OC(=S)C=C(C)C1CCCCC1 JIGLNVYUIFPWQK-UHFFFAOYSA-N 0.000 description 1
- ZRJOUVOXPWNFOF-UHFFFAOYSA-N 3-dodecoxypropan-1-amine Chemical compound CCCCCCCCCCCCOCCCN ZRJOUVOXPWNFOF-UHFFFAOYSA-N 0.000 description 1
- YAXXOCZAXKLLCV-UHFFFAOYSA-N 3-dodecyloxolane-2,5-dione Chemical compound CCCCCCCCCCCCC1CC(=O)OC1=O YAXXOCZAXKLLCV-UHFFFAOYSA-N 0.000 description 1
- WIAMCQRXSYEGRS-UHFFFAOYSA-N 3-ethenyl-5-methylpyridine Chemical compound CC1=CN=CC(C=C)=C1 WIAMCQRXSYEGRS-UHFFFAOYSA-N 0.000 description 1
- DPZYLEIWHTWHCU-UHFFFAOYSA-N 3-ethenylpyridine Chemical compound C=CC1=CC=CN=C1 DPZYLEIWHTWHCU-UHFFFAOYSA-N 0.000 description 1
- OMSDABXEHDLOKI-UHFFFAOYSA-N 3-methylbut-2-enedithioic acid Chemical compound CC(C)=CC(S)=S OMSDABXEHDLOKI-UHFFFAOYSA-N 0.000 description 1
- SVZLBNDZKHDHKL-UHFFFAOYSA-N 3-methylbut-2-enethioamide Chemical compound CC(C)=CC(N)=S SVZLBNDZKHDHKL-UHFFFAOYSA-N 0.000 description 1
- PHUAHCFKROIBHD-UHFFFAOYSA-N 3-methylbut-2-enethioic s-acid Chemical compound CC(C)=CC(S)=O PHUAHCFKROIBHD-UHFFFAOYSA-N 0.000 description 1
- HYFMGMVWMYMGOB-UHFFFAOYSA-N 3-methylhept-2-enedithioic acid Chemical compound CCCCC(C)=CC(S)=S HYFMGMVWMYMGOB-UHFFFAOYSA-N 0.000 description 1
- RQOHCSAIUYKBRO-UHFFFAOYSA-N 3-methylhept-2-enethioamide Chemical compound CCCCC(C)=CC(N)=S RQOHCSAIUYKBRO-UHFFFAOYSA-N 0.000 description 1
- HLJQSOGUDUXMQZ-UHFFFAOYSA-N 3-methylhept-2-enethioic s-acid Chemical compound CCCCC(C)=CC(O)=S HLJQSOGUDUXMQZ-UHFFFAOYSA-N 0.000 description 1
- BBLRVFUTKVICCR-UHFFFAOYSA-N 3-methylhept-2-enoic acid Chemical compound CCCCC(C)=CC(O)=O BBLRVFUTKVICCR-UHFFFAOYSA-N 0.000 description 1
- YGEPJXBFCCXNTG-UHFFFAOYSA-N 3-phenylprop-2-enedithioic acid Chemical compound SC(=S)C=CC1=CC=CC=C1 YGEPJXBFCCXNTG-UHFFFAOYSA-N 0.000 description 1
- HIJXCSPSAVIBMJ-UHFFFAOYSA-N 3-phenylprop-2-enethioamide Chemical compound NC(=S)C=CC1=CC=CC=C1 HIJXCSPSAVIBMJ-UHFFFAOYSA-N 0.000 description 1
- JFSTWOFGYJFLFL-UHFFFAOYSA-N 3-phenylprop-2-enethioic s-acid Chemical compound SC(=O)C=CC1=CC=CC=C1 JFSTWOFGYJFLFL-UHFFFAOYSA-N 0.000 description 1
- KLCNJIQZXOQYTE-UHFFFAOYSA-N 4,4-dimethylpent-1-ene Chemical compound CC(C)(C)CC=C KLCNJIQZXOQYTE-UHFFFAOYSA-N 0.000 description 1
- CLPFFLWZZBQMAO-UHFFFAOYSA-N 4-(5,6,7,8-tetrahydroimidazo[1,5-a]pyridin-5-yl)benzonitrile Chemical compound C1=CC(C#N)=CC=C1C1N2C=NC=C2CCC1 CLPFFLWZZBQMAO-UHFFFAOYSA-N 0.000 description 1
- KFDVPJUYSDEJTH-UHFFFAOYSA-N 4-ethenylpyridine Chemical compound C=CC1=CC=NC=C1 KFDVPJUYSDEJTH-UHFFFAOYSA-N 0.000 description 1
- SUWJESCICIOQHO-UHFFFAOYSA-N 4-methylhex-1-ene Chemical compound CCC(C)CC=C SUWJESCICIOQHO-UHFFFAOYSA-N 0.000 description 1
- VJOWMORERYNYON-UHFFFAOYSA-N 5-ethenyl-2-methylpyridine Chemical compound CC1=CC=C(C=C)C=N1 VJOWMORERYNYON-UHFFFAOYSA-N 0.000 description 1
- JTHZUSWLNCPZLX-UHFFFAOYSA-N 6-fluoro-3-methyl-2h-indazole Chemical compound FC1=CC=C2C(C)=NNC2=C1 JTHZUSWLNCPZLX-UHFFFAOYSA-N 0.000 description 1
- LJKQIQSBHFNMDV-UHFFFAOYSA-N 7-thiabicyclo[4.1.0]hepta-2,4-dien-6-ol Chemical compound C1=CC=CC2(O)C1S2 LJKQIQSBHFNMDV-UHFFFAOYSA-N 0.000 description 1
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- BMTAFVWTTFSTOG-UHFFFAOYSA-N Butylate Chemical compound CCSC(=O)N(CC(C)C)CC(C)C BMTAFVWTTFSTOG-UHFFFAOYSA-N 0.000 description 1
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 1
- KSSJBGNOJJETTC-UHFFFAOYSA-N COC1=C(C=CC=C1)N(C1=CC=2C3(C4=CC(=CC=C4C=2C=C1)N(C1=CC=C(C=C1)OC)C1=C(C=CC=C1)OC)C1=CC(=CC=C1C=1C=CC(=CC=13)N(C1=CC=C(C=C1)OC)C1=C(C=CC=C1)OC)N(C1=CC=C(C=C1)OC)C1=C(C=CC=C1)OC)C1=CC=C(C=C1)OC Chemical compound COC1=C(C=CC=C1)N(C1=CC=2C3(C4=CC(=CC=C4C=2C=C1)N(C1=CC=C(C=C1)OC)C1=C(C=CC=C1)OC)C1=CC(=CC=C1C=1C=CC(=CC=13)N(C1=CC=C(C=C1)OC)C1=C(C=CC=C1)OC)N(C1=CC=C(C=C1)OC)C1=C(C=CC=C1)OC)C1=CC=C(C=C1)OC KSSJBGNOJJETTC-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910021554 Chromium(II) chloride Inorganic materials 0.000 description 1
- WBYWAXJHAXSJNI-SREVYHEPSA-N Cinnamic acid Chemical compound OC(=O)\C=C/C1=CC=CC=C1 WBYWAXJHAXSJNI-SREVYHEPSA-N 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 229910021581 Cobalt(III) chloride Inorganic materials 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- 239000009261 D 400 Substances 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- MQIUGAXCHLFZKX-UHFFFAOYSA-N Di-n-octyl phthalate Natural products CCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCC MQIUGAXCHLFZKX-UHFFFAOYSA-N 0.000 description 1
- XTJFFFGAUHQWII-UHFFFAOYSA-N Dibutyl adipate Chemical compound CCCCOC(=O)CCCCC(=O)OCCCC XTJFFFGAUHQWII-UHFFFAOYSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 239000004277 Ferrous carbonate Substances 0.000 description 1
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical compound [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 description 1
- 229910021575 Iron(II) bromide Inorganic materials 0.000 description 1
- NHTMVDHEPJAVLT-UHFFFAOYSA-N Isooctane Chemical compound CC(C)CC(C)(C)C NHTMVDHEPJAVLT-UHFFFAOYSA-N 0.000 description 1
- 239000005639 Lauric acid Substances 0.000 description 1
- 229910021380 Manganese Chloride Inorganic materials 0.000 description 1
- GLFNIEUTAYBVOC-UHFFFAOYSA-L Manganese chloride Chemical compound Cl[Mn]Cl GLFNIEUTAYBVOC-UHFFFAOYSA-L 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- XQVWYOYUZDUNRW-UHFFFAOYSA-N N-Phenyl-1-naphthylamine Chemical compound C=1C=CC2=CC=CC=C2C=1NC1=CC=CC=C1 XQVWYOYUZDUNRW-UHFFFAOYSA-N 0.000 description 1
- CHJJGSNFBQVOTG-UHFFFAOYSA-N N-methyl-guanidine Natural products CNC(N)=N CHJJGSNFBQVOTG-UHFFFAOYSA-N 0.000 description 1
- 229910021585 Nickel(II) bromide Inorganic materials 0.000 description 1
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical compound OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- WUGQZFFCHPXWKQ-UHFFFAOYSA-N Propanolamine Chemical compound NCCCO WUGQZFFCHPXWKQ-UHFFFAOYSA-N 0.000 description 1
- 239000005700 Putrescine Substances 0.000 description 1
- 235000004443 Ricinus communis Nutrition 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 1
- YSMRWXYRXBRSND-UHFFFAOYSA-N TOTP Chemical compound CC1=CC=CC=C1OP(=O)(OC=1C(=CC=CC=1)C)OC1=CC=CC=C1C YSMRWXYRXBRSND-UHFFFAOYSA-N 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- UWHCKJMYHZGTIT-UHFFFAOYSA-N Tetraethylene glycol, Natural products OCCOCCOCCOCCO UWHCKJMYHZGTIT-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- 238000006653 Ziegler-Natta catalysis Methods 0.000 description 1
- CANRESZKMUPMAE-UHFFFAOYSA-L Zinc lactate Chemical compound [Zn+2].CC(O)C([O-])=O.CC(O)C([O-])=O CANRESZKMUPMAE-UHFFFAOYSA-L 0.000 description 1
- OXIKYYJDTWKERT-UHFFFAOYSA-N [4-(aminomethyl)cyclohexyl]methanamine Chemical compound NCC1CCC(CN)CC1 OXIKYYJDTWKERT-UHFFFAOYSA-N 0.000 description 1
- VNRNMVAITUZODT-UHFFFAOYSA-L [Cl-].[Cl-].CC=1C(C=CC=1)([Zr+2](C1C=CC=C1)[SiH3])C Chemical compound [Cl-].[Cl-].CC=1C(C=CC=1)([Zr+2](C1C=CC=C1)[SiH3])C VNRNMVAITUZODT-UHFFFAOYSA-L 0.000 description 1
- JOJPFQVZNUNZBO-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[Mn+2].[Mn+2].[Mn+2].[Mn+2].[Mn+2].[Mn+2].[Mn+2] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[Mn+2].[Mn+2].[Mn+2].[Mn+2].[Mn+2].[Mn+2].[Mn+2] JOJPFQVZNUNZBO-UHFFFAOYSA-N 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- MCDLETWIOVSGJT-UHFFFAOYSA-N acetic acid;iron Chemical compound [Fe].CC(O)=O.CC(O)=O MCDLETWIOVSGJT-UHFFFAOYSA-N 0.000 description 1
- 125000005595 acetylacetonate group Chemical group 0.000 description 1
- 239000003377 acid catalyst Substances 0.000 description 1
- 206010000496 acne Diseases 0.000 description 1
- 150000001253 acrylic acids Chemical class 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910001860 alkaline earth metal hydroxide Inorganic materials 0.000 description 1
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 description 1
- 125000004450 alkenylene group Chemical group 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 125000003282 alkyl amino group Chemical group 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- 239000002168 alkylating agent Substances 0.000 description 1
- 229940100198 alkylating agent Drugs 0.000 description 1
- 230000002152 alkylating effect Effects 0.000 description 1
- 125000000304 alkynyl group Chemical group 0.000 description 1
- OOCCDEMITAIZTP-UHFFFAOYSA-N allylic benzylic alcohol Natural products OCC=CC1=CC=CC=C1 OOCCDEMITAIZTP-UHFFFAOYSA-N 0.000 description 1
- 125000000746 allylic group Chemical group 0.000 description 1
- OBETXYAYXDNJHR-UHFFFAOYSA-N alpha-ethylcaproic acid Natural products CCCCC(CC)C(O)=O OBETXYAYXDNJHR-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- CBTVGIZVANVGBH-UHFFFAOYSA-N aminomethyl propanol Chemical compound CC(C)(N)CO CBTVGIZVANVGBH-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000010775 animal oil Substances 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 239000007866 anti-wear additive Substances 0.000 description 1
- 229940053200 antiepileptics fatty acid derivative Drugs 0.000 description 1
- 239000006079 antiknock agent Substances 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 239000013556 antirust agent Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 159000000032 aromatic acids Chemical class 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 150000008378 aryl ethers Chemical class 0.000 description 1
- 150000005840 aryl radicals Chemical group 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 239000000022 bacteriostatic agent Substances 0.000 description 1
- WDIHJSXYQDMJHN-UHFFFAOYSA-L barium chloride Chemical compound [Cl-].[Cl-].[Ba+2] WDIHJSXYQDMJHN-UHFFFAOYSA-L 0.000 description 1
- 229910001626 barium chloride Inorganic materials 0.000 description 1
- OYLGJCQECKOTOL-UHFFFAOYSA-L barium fluoride Chemical compound [F-].[F-].[Ba+2] OYLGJCQECKOTOL-UHFFFAOYSA-L 0.000 description 1
- 229910001632 barium fluoride Inorganic materials 0.000 description 1
- 159000000009 barium salts Chemical class 0.000 description 1
- QFKJCKFAYFUXRQ-UHFFFAOYSA-N barium;hydrate Chemical compound O.[Ba] QFKJCKFAYFUXRQ-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- KCXMKQUNVWSEMD-UHFFFAOYSA-N benzyl chloride Chemical compound ClCC1=CC=CC=C1 KCXMKQUNVWSEMD-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 125000006267 biphenyl group Chemical group 0.000 description 1
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 1
- WLLCYXDFVBWGBU-UHFFFAOYSA-N bis(8-methylnonyl) nonanedioate Chemical compound CC(C)CCCCCCCOC(=O)CCCCCCCC(=O)OCCCCCCCC(C)C WLLCYXDFVBWGBU-UHFFFAOYSA-N 0.000 description 1
- 150000004856 boroles Chemical class 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- WXCZUWHSJWOTRV-UHFFFAOYSA-N but-1-ene;ethene Chemical compound C=C.CCC=C WXCZUWHSJWOTRV-UHFFFAOYSA-N 0.000 description 1
- CAJBCKDQYAWTND-UHFFFAOYSA-N but-2-enedithioic acid Chemical compound CC=CC(S)=S CAJBCKDQYAWTND-UHFFFAOYSA-N 0.000 description 1
- CZHWGVWPNCAWOR-UHFFFAOYSA-N but-2-enethioamide Chemical compound CC=CC(N)=S CZHWGVWPNCAWOR-UHFFFAOYSA-N 0.000 description 1
- YTTALSLGBLXCOB-UHFFFAOYSA-N but-2-enethioic s-acid Chemical compound CC=CC(S)=O YTTALSLGBLXCOB-UHFFFAOYSA-N 0.000 description 1
- YHWCPXVTRSHPNY-UHFFFAOYSA-N butan-1-olate;titanium(4+) Chemical compound [Ti+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] YHWCPXVTRSHPNY-UHFFFAOYSA-N 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- KYBWARAGOBBTNW-UHFFFAOYSA-L butanoate;cadmium(2+) Chemical compound [Cd+2].CCCC([O-])=O.CCCC([O-])=O KYBWARAGOBBTNW-UHFFFAOYSA-L 0.000 description 1
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical group CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 1
- AYVQFUWCMMUPEP-UHFFFAOYSA-N butyl prop-2-enedithioate Chemical group CCCCSC(=S)C=C AYVQFUWCMMUPEP-UHFFFAOYSA-N 0.000 description 1
- CWYLYGVPQOMSAD-UHFFFAOYSA-N butylsulfanyl prop-2-enoate Chemical group CCCCSOC(=O)C=C CWYLYGVPQOMSAD-UHFFFAOYSA-N 0.000 description 1
- LVEULQCPJDDSLD-UHFFFAOYSA-L cadmium fluoride Chemical compound F[Cd]F LVEULQCPJDDSLD-UHFFFAOYSA-L 0.000 description 1
- XIEPJMXMMWZAAV-UHFFFAOYSA-N cadmium nitrate Inorganic materials [Cd+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XIEPJMXMMWZAAV-UHFFFAOYSA-N 0.000 description 1
- IPYGWRGXZUHZSR-UHFFFAOYSA-L cadmium(2+) dihydrogen phosphate Chemical compound [Cd++].OP(O)([O-])=O.OP(O)([O-])=O IPYGWRGXZUHZSR-UHFFFAOYSA-L 0.000 description 1
- JOGSGUQZPZCJCG-UHFFFAOYSA-L cadmium(2+);dibenzoate Chemical compound [Cd+2].[O-]C(=O)C1=CC=CC=C1.[O-]C(=O)C1=CC=CC=C1 JOGSGUQZPZCJCG-UHFFFAOYSA-L 0.000 description 1
- BYJADUSHMADYRW-UHFFFAOYSA-L cadmium(2+);sulfite Chemical compound [Cd+2].[O-]S([O-])=O BYJADUSHMADYRW-UHFFFAOYSA-L 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 229910001634 calcium fluoride Inorganic materials 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- OSMZVRQRVPLKTN-UHFFFAOYSA-N calcium;1-nonyl-7-thiabicyclo[4.1.0]hepta-2,4-dien-6-ol Chemical compound [Ca].C1=CC=CC2(CCCCCCCCC)C1(O)S2 OSMZVRQRVPLKTN-UHFFFAOYSA-N 0.000 description 1
- ZMRQTIAUOLVKOX-UHFFFAOYSA-L calcium;diphenoxide Chemical compound [Ca+2].[O-]C1=CC=CC=C1.[O-]C1=CC=CC=C1 ZMRQTIAUOLVKOX-UHFFFAOYSA-L 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- QGJOPFRUJISHPQ-NJFSPNSNSA-N carbon disulfide-14c Chemical compound S=[14C]=S QGJOPFRUJISHPQ-NJFSPNSNSA-N 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000010538 cationic polymerization reaction Methods 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000003518 caustics Substances 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000005660 chlorination reaction Methods 0.000 description 1
- UGWBWPXTGFPEFG-UHFFFAOYSA-N chloro hypochlorite chromium Chemical compound [Cr].ClOCl UGWBWPXTGFPEFG-UHFFFAOYSA-N 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 229940055042 chromic sulfate Drugs 0.000 description 1
- 229940090961 chromium dioxide Drugs 0.000 description 1
- RYPRIXSYXLDSOA-UHFFFAOYSA-L chromium(2+);sulfate Chemical compound [Cr+2].[O-]S([O-])(=O)=O RYPRIXSYXLDSOA-UHFFFAOYSA-L 0.000 description 1
- QOWZHEWZFLTYQP-UHFFFAOYSA-K chromium(3+);triformate Chemical compound [Cr+3].[O-]C=O.[O-]C=O.[O-]C=O QOWZHEWZFLTYQP-UHFFFAOYSA-K 0.000 description 1
- IAQWMWUKBQPOIY-UHFFFAOYSA-N chromium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Cr+4] IAQWMWUKBQPOIY-UHFFFAOYSA-N 0.000 description 1
- 229910000334 chromium(II) sulfate Inorganic materials 0.000 description 1
- GRWVQDDAKZFPFI-UHFFFAOYSA-H chromium(III) sulfate Chemical compound [Cr+3].[Cr+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O GRWVQDDAKZFPFI-UHFFFAOYSA-H 0.000 description 1
- 229910000356 chromium(III) sulfate Inorganic materials 0.000 description 1
- 239000011696 chromium(III) sulphate Substances 0.000 description 1
- 235000015217 chromium(III) sulphate Nutrition 0.000 description 1
- AYTAKQFHWFYBMA-UHFFFAOYSA-N chromium(IV) oxide Inorganic materials O=[Cr]=O AYTAKQFHWFYBMA-UHFFFAOYSA-N 0.000 description 1
- LRCIYVMVWAMTKX-UHFFFAOYSA-L chromium(ii) acetate Chemical compound [Cr+2].CC([O-])=O.CC([O-])=O LRCIYVMVWAMTKX-UHFFFAOYSA-L 0.000 description 1
- XBWRJSSJWDOUSJ-UHFFFAOYSA-L chromium(ii) chloride Chemical compound Cl[Cr]Cl XBWRJSSJWDOUSJ-UHFFFAOYSA-L 0.000 description 1
- UZDWIWGMKWZEPE-UHFFFAOYSA-K chromium(iii) bromide Chemical compound [Cr+3].[Br-].[Br-].[Br-] UZDWIWGMKWZEPE-UHFFFAOYSA-K 0.000 description 1
- 229940109126 chromous chloride Drugs 0.000 description 1
- 229930016911 cinnamic acid Natural products 0.000 description 1
- 235000013985 cinnamic acid Nutrition 0.000 description 1
- CCRCUPLGCSFEDV-UHFFFAOYSA-N cinnamic acid methyl ester Natural products COC(=O)C=CC1=CC=CC=C1 CCRCUPLGCSFEDV-UHFFFAOYSA-N 0.000 description 1
- HNEGQIOMVPPMNR-IHWYPQMZSA-N citraconic acid Chemical compound OC(=O)C(/C)=C\C(O)=O HNEGQIOMVPPMNR-IHWYPQMZSA-N 0.000 description 1
- 238000005352 clarification Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 229910021446 cobalt carbonate Inorganic materials 0.000 description 1
- QGUAJWGNOXCYJF-UHFFFAOYSA-N cobalt dinitrate hexahydrate Chemical compound O.O.O.O.O.O.[Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O QGUAJWGNOXCYJF-UHFFFAOYSA-N 0.000 description 1
- ZVLZZJUHYPMZAH-UHFFFAOYSA-L cobalt(2+) dinitrite Chemical compound [Co+2].[O-]N=O.[O-]N=O ZVLZZJUHYPMZAH-UHFFFAOYSA-L 0.000 description 1
- IUYLTEAJCNAMJK-UHFFFAOYSA-N cobalt(2+);oxygen(2-) Chemical compound [O-2].[Co+2] IUYLTEAJCNAMJK-UHFFFAOYSA-N 0.000 description 1
- 229910000001 cobalt(II) carbonate Inorganic materials 0.000 description 1
- BZRRQSJJPUGBAA-UHFFFAOYSA-L cobalt(ii) bromide Chemical compound Br[Co]Br BZRRQSJJPUGBAA-UHFFFAOYSA-L 0.000 description 1
- 229940045032 cobaltous nitrate Drugs 0.000 description 1
- 229940045029 cobaltous nitrate hexahydrate Drugs 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000007859 condensation product Substances 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 150000001879 copper Chemical class 0.000 description 1
- 229940116318 copper carbonate Drugs 0.000 description 1
- BERDEBHAJNAUOM-UHFFFAOYSA-N copper(I) oxide Inorganic materials [Cu]O[Cu] BERDEBHAJNAUOM-UHFFFAOYSA-N 0.000 description 1
- CMRVDFLZXRTMTH-UHFFFAOYSA-L copper;2-carboxyphenolate Chemical compound [Cu+2].OC1=CC=CC=C1C([O-])=O.OC1=CC=CC=C1C([O-])=O CMRVDFLZXRTMTH-UHFFFAOYSA-L 0.000 description 1
- GEZOTWYUIKXWOA-UHFFFAOYSA-L copper;carbonate Chemical compound [Cu+2].[O-]C([O-])=O GEZOTWYUIKXWOA-UHFFFAOYSA-L 0.000 description 1
- KGGZTXSNARMULX-UHFFFAOYSA-L copper;dicarbamodithioate Chemical class [Cu+2].NC([S-])=S.NC([S-])=S KGGZTXSNARMULX-UHFFFAOYSA-L 0.000 description 1
- HFDWIMBEIXDNQS-UHFFFAOYSA-L copper;diformate Chemical compound [Cu+2].[O-]C=O.[O-]C=O HFDWIMBEIXDNQS-UHFFFAOYSA-L 0.000 description 1
- XNEQAVYOCNWYNZ-UHFFFAOYSA-L copper;dinitrite Chemical compound [Cu+2].[O-]N=O.[O-]N=O XNEQAVYOCNWYNZ-UHFFFAOYSA-L 0.000 description 1
- LZJJVTQGPPWQFS-UHFFFAOYSA-L copper;propanoate Chemical compound [Cu+2].CCC([O-])=O.CCC([O-])=O LZJJVTQGPPWQFS-UHFFFAOYSA-L 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 229920006037 cross link polymer Polymers 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 229940076286 cupric acetate Drugs 0.000 description 1
- 229960004643 cupric oxide Drugs 0.000 description 1
- KRFJLUBVMFXRPN-UHFFFAOYSA-N cuprous oxide Chemical compound [O-2].[Cu+].[Cu+] KRFJLUBVMFXRPN-UHFFFAOYSA-N 0.000 description 1
- 229940112669 cuprous oxide Drugs 0.000 description 1
- 239000004148 curcumin Substances 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 125000001485 cycloalkadienyl group Chemical group 0.000 description 1
- SUNQFLMZWFQFML-UHFFFAOYSA-N cyclopropyl 2,3-dimethylbut-2-enedithioate Chemical group CC(C)=C(C)C(=S)SC1CC1 SUNQFLMZWFQFML-UHFFFAOYSA-N 0.000 description 1
- MDVOGZKYTLSJKW-UHFFFAOYSA-N cyclopropyl 2,3-dimethylbut-2-enoate Chemical compound CC(C)=C(C)C(=O)OC1CC1 MDVOGZKYTLSJKW-UHFFFAOYSA-N 0.000 description 1
- NUYDMSKICGIIPW-UHFFFAOYSA-N cyclopropylsulfanyl 2,3-dimethylbut-2-enoate Chemical group CC(C)=C(C)C(=O)OSC1CC1 NUYDMSKICGIIPW-UHFFFAOYSA-N 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- HDVNDJBJGDAUMG-UHFFFAOYSA-N dec-2-enedithioic acid Chemical compound CCCCCCCC=CC(S)=S HDVNDJBJGDAUMG-UHFFFAOYSA-N 0.000 description 1
- FMCAVMHAODYYBR-UHFFFAOYSA-N dec-2-enethioic s-acid Chemical compound CCCCCCCC=CC(O)=S FMCAVMHAODYYBR-UHFFFAOYSA-N 0.000 description 1
- DIOQZVSQGTUSAI-NJFSPNSNSA-N decane Chemical compound CCCCCCCCC[14CH3] DIOQZVSQGTUSAI-NJFSPNSNSA-N 0.000 description 1
- GTBGXKPAKVYEKJ-UHFFFAOYSA-N decyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCOC(=O)C(C)=C GTBGXKPAKVYEKJ-UHFFFAOYSA-N 0.000 description 1
- DZQISOJKASMITI-UHFFFAOYSA-N decyl-dioxido-oxo-$l^{5}-phosphane;hydron Chemical compound CCCCCCCCCCP(O)(O)=O DZQISOJKASMITI-UHFFFAOYSA-N 0.000 description 1
- 238000006356 dehydrogenation reaction Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229940100539 dibutyl adipate Drugs 0.000 description 1
- RCJVRSBWZCNNQT-UHFFFAOYSA-N dichloridooxygen Chemical compound ClOCl RCJVRSBWZCNNQT-UHFFFAOYSA-N 0.000 description 1
- 229940117389 dichlorobenzene Drugs 0.000 description 1
- QGBSISYHAICWAH-UHFFFAOYSA-N dicyandiamide Chemical compound NC(N)=NC#N QGBSISYHAICWAH-UHFFFAOYSA-N 0.000 description 1
- 239000002283 diesel fuel Substances 0.000 description 1
- LVTYICIALWPMFW-UHFFFAOYSA-N diisopropanolamine Chemical compound CC(O)CNCC(C)O LVTYICIALWPMFW-UHFFFAOYSA-N 0.000 description 1
- 229940043276 diisopropanolamine Drugs 0.000 description 1
- 230000000447 dimerizing effect Effects 0.000 description 1
- AFABGHUZZDYHJO-UHFFFAOYSA-N dimethyl butane Natural products CCCC(C)C AFABGHUZZDYHJO-UHFFFAOYSA-N 0.000 description 1
- 229960004419 dimethyl fumarate Drugs 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 1
- JVSWJIKNEAIKJW-UHFFFAOYSA-N dimethyl-hexane Natural products CCCCCC(C)C JVSWJIKNEAIKJW-UHFFFAOYSA-N 0.000 description 1
- SWSQBOPZIKWTGO-UHFFFAOYSA-N dimethylaminoamidine Natural products CN(C)C(N)=N SWSQBOPZIKWTGO-UHFFFAOYSA-N 0.000 description 1
- MIMDHDXOBDPUQW-UHFFFAOYSA-N dioctyl decanedioate Chemical compound CCCCCCCCOC(=O)CCCCCCCCC(=O)OCCCCCCCC MIMDHDXOBDPUQW-UHFFFAOYSA-N 0.000 description 1
- NFCMRHDORQSGIS-MDZDMXLPSA-N dipentyl (e)-but-2-enedioate Chemical compound CCCCCOC(=O)\C=C\C(=O)OCCCCC NFCMRHDORQSGIS-MDZDMXLPSA-N 0.000 description 1
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 1
- GRWZHXKQBITJKP-UHFFFAOYSA-L dithionite(2-) Chemical compound [O-]S(=O)S([O-])=O GRWZHXKQBITJKP-UHFFFAOYSA-L 0.000 description 1
- KHAYCTOSKLIHEP-UHFFFAOYSA-N docosyl prop-2-enoate Chemical compound CCCCCCCCCCCCCCCCCCCCCCOC(=O)C=C KHAYCTOSKLIHEP-UHFFFAOYSA-N 0.000 description 1
- POULHZVOKOAJMA-UHFFFAOYSA-M dodecanoate Chemical compound CCCCCCCCCCCC([O-])=O POULHZVOKOAJMA-UHFFFAOYSA-M 0.000 description 1
- 229940069096 dodecene Drugs 0.000 description 1
- GMSCBRSQMRDRCD-UHFFFAOYSA-N dodecyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCCCOC(=O)C(C)=C GMSCBRSQMRDRCD-UHFFFAOYSA-N 0.000 description 1
- KNKZBBNFQLHMHT-UHFFFAOYSA-N dodecyl dec-2-enedithioate Chemical group CCCCCCCCCCCCSC(=S)C=CCCCCCCC KNKZBBNFQLHMHT-UHFFFAOYSA-N 0.000 description 1
- SXYVQIIIGBZLEN-UHFFFAOYSA-N dodecylsulfanyl dec-2-enoate Chemical group CCCCCCCCCCCCSOC(=O)C=CCCCCCCC SXYVQIIIGBZLEN-UHFFFAOYSA-N 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000005485 electric heating Methods 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- 239000010696 ester oil Substances 0.000 description 1
- 150000002168 ethanoic acid esters Chemical class 0.000 description 1
- LPUZTLKYAOOFDX-QXMHVHEDSA-N ethenyl (z)-octadec-9-enoate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC=C LPUZTLKYAOOFDX-QXMHVHEDSA-N 0.000 description 1
- GLVVKKSPKXTQRB-UHFFFAOYSA-N ethenyl dodecanoate Chemical compound CCCCCCCCCCCC(=O)OC=C GLVVKKSPKXTQRB-UHFFFAOYSA-N 0.000 description 1
- UJRIYYLGNDXVTA-UHFFFAOYSA-N ethenyl hexadecanoate Chemical compound CCCCCCCCCCCCCCCC(=O)OC=C UJRIYYLGNDXVTA-UHFFFAOYSA-N 0.000 description 1
- AFSIMBWBBOJPJG-UHFFFAOYSA-N ethenyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC=C AFSIMBWBBOJPJG-UHFFFAOYSA-N 0.000 description 1
- 125000001033 ether group Chemical group 0.000 description 1
- 238000006266 etherification reaction Methods 0.000 description 1
- AEOCXXJPGCBFJA-UHFFFAOYSA-N ethionamide Chemical compound CCC1=CC(C(N)=S)=CC=N1 AEOCXXJPGCBFJA-UHFFFAOYSA-N 0.000 description 1
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 1
- LXLHVLABRDOTCL-UHFFFAOYSA-N ethyl hex-2-enedithioate Chemical compound CCCC=CC(=S)SCC LXLHVLABRDOTCL-UHFFFAOYSA-N 0.000 description 1
- 229920006213 ethylene-alphaolefin copolymer Polymers 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 229940046149 ferrous bromide Drugs 0.000 description 1
- RAQDACVRFCEPDA-UHFFFAOYSA-L ferrous carbonate Chemical compound [Fe+2].[O-]C([O-])=O RAQDACVRFCEPDA-UHFFFAOYSA-L 0.000 description 1
- 235000019268 ferrous carbonate Nutrition 0.000 description 1
- 229960004652 ferrous carbonate Drugs 0.000 description 1
- 239000004225 ferrous lactate Substances 0.000 description 1
- 235000013925 ferrous lactate Nutrition 0.000 description 1
- 229940037907 ferrous lactate Drugs 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 150000003948 formamides Chemical class 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 239000002816 fuel additive Substances 0.000 description 1
- 235000011087 fumaric acid Nutrition 0.000 description 1
- XLYMOEINVGRTEX-UHFFFAOYSA-N fumaric acid monoethyl ester Natural products CCOC(=O)C=CC(O)=O XLYMOEINVGRTEX-UHFFFAOYSA-N 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 150000002314 glycerols Chemical class 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 125000001475 halogen functional group Chemical group 0.000 description 1
- RBSPDODFCYXXSX-UHFFFAOYSA-N hex-2-enedithioic acid Chemical compound CCCC=CC(S)=S RBSPDODFCYXXSX-UHFFFAOYSA-N 0.000 description 1
- HQBQATUBTMAFDR-UHFFFAOYSA-N hex-2-enethioamide Chemical compound CCCC=CC(N)=S HQBQATUBTMAFDR-UHFFFAOYSA-N 0.000 description 1
- OLGUNRKAYNNEJL-UHFFFAOYSA-N hex-2-enethioic s-acid Chemical compound CCCC=CC(O)=S OLGUNRKAYNNEJL-UHFFFAOYSA-N 0.000 description 1
- IPCSVZSSVZVIGE-UHFFFAOYSA-M hexadecanoate Chemical compound CCCCCCCCCCCCCCCC([O-])=O IPCSVZSSVZVIGE-UHFFFAOYSA-M 0.000 description 1
- ZNAOFAIBVOMLPV-UHFFFAOYSA-N hexadecyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCCCCCCCOC(=O)C(C)=C ZNAOFAIBVOMLPV-UHFFFAOYSA-N 0.000 description 1
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 150000002431 hydrogen Chemical group 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-M hydrosulfide Chemical compound [SH-] RWSOTUBLDIXVET-UHFFFAOYSA-M 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- NGYRYRBDIPYKTL-UHFFFAOYSA-N icosyl prop-2-enoate Chemical compound CCCCCCCCCCCCCCCCCCCCOC(=O)C=C NGYRYRBDIPYKTL-UHFFFAOYSA-N 0.000 description 1
- 125000002636 imidazolinyl group Chemical group 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 150000008040 ionic compounds Chemical class 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- FPNCFEPWJLGURZ-UHFFFAOYSA-L iron(2+);sulfite Chemical compound [Fe+2].[O-]S([O-])=O FPNCFEPWJLGURZ-UHFFFAOYSA-L 0.000 description 1
- ITAUHKJMPRCVIH-UHFFFAOYSA-K iron(3+);tribenzoate Chemical compound [Fe+3].[O-]C(=O)C1=CC=CC=C1.[O-]C(=O)C1=CC=CC=C1.[O-]C(=O)C1=CC=CC=C1 ITAUHKJMPRCVIH-UHFFFAOYSA-K 0.000 description 1
- WHRBSMVATPCWLU-UHFFFAOYSA-K iron(3+);triformate Chemical compound [Fe+3].[O-]C=O.[O-]C=O.[O-]C=O WHRBSMVATPCWLU-UHFFFAOYSA-K 0.000 description 1
- YHGPYBQVSJBGHH-UHFFFAOYSA-H iron(3+);trisulfate;pentahydrate Chemical compound O.O.O.O.O.[Fe+3].[Fe+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O YHGPYBQVSJBGHH-UHFFFAOYSA-H 0.000 description 1
- 229910000015 iron(II) carbonate Inorganic materials 0.000 description 1
- 229910000360 iron(III) sulfate Inorganic materials 0.000 description 1
- GYCHYNMREWYSKH-UHFFFAOYSA-L iron(ii) bromide Chemical compound [Fe+2].[Br-].[Br-] GYCHYNMREWYSKH-UHFFFAOYSA-L 0.000 description 1
- 239000001282 iso-butane Substances 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- GKQPCPXONLDCMU-CCEZHUSRSA-N lacidipine Chemical compound CCOC(=O)C1=C(C)NC(C)=C(C(=O)OCC)C1C1=CC=CC=C1\C=C\C(=O)OC(C)(C)C GKQPCPXONLDCMU-CCEZHUSRSA-N 0.000 description 1
- 239000010699 lard oil Substances 0.000 description 1
- 229940070765 laurate Drugs 0.000 description 1
- PBOSTUDLECTMNL-UHFFFAOYSA-N lauryl acrylate Chemical compound CCCCCCCCCCCCOC(=O)C=C PBOSTUDLECTMNL-UHFFFAOYSA-N 0.000 description 1
- 150000002611 lead compounds Chemical class 0.000 description 1
- RLJMLMKIBZAXJO-UHFFFAOYSA-N lead nitrate Chemical compound [O-][N+](=O)O[Pb]O[N+]([O-])=O RLJMLMKIBZAXJO-UHFFFAOYSA-N 0.000 description 1
- 239000006080 lead scavenger Substances 0.000 description 1
- YAFKGUAJYKXPDI-UHFFFAOYSA-J lead tetrafluoride Chemical compound F[Pb](F)(F)F YAFKGUAJYKXPDI-UHFFFAOYSA-J 0.000 description 1
- HWSZZLVAJGOAAY-UHFFFAOYSA-L lead(II) chloride Chemical compound Cl[Pb]Cl HWSZZLVAJGOAAY-UHFFFAOYSA-L 0.000 description 1
- 239000012263 liquid product Substances 0.000 description 1
- UEGPKNKPLBYCNK-UHFFFAOYSA-L magnesium acetate Chemical compound [Mg+2].CC([O-])=O.CC([O-])=O UEGPKNKPLBYCNK-UHFFFAOYSA-L 0.000 description 1
- 239000011654 magnesium acetate Substances 0.000 description 1
- 235000011285 magnesium acetate Nutrition 0.000 description 1
- 229940069446 magnesium acetate Drugs 0.000 description 1
- OTCKOJUMXQWKQG-UHFFFAOYSA-L magnesium bromide Chemical compound [Mg+2].[Br-].[Br-] OTCKOJUMXQWKQG-UHFFFAOYSA-L 0.000 description 1
- 229910001623 magnesium bromide Inorganic materials 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 239000011565 manganese chloride Substances 0.000 description 1
- 235000002867 manganese chloride Nutrition 0.000 description 1
- 229910000471 manganese heptoxide Inorganic materials 0.000 description 1
- FLFJVPPJGJSHMF-UHFFFAOYSA-L manganese hypophosphite Chemical compound [Mn+2].[O-]P=O.[O-]P=O FLFJVPPJGJSHMF-UHFFFAOYSA-L 0.000 description 1
- UOGMEBQRZBEZQT-UHFFFAOYSA-L manganese(2+);diacetate Chemical compound [Mn+2].CC([O-])=O.CC([O-])=O UOGMEBQRZBEZQT-UHFFFAOYSA-L 0.000 description 1
- HDJUVFZHZGPHCQ-UHFFFAOYSA-L manganese(2+);oxalate;dihydrate Chemical compound O.O.[Mn+2].[O-]C(=O)C([O-])=O HDJUVFZHZGPHCQ-UHFFFAOYSA-L 0.000 description 1
- XMWCXZJXESXBBY-UHFFFAOYSA-L manganese(ii) carbonate Chemical compound [Mn+2].[O-]C([O-])=O XMWCXZJXESXBBY-UHFFFAOYSA-L 0.000 description 1
- GEYXPJBPASPPLI-UHFFFAOYSA-N manganese(iii) oxide Chemical compound O=[Mn]O[Mn]=O GEYXPJBPASPPLI-UHFFFAOYSA-N 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 238000010077 mastication Methods 0.000 description 1
- 230000018984 mastication Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- HNEGQIOMVPPMNR-NSCUHMNNSA-N mesaconic acid Chemical compound OC(=O)C(/C)=C/C(O)=O HNEGQIOMVPPMNR-NSCUHMNNSA-N 0.000 description 1
- 239000006078 metal deactivator Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 229910001960 metal nitrate Inorganic materials 0.000 description 1
- 125000005341 metaphosphate group Chemical group 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Natural products C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- MCVVUJPXSBQTRZ-ONEGZZNKSA-N methyl (e)-but-2-enoate Chemical compound COC(=O)\C=C\C MCVVUJPXSBQTRZ-ONEGZZNKSA-N 0.000 description 1
- IKUXUNCAGZGGHS-UHFFFAOYSA-N methyl 3-phenylprop-2-enedithioate Chemical group CSC(=S)C=CC1=CC=CC=C1 IKUXUNCAGZGGHS-UHFFFAOYSA-N 0.000 description 1
- GJDFCRRMUBSUKM-UHFFFAOYSA-N methyl but-2-enedithioate Chemical compound CSC(=S)C=CC GJDFCRRMUBSUKM-UHFFFAOYSA-N 0.000 description 1
- WBYWAXJHAXSJNI-UHFFFAOYSA-N methyl p-hydroxycinnamate Natural products OC(=O)C=CC1=CC=CC=C1 WBYWAXJHAXSJNI-UHFFFAOYSA-N 0.000 description 1
- CCRCUPLGCSFEDV-BQYQJAHWSA-N methyl trans-cinnamate Chemical compound COC(=O)\C=C\C1=CC=CC=C1 CCRCUPLGCSFEDV-BQYQJAHWSA-N 0.000 description 1
- GYNNXHKOJHMOHS-UHFFFAOYSA-N methyl-cycloheptane Natural products CC1CCCCCC1 GYNNXHKOJHMOHS-UHFFFAOYSA-N 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- APBYQLWIGSDFLR-UHFFFAOYSA-N methylsulfanyl 2-methylprop-2-enoate Chemical group CSOC(=O)C(C)=C APBYQLWIGSDFLR-UHFFFAOYSA-N 0.000 description 1
- HFBYLUFNRRHUNT-UHFFFAOYSA-N methylsulfanyl 3-phenylprop-2-enoate Chemical group CSOC(=O)C=CC1=CC=CC=C1 HFBYLUFNRRHUNT-UHFFFAOYSA-N 0.000 description 1
- WWJRTTXEHZCFHB-UHFFFAOYSA-N methylsulfanyl but-2-enoate Chemical compound CSOC(=O)C=CC WWJRTTXEHZCFHB-UHFFFAOYSA-N 0.000 description 1
- JCCWBLXWOYOGSL-UHFFFAOYSA-N methylsulfanyl prop-2-enoate Chemical group CSOC(=O)C=C JCCWBLXWOYOGSL-UHFFFAOYSA-N 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 150000002751 molybdenum Chemical class 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000010705 motor oil Substances 0.000 description 1
- XMMDVXFQGOEOKH-UHFFFAOYSA-N n'-dodecylpropane-1,3-diamine Chemical compound CCCCCCCCCCCCNCCCN XMMDVXFQGOEOKH-UHFFFAOYSA-N 0.000 description 1
- SUAMAFBZQDFYFL-UHFFFAOYSA-N n,n-diethylhex-2-enethioamide Chemical compound CCCC=CC(=S)N(CC)CC SUAMAFBZQDFYFL-UHFFFAOYSA-N 0.000 description 1
- PTRSTXBRQVXIEW-UHFFFAOYSA-N n,n-dioctylaniline Chemical compound CCCCCCCCN(CCCCCCCC)C1=CC=CC=C1 PTRSTXBRQVXIEW-UHFFFAOYSA-N 0.000 description 1
- DIOQZVSQGTUSAI-UHFFFAOYSA-N n-butylhexane Natural products CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 1
- BLUUJXYJOQZFGR-UHFFFAOYSA-N n-cyclopropyl-2,3-dimethylbut-2-enethioamide Chemical compound CC(C)=C(C)C(=S)NC1CC1 BLUUJXYJOQZFGR-UHFFFAOYSA-N 0.000 description 1
- 125000003136 n-heptyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- ZHRFXYOAUCPUNI-UHFFFAOYSA-N n-methyl-3-phenylprop-2-enethioamide Chemical compound CNC(=S)C=CC1=CC=CC=C1 ZHRFXYOAUCPUNI-UHFFFAOYSA-N 0.000 description 1
- WKZZWAURBFBPRY-UHFFFAOYSA-N n-methylbut-2-enethioamide Chemical compound CNC(=S)C=CC WKZZWAURBFBPRY-UHFFFAOYSA-N 0.000 description 1
- AFYYYOVRJNQSEU-UHFFFAOYSA-N n-octadecylprop-2-enethioamide Chemical compound CCCCCCCCCCCCCCCCCCNC(=S)C=C AFYYYOVRJNQSEU-UHFFFAOYSA-N 0.000 description 1
- LESFKLOKUJFJJF-UHFFFAOYSA-N n-phenylpent-2-enethioamide Chemical compound CCC=CC(=S)NC1=CC=CC=C1 LESFKLOKUJFJJF-UHFFFAOYSA-N 0.000 description 1
- YZABCUFOQKSQAS-UHFFFAOYSA-N n-propan-2-yldec-2-enethioamide Chemical compound CCCCCCCC=CC(=S)NC(C)C YZABCUFOQKSQAS-UHFFFAOYSA-N 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- FGCUQSOJDGGJOS-UHFFFAOYSA-N n-tert-butylprop-2-enethioamide Chemical compound CC(C)(C)NC(=S)C=C FGCUQSOJDGGJOS-UHFFFAOYSA-N 0.000 description 1
- 125000005608 naphthenic acid group Chemical group 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 125000004957 naphthylene group Chemical group 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- LVBIMKHYBUACBU-CVBJKYQLSA-L nickel(2+);(z)-octadec-9-enoate Chemical compound [Ni+2].CCCCCCCC\C=C/CCCCCCCC([O-])=O.CCCCCCCC\C=C/CCCCCCCC([O-])=O LVBIMKHYBUACBU-CVBJKYQLSA-L 0.000 description 1
- IPLJNQFXJUCRNH-UHFFFAOYSA-L nickel(2+);dibromide Chemical compound [Ni+2].[Br-].[Br-] IPLJNQFXJUCRNH-UHFFFAOYSA-L 0.000 description 1
- UQPSGBZICXWIAG-UHFFFAOYSA-L nickel(2+);dibromide;trihydrate Chemical compound O.O.O.Br[Ni]Br UQPSGBZICXWIAG-UHFFFAOYSA-L 0.000 description 1
- AOPCKOPZYFFEDA-UHFFFAOYSA-N nickel(2+);dinitrate;hexahydrate Chemical compound O.O.O.O.O.O.[Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O AOPCKOPZYFFEDA-UHFFFAOYSA-N 0.000 description 1
- JMWUYEFBFUCSAK-UHFFFAOYSA-L nickel(2+);octadecanoate Chemical compound [Ni+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O JMWUYEFBFUCSAK-UHFFFAOYSA-L 0.000 description 1
- LONQOCRNVIZRSA-UHFFFAOYSA-L nickel(2+);sulfite Chemical compound [Ni+2].[O-]S([O-])=O LONQOCRNVIZRSA-UHFFFAOYSA-L 0.000 description 1
- DBJLJFTWODWSOF-UHFFFAOYSA-L nickel(ii) fluoride Chemical compound F[Ni]F DBJLJFTWODWSOF-UHFFFAOYSA-L 0.000 description 1
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 150000002826 nitrites Chemical class 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 1
- 239000012454 non-polar solvent Substances 0.000 description 1
- DLSYVHPQBSVDCU-UHFFFAOYSA-N o-butyl prop-2-enethioate Chemical group CCCCOC(=S)C=C DLSYVHPQBSVDCU-UHFFFAOYSA-N 0.000 description 1
- KQCLMPWSSHFHRL-UHFFFAOYSA-N o-cyclopropyl 2,3-dimethylbut-2-enethioate Chemical group CC(C)=C(C)C(=S)OC1CC1 KQCLMPWSSHFHRL-UHFFFAOYSA-N 0.000 description 1
- SXGXDQHQHVRYBL-UHFFFAOYSA-N o-dodecyl dec-2-enethioate Chemical group CCCCCCCCCCCCOC(=S)C=CCCCCCCC SXGXDQHQHVRYBL-UHFFFAOYSA-N 0.000 description 1
- CRMVNRXGVPDORQ-UHFFFAOYSA-N o-ethyl hex-2-enethioate Chemical compound CCCC=CC(=S)OCC CRMVNRXGVPDORQ-UHFFFAOYSA-N 0.000 description 1
- IQUPLCAUZCVWFG-UHFFFAOYSA-N o-methyl 3-phenylprop-2-enethioate Chemical group COC(=S)C=CC1=CC=CC=C1 IQUPLCAUZCVWFG-UHFFFAOYSA-N 0.000 description 1
- LQRCLOLFXCAFDQ-UHFFFAOYSA-N o-methyl but-2-enethioate Chemical compound COC(=S)C=CC LQRCLOLFXCAFDQ-UHFFFAOYSA-N 0.000 description 1
- SQVGTULYLYOGPL-UHFFFAOYSA-N o-methyl prop-2-enethioate Chemical compound COC(=S)C=C SQVGTULYLYOGPL-UHFFFAOYSA-N 0.000 description 1
- ZXJVTNKAZONCHY-UHFFFAOYSA-N o-octadecyl prop-2-enethioate Chemical group CCCCCCCCCCCCCCCCCCOC(=S)C=C ZXJVTNKAZONCHY-UHFFFAOYSA-N 0.000 description 1
- VHWREAQECFXPMT-UHFFFAOYSA-N o-phenyl pent-2-enethioate Chemical compound CCC=CC(=S)OC1=CC=CC=C1 VHWREAQECFXPMT-UHFFFAOYSA-N 0.000 description 1
- MHWPMJZBMHYOLS-UHFFFAOYSA-N o-propan-2-yl dec-2-enethioate Chemical compound CCCCCCCC=CC(=S)OC(C)C MHWPMJZBMHYOLS-UHFFFAOYSA-N 0.000 description 1
- CCCMONHAUSKTEQ-UHFFFAOYSA-N octadec-1-ene Chemical compound CCCCCCCCCCCCCCCCC=C CCCMONHAUSKTEQ-UHFFFAOYSA-N 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- HMZGPNHSPWNGEP-UHFFFAOYSA-N octadecyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCCCCCCCCCOC(=O)C(C)=C HMZGPNHSPWNGEP-UHFFFAOYSA-N 0.000 description 1
- PZNTYJJVRKRUCK-UHFFFAOYSA-N octadecyl prop-2-enedithioate Chemical group CCCCCCCCCCCCCCCCCCSC(=S)C=C PZNTYJJVRKRUCK-UHFFFAOYSA-N 0.000 description 1
- FSAJWMJJORKPKS-UHFFFAOYSA-N octadecyl prop-2-enoate Chemical group CCCCCCCCCCCCCCCCCCOC(=O)C=C FSAJWMJJORKPKS-UHFFFAOYSA-N 0.000 description 1
- QWKUCLPCEZZYMF-UHFFFAOYSA-N octadecylsulfanyl prop-2-enoate Chemical group CCCCCCCCCCCCCCCCCCSOC(=O)C=C QWKUCLPCEZZYMF-UHFFFAOYSA-N 0.000 description 1
- CBFCDTFDPHXCNY-UHFFFAOYSA-N octyldodecane Natural products CCCCCCCCCCCCCCCCCCCC CBFCDTFDPHXCNY-UHFFFAOYSA-N 0.000 description 1
- FATBGEAMYMYZAF-KTKRTIGZSA-N oleamide Chemical compound CCCCCCCC\C=C/CCCCCCCC(N)=O FATBGEAMYMYZAF-KTKRTIGZSA-N 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid group Chemical group C(CCCCCCC\C=C/CCCCCCCC)(=O)O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- FATBGEAMYMYZAF-UHFFFAOYSA-N oleicacidamide-heptaglycolether Natural products CCCCCCCCC=CCCCCCCCC(N)=O FATBGEAMYMYZAF-UHFFFAOYSA-N 0.000 description 1
- 229940055577 oleyl alcohol Drugs 0.000 description 1
- XMLQWXUVTXCDDL-UHFFFAOYSA-N oleyl alcohol Natural products CCCCCCC=CCCCCCCCCCCO XMLQWXUVTXCDDL-UHFFFAOYSA-N 0.000 description 1
- 238000002103 osmometry Methods 0.000 description 1
- 125000004043 oxo group Chemical group O=* 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- NDLPOXTZKUMGOV-UHFFFAOYSA-N oxo(oxoferriooxy)iron hydrate Chemical compound O.O=[Fe]O[Fe]=O NDLPOXTZKUMGOV-UHFFFAOYSA-N 0.000 description 1
- VASIZKWUTCETSD-UHFFFAOYSA-N oxomanganese Chemical compound [Mn]=O VASIZKWUTCETSD-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- IPCSVZSSVZVIGE-UHFFFAOYSA-N palmitic acid group Chemical group C(CCCCCCCCCCCCCCC)(=O)O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- PJLHTVIBELQURV-UHFFFAOYSA-N pentadecene Natural products CCCCCCCCCCCCCC=C PJLHTVIBELQURV-UHFFFAOYSA-N 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 238000005325 percolation Methods 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- GWKXQXRSTZMWEC-UHFFFAOYSA-N phenyl pent-2-enedithioate Chemical compound CCC=CC(=S)SC1=CC=CC=C1 GWKXQXRSTZMWEC-UHFFFAOYSA-N 0.000 description 1
- BHCFBDCHBYEIGM-UHFFFAOYSA-N phenyl pent-2-enoate Chemical compound CCC=CC(=O)OC1=CC=CC=C1 BHCFBDCHBYEIGM-UHFFFAOYSA-N 0.000 description 1
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N phenylbenzene Natural products C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 1
- NAWTUQVPWPAVBC-UHFFFAOYSA-N phenylsulfanyl pent-2-enoate Chemical compound CCC=CC(=O)OSC1=CC=CC=C1 NAWTUQVPWPAVBC-UHFFFAOYSA-N 0.000 description 1
- NMHMNPHRMNGLLB-UHFFFAOYSA-N phloretic acid Chemical compound OC(=O)CCC1=CC=C(O)C=C1 NMHMNPHRMNGLLB-UHFFFAOYSA-N 0.000 description 1
- ACVYVLVWPXVTIT-UHFFFAOYSA-M phosphinate Chemical compound [O-][PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-M 0.000 description 1
- UEZVMMHDMIWARA-UHFFFAOYSA-M phosphonate Chemical compound [O-]P(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-M 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920000333 poly(propyleneimine) Polymers 0.000 description 1
- 229920001921 poly-methyl-phenyl-siloxane Polymers 0.000 description 1
- 229920001515 polyalkylene glycol Polymers 0.000 description 1
- 239000010695 polyglycol Substances 0.000 description 1
- 229920000151 polyglycol Polymers 0.000 description 1
- 239000002685 polymerization catalyst Substances 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920001021 polysulfide Polymers 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- ZGJADVGJIVEEGF-UHFFFAOYSA-M potassium;phenoxide Chemical compound [K+].[O-]C1=CC=CC=C1 ZGJADVGJIVEEGF-UHFFFAOYSA-M 0.000 description 1
- 150000003138 primary alcohols Chemical class 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- WKYNPIKYIANCQH-UHFFFAOYSA-N prop-2-enedithioic acid Chemical compound SC(=S)C=C WKYNPIKYIANCQH-UHFFFAOYSA-N 0.000 description 1
- IHRLABACBKPYLT-UHFFFAOYSA-N prop-2-enethioamide Chemical compound NC(=S)C=C IHRLABACBKPYLT-UHFFFAOYSA-N 0.000 description 1
- WRIQZMMFAMFZSM-UHFFFAOYSA-N prop-2-enethioic s-acid Chemical compound SC(=O)C=C WRIQZMMFAMFZSM-UHFFFAOYSA-N 0.000 description 1
- TVDSBUOJIPERQY-UHFFFAOYSA-N prop-2-yn-1-ol Chemical compound OCC#C TVDSBUOJIPERQY-UHFFFAOYSA-N 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- WRZMGRMLQRLFNL-UHFFFAOYSA-N propan-2-yl dec-2-enedithioate Chemical compound CCCCCCCC=CC(=S)SC(C)C WRZMGRMLQRLFNL-UHFFFAOYSA-N 0.000 description 1
- ODECNOLARBFIAU-UHFFFAOYSA-N propan-2-yl dec-2-enoate Chemical compound CCCCCCCC=CC(=O)OC(C)C ODECNOLARBFIAU-UHFFFAOYSA-N 0.000 description 1
- 229960005335 propanol Drugs 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 239000012264 purified product Substances 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical class O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 238000007151 ring opening polymerisation reaction Methods 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 229960001860 salicylate Drugs 0.000 description 1
- 150000003873 salicylate salts Chemical class 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 230000002000 scavenging effect Effects 0.000 description 1
- 150000003333 secondary alcohols Chemical class 0.000 description 1
- 239000003079 shale oil Substances 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- LKZMBDSASOBTPN-UHFFFAOYSA-L silver carbonate Substances [Ag].[O-]C([O-])=O LKZMBDSASOBTPN-UHFFFAOYSA-L 0.000 description 1
- 229910001958 silver carbonate Inorganic materials 0.000 description 1
- 229910001923 silver oxide Inorganic materials 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- NMWCVZCSJHJYFW-UHFFFAOYSA-M sodium;3,5-dichloro-2-hydroxybenzenesulfonate Chemical compound [Na+].OC1=C(Cl)C=C(Cl)C=C1S([O-])(=O)=O NMWCVZCSJHJYFW-UHFFFAOYSA-M 0.000 description 1
- WVROFDYCUUILSJ-UHFFFAOYSA-N sodium;pentan-1-olate Chemical compound [Na+].CCCCC[O-] WVROFDYCUUILSJ-UHFFFAOYSA-N 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- UUCCCPNEFXQJEL-UHFFFAOYSA-L strontium dihydroxide Chemical compound [OH-].[OH-].[Sr+2] UUCCCPNEFXQJEL-UHFFFAOYSA-L 0.000 description 1
- 229910001866 strontium hydroxide Inorganic materials 0.000 description 1
- 150000003890 succinate salts Chemical class 0.000 description 1
- 125000000446 sulfanediyl group Chemical group *S* 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-L sulfite Chemical class [O-]S([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-L 0.000 description 1
- 238000006277 sulfonation reaction Methods 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000003760 tallow Substances 0.000 description 1
- 150000003505 terpenes Chemical class 0.000 description 1
- 235000007586 terpenes Nutrition 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 1
- MQHSFMJHURNQIE-UHFFFAOYSA-N tetrakis(2-ethylhexyl) silicate Chemical compound CCCCC(CC)CO[Si](OCC(CC)CCCC)(OCC(CC)CCCC)OCC(CC)CCCC MQHSFMJHURNQIE-UHFFFAOYSA-N 0.000 description 1
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 1
- ZUEKXCXHTXJYAR-UHFFFAOYSA-N tetrapropan-2-yl silicate Chemical compound CC(C)O[Si](OC(C)C)(OC(C)C)OC(C)C ZUEKXCXHTXJYAR-UHFFFAOYSA-N 0.000 description 1
- VLLMWSRANPNYQX-UHFFFAOYSA-N thiadiazole Chemical compound C1=CSN=N1.C1=CSN=N1 VLLMWSRANPNYQX-UHFFFAOYSA-N 0.000 description 1
- 150000004867 thiadiazoles Chemical class 0.000 description 1
- 150000007970 thio esters Chemical class 0.000 description 1
- 150000003567 thiocyanates Chemical class 0.000 description 1
- PRZSXZWFJHEZBJ-UHFFFAOYSA-N thymol blue Chemical compound C1=C(O)C(C(C)C)=CC(C2(C3=CC=CC=C3S(=O)(=O)O2)C=2C(=CC(O)=C(C(C)C)C=2)C)=C1C PRZSXZWFJHEZBJ-UHFFFAOYSA-N 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- WXBXVVIUZANZAU-CMDGGOBGSA-N trans-2-decenoic acid Chemical compound CCCCCCC\C=C\C(O)=O WXBXVVIUZANZAU-CMDGGOBGSA-N 0.000 description 1
- LDHQCZJRKDOVOX-UHFFFAOYSA-N trans-crotonic acid Natural products CC=CC(O)=O LDHQCZJRKDOVOX-UHFFFAOYSA-N 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- UDBAOKKMUMKEGZ-UHFFFAOYSA-K trichloromanganese Chemical compound [Cl-].[Cl-].[Cl-].[Mn+3] UDBAOKKMUMKEGZ-UHFFFAOYSA-K 0.000 description 1
- 229960001124 trientine Drugs 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- FTBATIJJKIIOTP-UHFFFAOYSA-K trifluorochromium Chemical compound F[Cr](F)F FTBATIJJKIIOTP-UHFFFAOYSA-K 0.000 description 1
- NFMWFGXCDDYTEG-UHFFFAOYSA-N trimagnesium;diborate Chemical compound [Mg+2].[Mg+2].[Mg+2].[O-]B([O-])[O-].[O-]B([O-])[O-] NFMWFGXCDDYTEG-UHFFFAOYSA-N 0.000 description 1
- UAXOELSVPTZZQG-UHFFFAOYSA-N trimethyl acrylic acid Chemical compound CC(C)=C(C)C(O)=O UAXOELSVPTZZQG-UHFFFAOYSA-N 0.000 description 1
- PQRRMYYPKMKSNF-UHFFFAOYSA-N tris(4-methylpentan-2-yl) tris(4-methylpentan-2-yloxy)silyl silicate Chemical compound CC(C)CC(C)O[Si](OC(C)CC(C)C)(OC(C)CC(C)C)O[Si](OC(C)CC(C)C)(OC(C)CC(C)C)OC(C)CC(C)C PQRRMYYPKMKSNF-UHFFFAOYSA-N 0.000 description 1
- BIKXLKXABVUSMH-UHFFFAOYSA-N trizinc;diborate Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]B([O-])[O-].[O-]B([O-])[O-] BIKXLKXABVUSMH-UHFFFAOYSA-N 0.000 description 1
- 229960004418 trolamine Drugs 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 125000002948 undecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229940070710 valerate Drugs 0.000 description 1
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 150000003751 zinc Chemical class 0.000 description 1
- 229940102001 zinc bromide Drugs 0.000 description 1
- 239000011592 zinc chloride Substances 0.000 description 1
- 235000005074 zinc chloride Nutrition 0.000 description 1
- SMSFHQHROXMMEG-UHFFFAOYSA-N zinc dinitrate trihydrate Chemical compound O.O.O.[Zn++].[O-][N+]([O-])=O.[O-][N+]([O-])=O SMSFHQHROXMMEG-UHFFFAOYSA-N 0.000 description 1
- 239000011576 zinc lactate Substances 0.000 description 1
- 235000000193 zinc lactate Nutrition 0.000 description 1
- 229940050168 zinc lactate Drugs 0.000 description 1
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 1
- JDLYKQWJXAQNNS-UHFFFAOYSA-L zinc;dibenzoate Chemical compound [Zn+2].[O-]C(=O)C1=CC=CC=C1.[O-]C(=O)C1=CC=CC=C1 JDLYKQWJXAQNNS-UHFFFAOYSA-L 0.000 description 1
- NDKWCCLKSWNDBG-UHFFFAOYSA-N zinc;dioxido(dioxo)chromium Chemical compound [Zn+2].[O-][Cr]([O-])(=O)=O NDKWCCLKSWNDBG-UHFFFAOYSA-N 0.000 description 1
- KHADWTWCQJVOQO-UHFFFAOYSA-N zinc;oxido-(oxido(dioxo)chromio)oxy-dioxochromium Chemical compound [Zn+2].[O-][Cr](=O)(=O)O[Cr]([O-])(=O)=O KHADWTWCQJVOQO-UHFFFAOYSA-N 0.000 description 1
- HSYFJDYGOJKZCL-UHFFFAOYSA-L zinc;sulfite Chemical compound [Zn+2].[O-]S([O-])=O HSYFJDYGOJKZCL-UHFFFAOYSA-L 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M171/00—Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F8/00—Chemical modification by after-treatment
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F8/00—Chemical modification by after-treatment
- C08F8/46—Reaction with unsaturated dicarboxylic acids or anhydrides thereof, e.g. maleinisation
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/143—Organic compounds mixtures of organic macromolecular compounds with organic non-macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/18—Organic compounds containing oxygen
- C10L1/192—Macromolecular compounds
- C10L1/195—Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
- C10L1/196—Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and a carboxyl group or salts, anhydrides or esters thereof homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by a carboxyl radical or of salts, anhydrides or esters thereof
- C10L1/1963—Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and a carboxyl group or salts, anhydrides or esters thereof homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by a carboxyl radical or of salts, anhydrides or esters thereof mono-carboxylic
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/18—Organic compounds containing oxygen
- C10L1/192—Macromolecular compounds
- C10L1/195—Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
- C10L1/196—Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and a carboxyl group or salts, anhydrides or esters thereof homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by a carboxyl radical or of salts, anhydrides or esters thereof
- C10L1/1966—Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and a carboxyl group or salts, anhydrides or esters thereof homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by a carboxyl radical or of salts, anhydrides or esters thereof poly-carboxylic
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/18—Organic compounds containing oxygen
- C10L1/192—Macromolecular compounds
- C10L1/198—Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds homo- or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon to carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/22—Organic compounds containing nitrogen
- C10L1/234—Macromolecular compounds
- C10L1/238—Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/24—Organic compounds containing sulfur, selenium and/or tellurium
- C10L1/2462—Organic compounds containing sulfur, selenium and/or tellurium macromolecular compounds
- C10L1/2475—Organic compounds containing sulfur, selenium and/or tellurium macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon to carbon bonds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L10/00—Use of additives to fuels or fires for particular purposes
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L10/00—Use of additives to fuels or fires for particular purposes
- C10L10/04—Use of additives to fuels or fires for particular purposes for minimising corrosion or incrustation
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M129/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
- C10M129/86—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of 30 or more atoms
- C10M129/92—Carboxylic acids
- C10M129/93—Carboxylic acids having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M129/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
- C10M129/86—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of 30 or more atoms
- C10M129/95—Esters
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M133/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
- C10M133/52—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of 30 or more atoms
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M133/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
- C10M133/52—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of 30 or more atoms
- C10M133/56—Amides; Imides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M143/00—Lubricating compositions characterised by the additive being a macromolecular hydrocarbon or such hydrocarbon modified by oxidation
- C10M143/02—Polyethene
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M159/00—Lubricating compositions characterised by the additive being of unknown or incompletely defined constitution
- C10M159/12—Reaction products
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F210/00—Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F210/16—Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/16—Hydrocarbons
- C10L1/1608—Well defined compounds, e.g. hexane, benzene
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/16—Hydrocarbons
- C10L1/1616—Hydrocarbons fractions, e.g. lubricants, solvents, naphta, bitumen, tars, terpentine
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/18—Organic compounds containing oxygen
- C10L1/1817—Compounds of uncertain formula; reaction products where mixtures of compounds are obtained
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/18—Organic compounds containing oxygen
- C10L1/182—Organic compounds containing oxygen containing hydroxy groups; Salts thereof
- C10L1/183—Organic compounds containing oxygen containing hydroxy groups; Salts thereof at least one hydroxy group bound to an aromatic carbon atom
- C10L1/1832—Organic compounds containing oxygen containing hydroxy groups; Salts thereof at least one hydroxy group bound to an aromatic carbon atom mono-hydroxy
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/20—Organic compounds containing halogen
- C10L1/201—Organic compounds containing halogen aliphatic bond
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/22—Organic compounds containing nitrogen
- C10L1/221—Organic compounds containing nitrogen compounds of uncertain formula; reaction products where mixtures of compounds are obtained
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/24—Organic compounds containing sulfur, selenium and/or tellurium
- C10L1/2493—Organic compounds containing sulfur, selenium and/or tellurium compounds of uncertain formula; reactions of organic compounds (hydrocarbons, acids, esters) with sulfur or sulfur containing compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/26—Organic compounds containing phosphorus
- C10L1/2633—Organic compounds containing phosphorus phosphorus bond to oxygen (no P. C. bond)
- C10L1/2641—Organic compounds containing phosphorus phosphorus bond to oxygen (no P. C. bond) oxygen bonds only
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/26—Organic compounds containing phosphorus
- C10L1/2691—Compounds of uncertain formula; reaction of organic compounds (hydrocarbons acids, esters) with Px Sy, Px Sy Halz or sulfur and phosphorus containing compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/30—Organic compounds compounds not mentioned before (complexes)
- C10L1/301—Organic compounds compounds not mentioned before (complexes) derived from metals
- C10L1/303—Organic compounds compounds not mentioned before (complexes) derived from metals boron compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/30—Organic compounds compounds not mentioned before (complexes)
- C10L1/305—Organic compounds compounds not mentioned before (complexes) organo-metallic compounds (containing a metal to carbon bond)
- C10L1/306—Organic compounds compounds not mentioned before (complexes) organo-metallic compounds (containing a metal to carbon bond) organo Pb compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2205/00—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/10—Carboxylix acids; Neutral salts thereof
- C10M2207/12—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
- C10M2207/121—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms
- C10M2207/123—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms polycarboxylic
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/10—Carboxylix acids; Neutral salts thereof
- C10M2207/12—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
- C10M2207/129—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of thirty or more carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/10—Carboxylix acids; Neutral salts thereof
- C10M2207/22—Acids obtained from polymerised unsaturated acids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/281—Esters of (cyclo)aliphatic monocarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/282—Esters of (cyclo)aliphatic oolycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/283—Esters of polyhydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/286—Esters of polymerised unsaturated acids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/287—Partial esters
- C10M2207/288—Partial esters containing free carboxyl groups
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/287—Partial esters
- C10M2207/289—Partial esters containing free hydroxy groups
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/34—Esters having a hydrocarbon substituent of thirty or more carbon atoms, e.g. substituted succinic acid derivatives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/02—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/10—Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/02—Amines, e.g. polyalkylene polyamines; Quaternary amines
- C10M2215/04—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/02—Amines, e.g. polyalkylene polyamines; Quaternary amines
- C10M2215/04—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
- C10M2215/042—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Alkoxylated derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/08—Amides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/08—Amides
- C10M2215/082—Amides containing hydroxyl groups; Alkoxylated derivatives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/086—Imides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/26—Amines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/28—Amides; Imides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2217/00—Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2217/04—Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2217/042—Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds between the nitrogen-containing monomer and an aldehyde or ketone
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2217/00—Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2217/04—Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2217/043—Mannich bases
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2217/00—Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2217/04—Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2217/046—Polyamines, i.e. macromoleculars obtained by condensation of more than eleven amine monomers
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2217/00—Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2217/06—Macromolecular compounds obtained by functionalisation op polymers with a nitrogen containing compound
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2221/00—Organic macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
- C10M2223/045—Metal containing thio derivatives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/04—Groups 2 or 12
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2020/00—Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
- C10N2020/01—Physico-chemical properties
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/02—Bearings
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/08—Hydraulic fluids, e.g. brake-fluids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
- C10N2040/251—Alcohol-fuelled engines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
- C10N2040/252—Diesel engines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
- C10N2040/252—Diesel engines
- C10N2040/253—Small diesel engines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
- C10N2040/255—Gasoline engines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
- C10N2040/255—Gasoline engines
- C10N2040/28—Rotary engines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/30—Refrigerators lubricants or compressors lubricants
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/32—Wires, ropes or cables lubricants
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/34—Lubricating-sealants
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/36—Release agents or mold release agents
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/38—Conveyors or chain belts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/40—Generators or electric motors in oil or gas winning field
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/42—Flashing oils or marking oils
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/44—Super vacuum or supercritical use
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/50—Medical uses
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2070/00—Specific manufacturing methods for lubricant compositions
- C10N2070/02—Concentrating of additives
Definitions
- This invention relates to improved oil soluble dispersant additives useful in oleaginous compositions, including fuels and lubricating oil compositions, and to concentrates containing said additives.
- Ashless nitrogen and ester containing lubricating oil dispersants have been widely used by the industry. Typically, these dispersants are prepared from a long chain hydrocarbon polymer by reacting the polymer with maleic anhydride to form the corresponding polymer which is substituted with succinic anhydride groups.
- Polyiso- butylene has been widely used as the polymer of choice, chiefly because it is readily available by cationic polymerization from butene streams (e.g., using AICI3 catalysts).
- Such polyisobutylenes generally contain residual unsaturation in amounts of about one ethylenic double bond per polymer chain, positioned along the chain.
- the polyisobutylene polymers (PIB) employed in most conventional dispersants are based on a hydrocarbon chain of a number average molecular weight ( n ) of from about 900 to about 2500.
- PIB having a M n of less than about 300 gives rather poor performance results when employed in dispersants because the molecular weight is insufficient to keep the dispersant molecule fully solubilized in lubricating oils.
- high molecular weight PIB ( n >3000) becomes so viscous that conventional industrial practices are incapable of handling this product in many operations. This problem becomes much more severe as the PIB molecular weight increases to 5000 or 10,000.
- polymers such as ethylene-propylene co-polymers and terpolymers containing non-conjugated dienes, have been disclosed as suitable polymers for the preparation of ashiess nitrogen and ester dispersants.
- U.S. Patent 4,234,435 discloses dispersants prepared from polyalkenes, M n of ,300 to about 5,000.
- the polyalkene can comprise homopolymers or interpolymers of C2 to C-jg terminal olefins, of which ethylene-propylene copolymers are said to be examples, with specific reference to a copolymer of 80% ethylene and 20% propylene.
- ethylene-alpha-olefm copolymers of the above molecular weights could be produced using Ziegler-Natta catalysts only in combination with H2 as molecular weight control in order to terminate the growing copolymer chains within this molecular weight range.
- H£ or other conventional, so-called “chain stoppers” the copolymers produced with Ziegler-Natta catalysts would tend to have molecular weights greatly in excess of the above range.
- High molecular weight ethylene-propylene polymers and ethylene-propylene-diene terpolymers, having viscosity average molecular weights of from about 20,000 to 300,000, are generally produced employing Ziegler catalysts, generally VCI4 or VOCI3 with a halide source, such as organoaiuminum halides and/or hydrogen halides.
- a halide source such as organoaiuminum halides and/or hydrogen halides.
- Such high molecular weight EP and EPDM polymers find use as viscosity index improvers. See, e.g., U.S. Patents 3,563,964; 3,697,429; 4,306,041;
- V.I. improving high molecular weight ethylene copolymers with acid moieties such as maleic anhydride, followed by reaction with an amine, to form a V.I. -dispersant oil additive is known in the art as indicated by the following patents.
- 50,000 such as ethylene-propylene, or ethylene-propylene-diene, which are heated to elevated temperatures in the presence of oxygen so as to oxidize the polymer and cause its reaction with maleic anhydride which is present during the oxidation.
- the resulting polymer can then be reacted with alkylene polyamines.
- U.S. Patent 3,326,804 teaches reacting ethylene copolymers with oxygen or ozone, to form a hydroperoxidized polymer, which is grafted with maleic anhydride followed by reaction with polyalkylene polyamines.
- ethylene-propylene copolymers having M v from 100,000 to
- an addition copolymerizabl ⁇ monomer system comprising, e.g., maleic anhydride, and at least one other addition monomer.
- N-aminopropylmo ⁇ holine or dimethylamino propyl amine to form a V.I.- dispersant-pour depressant additive.
- the following references include disclosures of EP/EPDM polymers of M n of 700/500,000, also prepared by conventional Ziegler catalysts.
- U.S. Patent 4,137,185 teaches reacting C ⁇
- to C30 monocarboxylic acid anhydrides, and dicarboxylic anhydrides, such as acetic anhydride, succinic anhydride, etc., with an ethylene copolymer (M n 700 to 500,000) reacted with maleic anhydride and a polyalkylene polyamine to inhibit cross linking and viscosity increase due to further reaction of any primary amine groups which were initially unreacted.
- M n 700 to 500,000
- U.S. Patent 4,668,834 to Uniroyal Chemical discloses preparation (via certain metallocene and alumoxane catalyst systems) and composition of ethylene-alpha olefin copolymers and terpolymers having vinyiidene-type terminal unsaturation, which are disclosed to be useful as intermediates in epoxy-grafted encapsulation compositions.
- Patent 4,704,491 to Mitsui Petrochemical relates to liquid ethylene alpha-olefin random copolymers, useful when hydrogenated as synthetic lubricant oil, characterized inter alia bv having 10-85 mol.% ethylene units, 15-90 mol.% alpha-olefin units, M n of from 300 to 10,000 and a M ⁇ M n of not more than 2.5.
- the patent also indicates that the liquid copolymer can be easily modified since it has a double bond capable of reacting with maleic anhydride, etc., at the molecular chain ends.
- Japanese Published Patent Application 87-129.303A of Mitsui Petrochemical relates to narrow molecular weight distribution (Mw M ⁇ ⁇ 2.5) ethylene alpha-olefin copolymer waxes containing 85-99 mol% ethylene, which are disclosed to be used for dispersing agents, modifiers or materials to produce toners.
- the copolymers (having crystallinity of from 5-65%) are prepared in the presence of a catalyst system comprising Zr compounds having at least one cycloalkadienyl group and alumoxane.
- European Patent 128,046 discloses (co)polyolefin reactor blends of polyethylene and ethylene higher alpha-olefin copolymers prepared by employing described dual-metallocene/alumoxane catalyst systems.
- European Patent Publication 129,368 discloses metailocene/alumoxane catalysts useful for the preparation of ethylene homopolymer and ethylene higher alpha-olefin copolymers.
- European Patent Application Publication 257,696 A1 relates to a process for dimerizing alpha-olefins using a catalyst comprising certain metailocene/alumoxane systems.
- European Patent Publication 305.022-A1 to Mitsui Petrochemical relates to certain synthetic hydrocarbon lubricating oil compositions containing a load-withstanding additive and a liquid ethylene alpha-olefin random copolymer modified by graft copolymerization with an unsaturated carboxylic acid or derivative thereof (e.g., maleic anhydride).
- the ethylene alpha-olefin copolymers (M n of 300 to 12,000) are obtained using Ziegler catalysts (e.g., catalyst formed from soluble V compound and an organo aluminum compound), are grafted in the presence of a free radical initiator.
- the present invention is an oil-soluble dispersant adduct of: (a) an ethylene/alpha-olefin diene interpolymer substituted with monounsatruated mono- or di-carboxylic acid-producing moieties, said interpolymer having: (i) monomer units derived from ethylene, at least one alpha-olefin of the formula is C-J-C-I Q alkyl group, and at least one diene monomer; (ii) a M n of about 300-20,000; and at least about 30% of its chains with ethylidene terminal unsaturation; and (b) at least one nucleophilic reagent selected from the group consisting of amines, alcohols, metal reactants, and mixtures thereof.
- the present invention is directed to an oil-soluble lubricating oil additive comprising ethylene alpha-olefin inte ⁇ olymers of 300 to 20,000 number average molecular weight terminally substituted with mono- or dicarboxylic acid producing moieties (preferably acid or anhydride moieties), wherein the ethylene alpha-olefin polymer group is derived from a terminally unsaturated ethylene alpha-olefin polymer wherein the terminal unsaturation comprises ethenylidene unsaturation.
- the monocarboxylic acid and the dicarboxylic acid or anhydride substituted polymers of this invention are useful per se as additives to oleaginous compositions, such as fuels or lubricating oils, and can also be reacted with a nucleophilic reagent, such as amines, alcohols, amino alcohols and metal compounds, to form derivative products which are also useful as additives to oleaginous compositions, such as, e.g., fuel additives or lubricating oil additives, e.g., as dispersants.
- the materials of the invention are different from the prior art because of their effectiveness and their ability to provide enhanced lubricating oil dispersancy, as exhibited by their enhanced sludge and varnish control properties.
- the additives serve to minimize the degree of carburetor and fuel injector fouling from deposits.
- the additives of this invention possess superior viscometric properties.
- the process of this invention permits the preparation of lubricating oil and fuel dispersant additives which are simultaneously characterized by a high active ingredient content (usually at least about 60 wt.%, up to about 95 wt.%) and by advantageous viscosity properties to permit the additives to be readily handled.
- the ethylene alpha- olefin polymers substituted by mono- and di-carboxylic acid producing moieties of this invention can be characterized by VR values (as hereinafter defined) of not greater than about 4.1 , thereby providing advantageous viscosity modifying properties to the lubricating oils containing them.
- the present invention can produce such substituted polymers in a highly concentrated form as substantially halogen free materials, thereby reducing the corrositivity processing difficulties and environmental concerns which are associated with halogen-containing lubricating oil additives.
- dispersant materials can be prepared from the substituted polymers of this invention to provide fuel and lubricating oil dispersant products having VR' values of not greater than about 4.1 and VR'/VRp ratios of less than about 1.11 (as such values and ratios are hereinafter defined).
- the process of this invention permits the preparation of highly concentrated, substantially halogen-free dispersants from high molecular weight ethylene-atpha-olefin polymers (M n >5000, e.g., 5,500-20,000) of superior viscosity properties.
- R 1 in the above formula is alkyi of from 1 to 8 carbon atoms, and more preferably is alkyl of from 1 to 2 carbon atoms.
- useful comon ⁇ mers with ethylene in this invention include propylene, 1-butene, hexene-1 , octene-1 , 4- methylpentene-1 , decene-1 , dodecene-1 , tridecene-1 , tetradecene-1 , pentadecene-1 , hexadecene-1 , heptadecene-1 , octadecene-1 , nonadecene-1 and mixtures thereof (e.g., mixtures of propylene and 1- butene, and the like).
- ethylene/propylene/cyclopentadiene inte ⁇ olymers especially te ⁇ olymers; ethylene/propylene/5-ethylidene-2-norbornene inte ⁇ olymers; ⁇ thylene butene/cyclopentadiene inte ⁇ olymers; ethylene/butene/1 ,4- hexadiene inte ⁇ olymers; and the like.
- Exemplary of such polymers are ethylene-propylene copolymers, ethylene-butene-1 copolymers and the like.
- Preferred polymers are copolymers of ethylene and propylene and ethylene and bute ⁇ e-1.
- the molar ethylene content of the polymers employed in this invention is preferably in the range of between about 20 and about 80 percent, and more preferably between about 30 and about 70 percent.
- the ethylene content of such copolymers is most preferably between about 45 and about 65 percent, although higher or lower ethylene contents may be present.
- the diene monomers usable in the invention include the alpha/omega dienes, conjugated dienes, and some non-conjugated dienes.
- the polymers employed in this invention generally possess a number average molecular weight of from about 300 to about 20,000 (e.g., from 300 to 10,000), preferably from about 900 to 20,000; more preferably of from about 900 to 10,000 (e.g., from about 700 to about 15,000); from about 1500 to about 5,000. Polymers having a number average molecular weight within the range of from about 700 to 5,000 (e.g., 1500 to 3,000) are particularly useful in the present invention.
- the number average molecular weight for such polymers can be determined by several known techniques.
- a convenient method for such determination is by size exclusion chromatography (also known as gel permeation chromatography (GPC)) which additionally provides molecular weight distribution information, see W. W. Yau, J.J. Kirkland and D.D. Bly, "Modem Size Exclusion Liquid Chromatography", John Wiley and Sons, New York, 1979.
- GPC gel permeation chromatography
- such polymers generally possess an intrinsic viscosity (as measured in tetralin at 135°C) of between about 0.025 and about 0.9 dl/g, preferably of between about 0.05 and about 0.5 dl/g, most preferably of between about 0.075 and about 0.4 dl/g.
- the polymers employed in this invention preferably exhibit a degree of crystallinity such that, when grafted, they are essentially amo ⁇ hous.
- the polymers employed in this invention are further characterized in that up to about 95% and more of the polymer chains possess terminal ethenylidene-type unsaturation.
- the chain length of the T ⁇ alkyl group will vary depending on the comonomer(s) selected for use in the polymerization.
- the polymer employed in this invention comprises polymer chains, at least about 30 percent of which possess terminal ethenylidene unsaturation. Preferably at least about 50 percent, more preferably at least about 60 percent, and most preferably at least about 75 percent (e.g. 75-98%), of such polymer chains exhibit terminal ethyenylidene unsaturation.
- the percentage of polymer chains exhibiting terminal ethyenylidene unsaturation may be determined by FTIR spectroscopic analysis, titration, or C ⁇ lslMR.
- the polymer and the composition employed in this invention may be prepared as described in U.S. Patent 4,668,834, in European Patent Publications 128,046 and 129,368, and in co-pending Serial No. 728,111 , filed April 29, 1985, and copending Serial No. 93,460, filed September 10, 1987, the disclosures of all of which are hereby incorporated by reference in their entirety.
- the polymers for use in the present invention can be prepared by polymerizing monomer mixtures comprising ethylene in combination with other monomers such as alpha-olefins and dienes having from 3 to 20 carbon atoms (and preferably from 3-4 carbon atoms, i.e., propylene, butene-1 , and mixtures thereof) and cyclopentadiene, vinyl norbornene, etc. in the presence of a catalyst system comprising at least one metallocene (e.g., a cyclopentadienyl-transition metal compound) and an alumoxane compound.
- the comonomer content can be controlled through the selection of the metallocene catalyst component and by controlling the partial pressure of the various monomers.
- the catalyst is preferably a bulky ligand transition metal compound.
- the bulky ligand may contain a multiplicity of bonded atoms, preferably carbon atoms, forming a group which may be cyclic with one or more optional heteroatoms.
- the bulky ligand may be a cyclopentadienyl derivative which can be mono- or polynuclear.
- One or more bulky ligands may be bonded to the transition metal atom.
- the transition metal atom may be a Group IV, V or VI transition metal.
- Group refers to an identified group of the Periodic Table of Elements, comprehensively presented in "Advanced Inorganic Chemistry," F.A. Cotton, G. Wilkinson, Fifth Edition, 1988, John Wiley & Sons).
- Other ligands may be bonded to the transition metal, preferably detachable by a cocatalyst such as a hydrocarbyl or halogen leaving group.
- the catalyst is derivable from a compound
- L is the bulky ligand
- X is the leaving group
- M is the transition metal
- m and n are such that the total ligand valency corresponds to the transition metal valency.
- the catalyst is four coordinate such that the compound is ionizable to a 1+ valency state.
- the ligands L and X may be bridged to each other and if two ligands L and/or X are present, they may be bridged.
- the metallocenes may be full-sandwich compounds having two ligands L which are cyciopentadienyl groups or half-sandwich compounds having one ligand L only which is a cyciopentadienyl group.
- the term "metallocene” is defined to contain one or more cyciopentadienyl moiety in combination with a transition metal of the Periodic Table of Elements.
- the metallocene catalyst is represented by the formulas:
- Me is a Group IV, V, or VI transition metal
- C5R' m is a substituted cyciopentadienyl each R ⁇ which can be the same or different is hydrogen, alkenyl aryl alkaryl or arylalkyl radical having from 1 to 20 carbon atoms or two carbon atoms joined together to form a part of a C to CQ ring
- each Q which can be the same or different is an aryl, alkyl, alkenyl, alkaryl, or arylalkyl radical having from 1 to 20 carbon atoms or halogen
- Q' is an alkylidene radical
- Various forms of the catalyst system of the metallocene type may be used in the • polymerization process of this invention.
- Exemplary of the development of metallocene catalysts in the art for the polymerization of ethylene is the disclosure of US 4,871 ,705 to Hoel, US-A-4937299 to Ewen, et al. and EP-A-0 129 368 published July 26, 1989, and US-A- 5017713 and 5120867 to Welborn, Jr.
- These publications teach the structure of the metallocene catalysts and include alumoxane as the cocatalyst. There are a variety of methods for preparing alumoxane, one of which is described in U-A ⁇ 4665208.
- the terms "cocatalysts or activators” are used interchangeably and are defined to be any compound or component which can activate a bulky ligand transition metal compound.
- the activators generally contain a metal of Group II and III of the Periodic Table of Elements.
- the bulky transition metal compound are metallocenes, which are activated by trialkylaluminum compounds, alumoxanes both linear and cyclic, or ionizing ionic activators or compounds such as tri(n- butyl)ammo ⁇ ium tetra (pentafluorophenyl)boron, which ionize the neutral metallocene compound.
- Such ionizing compounds may contain an active proton, or some other cation associated with but not coordinated, or only loosely coordinated to the remaining ion of the ionizing ionic compound.
- Such compounds are described in EP-A-0520 732, EP-A- 0277 003, and EP-A-0277 004 published August 3, 1988, and US-A-5153157; 5198401 and 5241025.
- the metallocene catalyst component can be a monocyclopentadienyl heteroatom containing compound. This heteroatom is activated by either an alumoxane or an ionic activator to form an active polymerization catalyst system to produce polymers useful in this invention.
- catalyst systems are described in, for example, PCT International Publication WO 92/00333 published January 9, 1992, US-A- 5057475; 5096867; 5055438 and 5227440 and EP-A-0420436, WO 91/04257.
- the metallocene catalysts useful in this invention can include non-cyclopentadienyl catalyst components, or ancillary ligands such as boroles or carbollides in combination with a transition metal.
- the catalysts and catalyst systems may be those described in US-A- 5064802 and PCT publications WO 93/08221 and WO 93/08199 published April 29, 1993.
- All the catalyst systems of the invention may be, optionally, prepolymerized or used in conjunction with an additive or scavenging component to enhance catalytic productivity.
- the mote ratio of aluminum in the alumoxane to total metal in the metallocenes which can be usefully employed can be in the range of about 0.5:1 to about 1000:1 , and desirably about 1 :1 to about 100:1.
- the mole ratio will be in the range of 50:1 to about 5:1 and most preferably 20:1 to 5:1.
- the solvents used in the preparation of the catalyst system are inert hydrocarbons, in particular a hydrocarbon that is inert with respect to the catalyst system.
- Such solvents are well known and include, for example, isobutane, butane, pentane, hexane, heptane, octane, cyclohexane, methylcyclohexane, toluene, xylene and the like.
- Polymerization is generally conducted at temperatures ranging between about 20° and about 300° C, preferably between about 30° and about 200° C. Reaction time is not critical and may vary from several hours or more to several minutes or less, depending upon factors such as reaction temperature, the monomers to be copolymerized, and the like.
- the catalyst systems described herein are suitable for the polymerization of olefins in solution over a wide range of pressures.
- the polymerization will be completed at a pressure of from about 10 to about 3,000 bar, and generally at a pressure within the range from about 40 bar to about 2,000 bar, and most preferably, the polymerization will be completed at a pressure within the range from about 50 bar to about 1 ,500 bar.
- the product polymer can be recovered by processes well known in the art. Any excess reactants may be flashed off from the polymer.
- the polymerization may be conducted employing liquid monomer, such as liquid propylene, or mixtures of liquid monomers (such as mixtures of liquid propylene and 1-butene), as the reaction medium.
- liquid monomer such as liquid propylene, or mixtures of liquid monomers (such as mixtures of liquid propylene and 1-butene)
- polymerization may be accomplished in the presence of a hydrocarbon inert to the polymerization such as butane, pentane, isopentane, hexane, isooctane, decane, toluene, xylene, and the like.
- any of the techniques known in the prior art for control of molecular weight such as the use of hydrogen and/or polymerization temperature control, may be used in the process of this invention. If so desired, the polymerization may be carried out in the presence of hydrogen to lower the polymer molecular weight. Care should be taken to assure that terminal ethenylidene unsaturation is not reduced to less than about 30 percent of the polymer chains.
- the polymers are preferably formed in the substantial absence of added H2 gas. That is, the absence of H2 gas added in amounts effective to substantially reduce the polymer molecular weight. More preferably, the polymerizations will be conducted employing less than 5 wppm, and more preferably less than 1 wppm, of added H2 gas, based on the moles of the ethylene monomer charged to the polymerization zone.
- the reaction diluent (if any), ethylene and alpha-olefin comonomer(s) are charged at appropriate ratios to a suitable reactor. Care must be taken that all ingredients are dry, with the reactants typically being passed through molecular sieves or other drying means prior to their introduction into the reactor. Subsequently, either the catalyst and then the cocatalyst, or first the cocatalyst and then the catalyst are introduced while agitating the reaction mixture, thereby causing polymerization to commence.
- the catalyst and cocatalyst may be premixed in a solvent and then charged to the reactor. As polymer is being formed, additional monomers may be added to the reactor. Upon completion of the reaction, unreacted monomer and solvent are either flashed or distilled off, if necessary by vacuum, and the low molecular weight copolymer withdrawn from the reactor.
- the polymerization may be conducted in a continuous manner by simultaneously feeding the reaction diluent (if employed), monomers, catalyst and cocatalyst to a reactor and withdrawing solvent, unreacted monomer and polymer from the reactor so as to allow a residence time of ingredients long enough for forming polymer of the desired molecular weight and separating the polymer from the reaction mixture.
- the ethylene alpha-olefin polymer substituted mono- or dicarboxylic acid material i.e., acid, anhydride or acid ester of this invention, includes the reaction product of ethylene alpha-olefin polymer (including diene inte ⁇ olymers) with a monounsaturated carboxylic reactant comprising at least one member selected from the group consisting of (i) monounsaturated C4 to C10 dicarboxylic acid wherein (a) the carboxyl groups are vicinyl, (i.e.
- the reaction mixture will contain unreacted polymer.
- the unreacted polymer is typically not removed from the reaction mixture (because such removal is difficult and would be commercially infeasible) and the product mixture, stripped of any monounsaturated carboxylic reactant is employed for further reaction with the amine or alcohol as described hereinafter to make the dispersant.
- Characterization of the average number of moles of monounsaturated carboxylic reactant which have reacted per mole of polymer charged to the reaction is defined herein as functionality.
- Said functionality is based upon (i) determination of the saponification number of the resulting product mixture using potassium hydroxide; and (ii) the number average molecular weight of the polymer charged, using techniques well known in the art. Functionality is defined solely with reference to the resulting product mixture. Although the amount of said reacted polymer contained in the resulting product mixture can be subsequently modified, i.e. increased or decreased by techniques known in the art, such modifications do not alter functionality as defined above.
- the terms ethylene-alpha-olefin polymer substituted monocarboxylic acid material and ethylene-alpha-olefin polymer substituted dicarboxylic acid material are intended to refer to the product mixture whether it has undergone such modification or not.
- the functionality of the ethylene-alpha-olefin polymer substituted mono- and dicarboxylic acid material will be typically at least about 0.5, preferably at least about 0.8, and most preferably at least about 0.9 and will vary typically from about 0.5 to about 2.8 (e.g., 0.6 to 2), preferably from about 0.8 to about 1.4, and most preferably from about 0.9 to about 1.3.
- Such monounsaturated carboxylic reactants are fumaric acid, itaconic acid, maleic acid, maleic anhydride, chloromaleic acid, chloromaleic anhydride, acrylic acid, methacrylic acid, crotonic acid, cinnamic acid, and lower alkyl (e.g., C-i to C4 alkyl) acid esters of the foregoing, e.g., methyl maleate, ethyl fumarate, methyl fumarate, etc.
- the polymer can be reacted with the monounsaturated carboxylic reactant by a variety of methods.
- the polymer can be first halogenated, chlorinated or brominated to about 1 to 8 wt.
- halogenated polymer may then be reacted with sufficient monounsaturated carboxylic reactant at 100 to 250° C, usually about 180° to 235° C, for about 0.5 to 10, e.g., 3 to 8 hours, so the product obtained will contain the desired number of moles of the monounsaturated carboxylic reactant per mole of the halogenated polymer.
- the diene interpolymers may have additional unsaturation for functionalization.
- the polymer and the mono ⁇ unsaturated carboxylic reactant are contacted at elevated temperature to cause a thermal "ene” reaction to take place.
- Thermal "ene” reactions have been heretofore described in U.S. Patents 3,361 ,673 and 3,401 ,118, the disclosures of which are hereby inco ⁇ orated by reference in their entirety.
- the improved low sediment ene reaction product mixture is preferably formed using a polymer (more preferably, ethylene-propylene copolymers) having a number average molecular weight of from about 300 to 20,000 (e.g., from 700 to 20,000), more preferably from about 900 to 15,000, still more preferably from about 1500 to 10,000 (e.g., from about 1500 to 5,000), and most preferably greater than about 1800 to about 5,000, and a polydispersity of less than about 4, preferably less than about 3, e.g., from 1.1 to 3.5, most preferably from 1.2 to 3.
- a polymer more preferably, ethylene-propylene copolymers having a number average molecular weight of from about 300 to 20,000 (e.g., from 700 to 20,000), more preferably from about 900 to 15,000, still more preferably from about 1500 to 10,000 (e.g., from about 1500 to 5,000), and most preferably greater than about 1800 to about 5,000, and a polydispersity of less than about 4,
- the polymers used in this invention contain less than 5 wt%, more preferably less than 2 wt%, and most preferably less than 1 wt% of a polymer fraction comprising polymer molecules having a molecular weight of less than about 300, as determined by high temperature gel premeation chromatography employing the corresponding polymer calibration curve.
- Such preferred polymers have been found to permit the preparation of ene reaction products, particularly when employing maleic anhydride as the unsaturated acid reactant, with substantially no visibly observable sediment.
- the polymer produced as described above contains greater than about 5 wt% of such a low molecular weight polymer fraction
- the polymer can be first treated by conventional means to remove the low molecular weight fraction to the desired level prior to initiating the ene reaction, and preferably prior to contacting the polymer with the selected unsaturated carboxylic reactant(s).
- the polymer can be heated preferably with inert gas (e.g., nitrogen) stripping, at elevated temperature under a reduced pressure to volatilize the low molecular weight polymer components which can then be removed from the heat treatment vessel.
- inert gas e.g., nitrogen
- the precise temperature, pressure and time for such heat treatment can vary widely depending on such factors as as the polymer number average molecular weight, the amount of the low molecular weight fraction to be removed, the particular monomers employed and other factors. Generally, a temperature of from about 60 to 100° C and a pressure of from about 0.1 to 0.9 atmospheres and a time of from about 0.5 to 20 hours (e.g., 2 to 8 hours) will be sufficient.
- the selected polymer and monounsaturated carboxylic reactant are contacted for a time and under conditions effective to form the desired ethylene alpha-olefin polymer substituted mono- or dicarboxylic acid material.
- the polymer and monounsaturated carboxylic reactant will be contacted in a polymer to unsaturated carboxylic reactant mole ratio usually from about 1:1 to 1:10, and preferably from about 1 :1 to 1 :5, at an elevated temperature, generally from about 120 to 260°C, preferably from about 160 to 240°C.
- the reaction will be generally carried out, with stirring for a time of from about 1 to 20 hours, preferably from about 2 to 6 hours.
- the reaction is preferably conducted in the substantial absence of O2 and water (to avoid competing side reactions), and to this end can be conducted in an atmosphere of dry N2 gas or other gas inert under the reaction conditions.
- the reactants can be charged separately or together as a mixture to the reaction zone, and the reaction can be carried out continuously, semi-continuously or batchwise.
- the reaction can be earned out in the presence of a liquid diluent or solvent, e.g., a hydrocarbon diluent such as mineral lubricating oil, toluene, xylene, dichlorobenzene and the like.
- the polymer substituted mono- or dicarboxylic acid material thus formed can be recovered from the liquid reaction mixture, e.g., after stripping the reaction mixture, if desired, with an inert gas such as N2 to remove unreacted unsaturated carboxylic reactant.
- the "ene" reaction product mixture thereby obtained has been su ⁇ risingly found to have a substantially reduced content of sediment or other solid by-products as impurities and can be employed, without filtering, centrifuging, clarification, phase separation or other conventional product purification treatments, as, e.g., an additive to lubricating oils or as intermediate in the preparation of derivative products for use in lubricating oils, as will be more completely described hereinafter.
- the ene reaction product mixture is further improved by being substantially free of chlorine, that is, by having a chlorine content of less than about 25 ppm by weight, preferably less than about 10 ppm by weight.
- the ene reaction product mixture comprising the desired ethylene-alpha-olefin substituted mono- or dicarboxylic acid material (e.g., ethylene-propylene polymer-substituted succinic anhydride) formed by the process of this invention will generally contain unreacted polymer, (that is, polymer which is unsubstituted by the mono- or dicarboxylic acid moiety), in a concentration of less than about 40 wt.% (e.g., from 5 to 35 wt.%), more preferably less than about 30 wt.% (e.g from 10 to 25 wt.%) and will be generally characterized by a VR value ("viscosity ratio" value) of not greater than about 4.1 , usually not greater than about 4.0, preferably from about 2.0 to 3.9, and most preferably from about 3.0 to 3.8.
- VR value is intended to mean quotient determined by the expression (IV):
- VISa wherein VISa is the kinematic viscosity (KV) of the ene reaction product mixture at 100°C in units of centistokes (as determined by ASTM Method No. D445) and VISb is the cold cranking simulator (CCS) viscosity of the ene reaction product mixture at -20°C in units of poise (as determined by ASTM Method No.
- the reference oil comprising S150N (solvent 150 neutral) mineral lubricating oil (Exxon Company U.S.A.), wherein the such reference oil is characterized by an ASTM D445 kinematic viscosity of 5.2 cSt (100°C) and an ASTM D2602 CCS viscosity of 19.2 poise (+ 0.4 poise) (at -20 ⁇ C).
- the "VR r " value of the reference oil will then be about 3.7 + 0.1.
- EPSA ethylene-propylene copolymer-substituted succinic acids and succinic anhydrides
- EBSA ethylene-butene-1 copolymer-substituted succinic acids and succinic anhydrides
- SA succinic anhydride
- polymer ethylene-propylene (EP) or ethylene butylene (EB) copolymer
- SA moles of polymer in ratio based on the total of both the reacted and unreacted polymer
- SA moles of "SA” based on the number of moles of succinic anhydride moieties per mole of ene reaction product.
- the ethylene alpha-olefin polymers (including diene inte ⁇ olymers) of this invention which are charged to the reaction zone can be charged alone or together with (e.g., in admixture with) other polyaikenes derived from alkenes having from 1 to 20 carbon atoms (butene, pentene, octene, decene, dodecene, tetradodecene and the like) and homopolymers of C3 to C-J O, e.g., C2 to C5, monoolefins, and copolymers of C2 to C-JO. ®-9-.
- other polyaikenes derived from alkenes having from 1 to 20 carbon atoms butene, pentene, octene, decene, dodecene, tetradodecene and the like
- homopolymers of C3 to C-J O e.g., C2 to C5, monoolefin
- monoolefins said additional polymer having a number average molecular weight of at least about 900, and a molecular weight distribution of less than about 4.0, preferably less than about 3.0 (e.g, from 1.2 to 2.8).
- Preferred such additional olefin polymers comprise a major molar amount of C2 to C-JO. ⁇ -9- C2 to C5 monoolefm.
- Such olefins include ethylene, propylene, butylene, isobutylene, pentene, octene-1 , styrene, etc.
- Exemplary of the additionally charged homopolymers is polypropylene, polyisobutylene, and poly-n- butene the like as well as interpolymers of two or more of such olefins such as copolymers of: ethylene and propylene (prepared by conventional methods other than as described above for the preferred ethylene alpha- olefin copolymers employed in this invention, that is, ethylene-propylene copolymers which are substantially saturated, wherein less than about 10 wt% of the polymer chains contain ethylenic unsaturation); butylene and isobutylene; propylene and isobutylene; etc.
- ethylene and propylene prepared by conventional methods other than as described above for the preferred ethylene alpha- olefin copolymers employed in this invention, that is, ethylene-propylene copolymers which are substantially saturated, wherein less than about 10 wt% of the polymer chains contain ethylenic unsaturation
- copolymers include those in which a minor molar amount of the copolymer monomers, e.g., 1 to 10 mole %, is a C4 to C-j ⁇ non-conjugated diolefin, e.g., a copolymer of isobutylene and butadiene: or a copolymer of ethylene, propylene and 1 ,4- hexadiene; etc.
- the additional such olefin polymers charged to the reaction will usually have number average molecular weights of at least about 900, more generally within the range of about 1200 and about 5,000, more usually between about 1500 and about 4,000.
- Such additional olefin polymers have number average molecular weights within the range of about 1500 and about 3,000 with approximately one double bond per chain.
- An especially useful additional such polymer is polyisobutylene. Preferred are mixtures of such polyisobutylene with ethylene-propylene copolymers wherein at least 30 wt% of the copolymer chains contain terminal ethenylidene monounsaturation as described above.
- the number average molecular weight for such polymers can be determined by several known techniques.
- a convenient method for such determination is by gel permeation chromatography (GPC) which additionally provides molecular weight distribution information, see W. W. Yau, J. J. Kirkland and D. D. Bly, "Modem Size Exclusion Liquid Chromatography", John Wiley and Sons, New York, 1979.
- the polymer substituted carboxylic acids/anhydrides/esters of this invention can be contacted with a nucleophilic reactant, e.g., amines, alcohols, including polyois, amino- alcohols, reactive metal compounds, etc. to form the novel dispersants of this invention.
- a nucleophilic reactant e.g., amines, alcohols, including polyois, amino- alcohols, reactive metal compounds, etc.
- Amine compounds useful as nucleophilic reactants for reaction with the polymer substituted mono- or dicarboxylic acid materials include mono- and (preferably) polyamines, of about 2 to 60, preferably 2 to 40 (e.g. 3 to 20), total carbon atoms and about 1 to 12, preferably 3 to 12, and most preferably 3 to 9 nitrogen atoms in the molecule.
- amines may be hydrocarbyl amines or may be hydrocarbyl amines including other groups, e.g, hydroxy groups, alkoxy groups, amide groups, nitriles, imidazoline groups, and the like. Hydroxy amines with 1 to 6 hydroxy groups, preferably 1 to 3 hydroxy groups are particularly useful. Preferred amines are aliphatic saturated amines, including those of the general formula:
- R, R', R" and R"' are independently selected from the group consisting of hydrogen; Ci to C25 straight or branched chain alkyl radicals; C-j to C25 straight or branched chain alkyl radicals; C- to C12 alkoxy C2 to CQ alkylene radicals; C2 to C12 hydroxy amino alkylene radicals; and C-- to C-j 2 alkylamino C2 to C5 alkylene radicals; and wherein R'" can additionally comprise a moiety of the formula: — (— (CH 2 ) r N-) H
- R' is as defined above, and wherein r and r 1 can be the same or a different number of from 2 to 6, preferably 2 to 4; and t and t' can be the same or different and are numbers of from 0 to 10, preferably 2 to 7, and most preferably about 3 to 7, with the proviso that the sum of t and t * is not greater than 15.
- R, R', R", R" ⁇ r, r ⁇ t and t' be selected in a manner sufficient to provide the compounds of Formulas Va and Vb with typically at least one primary or secondary amine group, preferably at least two primary or secondary amine groups.
- R, R', R" or R'" groups can be hydrogen or by letting t in Formula Vb be at least one when R'" is H or when the Vi moiety possesses a secondary amino group.
- the most preferred amine of the above formulas are represented by Formula Vb and contain at least two primary amine groups and at least one, and preferably at least three, secondary amine groups.
- suitable amine compounds include:
- amine compounds include: alicyclic diamines such as 1 ,4-di(aminomethyl) cyclohexane, and heterocyclic nitrogen compounds such as imidazoiines, and N-aminoaikyl piperazines of the general formula (VII): wherein p-
- Non-limiting examples of such amines include 2-pentadecyl imidazoline; N-(2-am ⁇ noethyi) piperazine; etc.
- one process for preparing alkylene amines involves the reaction of an alkylene dihalide (such as ethylene dichloride or propylene dichloride) with ammonia, which results in a complex mixture of alklene amines wherein pairs of nitrogens are joined by alkylene groups, forming such compounds as diethylene triamine, t ⁇ ethylenetetramine, tetraethylene pentamine and isomeric piperazines.
- alkylene dihalide such as ethylene dichloride or propylene dichloride
- ammonia such as ethylene triamine, t ⁇ ethylenetetramine, tetraethylene pentamine and isomeric piperazines.
- Low cost poly(ethyleneam ⁇ nes) compounds averaging about 5 to 7 nitrogen atoms per molecule are available commercially under trade names such as "Polyamine H", “Polyamine 400", “Dow Polyamine E-100", etc.
- Useful amines also include polyoxyalkylene polyamines such as those of the formula (VIII):
- m has a value of about 3 to 70 and preferably 10 to 35; and the formula (IX):
- n"' has a value of about 1 to 40 with the provision that the sum of all the n"' values is from about 3 to about 70 and preferably from about 6 to about 35
- R 4 is a polyvalent saturated hydrocarbon radical of up to ten carbon atoms wherein the number of substituents on the R 4 group is represented by the value of "a", which is a number of from 3 to 6.
- the alkylene groups in either formula (VII) or (IX) may be straight or branched chains containing about 2 to 7, and preferably about 2 to 4 carbon atoms.
- the polyoxyalkylene polyamines of formulas (VII) or (IX) above may have average molecular weights ranging from about 200 to about 4000 and preferably from about 400 to about 2000.
- the preferred polyoxyalkylene polyoxyalkylene polyamines include the polyoxyethylene and polyoxypropylene diamines and the polyoxypropylene triamines having average molecular weights ranging from about 200 to 2000.
- the polyoxyalkylene polyamines are commercially available and may be obtained, for example, from the Jefferson Chemical Company, Inc. under the trade name "Jeffamines D-230, D-400, D-1000, D-2000, T-403", etc.
- a particularly useful class of amines are the polyamido and related amines disclosed in U.S. Patent 4,857,217 (the disclosure of which is hereby inco ⁇ orated by reference in its entirety), which comprise reaction products of a polyamine and an alpha, beta unsaturated compound of the formula:
- R 5 - C C - C - Y
- X is sulfur or oxygen
- Y is -OR 8 , -SR 8 , or -NR 8 (R 9 )
- R 5 , R 6 , R?, R 8 and R 9 are the same or different and are hydrogen or substituted or unsubstituted hydrocarbyl.
- ANy polyamine whether aliphatic, cycloaliphatic, aromatic, heterocyclic, etc., can be employed provided it is capable of adding across the acrylic double bond and amidifying with for example the carbonyl group (-C(O)-) of the acrytate-type compound of formula X, or with the thiocarbonyi group (-C(S)-) of the thioacrylate-type compound of formula X.
- R 5 , R 6 , R 7 , R 8 or R 9 in Formula X are hydrocarbyl
- these groups can comprise alkyl, cycloalkyl, aryl, alkaryl, aralkyl orheterocyclic, which can be substituted with groups which are substantially inert to any component of the reaction mixture under conditions selected for preparation of the amido-amine.
- substituent groups include hydroxy, halide (e.g., Cl, F1 , I, Br). -SH and alkylthio.
- R 5 through R 9 are alkyl
- such alkyl groups can be straight or branched chain, and will generally contain from 1 to 20, more usually from 1 to 10, and preferably from 1 to 4, carbon atoms.
- alkyl groups are methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, dodecyl, tridecyl, hexadecyl, octadecyl and the like.
- the aryl group will generally contain from 6 to 10 carbon atoms (e.g., phenyl, naphthyl).
- the alkaryl group will generally contain from about 7 to 20 carbon atoms, and preferably from 7 to 12 carbon atoms. Illustrative of such alkaryl groups are tolyl, m-ethyiphenyl, o-ethyltolyl, and m-hexyltolyl.
- the aryl component generally consists of phenyl or (C-* to C ) alkyl- substituted phenol and the alkyl component generally contains from 1 to 12 carbon atoms, and preferably from 1 to 6 carbon atoms.
- aralkyl groups examples include benzyl, o-ethy I benzyl, and 4-isobutylbe ⁇ zyl.
- the cycloalkyl group will generally contain from 3 to 12 carbon atoms, and preferably from 3 to 6 carbon atoms.
- Illustrative of such cycloalkyl groups are cyclopropyl, cyclobutyl, cyclohexyl, cyclooctyl, and cyclododecyl.
- the heterocyclic group generally consists of a a compound having at least one ring of 6 to 12 members in which one or more ring ca ⁇ on atoms is replaced by oxygen or nitrogen.
- heterocyclic groups are furyl, pyranyl, pyridyl, piperidyl, dioxanyl, tetrahydrofuryl, pyrazinyl and 1 ,4-oxazinyl.
- the alpha, beta ethylenically unsaturated carboxylate compounds employed herein have the following formula:
- R 8 - R 7 - and R 8 are the same or different and are hydrogen or substituted or unsubstituted hydrocarbyl as defined above.
- alpha, beta-ethylenically unsaturated ca ⁇ oxylate compounds of formula XI are acrylic acid, methacrylic acid, the methyl, ethyl, isopropyl, n-butyl and isobutyl esters of acrylic and methacrylic acids, 2-butenoic acid, 2-hexenoic acid, 2-decenoic acid, 3-methyl-2-heptenoic acid, 3-methyl-2-butenoic acid, 3-phenyl-2- ⁇ ropenoic acid, 3-cyclohexyl-2-butenoic acid, 2-methyl-2-bute ⁇ oic acid, 2-ppropyl-2-propenoic acid, 2-isopropyl-2-hexenoic acid, 2,3-dimethyl- 2-butenoic acid, 3-cyclohexyl-2-methyl-2-pen
- alpha, beta ethyienically unsaturated carboxylate thioester compound employed herein have the following formula:
- R 5 , R 6 , R 7 , and R 8 are the same or different and are hydrogen or substituted or unsubstituted hydrocarbyl as defined above.
- alpha, beta-ethylenically unsaturated carboxylate thioesters of formula XII are methylmercapto 2-butenoate, ethyimercapto 2-hexenoate, isopropylmercapto 2-decanoate, phenylmercapto 2-pentenoate, tertiary butylmercapto 2-propenoate, octadecylmercapto 2-propenoate, dodecylmercapto 2-decenoate, cyclopropylmercapto 2,3-dimethyl-2- butenoate, methylmercapto 3-phenyl-2-propenoate, methylmercapto 2- propenoate, methylmercapto 2-methyl-2-propenoate, and the like.
- RS, R6, R7, R 8 and R 9 are the same or different and are hydrogen or substituted or unsubstituted hydrocarbyl as defined above.
- alpha, beta-ethylenically unsaturated carboxyamides of formula XIII are 2- butenamide, 2-hexenamide, 2-decenamide, 3-methyl-2-heptenamide, 3- methyl-2-butenamide, 3-phenyl-2-propenamide, 3-cyclohexyl-2-butenamide, 2-methyl-2-butenamide, 2-propyl-2-propenamide, 2-isopropyl-2-hexenamide, 2,3-dimethyl-2-butenamide, 3-cyclohexyl-2-methyl-2-pentenamide, N-methyl 2-butenamide, N-methyl 2-butenamide, N,N-diethyl 2-hexenamide, N- isopropyl 2-decenamide, N-phenyl 2-pente ⁇ amide, N-tertiary butyl 2- propenamide, N-o
- R 5 , R 6 , R 7 , R 8 and R 9 are the same or different and are hydrogen or substituted or unsubstituted hydrocarbyl as defined above.
- XIV are 2-butenthioic acid, 2-hexenthioic acid, 2-decenthioic acid, 3-methyl-2- heptenthioic acid, 3-methyl-2-butenthioic acid, 3-phenyl-2-propenthioic acid, 3-cyclohexyl-2-butenthioic acid, 2-methyl-2-butenthioic acid, 2-propyl-2- propenthioic acid, 2-isopropyl-2-hexenthioic acid, 2,3-dimethyl-2-butenthioic acid, 3-cyciohexyl-2-methyl-2-pententhioic acid, 2-propenthioic acid, methyl 2-propenthioate, methyl 2-methyl 2-propenthioate, methyl 2-butenthioate, ethyl 2-hexenthioate, isopropyl 2-decenthioate, phenyl 2-pententhioate, tertiary butyl 2-propenthioate, octa
- alpha, beta ethyienically unsaturated dithioic acid and acid ester compounds employed herein have the following formula:
- R5, R6, R?, and R 8 are the same or different and are hydrogen or substituted or unsubstituted hydrocarbyl as defined above.
- XV are 2-butendithioic acid, 2-hexendithioic acid, 2-decendithioic acid, 3- methyl-2-heptendithioic acid, 3-methyl-2-butendithioic acid, 3-phenyl-2- propendithioic acid, 3-cyclohexyl-2-butendithioic acid, 2-methyl-2- butendithioic acid, 2-propyl-2-propendithioic acid, 2-isopropyI-2-hexendithioic acid, 2,3-dimethyl-2-butendithioic acid, 3-cyclo-hexyl-2-methyl-2- pentendithioic acid, 2-propendithioic acid, methyl 2-methyl 2-propendithioate, methyl 2-butendithioate, ethyl 2-hexendithioate, isopropyl 2-decendithioate, phenyl 2-pentendithioate, tertiary butyl 2-propendi
- R 5 - C C - C - NR 8 (R 9 )
- alpha, beta-ethylenically unsaturated thiocarboxyamides of formula XVI are 2-butenthioamide, 2-hexenthioamide, 2-decenthioamide, 3-methyl-2-heptenthioamide, 3-methyl-2-butenthioamide, 3-phenyl-2- propenthioamide, 3-cyclohexyl-2-butenthioamide, 2-methyl-2- butenthioamide, 2-propyl-2-propen-thioamide, 2-isopropyl-2- hexenthioamide, 2,3-dimethyl-2-butenthioamide, 3-cyclohexyl-2-methyl-2- pententhioamide, N-methyl 2-butenthioamide, N,N-diethyl 2- hexenthioamide, N-isopropyl 2-decenthio
- Preferred compounds for reaction with the polyamines in accordance with this invention are lower alkyl esters of acrylic and (lower alkyl) substituted acrylic acid.
- Illustrative of such preferred compounds are compounds of the formula:
- PJ is hydrogen or a C ⁇
- R 8 is hydrogen or a C-) to C4 alkyl group, capable of being removed so as to form an amido group, for example, methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, tert-butyl, aryl, hexyl, etc.
- these compounds are acryiic and methacrylic esters such as methyl or ethyl acrylate, methyl or ethyl methacrylate.
- beta- unsaturated compound comprises a compound of formula X wherein X' is oxygen
- the resulting reaction product with the polyamine contains at least one amido linkage (-C(O)N ⁇ ) and such materials are herein termed "amido-amines.”
- the selected alpha, beta unsaturated compound of formula X comprises a compound wherein X * is sulfur
- the resulting raction product with the polyamine contains thioamide linkage (- C(S)N ⁇ ) and these materials are herein termed "thioamido-amines.”
- amido-amines although it will be understood that such discussion is also applicable to the thioamido-amines.
- amido-amine formed varies with reaction condition * : For example, a more linear amido-amine is formed where substantially equimolar amounts of the unsaturated carboxylate and polyamine are reacted. The presence of excesses of the ethyienically unsaturated reactant of formula X tends to yield an amido-amine which is more cross-linked than that obtained where substantially equimolar amounts of reactants are employed. Where for economic or other reasons a cross-linked amido-amine using excess amine is desired, generally a molar excess of the ethyienically unsaturated reactant of about at least 10%, such as 10-300%, or greater, for example, 25-200%, is employed.
- an excess of carboxylated material should preferably be used since a cleaner reaction ensures.
- a molar excess of about 10-100% or greater such as 10-50%, but preferably an excess of 30-50%, of the carboxylated material. Larger excess can be employed, if desired.
- NH2(CH 2 CH 2 N)4H has more labile hydrogens than ethylene diamine.
- amido-amine adducts so formed are characterized by both amido and amino groups. In their simplest embodiments they may be represented by units of the following idealized formula (XVIII):
- R 10 's which may be the same or different, are hydrogen or a substituted group, such as a hydrocarbon group, for example, alkyl, alkenyl, alkynyl, aryl, etc., and A is a moiety of the polyamine which, for example, may be aryl, cycloalkyl, alkyl, etc., and n4 is an integer such as 1-10 or greater.
- cross-linked polymers may also be formed by employing certain conditions since the polymer has labile hydrogens which can further react with either the unsaturated moiety by adding across the double bond or by amidifying with a carboxylate group.
- amido-amines employed in this invention are not cross-linked to any substantial degree, and more preferably are substantially linear.
- the polyamine reactant contains at least one primary amine (and more preferably from 2 to 4 primary amines) group per molecule, and the polyamine and the unsaturated reactant of formula X are contacted in an amount of from about 1 to 10, more preferably from about 2 to 6, and most preferably from about 3 to 5, equivalents of primary amine in the polyamine reactant per mole of the unsaturated reactant of formula X.
- the reaction between the selected polyamine and acryiate- type compound is carried out at any suitable temperature. Temperatures up to the decomposition points of reactants and products can be employed. In practice, one generally carried out the reaction by heating the reactants below 100°C, such as 80-90°C, for a suitable period of time, such as a few hours. Where an acrylic-type ester is employed, the progress of the reaction can be judged by the removal of the alcohol in formmg the amide. Du ⁇ ng the early part of the reaction alcohol is removed quite readily below 100°C in the case of low boiling alcohols such as methanol or ethanol. As the reaction slows, the temperature is raised to push the polymerization to completion and the temperature may be raised to 150°C toward the end of the raction.
- Removal of alcohol is a cnvenient method of judging the progress and completion of the reaction which is generally continued until no more alcohol is evolved. Based on removal of alcohol, the yields are generally stoichiometric. In more difficult reactions, yields of at least 95% are generally obtained.
- reaction of an ethyienically unsaturated carboxylate thioester of formula XII liberates the corresponding HSR 8 compound (e.g., H2S when R 8 is hydrogen) as a by ⁇ product
- reaction of an ethyienically unsaturated carboxyamide of formula XIII liberates the correspnding HNR 8 (R 9 ) compound (e.g., ammonia when R 8 and R are each hydrogen) as by-product.
- reaction time involved can vary widely depending on a wide variety of factors. For example, there is a relationship between time and temperature. In general, lower temperature demands longer times. Usually, reaction times of from about 2 to 30 hours, such as 5 to 25 hours, and preferably 3 to 10 hours will be employed.
- the reaction can be run without the use of any solvent.
- a solvent such as water
- any suitable solvent can be employed, whether organic or inorganic, polar or non-polar.
- TEPA tetraethylene pentaamine
- the nucleophilic reactant comprises a branched chain nitrogen containing adduct formed by a process which comprises: (a) contacting in a first liquid reaction mixture a first nitrogen-containing compound having at least two reactive nitrogen moieties with a polyfunctional reactant having within its structure a first functional group reactive with a -NH- group, and at least one additional functional group reactive with a -NH- group, in an amount and under conditions sufficient to selectively react the first functional groups in the polyfunctional ractant with the reactive nitrogen moieties to form a first reaction mixture containing a first adduct; and (b) contacting the first adduct with a second nitrogen-containing compound having at lest two - NH- groups in an amount and under conditions sufficient to react the additional functional groups in the first adduct with said -NH- groups in the second nitrogen-containing compound
- the branched chain nitrogen-containing adduct comprises a branched amido-amine adduct, and more preferably to a star branched amido-amine adduct, formed by (a) reacting a first nitrogen- containing compound (e.g., ammonia or an organic amine) with an alpha, beta-unsaturated compound of the formula:
- a first nitrogen- containing compound e.g., ammonia or an organic amine
- R 1 - C C - C - Y
- W 1 is sulfur or oxygen
- Y is -OR 4 , -SR 4 , or -NR 4 (R 5 )
- R 1 , R 2 , R3, R 4 and R 5 are the same or different and are hydrogen or substituted or unsubstituted hydrocarbyl, to form a first adduct containing unreacted -C(W 1 )-Y groups; and (b) reacting the first adduct with a polyamine (e.g., a polyalkylene polyamine) to form a second adduct containing unreacted -NH- groups (preferably primary amine groups) and comprising a branched amido-amine oligomer.
- a polyamine e.g., a polyalkylene polyamine
- the first above adduct is prepared by contacting a polyfunctional reactant with a first nitrogen-containing compound containi ⁇ g at least two (e.g., from 2 to 20), preferably at least 3 (e.g., from 3 to 15), and most preferably from 3 to 8, reactive nitrogen moieties (that is, the total of the nitrogen-bonded H atoms) per molecule of the first nitrogen-containing compound.
- the first nitrogen-containing compound will generally comprise at least one member selected from the group consisting of ammonia, organic primary monoamines and organic polyamines containing at least one primary amine gorup or at least two secondary amine groups per molecule.
- Most preferred as the first nitrogen-containing compound are members selected from the group consisting of ammonia and organic diprimary amines having from 2 to 12 carbon atoms and from 2 to 8 nitrogen atoms per molecule.
- organic diprimary amines are ethylene diamine, propylene diamine, diethylene triamine, dipropylene triamine, triethylene tetraami ⁇ e, tripropylene tetraamine, tetraethylene pentaamine, tetrapropylene pentaamine, polyhexamethylene diamine, phenyl diamine.
- polyfunctional ractants useful in this invention include compounds having the formula (XX):
- W * - and W 2 are the same or different and are O or S
- X and Y are the same or different, and preferably are each groups reactive with a -NH- group (i.e., with NH3 or with primary or secondary amine groups)
- T is a substituted or unsubstituted hydrocarbon moiety
- a is 0 or 1
- b is 0 or 1
- X and Y can together further comprise -0- or -S-, to provide as reactants a class of ethyienically unsaturated and aromatic anhydrides and suifo-anhydrides.
- the X and Y groups in the selected polyfunctional reactant are different, and the reactivity of the X moiety with -NH- groups, under the selected reaction conditions, is greater than the reactivity of the Y moieties with such -NH- groups to permit a substantially selective reaction of the X groups with the first nitrogen-containing compound as described below.
- the relative reactivity of these groups on a polyfunctional reactant can be readily determined by conventional methods.
- R 1 , R 2 , R 3 , R 4 , or R 5 are hydrocarbyl
- these groups can comprise alkyl, cycloalkyl, aryl, aralkyl or heterocyclic, which can be substituted with groups which are substantially inert to any component of the reaction mixture under conditions selected for preparation of the amido-amine.
- substituent groups include hydroxy, halide (e.g., C1 , F1 , I, Br), -SH and alkylthio.
- R 1 through R 5 are alkyl
- such alkyl groups can be straight or branched chain, and will generally contain from 1 to 20, more usually from 1 to 10, and preferably from 1 to 4, carbon atoms.
- alkyl groups are methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, dodecyl, tridecyl.hexadecyl, octadecyl and the like.
- the aryl group will generally contain from 6 to 10 carbon atoms (e.g., phenyl, nephthyl).
- the alkaryl group will generally contain from about 7 to 20 carbon atoms, and preferably from 7 to 12 carbon atoms. Illustrative of such alkaryl groups are tolyl, m-ethy I phenyl, o-ethy Itoly I, and m-hexyltolyl.
- the aryl component generally consists of phenyl or (C-
- aralkyl groups examples include benzyl, o-ethylbenzyi, and 4-isobutylbenzyl.
- the cycloalkyl group will generally contain from 3 to 12 carbon atoms, and preferably from 3 to 6 carbon atoms.
- Illustrative of such cycloalkyl groups are cyclopropyl, cyclobutyl, cyclohexyl, cyclooctyl, and cyclododecyl.
- the heterocyclic group generally consists fo a compound having at lest one ring of 6 to 12 members in which one or more ring carbon atoms is replaced by oxygen or nitrogen.
- heterocyclic groups are furyl, pyranyl, pyridyl, piperidyl, dioxanyl, tetrahydrofuryl, pyrazinyl and 1 ,4-oxazinyl.
- T is a polyvalent organic radical whose valence is equal to c +
- T will not contain more than 20 carbon atoms and preferably not more than 10 carbon atoms.
- T can therefore include divalent groups such as saturated and unsaturated hydrocarbylene (e.g., alkylene, alkenylene, arylene, and the like).
- T When T is substituted, it can contain one or more substituents selected from the class consisting of halo, lower alkoxy, lower alkyl mercapto, nitro, lower alkyl, carboxy and oxo.
- Z 1 groups are C 1 to C 1 0 branched and straight chained alkylene such as -(C 2 - whereinT is an integer of from 1 to 10 (e.g., -CH2-, -C2H4-, -C3H7-, -C4H8-, -C5H10-, and the like), and CQ to C20 arylene, and alkyl-substituted arylene such as -Ar-, -Ar-((CH2)f)- > - ((CH2)f)-Ar-, -Ar-((CH2)f-Ar- and the like, wherein Ar is phenylene, methylphenylene, naphthylene, methylnaphthylene and the like and wherein
- R1 - C C - C - Y
- W 1 is sulfur or oxygen
- Y is as defined above, and is preferably -OR 4 , -SR 4 , or -NR 4 (R 5 ), wherein R1 , R 2 , R 3 , R 4 and R 5 are as defined above.
- the amine is readily reacted with the selected material, e.g., the ethylene-propylene copolymer substituted succinic anhydride, by reacting an oil solution containing 5 to 95 wt.% of the polymer substituted mono- or dicarboxylic acid material at about 100 to 250°C, preferably 125 to 175°C, generally for 1 to 10, e.g., 2 to 6 hours until the desired amount of water is removed.
- the heating is preferably carried out to favor formation of imides or mixtures of imides and amides, rather than amides and salts.
- Reaction ratios of polymer substituted mono- and dicarboxylic acid material to equivalents of amine as well as the other nucleophilic reactants described herein can vary considerably, depending on the reactants and type of bonds formed.
- the polymer comprises a polymer substituted dicarboxylic acid material, containing dicarboxylic acid producing moieties derived from any of the above monounsaturated dicarboxylic acids, or anhydride or ester derivatives thereof, generally from 0.05 to 1.0, preferably from about 0.1 to 0.6, e.g., 0.2 to 0.4, moles of dicarboxylic acid moiety content (e.g., grafted maleic anhydride content) is used, per equivalent of nucleophilic reactant, e.g., amine.
- dicarboxylic acid moiety content e.g., grafted maleic anhydride content
- a pentamine having two primary amino groups and 5 equivalents of nitrogen per molecule
- amido-amine as above, generally from 1 to 5, preferably from about 1.5 to 3 moles of dicarboxylic acid moiety content (e.g., grafted maleic anhydride content) is used per equivalent of amido-amine reactant, e.g., amine.
- dicarboxylic acid moiety content e.g., grafted maleic anhydride content
- the polymer comprises a polymer substituted monocarboxylic acid material, containing monocarboxylic acid producing moieties derived from any of the above monounsaturated monocarboxylic acids, or ester derivatives thereof, generally from 0.05 to 1.0, preferably from about 0.1 to 0.6, e.g., 0.2 to 0.4, moles of monocarboxylic acid moiety content (e.g., grafted acrylic acid content) is used, per equivalent of nucleophilic reactant, e.g., amine.
- monocarboxylic acid moiety content e.g., grafted acrylic acid content
- amido-amine as above, generally from 1 to 5, preferably from about 1.5 to 3 moles of monocarboxylic acid moiety content (e.g., grafted acrylic acid content) is used per equivalent of amido-amine reactant, e.g., amine.
- monocarboxylic acid moiety content e.g., grafted acrylic acid content
- An example of the reaction of an amido-amine reactant with a polymer mono- or dicarboxylic acid producing reactant is the reaction of ethylene-propylene copolymer substituted succinic anhydride (EPSA) with a polyamido-amine having two terminal -NH2 groups, which can be illustrated as follows:
- EP represents an ethylene- propylene copolymer group as described above
- Z 1 and Z 2 are moieties of the formula:
- R 10 , A and n4 are as defined above for Formula XVIII.
- Preferred are amido-amine reactin products of the above equation wherein R 1 0 is H, and most preferably wherein x and y are each zero, and A is -(CH2)2- or -(CH3H7)-.
- the amine reactant can comprise one or a mixture of any of the above described amines, such as a mixture of an amido-amine and a polyalkylene polyamine. substituted mono- or dicarboxylic acid producing material and amine will be contacted for a time and under conditions sufficient to react substantially all of the primary nitrogens in the amine reactant. The progress of this reaction can be followed by infrared analysis.
- the dispersant-forming reaction can be conducted in a polar or non-polar solvent (e.g., xylene, toluene, benzene and the like), and is preferably conducted in the presence of a mineral or synthetic lubricating oil.
- Tris(hydroxymethyl) amino methane (THAM) can be reacted with the aforesaid polymer substituted acid material to form amides, imides or ester type additives as taught by U.K. 984,409, or to form oxazoline compounds and borated oxazoline compounds as described, for example, in U.S. 4,102,798; 4,116,876 and 4,113,639.
- the ashless dispersants may also be esters derived from the aforesaid ethylene alpha-olefin polymer substituted mono- or dicarboxylic acid material and from hydroxy compounds such as monohydric and polyhydric alcohols or aromatic compounds such as phenols and naphthols, etc.
- the polyhydric alcohols are the most preferred hydroxy compound and preferably contain from 2 to about 10 hydroxy radicals, for example, ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, and other alkylene glycols in which the alkylene radical contains from 2 to about 8 carbon atoms.
- polyhydric alcohols include glycerol, mono-oleate of glycerol, monostearate of glycerol, monomethyl ether of glycerol, pentaerythritol, dipentaerythritol, and mixtures thereof.
- the ester dispersant may also be derived from unsaturated alcohols such as allyl alcohol, cinnamyl alcohol, propargyl alcohol, I- cyciohexane-3-ol, and oleyl alcohol.
- unsaturated alcohols such as allyl alcohol, cinnamyl alcohol, propargyl alcohol, I- cyciohexane-3-ol, and oleyl alcohol.
- Still other classes of the alcohols capable of yielding the esters of this invention comprise the ether-alcohols and amino-alcohols including, for example, the oxy-alkylene, oxy-arylene-, amino-alkylene-, and amino-arylene-substituted alcohols having one or more oxy-alkylene, amino-alkylene or amino-arylene oxy-arylene radicals.
- ester dispersant may be di-esters of succinic acids or acidic esters, i.e., partially esterified succinic acids; as well as partially esterified polyhydric alcohols or phenols, i.e., esters having free alcohols or phenolic hydroxyl radicals. Mixtures of the above illustrated esters likewise are contemplated within the scope of this invention.
- the ester dispersant may be prepared by one of several known methods as illustrated for example in U.S. Patent 3,381 ,022.
- the ester dispersant may also be borated, similar to the nitrogen containing dispersants, as described above.
- Hydroxyamines which can be reacted with the aforesaid ethylene alpha-olefin polymer substituted dicarboxylic acid material to form dispersants include 2-amino-1-butanol, 2-amino-2-methyl-1-propanol, p- (beta-hydroxyethyl)-aniline, 2-amino-1-propanol, 3-amino-1 -propanol, 2- amino-2-methy1-1 ,3-propane-diol, 2-amino-2-ethyl-1 ,3-propanediol, N-(beta- hydroxypropyl)-N'-(beta-amino-ethyl)-piperazine, tri
- nucleophilic reactants suitable for reaction with the ethylene alpha-olefin polymer substituted dicarboxylic acid or anhydride includes amines, alcohols, and compounds of mixed amine and hydroxy containing reactive functional groups, i.e., amino-alcohols.
- Reactive metals or reactive metal compounds useful for reaction with the ethylene-alpha-olefin polymer substituted mono- and dicarboxylic acid materials of this invention are those which will form carboxylic acid metal salts with the ethylene-alpha-olefin polymer substituted mono- and dicarboxylic acid materials of this invention and those which will form metal- containing complexes with such dispersant derivative compositions produced by reacting the ethylene-alpha-olefin polymer substituted mono- and dicarboxylic acid materials with amines and/or alcohols as discussed above.
- Reactive metal compounds useful for the formation of such complexes are disclosed in U.S. Patent 3,306,908.
- Complex-forming metal reactants include the nitrates, nitrites, halides, carboxylates, phosphates, phosphites, sulfates, sulfites, carbonates, borates, and oxides of cadmium as well as metals having atomic numbers from 24 to 30 (including chromium, manganese, iron, cobalt, nickel, copper and zinc). These metals are the so-called transition or co-ordination metals, i.e., they are capable of forming complexes by means of their secondary or co-ordination valence.
- complex- forming metal compounds useful as the reactant in this invention are cobaltous nitrate, cobaltous oxide, cobaltic oxide, cobalt nitrite, cobaltic phosphate, cobaltous chloride, cobaltic chloride, cobaltous carbonate, chromous acetate, chromic acetate, chromic bromide, chromous chloride, chromic fluoride, chromous oxide, chromium dioxide, chromic oxide, chromic sulfite, chromous sulfate heptahydrate, chromic sulfate, chromic formate, chromic hexanoate, chromium oxychloride, chromic phosphite, manganous acetate, manganous benzoate, manganous carbonate, manganese dichloride, manganese trichloride, manganous citrate, manganous formate, manganous nitrate, manganous oxalate, manga
- U.S. Patent 3,306,908 is expressly inco ⁇ orated herein by reference for its discussion of reactive metal compounds suitable for forming such complexes and its disclosure of processes for preparing the complexes. Basically, those processes are applicable to the dispersant derivative compositions of the ethylene-alpha-olefin polymer substituted mono- and dicarboxylic acid materials of this invention with the amines as described above by substituting, or on an equivalent basis, the ethylene-alpha-olefin polymer substituted mono- and dicarboxylic acid materials of this invention with the high molecular weight carboxylic acid acylating agents disclosed in U.S. Patent 3,306,908. The ratio of equivalents of the acylated amine thus produced and the complex-forming metal reactant remains the same as disclosed in 3,306,908.
- U.S. Reissue Patent 26,433 discloses metals useful in preparing salts from the dispersant derivative compositions of the ethylene-alpha-olefin polymer substituted mono- and dicarboxylic acid materials of this invention and amines as described hereinabove.
- Metal salts are prepared, according to this patent, from alkali metals, alkaline earth metals, zinc, cadmium, lead, cobalt and nickel.
- Examples of a reactive metal compound suitable for use herein are sodium oxide, sodium hydroxide, sodium carbonate, sodium methylate, sodium propylate, sodium pentylate, sodium phenoxide, potassium oxide, potasium hydroxide, potassium carbonate, potassium methylate, potassium pentylate, potassium phenoxide, lithium oxide, lithium hydroxide, lithium carbonate, lithium pentylate, calcium oxide, calcium hydroxide, calcium carbonate, calcium methylate, calcium ethylate, calcium propylate, calcium chloride, calcium fluoride, calcium pentylate, calcium phenoxide, calcium nitrate, barium oxide, barium hydroxide, barium carbonate, barium chloride, barium fluoride, barium methylate, barium propylate, barium pentylate, barium nitrate, magnesium oxide, magnesium hydroxide, magnesium carbonate, magnesium ethylate, magnesium propylate, magnesium bromide, barium, iodide, magnesium phenoxide, zinc oxide
- U.S. Patent 3,271 ,310 discloses the preparation of metal salt of high molecular weight carboxylic acid acylating agents, in particular alkenyl succinic acids.
- the metal salts disclosed therein are acid salts, neutral salts, and basic salts.
- illustrative reactive metal compounds used to prepare the acidic, neutral and basic salts of the high molecular weight carboxylic acids disclosed in 3,271 ,310 are lithium oxide, lithium hydroxide, lithium carbonate, lithium pentylate, sodium oxide, sodium hydroxide, sodium carbonate, sodium methylate, sodium propylate, sodium phenoxide, potassium oxide, potassium hydroxide, potassium carbonate, potassium methylate, silver oxide, silver carbonate, magnesium oxide, magnesium hydroxide, magnesium carbonate, magnesium ethylate, magnesium propylate, magnesium phenoxide, calcium oxide, calcium hydroxide, calcium ca ⁇ onate, calcium methylate, calcium propylate, calcium pentylate, zinc oxide, zinc hydroxide, zinc carbonate, zinc propylate, strontium oxide, strontium hydroxide, cadmium oxide, cadmium hydroxide, cadmium carbonate, cadmium ethylate, barium oxide, barium hydroxide, barium hydrate, barium carbonate, barium
- U.S. Patent 3,271,310 is expressly inco ⁇ orated herein by reference for its disclosure of suitable reactive metal compounds for forming salts of the ethylene-alpha-olefin polymer substituted mono- and dicarboxylic acid materials of this invention as well as illustrative processes for preparing salts of these materials.
- the processes of 3,271 ,310 are applicable to the polymer substituted materials of this invention merely by substituting on an equivalent weight basis, the ethylene-alpha-olefin polymer substituted mono- and dicarboxylic acid materials of this invention for the high molecular weight carboxylic acids of the patent.
- ethylene- alpha-olefin polymer substituted mono- and dicarboxylic acid materials of this invention can be reacted with any individual amine, alcohol, reactive metal, reactive metal compound or any combination of two or more of any of these; that is, for example, one or more amines, one or more alcohols, one or more reactive metals or reactive metal compounds, or a mixture of any of these.
- the mixture can be a mixture of two or more amines, a mixture of two or more alcohols, a mixture of two or more metals or reactive metal compounds, or a mixture of two or more components selected from amines and alcohols, from amines and reactive metals or reactive metal compounds, from alcohols and reactive metals compounds, or one or more components from each of the amines, alcohols, and reactive metal or reactive metal compounds.
- the ethylene-alpha-olefin polymer substituted mono- and dicarboxylic acid materials of this invention can be reacted with the amines, alcohols, reactive metals, reactive metal compounds, or mixtures thereof, as described above, simultaneously (concurrently) or sequentially in any order of reaction.
- Canadian Patent 956,397 is expressly inco ⁇ orated herein by reference for its disclosure of procedures for reacting the ethylene-alpha- olefin polymer substituted mono- and dicarboxylic acid materials of this invention with amines, alcohols, reactive metal and reactive metal compounds, or mixtures of these, sequentially and simultaneously. All that is required to apply the processes of that patent to this invention is to substitute, on an equivalent weight basis, the ethylene-alpha-olefin polymer substituted mono- and dicarboxylic acid materials of this invention for the high molecular weight carboxylic acid acylating agents disclosed in that Canadian patent.
- Carboxylic acid derivatives of this invention prepared utilizing the processes disclosed in the Canadian patent constitute a preferred class of carboxylic acids or carboxylic acid derivative compositions.
- the following Patents are also inco ⁇ orated herein by reference, being counte ⁇ arts of the inco ⁇ orated Canadian patent, for the same reasons given for inco ⁇ orating the Canadian patent: 3,836,469; 3,836,470; 3,836,471; 3,838,050; 3,838,052; 3,879,308; 3,957,854; 3,957,855.
- patents are also inco ⁇ orated herein to illustrate that the amount of polyoxyalkylene alcohol demulsifier utilized in preparing dispersant/detergents from the ethylene- alpha-olefin polymer substituted mono- and dicarboxylic acid materials of this invention is normally quite small on an equivalent basis.
- carboxylic derivative compositions of this invention are those prepared according to the Canadian patent and corresponding U.S. patent and application identified above in which the polyoxyalkylene alcohol demulsifier has been omitted.
- a preferred class of carboxylic derivative compositions of this invention are the various reaction products of the high molecular weight carboxylic acid acylating agents of the Canadian patent with one or more amines, alcohols, and reactive metal compounds as disclosed therein differing only in that the ethylene-alpha-olefin polymer substituted mono- and dicarboxylic acid materials of this invention are substituted on an equivalent weight basis and, further, that the polyoxyalkylene alcohol demulsifier reactant is omitted.
- Patent 3,806,456 is expressly inco ⁇ orated herein by reference for its disclosure of processes useful in preparing products from the ethylene-alpha-olefin polymer substituted mono- and dicarboxylic acid materials of this invention and polyoxyalkylene polyamines as described hereinbefore. Substitution of the ethylene-alpha-olefin polymer substituted mono- and dicarboxylic acid materials of this invention for the high molecular weight carboxylic acid acylating agents disclosed in U.S. Patent 3,806,456 on an equivalent weight basis produces compounds of similar utility further characterized by the desired viscosity index improving properties discussed hereinbefore. U.S.
- Patent 3,576,743 is also incorporated herein by reference for its disclosure of a process for preparing carboxylic derivative compositions from both polyhydric alcohols and amine; in particular, hydroxy-substituted primary amines. Again, substitution of the ethylene-alpha-olefin polymer substituted mono- and dicarboxylic acid materials of this invention on an equivalent weight basis for the high molecular carboxylic acid acylating agents disclosed in U.S. Patent 3,576,743 provides compositions having the desired dispersant/detergent compositions and the V.I. improving properties already discussed.
- U.S. Patent 3,632,510 is expressly inco ⁇ orated herein by reference for its disclosure of processes for preparing mixed ester-metal salts.
- Mixed ester-metal salts derived from ethylene-alpha-olefin polymer substituted mono- and dicarboxylic acid materials of this invention, the alcohols, and the reactive metal compounds can be prepared by following the processes disclosed in U.S. Patent 3,632,510 but substituting, on an equivalent weight basis, the ethylene-alpha-olefin polymer substituted mono- and dicarboxylic acid materials of this invention for the high molecular weight carboxylic acid acylating agents of the patent.
- the carboxylic acid derivative compositions thus produced also represent a preferred aspect of this invention.
- a preferred group of ashless dispersants are those derived from ethylene-propylene copolymer (and diene inte ⁇ olymer) substituted with succinic anhydride groups (referred to herein as "EPSA") and reacted with polyethylene amines, e.g., tetraethyiene pentamine, pentaethylene hexamin ⁇ , polyoxyethylene and polyoxypropylene amines, e.g., polyoxypropylene diamine, trismethylolaminomethane and pentaerythritol, and combinations thereof.
- EPSA succinic anhydride groups
- One particularly preferred dispersant combination involves a combination of (A) ethylene-propylene copolymer substituted with succinic anhydride groups and reacted with (B) a hydroxy compound, e.g., pentaerythritol, (C) a polyoxyalkylene polyamine, e.g., polyoxypropylene diamine, and (D) a polyalkylene polyamine, e.g. polyethylene diamine and tetraethyiene pentamine using about 0.3 to about 2 moles each of (B) and (D) and about 0.3 to about 2 moles of (C) per mole of (A) as described in U.S. Patent 3,804,763.
- A ethylene-propylene copolymer substituted with succinic anhydride groups and reacted with (B) a hydroxy compound, e.g., pentaerythritol
- C a polyoxyalkylene polyamine
- polyoxypropylene diamine e.g
- Another preferred dispersant combination involves the combination of (A) ethylene-propylene copolymer succinic anhydride with (B) a polyalkylene polyamine, e.g., tetraethyiene pentamine, and (C) a polyhydric alcohol or polyhydroxy-substituted aliphatic primary amine, e.g., pentaerythritol or trismethylolaminomethane as described in U.S. Patent 3,632,511.
- the dispersant materials of this invention are preferably characterized by a VR' value of not greater than about 4.1 , preferably not greater than about 4.0, e.g., from about 2.5 to 4.0, and most preferably from about 3.5 to 3.9.
- VR' value is intended to refer to the quotient obtained by the expression (XIX):
- VR' VIS'b VIS'a
- VIS'a is the kinematic viscosity (ASTM Method D445) of the dispersant material at 100°C in units of centistokes
- VIS'b is the cold cranking simulator (CCS) viscosity (ASTM Method D2602) at -20°C in units of poise, as determined at a dispersant material polymer concentration of 2 wt.% in the reference oil as defined above for Formula IV.
- Another aspect of this invention involves the post treatment of the nitrogen or ester containing dispersant materials.
- the process for post- treating said nitrogen or ester containing dispersant materials is analogous to the post-treating processes used with respect to derivatives of conventional ethylene copolymers of the prior art. Accordingly, the same reaction conditions, ratio of reactants and the like can be used.
- the nitrogen-containing dispersant materials of the instant invention as described above are post-treated by contacting said nitrogen- containing dispersant materials with one or more post-treating reagents selected from the group consisting of boron oxide, boron oxide hydrate, boron halides, boron acids, esters of boron acids, carbon disulfide, sulfur, sulfur chlorides, alkenyl cyanides, aldehydes, ketones, urea, thio-urea, guanidine, dicyanodiamide, hydrocarbyl phosphates, hydrocarbyl phosphites, hydrocarbyl thiophosphates, hydrocarbyl thiophosphites, C-) to C30 hydrocarbyl substituted succinic acids and anhydrides (e.g., succinic anhydride, dodecyl succinic anhydride and the like), maleic anhydride (or any of the above discussed monounsaturated carboxylic reactants useful in forming the ethylene-al
- the same post-treating reagents are used with the dispersant materials prepared from a combination of polyamines and polyois.
- the post-treating reagents are usually selected from the group consisting of boron oxide, boron oxide hydrate, boron halides, boron acids, esters of boron acids, sulfur, sulfur chlorides, phosphorus sulfides, phosphorus oxides, epoxides, and episulfides.
- the nitrogen containing dispersants can be treated with a boron compound selected from the class consisting of boron oxide, boron halides, boron acids and esters of boron acids in an amount to provide from about 0.1 atomic proportion of boron for each mole of said nitrogen composition to about 20 atomic proportions of boron for each atomic proportion of nitrogen of said nitrogen composition.
- the borated dispersants of the invention contain from about 0.05 to 2.0 wt. %, e.g. 0.05 to 0.7 wt. % boron based on the total weight of said borated nitrogen-containing dispersant compound.
- the boron which appears to be in the product as dehydrated boric acid polymers (primarily (HB02)3), is believed to attach to the dispersant as amine salts, e.g., the metaborate salt of said amine dispersants.
- Treating is readily carried out by adding from about 0.05 to 4, e.g. 1 to 3 wt. % (based on the weight of said nitrogen compound) of said boron compound, preferably boric acid which is most usually added as a slurry to said nitrogen compound and heating with stirring at from about 135°C. to 190, e.g. 140-170°C, for from 1 to 5 hours followed by nitrogen stripping at said temperature ranges.
- the boron treatment can be carried out by adding boric acid to the hot reaction mixture of the dicarboxylic acid material and amine while removing water.
- the nitrogen and or ester containing dispersant materials of this invention can also be treated with poiymerizable lactones (such as epsilon- caprolactone) to form dispersant adducts having the moiety - [C(0)(CH2)zO] m H, wherein z is a number of from 4 to 8 (e.g., 5 to 7) and has an average value of from about 0 to 100 (e.g., 0.2 to 20).
- poiymerizable lactones such as epsilon- caprolactone
- the dispersants of this invention can be post-treated with a C5 to Cg lactone, e.g., epsilon-caprolactone, by heating a mixture of the dispersant material and lactone in a reaction vessel in the absence of a solvent at a temperature of about 50°C to about 200°C, more preferably from about 75°C to about 180° C, and most preferably from about 90°C to about 160°C, for a sufficient period of time to effect reaction.
- a solvent for the lactone, dispersant material and or the resulting adduct may be employed to control viscosity and/or the reaction rates.
- the C5 to Cg lactone e.g., epsilon- caprolactone
- a dispersant material in a 1:1 mole ratio of lactone to dispersant material.
- the ration of lactone to dispersant material may vary considerably as a means of controlling the length of the sequence of the lactone units in the adduct.
- the mole ratio of the lactone to the dispersant material may vary from about 10:1 to about 0.1 :1 , more preferably from about 5:1 to about 0.2:1 , and most preferably from about 2:1 to about 0.4:1.
- Catalysts useful in the promotion of the lactone-dispersant material reactions are selected from the group consisting of stannous octanoate, stannous hexanoate, tetrabutyl titanate, a variety of organic based acid catalysts and amine catalysts, as described on page 266, and forward, in a book chapter authored by R.D. Lundberg and E. F. Cox, entitled “Kinetics and Mechanisms of Polymerization: Ring Opening Polymerization", edited by Frisch and Reegen, published by Marcel Dekker in 1969, wherein stannous octanoate is an especially preferred catalyst.
- the catalyst is added to the reaction mixture at a concentration level of about 50 to about 10,000 parts per weight of catalyst per one million parts of the total reaction mixture.
- adducts formed by reaction of dispersant materials if this invention and epsilon-caprolactone are those adducts illustrated by the following equation:
- Complex forming metal reactants include the metal nitrates, thiocyanates, halides, carboxylates, phosphates, thio-phosphates, sulfates, and borates of transition metals such as iron, cobalt, nickel, copper, chromium, manganese, molybdenum, tungsten, ruthenium, palladium, platinum, cadmium, lead, silver, mercury, antimony and the like.
- transition metals such as iron, cobalt, nickel, copper, chromium, manganese, molybdenum, tungsten, ruthenium, palladium, platinum, cadmium, lead, silver, mercury, antimony and the like.
- Prior art disclosures of these compiexing reactions may be also found in U.S. Patents 3 , 306 , 908 and Re. 26,433, the disclosures of which are hereby inco ⁇ orated by reference in their entirety.
- the (A) ethylene- alpha-olefin polymer (including diene te ⁇ olymer) substituted mono- and di ⁇ carboxylic acid materials of this invention can be admixed, prior to, after or during being contacted with the selected nucleophilic reagant, with (B) a conventional polyolefin-substituted mono- or dicarboxylic acid material derived from any of the polyolefins discussed above as being useful as a mixed charge with the ethenylenically unsaturated ethylene-alpha-olefin polymers in the formation of the ethylene-alpha-olefin polymer substituted mono-and di-carboxylic acid materials of this invention.
- the ethlyene-alpha- olefin polymer substituted mono- and di-carboxylic acid materials of this invention and the polyolefin-substituted mono- or dicarboxylic acid material will be generally admixed prior to contact with the selected selected nucleophilic reagant, e.g., alkylene polyamine.
- Such mixtures will generally employ a weight:weight ratio of ethlyene-alpha-olefin polymer substituted mono-and di-carboxylic acid materials of this invention to polyolefin- substituted mono- or dicarboxylic acid material from about 10:90 to 90:10, preferably from about 20:80 to 80:20, and more preferably from about 40: 60 to 60 : 40.
- ethylene- propylene copolymer-substituted succinic anhydride materials of this invention and polybutyl-substituted succinic anhydride (derived from polyisobutylene, poly-n-butene, or mixtures thereof, having a number average molecular weight as described above for the above conventional polyolefins, e.g., 900 - 5,000, more usually from about 1300 to 3,000).
- the resulting mixtures can then be contacted for reaction with the selected nucleophilic reagent as described above for formation of dispersant materials having improved viscosity properties, wherein the VR' of the resulting dispersant material is preferably less than the VR' of the corresponding dispersant prepared from the polyolefin-substituted mono- or dicarboxylic acid material alone.
- the resulting mixed dispersant materials can also be treated with any of the above-described post-treatment methods for incorporation of additional functional groups thereon, such as boron, hydroxy, ester, epoxy, lactone, sulfur, metals and the like, as discussed above.
- the dispersants of the present invention can be inco ⁇ orated into a lubricating oil (or a fuel) in any convenient way.
- these dispersants can be added directly to the lubricating oil (or fuel) by dispersing or dissolving the same in the lubricating oil (or fuel) at the desired level of concentration of the dispersant.
- Such blending into the additional lubricating oil (or fuel) can occur at room temperature or elevated temperatures.
- the dispersants can be blended with a suitable oil-soluble solvent/diluent (such as benzene, xylene, toluene, lubricating base oils and petroleum distillates, including the various normally liquid fuels described in detail below) to form a concentrate, and then blending the concentrate with a lubricating oil (or fuel) to obtain the final formulation.
- a suitable oil-soluble solvent/diluent such as benzene, xylene, toluene, lubricating base oils and petroleum distillates, including the various normally liquid fuels described in detail below
- a suitable oil-soluble solvent/diluent such as benzene, xylene, toluene, lubricating base oils and petroleum distillates, including the various normally liquid fuels described in detail below
- a suitable oil-soluble solvent/diluent such as benzene, xylene, toluene, lubricating base oils and petroleum distillates, including the various normally liquid fuels described in detail below
- the products of this invention When the products of this invention are inco ⁇ orated into crude oil refinery process streams and other hydrocarbon fluid process streams, they function as antifoulants and will be generally used, e.g., in amounts of up to 100 ppm, e.g., 5 to 50 ppm, in the same manner as the macrocyclic polyamine additive as described in U.S. Patent 4,569,750, the disclosure of which is hereby inco ⁇ orated by reference, in its entirety.
- the dispersant products of the present invention possess very good dispersant properties as measured herein in a wide variety of environments. Accordingly, the dispersant products are used by inco ⁇ oration and dissolution into oleaginous materials such as fuels and lubricating oils.
- oleaginous materials such as fuels and lubricating oils.
- the dispersant products of this invention are used in normally liquid petroleum fuels such as middle distillates boiling from about 65° to 430°C, including kerosene, diesel fuels, home heating fuel oil, jet fuels, etc.
- a concentration of the additives in the fuel in the range of typically from about 0.001 to about 0.5, and preferably 0.005 to about 0.15 weight percent, based on the total weight of the composition, will usually be employed.
- anti-knock agents such as tetraalkyl lead compounds, lead scavengers such as haloaikanes, deposit preventers or modifiers such as triaryl phosphates, dyes, cetane improvers, antioxidants such as 2,6-ditertiary-butyl-4-methylphenol, rust inhibitors, bacteriostatic agents, gum inhibitors, metal deactivators, upper cylinder lubricants and the like.
- anti-knock agents such as tetraalkyl lead compounds, lead scavengers such as haloaikanes
- deposit preventers or modifiers such as triaryl phosphates, dyes, cetane improvers, antioxidants such as 2,6-ditertiary-butyl-4-methylphenol, rust inhibitors, bacteriostatic agents, gum inhibitors, metal deactivators, upper cylinder lubricants and the like.
- the dispersant products of the present invention find their primary utility in lubricating oil compositions which employ a base oil in which the additives re dissolved or dispersed.
- base oils may be natural or synthetic.
- Base oils suitable for use in preparing the lubricating oil compositions of the present invention include those conventionally employed as crankcas ⁇ lubricating oils for spark-ignited and compression-ignited internal combustion engines, such as automobile and truck engines, marine and railroad diesel engines, and the like.
- Advantageous results are also achieved by employing the additive mixtures of the present invention in base oils conventionally employed in and/or adapted for use as power transmitting fluids, universal tractor fluids and hydraulic fluids, heavy duty hydraulic fluids, power steering fluids and the like.
- Gear lubricants, industrial oils, pump oils and other lubricating oil compositions can also benefit from the incorporation therein of the additive mixtures of the present invention.
- lubricating oil formulations conventionally contain several different types of additives that will supply the characteristics that are required in the formulations.
- additives include viscosity index improvers, antioxidants, corrosion inhibitors, detergents, dispersants, pour point depressants, antiwear agents, friction modifiers, and other ashless dispersant (e.g., polyisobutenyl succinimides) and borated derivatives thereof), etc.
- the additives in the form of 10 to 80 wt. %, e.g., 20 to 80 wt. % active ingredient concentrates in hydrocarbon oil, e.g. mineral lubricating oil, or other suitable solvent.
- hydrocarbon oil e.g. mineral lubricating oil, or other suitable solvent.
- these concentrates may be diluted with 3 to 100, e.g., 5 to 40 parts by weight of lubricating oil, per part by weight of the additive package, in forming finished lubricants, e.g. crankcase motor oils.
- the pu ⁇ ose of concentrates is to make the handling of the various materials less difficult and awkward as well as to facilitate solution or dispersion in the final blend.
- a dispersant would be usually employed in the form of a 40 to 50 wt. % concentrate, for example, in a lubricating oil fraction.
- the ashless dispersants of the present invention will be generally used in admixture with a lube oil basestock, comprising an oil of lubricating viscosity, including natural and synthetic lubricating oils and mixtures thereof.
- Natural oils include animal oils and vegetable oils (e.g., castor, lard oil) liquid petroleum oils and hydrorefined, solvent-treated or acid-treated mineral lubricating oils of the paraffinic, naphthenic and mixed paraffinic- naphthenic types. Oils of lubricating viscosity derived from coal or shale are also useful base oils.
- Alkylene oxide polymers and interpolymers and derivatives thereof where the terminal hydroxyl groups have been modified by esterification, etherification, etc. constitute another class of known synthetic lubricating oils. These are exemplified by polyoxyalkylene polymers prepared by polymerization of ethylene oxide or propylene oxide, the alkyl and aryl ethers of these polyoxyalkylene polymers (e.g., methyl-poly isopropylene glycol ether having an average molecular weight of 1000, diphenyi ether of poly-ethylene glycol having a molecular weight of 500-1000, diethyl ether of polypropylene glycol having a molecular weight of 1000-1500); and mono- and polycarboxylic esters thereof, for example, the acetic acid esters, mixed C3-C8 fatty acid esters and C13 Oxo acid diester of tetraethyiene glycol.
- polyoxyalkylene polymers prepared by polymerization of ethylene oxide or propylene
- Another suitable class of synthetic lubricating oils comprises the esters of dicarboxylic acids (e.g., phthalic acid, succinic acid, alkyl succinic acids and alkenyl succinic acids, maleic acid, azelaic acid, suberic acid, sebasic acid, fumaric acid, adipic acid, linoleic acid dimer, malonic acid, alkylmalonic acids, alkenyl malonic acids) with a variety of alcohols (e.g., butyl alcohol, hexyl alcohol, dodecyl alcohol, 2-ethylhexyl alcohol, ethylene glycol, diethylene glycol monoether, propylene glycol).
- dicarboxylic acids e.g., phthalic acid, succinic acid, alkyl succinic acids and alkenyl succinic acids, maleic acid, azelaic acid, suberic acid, sebasic acid, fumaric acid, adipic acid, linole
- esters include dibutyl adipate, di(2-ethyihexyl)sebacate, di-n-hexyl fumarate, dioctyl sebacate, diisooctyl azelate, diisodecyl azelate, dioctyl phthalate, didecyl phthaiate, dieicosyl sebacate, the 2-ethylhexyl diester of linoleic acid dimer, and the complex ester formed by reacting one mote of sebacic acid with two moles of tetraethyiene glycol and two moles of 2- ethylhexanoic acid.
- Esters useful as synthetic oils also include those made from C5 to C-J2 monocarboxylic acids and polyois and polyol ethers such as neopentyl glycol, trimethylolpropane, pentaerythritol, dipentaerythritol and tripentaerythritol.
- Silicon-based oils such as the polyalkyl-, polyaryl-, polyalkoxy-, or polyaryloxysiloxane oils and silicate oils comprise another useful class of synthetic lubricants; they include tetraethyl silicate, tetraisopropyl silicate, tetra-(2-ethylhexyl)silicate, tetra-(4-methyl-2-ethylhexyl)silicate, tetra-(p-tert- butylphenyl)silicate, hexa-(4-methyl-2-pentoxy)disiloxane, poly(methyl)- siloxanes and poly(methylphenyl)siloxanes.
- Other synthetic lubricating oils include liquid esters of phosphorus-containing acids (e.g., tricresyl phosphate, trioctyl phosphate, diethyl ester of decylphosphonic acid) and polymeric tetrahydrofurans.
- Unrefined, refined and rerefined oils can be used in the lubricants of the present invention.
- Unrefined oils are those obtained directly from a natural or synthetic source without further purification treatment.
- a shale oil obtained directly from retorting operations a petroleum oil obtained directly from distillation or ester oil obtained directly from an esterification process and used without further treatment would be an unrefined oil.
- Refined oils are similar to the unrefined oils except they have been further treated in one or more purification steps to improve one or more properties. Many such purification techniques, such as distillation, solvent extraction, acid or base extraction, filtration and percolation are known to those skilled in the art.
- Rerefined oils are obtained by processes similar to those used to obtain refined oils applied to refined oils which have been already used in service. Such rerefined oils are also known as reclaimed or reprocessed oils and often are additionally processed by techniques for removal of spent additives and oil breakdown products.
- Metal containing rust inhibitors and/or detergents are frequently used with ashless dispersants.
- Such detergents and rust inhibitors include the metal salts of sulphonic acids, alkyl phenols, sulphurized alkyl phenols, alkyl salicylates, naphthenates, and other oil soluble mono- and di-carboxylic acids.
- Highly basic, that is overbased metal salts which are frequently used as detergents appear particularly prone to interaction with the ashless dispersant.
- these metal containing rust inhibitors and detergents are used in lubricating oil in amounts of about 0.01 to 10, e.g. 0.1 to 5 wt. %, based on the weight of the total lubricating composition.
- Marine diesel lubricating oils typically employ such metal-containing rust inhibitors and detergents in amounts of up to about 20 wt.%.
- Highly basic alkaline earth metal sulfonates are frequently used as detergents. They are usually produced by heating a mixture comprising an oil-soluble sulfonate or alkaryl sulfonic acid, with an excess of alkaline earth metal compound above that required for complete neutralization of any sulfonic acid present and thereafter forming a dispersed carbonate complex by reacting the excess metal with carbon dioxide to provide the desired overbasing.
- the sulfonic acids are typically obtained by the sulfonation of alkyl substituted aromatic hydrocarbons such as those obtained from the fractionation of petroleum by distillation and/or extraction or by the alkylation of aromatic hydrocarbons as for example those obtained by alkylating benzene, toluene, xylene, naphthalene, diphenyl and the halogen derivatives such as chlorobenzene, chlorotoluene and chloronaphthalene.
- the alkylation may be carried out in the presence of a catalyst with alkylating agents having from about 3 to more than 30 carbon atoms.
- haioparaffins for example haioparaffins, olefins obtained by dehydrogenation of paraffins, polyolefins produced from ethylene, propylene, etc. are all suitable.
- the alkaryl sulfonates usually contain from about 9 to about 70 or more carbon atoms, preferably from about 16 to about 50 carbon atoms per alkyl substituted aromatic moiety.
- the alkaline earth metal compounds which may be used in neutralizing these alkaryl sulfonic acids to provide the sulfonates includes the oxides and hydroxides, alkoxides, carbonates, carboxylate, sulfide, hydrosulfide, nitrate, borates and ethers of magnesium, calcium, and barium. Examples are calcium oxide, calcium hydroxide, magnesium acetate and magnesium borate.
- the alkaline earth metal compound is used in excess of that required to complete neutralization of the alkaryl sulfonic acids. Generally, the amount ranges from about 100 to 220%, although it is preferred to use at least 125%, of the stoichiometric amount of metal required for complete neutralization.
- a preferred alkaline earth sulfonate additive is magnesium alkyl aromatic sulfonate having a total base number ranging from about 300 to about 400 with the magnesium sulfonate content ranging from about 25 to about 32 wt. %, based upon the total weight of the additive system dispersed in mineral lubricating oil.
- Neutral metal sulfonates are frequently used as rust inhibitors.
- Polyvalent metal alkyl salicylate and naphthenate materials are known additives for lubricating oil compositions to improve their high temperature performance and to counteract deposition of carbonaceous matter on pistons (U.S. Patent 2,744,069).
- An increase in reserve basicity of the polyvalent metal alkyl salicylates and naphthenates can be realized by utilizing alkaline earth metal, e.g. calcium, salts of mixtures of Cg-C26 a 'kyl saiicylates and phenates (see U.S. Patent 2,744,069) or polyvalent metal salts of alkyl salicyclic acids, said acids obtained from the alkylation of phenols followed by phenation, carboxylation and hydrolysis (U.S.
- Patent 3,704,315) which could then be converted into highly basic salts by techniques generally known and used for such conversion.
- the reserve basicity of these metal-containing rust inhibitors is usefully at TBN levels of between about 60 and 150.
- the useful polyvalent metal saiicylate and naphthenate materials are the methylene and sulfur bridged materials which are readily derived from alkyl substituted salicylic or naphthenic acids or mixtures of either or both with alkyl substituted phenols.
- Basic sulfurized salicylates and a method for their preparation is shown in U.S. Patent 3,595,791.
- Such materials include alkaline earth metal, particularly magnesium, calcium, strontium and barium salts of aromatic acids having the general formula:
- Ar is an aryl radical of 1 to 6 rings
- R- * is an alkyl group having from about 8 to 50 carbon atoms, preferably 12 to 30 carbon atoms (optimally about 12)
- X is a sulfur (-S-) or methylene (-CH2-) bridge
- y is a number from 0 to 4
- n is a number from 0 to 4.
- overbased methylene bridged salicylate- phenate salt is readily carried out by conventional techniques such as by alkylation of a phenol followed by phenation, carboxylation, hydrolysis, methylene bridging a coupling agent such as an alkylene dihalide followed by salt formation concurrent with carbonation.
- suifurized metal phenates can be considered the "metal salt of a phenol sulfide" which thus refers to a metal salt whether neutral or basic, of a compound typified by the general formula (XXII):
- the individual R groups may each contain from 5 to 40, preferably 8 to 20, carbon atoms.
- the metal salt is prepared by reacting an alkyl phenol sulfide with a sufficient quantity of metal containing material to impart the desired alkalinity to the suifurized metal phenate.
- the suifurized alkyl phenols which are useful generally contain from about 2 to about 14% by weight, preferably about 4 to about 12 wt. % sulfur based on the weight of suifurized alkyl phenol.
- the suifurized alkyl phenol may be converted by reaction with a metal containing material including oxides, hydroxides and complexes in an amount sufficient to neutralize said phenol and, if desired, to overbase the product to a desired alkalinity by procedures well known in the art.
- a metal containing material including oxides, hydroxides and complexes
- Preferred is a process of neutralization utilizing a solution of metal in a glycol ether.
- the neutral or normal suifurized metal phenates are those in which the ratio of metal to phenol nucleus is about 1 :2.
- the "overbased" or “basic” suifurized metal phenates are suifurized metal phenates wherein the ratio of metal to phenol is greater than that of stoichiometric, e.g.
- the basic suifurized metal dodecyl phenate has a metal content up to and greater than 100% in excess of the metal present in the corresponding normal suifurized metal phenates wherein the excess metal is produced in oil-soluble or dispersible form (as by reaction with CO2).
- the overbased suifurized metal phenates desirably have a TBN value of at least 150, e.g. from 200 to 300.
- Magnesium and calcium containing additives although beneficial in other respects can increase the tendency of the lubricating oil to oxidize. This is especially true of the highly basic sulphonates.
- the invention therefore provides a crankcase lubricating composition also containing from 2 to 8000 parts per million of calcium or magnesium.
- the magnesium and/or calcium is generally present as basic or neutral detergents such as the sulphonates and phenates, our preferred additives are the neutral or basic magnesium or calcium sulphonates.
- the oils Preferably contain from 500 to 5000 parts per million of calcium or magnesium. Basic magnesium and calcium sulphonates are preferred.
- Viscosity modifiers impart high and low temperature operability to the lubricating oil and permit it to remain relatively viscous at elevated temperatures and also exhibit acceptable viscosity or fluidity at low temperatures.
- Viscosity modifiers are generally high molecular weight hydrocarbon polymers including polyesters. The viscosity modifiers may also be derivatized to include other properties or functions, such as the addition of dispersancy properties.
- oil soluble viscosity modifying polymers will generally have number average molecular weights of from 10 3 to 10 6 , preferably 10 4 to 10 6 , e.g., 20,000 to 250,000, as determined by gel permeation chromatography or osmometry.
- suitable hydrocarbon polymers include homopolymers and copolymers of two or more monomers of C2 to C30, e.g. C2 to C ⁇ olefins, including both alpha olefins and internal olefins, which may be straight or branched, aliphatic, aromatic, alkyl-aromatic, cycloaiiphatic, etc. Frequently they will be of ethylene with C3 to C30 olefins, particularly preferred being the copolymers of ethylene and propylene.
- polystyrene e.g., polystyrene
- the polymer may be degraded in molecular weight, for example by mastication, extrusion, oxidation or thermal degradation, and it may be oxidized and contain oxygen.
- derivatized polymers such as post-grafted inte ⁇ olymers of ethylene- propylene with an active monomer such as maleic anhydride which may be further reacted with an alcohol, or amine, e.g. an alkylene polyamine or hydroxy amine, e.g. see U.S. Patent Nos. 4,089,794; 4,160,739; 4,137,185; or copolymers of ethylene and propylene reacted or grafted with nitrogen compounds such as shown in U.S. Patent Nos. 4,068,056; 4,068,058; 4,146,489 and 4,149,984.
- the preferred hydrocarbon polymers are ethylene copolymers containing from 15 to 90 wt.% ethylene, preferably 30 to 80 wt.% of ethylene and 10 to 85 wt.%, preferably 20 to 70 wt.% of one or more C3 to C28. preferably C3 to C18. more preferably C3 to C ⁇ , alpha-olefins. While not essential, such copolymers preferably have a degree of crystallinity of less than 25 wt.%, as determined by X-ray and differential scanning caiorimetry. Copolymers of ethylene and propylene are most preferred.
- alpha- olefins suitable in place of propylene to form the copolymer, or to be used in combination with ethylene and propylene, to form a te ⁇ olymer, tetrapolymer, etc. include 1 -butene, 1 -pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, etc.; also branched chain alpha-olefins, such as 4-methyl-1 - pentene, 4-methyl-1 -hexene, 5-methylpentene-1 , 4,4-dimethyl-1 -pentene, and 6-methylheptene-1 , etc., and mixtures thereof.
- Terpolymers, tetrapolymers, etc., of ethylene, said C3.28 alpha- olefin, and a non-conjugated diolefm or mixtures of such diolefins may also be used.
- the amount of the non-conjugated diolefin generally ranges from about 0.5 to 20 mole percent, preferably from about 1 to about 7 mole percent, based on the total amount of ethylene and alpha-olefin present.
- the polyester V.I. improvers are generally polymers of esters of ethyienically unsaturated C3 to C ⁇ mono- and dicarboxylic acids such as methacrylic and acrylic acids, maleic acid, maleic anhydride, fumaric acid, etc.
- unsaturated esters examples include those of aliphatic saturated mono alcohols of at least 1 carbon atom and preferably of from 12 to 20 carbon atoms, such as decyl acryiate, lauryl acrylate, stearyl acrylate, eicosanyl acrylate, docosanyl acrylate, decyl methacrylate, diamyl fumarate, lauryl methacrylate, cetyl methacrylate, stearyl methacrylate, and the like and mixtures thereof.
- esters include the vinyl alcohol esters of C2 to C22 fatty or mono carboxylic acids, preferably saturated such as vinyl acetate, vinyl laurate, vinyl palmitate, vinyl stearate, vinyl oleate, and the like and mixtures thereof.
- Copolymers of vinyl alcohol esters with unsaturated acid esters such as the copolymer of vinyl acetate with dialkyl fumarates, can also be used.
- the esters may be copolymerized with still other unsaturated monomers such as olefins, e.g. 0.2 to 5 moles of C2 - C20 aliphatic or aromatic olefin per mole of unsaturated ester; or per mole of unsaturated acid or anhydride followed by esterification.
- olefins e.g. 0.2 to 5 moles of C2 - C20 aliphatic or aromatic olefin per mole of unsaturated ester; or per mole of unsaturated acid or anhydride followed
- ester polymers may be grafted with, or the ester copolymerized with, polymerizable unsaturated nitrogen-containing monomers to impart dispersancy to the V.I. improvers.
- suitable unsaturated nitrogen-containing monomers include those containing 4 to 20 carbon atoms such as amino substituted olefins as p-(beta-diethylamino- ethyl)styrene; basic nitrogen-containing heterocycles carrying a polymerizable ethyienically unsaturated substituent, e.g.
- the vinyl pyridines and the vinyl alkyl pyridines such as 2-vinyl-5-ethyl pyridine, 2-methyl-5-vinyl pyridine, 2-vinyl-pyridine, 4-vinylpyridine, 3-vinyl-pyridine, 3-methyl-5-vinyl- pyridine, 4-methyl-2-vinyl-pyridine, 4-ethyl-2-vinyl-pyridine and 2-butyl-1 -5- vinyl-pyridine and the like.
- N-vinyl lactams are also suitable, e.g. N-vinyl pyrrolidones or N- vinyl piperidones.
- the vinyl pyrrolidones are preferred and are exemplified by N- vinyl pyrrolidone, N-(1 -methyl vinyl) pyrrolidone, N-vinyl-5-methyl pyrrolidone, N-vinyl-3, 3-dimethylpyrrolidone, N-vinyl-5-ethyl pyrrolidone, etc.
- Dihydrocarbyl dithiophosphate metal salts are frequently used as anti-wear agents and also provide antioxidant activity.
- the zinc salts are most commonly used in lubricating oil in amounts of 0.1 to 10, preferably 0.2 to 2 wt. %, based upon the total weight of the lubricating oil composition. They may be prepared in accordance with known techniques by first forming a dithiophosphoric acid, usually by reaction of an alcohol or a phenol with P2S5 and then neutralizing the dithiophosphoric acid with a suitable zinc compound. Mixtures of alcohols may be used including mixtures of primary and secondary alcohols, secondary generally for imparting improved anti- wear properties, with primary giving improved thermal stability properties. Mixtures of the two are particularly useful. In general, any basic or neutral zinc compound could be used but the oxides, hydroxides and carbonates are most generally employed. Commercial additives frequently contain an excess of zinc due to use of an excess of the basic zinc compound in the neutralization reaction.
- the zinc dihydrocarbyl dithiophosphates useful in the present invention are oil soluble salts of dihydroca yl esters of dithiophosphoric acids and may be represented by the following formula:
- R and R" may be the same or different hydrocarbyl radicals containing from 1 to 18, preferably 2 to 12 carbon atoms and including radicals such as alkyl, alkenyl, aryl, aralkyl, alkaryl and cycloaliphatic radicals. Particularly preferred as R and R' groups are alkyl groups of 2 to 8 carbon atoms.
- the radicals may, for example, be ethyl, ⁇ -propyl, i- propyl, n-butyl, i-butyl, sec-butyl, amyl, n-hexyl, i-hexyl, n-octyl, decyl, dodecyl, octadecyl, 2-ethylhexyl, phenyl, butylphenyl, cyclohexyl, methylcyclopentyl, propenyl, butenyl, etc.
- the total number of carbon atoms (i.e., R and R' in formula XXIII) in the dithiophosphoric acid will generally be about 5 or greater.
- the antioxidants useful in this invention include oil soluble copper compounds.
- the copper may be blended into the oil as any suitable oil soluble copper compound.
- oil soluble we mean the compound is oil soluble under normal blending conditions in the oil or additive package.
- the copper compound may be in the cuprous or cupric form.
- the copper may be in the form of the copper dihydrocarbyl thio- or dithio-phosphates wherein copper may be substituted for zinc in the compounds and reactions described above although one mole of cuprous or cupric oxide may be reacted with one or two moles of the dithiophosphoric acid, respectively.
- the copper may be added as the copper salt of a synthetic or natural carboxylic acid.
- Examples include C-J O to C-jg fatty acids such as stearic or palmitic, but unsaturated acids such as oleic or branched carboxylic acids such as napthenic acids of molecular weight from 200 to 500 or synthetic carboxylic acids are preferred because of the improved handling and solubility properties of the resulting copper carboxylates.
- oil soluble copper dithiocarbamates of the general formula (RR'NCSS) n Cu, where n is 1 or 2 and R and R' are the same or different hydrocarbyl radicals containing from 1 to 18 and preferably 2 to 12 carbon atoms and including radicals such as alkyl, alkenyl, aryl, aralkyl, alkaryl and cycloaiiphatic radicals. Particularly preferred as R and R' groups are alkyl groups of 2 to 8 carbon atoms.
- the radicals may, for example, be ethyl, n-propyl, i-propyl, n-butyl, i-butyl, sec-butyl, amyl, n-hexyl, i-hexyl, n-heptyl, n-octyl, decyl, dodecyl, octadecyl, 2-ethylhexyl, phenyl, butylphenyl, cyclohexyl, methylcyclopentyl, propenyl, butenyl, etc.
- the total number of carbon atoms i.e., R and R'
- Copper sulphonates, phenates, and acetylacetonates may also be used.
- Exemplary of useful copper compounds are copper (Cu 1 and/or Cu") salts of alkenyl succinic acids or anhydrides.
- the salts themselves may be basic, neutral or acidic. They may be formed by reacting (a) any of the materials above discussed ashless dispersants which have at least one free carboxylic acid (or anhydride) group with (b) a reactive metal compound.
- Suitable acid (or anhydride) reactive metal compounds include those such as cupric or cuprous hydroxides, oxides, acetates, borates, and carbonates or basic copper carbonate.
- Examples of the metal salts of this invention are Cu salts of polyisobutenyl succinic anhydride (hereinafter referred to as Cu-PIBSA), and Cu salts of polyisobutenyl succinic acid.
- the selected metal employed is its divalent form, e.g., Cu +2 .
- the preferred substrates are polyaikenyl succinic acids in which the alkenyl group has a molecular weight greater than about 700.
- the alkenyl group desirably has a M n from about 900 to 1400, and up to 2500, with a M n of about 950 being most preferred.
- PIBSA polyisobutylene succinic acid
- These materials may desirably be dissolved in a solvent, such as a mineral oil, and heated in the presence of a water solution (or slurry) of the metal bearing material. Heating may take place between 70° and about 200°C. Temperatures of 110° to 140°C are entirely adequate. It may be necessary, depending upon the salt produced, not to allow the reaction to remain at a temperature above about 140°C for an extended period of time, e.g., longer than 5 hours, or decomposition of the salt may occur.
- a solvent such as a mineral oil
- the copper antioxidants (e.g., Cu-PIBSA, Cu-oleate, or mixtures thereof) will be generally employed in an amount of from about 50-500 ppm by weight of the metal, in the final lubricating composition.
- the copper antioxidants used in this invention are inexpensive and are effective at low concentrations and therefore do not add substantially to the cost of the product. The results obtained are frequently better than those obtained with previously used antioxidants, which are expensive and used in higher concentrations. In the amounts employed, the copper compounds do not interfere with the performance of other components of the lubricating composition, in many instances, completely satisfactory results are obtained when the copper compound is the sole antioxidant in addition to the ZDDP.
- the copper compounds can be utilized to replace part or all of the need for supplementary antioxidants. Thus, for particularly severe conditions it may be desirable to include a supplementary, conventional antioxidant. However, the amounts of supplementary antioxidant required are small, far less than the amount required in the absence of the copper compound.
- any effective amount of the copper antioxidant can be incorporated into the lubricating oil composition, it is contemplated that such effective amounts be sufficient to provide said lube oil composition with an amount of the copper antioxidant of from about 5 to 500 (more preferably 10 to 200, still more preferably 10 to 180, and most preferably 20 to 130 (e.g., 90 to 120)) part per million of added copper based on the weight of the lubricating oil composition.
- the preferred amount may depend amongst other factors on the quality of the basestock lubricating oil.
- Corrosion inhibitors also known as anti-corrosive agents, reduce the degradation of the metallic parts contacted by the lubricating oil composition.
- Illustrative of corrosion inhibitors are phosphosulfurized hydrocarbons and the products obtained by reaction of a phosphosulfurized hydrocarbon with an alkaline earth metal oxide or hydroxide, preferably in the presence of an alkylated phenol or of an alkylphenol thioester, and also preferably in the presence of carbon dioxide.
- Phosphosulfurized hydrocarbons are prepared by reacting a suitable hydrocarbon such as a terpene, a heavy petroleum fraction of a C2 to Ce olefin polymer such as polyisobutylene, with from 5 to 30 weight percent of a sulfide of phosphorus for 1/2 to 15 hours, at a temperature in the range of 65° to 315°C. Neutralization of the phosphosulfurized hydrocarbon may be effected in the manner taught in U.S. Patent No. 1 ,969,324.
- Oxidation inhibitors reduce the tendency of mineral oils to deteriorate in service which deterioration can be evidenced by the products of oxidation such as sludge and varnish-like deposits on the metal surfaces and by viscosity growth.
- oxidation inhibitors include alkaline earth metal salts of alkylphenolthioesters having preferably C5 to C-J2 alkyl side chains, calcium nonylphenol sulfide, barium t-octylphenyl sulfide, dioctylphenylamine, phenylalphanaphthylamine, phosphosulfurized or suifurized hydrocarbons, etc.
- Friction modifiers serve to impart the proper friction characteristics to lubricating oil compositions such as automatic transmission fluids.
- 3,852,205 which discloses S-carboxy-alkylene hydrocarbyl succinimide, S-carboxyalkylene hydrocarbyl succinamic acid and mixtures thereof;
- U.S. Patent No. 3,879,306 which discloses N-(hydroxyalkyl) alkenyl-succinamic acids or succinimides;
- U.S. Patent No. 3,932,290 which discloses reaction products of di-(lower alkyl) phosphites and epoxides;
- U.S. Patent No. 4,028,258 which discloses the alkylene oxide adduct of phosphosulfurized N-(hydroxyalkyl) alkenyl succinimides.
- the disclosures of the above references are herein inco ⁇ orated by reference.
- the most preferred friction modifiers are glycerol mono and dioleates, and succinate esters, or metal salts thereof, of hydrocarbyl substituted succinic acids or anhydrides and thiobis alka ⁇ ols such as described in U.S. Patent No. 4,344,853.
- Pour point depressants lower the temperature at which the lubricating oil will flow or can be poured.
- Such depressants are well known.
- Typical of those additives which usefully optimize the low temperature fluidity of the fluid are C ⁇ -Ci ⁇ dialkylfumarate vinyl acetate copolymers, poly- methacrylates, and wax naphthalene.
- Foam control can be provided by an antifoamant of the polysiloxane type, e.g. silicone oil and polydimethyl siloxane.
- an antifoamant of the polysiloxane type e.g. silicone oil and polydimethyl siloxane.
- Organic, oil-soluble compounds useful as rust inhibitors in this invention comprise nonionic surfactants such as polyoxyalkylene polyois and esters thereof, and anionic surfactants such as salts of alkyl sulfonic acids.
- nonionic surfactants such as polyoxyalkylene polyois and esters thereof
- anionic surfactants such as salts of alkyl sulfonic acids.
- Such anti-rust compounds are known and can be made by conventional means.
- Nonionic surfactants, useful as anti-rust additives in the oleaginous compositions of this invention usually owe their surfactant properties to a number of weak stabilizing groups such as ether linkages.
- Nonionic anti-rust agents containing ether linkages can be made by alkoxylating organic substrates containing active hydrogens with an excess of the lower alkylene oxides (such as ethylene and propylene oxides) until the desired number of alkoxy groups have been placed in the molecule.
- the lower alkylene oxides such as ethylene and propylene oxides
- the preferred rust inhibitors are polyoxyalkylene polyois and derivatives thereof.
- This class of materials are commercially available from various sources: Pluronic Polyois from Wyandotte Chemicals Co ⁇ oration; Polyglycol 112-2, a liquid triol derived from ethylene oxide and propylene oxide available from Dow Chemical Co.; and Tergitol, dodecylphenyl or monophenyl polyethylene glycol ethers, and Ucon, polyalkylene glycols and derivatives, both available from Union Carbide Corp.
- Pluronic Polyois from Wyandotte Chemicals Co ⁇ oration
- Polyglycol 112-2 a liquid triol derived from ethylene oxide and propylene oxide available from Dow Chemical Co.
- Tergitol dodecylphenyl or monophenyl polyethylene glycol ethers
- Ucon polyalkylene glycols and derivatives, both available from Union Carbide Corp.
- esters thereof obtained by reacting the polyois with various carboxylic acids are also suitable. Acids useful in preparing these esters are lauric acid, stearic acid, succinic acid, and alkyl- or alkenyl-substituted succinic acids wherein the alkyi-or alkenyl group contains up to about twenty carbon atoms.
- the preferred polyois are prepared as block polymers.
- a hydroxy-substituted compound, R-(OH) ⁇ (wherein n is 1 to 6, and R is the residue of a mono- or polyhydric alcohol, phenol, naphthol, etc.) is reacted with propylene oxide to form a hydrophobic base.
- This base is then reacted with ethylene oxide to provide a hydrophylic portion resulting in a molecule having both hydrophobic and hydrophylic portions.
- the relative sizes of these portions can be adjusted by regulating the ratio of reactants, time of reaction, etc., as is obvious to those skilled in the art.
- R-(OH)n examples include alkylene polyois such as the alkylene glycols, alkylene triols, alkylene tetrols, etc., such as ethylene glycol, propylene glycol, glycerol, pentaerythritol, sorbitol, mannitol, and the like.
- Aromatic hydroxy compounds such as aikyfated mono- and polyhydric phenols and naphthols can also be used, e.g., heptyiphenol, dodecylphenol, etc.
- demulsifiers include the esters disclosed in U.S. Patents 3,098,827 and 2,674,619.
- the liquid polyois available from Wyandotte Chemical Co. under the name Pluronic Polyois and other similar polyois are particularly well suited as rust inhibitors. These Pluronic Polyois correspond to the formula:
- x,y, and z are integers greater than 1 such that the — CH2CH2O— groups comprise from about 10% to about 40% by weight of the total molecular weight of the glycol, the average molecule weight of said glycol being from about 1000 to about 5000.
- These products are prepared by first condensing propylene oxide with propylene glycol to produce the hydrophobic base HO(-CH-CH 2 -0)y-H (XXV)
- This condensation product is then treated with ethylene oxide to add hydrophylic portions to both ends of the molecule.
- the ethylene oxide units should comprise from about 10 to about 40% by weight of the molecule.
- Those products wherein the molecular weight of the polyol is from about 2500 to 4500 and the ethylene oxide units comprise from about 10% to about 15% by weight of the molecule are particularly suitable.
- the polyois having a molecular weight of about 4000 with about 10% attributable to (CH2CH2O) units are particularly good.
- alkoxylated fatty amines, amides, alcohols and the like including such alkoxylated fatty acid derivatives treated with Cg to C-i ⁇ alkyl-substituted phenols (such as the mono- and di-heptyl, octyl, nonyl, decyl, undecyl, dodecyl and tridecyl phenols), as described in U.S. Patent 3,849,501 , which is also hereby inco ⁇ orated by reference in its entirety.
- Cg to C-i ⁇ alkyl-substituted phenols such as the mono- and di-heptyl, octyl, nonyl, decyl, undecyl, dodecyl and tridecyl phenols
- compositions of our invention may also contain other additives such as those previously described, and other metal containing additives, for example, those containing barium and sodium.
- the lubricating composition of the present invention may also include copper lead bearing corrosion inhibitors.
- such compounds are the thiadiazole polysulphides containing from 5 to 50 carbon atoms, their derivatives and polymers thereof.
- Preferred materials are the derivatives of 1,3,4-thiadiazoles such as those described in U.S. Patents 2,719,125; 2,719,126; and 3,087,932; especially preferred is the compound 2,5 bis (t- octadithio)-1 ,3,4-thiadiazole commercially available as Amoco 150.
- Other similar materials also suitable are described in U.S. Patents 3,821 ,236; 3,904,537; 4,097,387; 4,107,059; 4,136,043; 4,188,299; and 4,193,882.
- Suitable additives are the thio and polythio sulphenamides of thiadiazoles such as those described in U.K. Patent Specification 1,560,830. When these compounds are included in the lubricating composition, we prefer that they be present in an amount from 0.01 to 10, preferably 0.1 to 5.0 weight percent based on the weight of the composition. Some of these numerous additives can provide a multiplicity of effects, e.g., a dispersant-oxidation inhibitor. This approach is well known and need not be further elaborated herein.
- compositions when containing these conventional additives are typically blended into the base oil in amounts effective to provide their normal attendant function.
- Representative effective amounts of such additives (as the respective active ingredients) in the fully formulated oil are illustrated as follows:
- additive concentrates comprising concentrated solutions or dispersions of the novel dispersants of this invention (in concentrate amounts hereinabove described), together with one or more of said other additives (said concentrate when constituting an additive mixture being referred to herein as an additive-package) whereby several additives can be added simultaneously to the base oil to form the lubricating oil composition. Dissolution of the additive concentrate into the lubricating oil may be facilitated by solvents and by mixing accompanied with mild heating, but this is not essential.
- the concentrate or additive-package will typically be formulated to contain the additives in proper amounts to provide the desired concentration in the final formulation when the additive- package is combined with a predetermined amount of base lubricant.
- the dispersants of the present invention can be added to small amounts of base oil or other compatible solvents along with other desirable additives to form additive-packages containing active ingredients in collective amounts of typically from about 2.5 to about 90%, and preferably from about 15 to about 75%, and most preferably from about 25 to about 60% by weight additives in the appropriate proportions with the remainder being base oil.
- the final formulations may employ typically about 10 wt. % of the additive-package with the remainder being base oil. All of said weight percents expressed herein (unless otherwise indicated) are based on active ingredient (A.I.) content of the additive, and/or upon the total weight of any additive-package, or formulation which will be the sum of the A.I. weight of each additive plus the weight of total oil or diluent.
- active ingredient A.I.
- This invention will be further understood by reference to the following examples, wherein all parts are parts by weight, unless otherwise noted and which include preferred embodiments of the invention.
- SA:P1B and SA:EP-polymer ratios are based upon the total PIB and EP-polymer, respectively, charged to the reactor as starting material, i.e., both the PIB and EP-polymer which reacts and the PIB and EP-polymer which remains unreacted.
- wt.% ethylene in the polymers was determined by FTIR (ASTM Method D3900).
- the "reference oil" was as defined above for Formula IV.
- a 1 liter Zipperclave reactor (Autoclave Engineers) equipped with a water jacket for temperature control, with a septum inlet for syringe injection of catalyst, and with a supply of purified nitrogen, liquid propylene, and ethylene was used in these polymerizations.
- the reactor was cleaned with hot toluene and then was purged well with dry nitrogen at 100°C.
- the reactor was cooled to 25°C and 10.0 cc of a 4.0 wt% toluene solution of methylalumoxane was injected along with 100 cc of distilled toluene at 0 psig under nitrogen.
- Liquid propylene monomer 200 cc was added from a calibrated burette at 25°C.
- the reactor contents were stirred and heated to 115°C at which point the reactor pressure was 375 psig.
- 1.00 cc of a toluene solution of bis(n-butylcyclopentadienyl) zirconium dichloride (1.00 mg) was injected and ethylene at a pressure of 405 psig was immediately supplied.
- Ethylene was fed on pressure demand in order to keep the system pressure at 405 psig.
- the rate of ethylene flow was recorded continuously during the course of the polymerization.
- the reaction was continued for 15 minutes after which the reaction was stopped by rapidly depressuring and cooling the reactor to 25°C.
- the polymer product was collected and the toluene solvent was evaporated in an air stream.
- the polymer weight was determined to be 103.1 gms, and the polymer was analyzed by size-exclusion chromatography and found to contain 68 wt% ethylene and to have a number average molecular weight of 1100, a weight average molecular weight of 5400 and a polydispersity of 4.9.
- the polymer product was found to contain 2.5 wppm Zr and 1.75 wppm Cl.
- the polymerization was performed as in Example 1 except that the reactor temperature was maintained at 100°C and 1.00 mg of dimethyl- silyldicyclopentadienyl zirconium dichloride was used as catalyst instead of bis(n-butylcyclopentadienyl) zirconium dichloride.
- the reactor pressure was maintained at 380 psig by a regulated ethylene supply.
- the yield of the copolymer was 111.2 gms and the polymer was determined to contain the ethylene content indicated in Table I and to have a number average molecular weight of 1390, a weight average molecular weight of 4030 and polydispersity of 2.9.
- the polymer product was found to contain 2.0 wppm Zr and 1.5 wppm Cl.
- EXAMPLE 3 Preparation of Ethylene-Propylene Copolvmer.
- the polymerization was performed as in Example 2 except that the reactor temperature was maintained at 90°C and 270 cc of liquid propylene was charged. The reactor pressure was maintained by a regulated ethylene supply. The yield of the copolymer was 16.3 gms and the polymer was determined to contain the ethylene content indicated in Table I and to have a number average molecular weight of 1750, a weight average molecular weight of 4960 and polydispersity of 2.8. The polymer product was found to contain 16 wppm Zr and 10 wppm Cl.
- the polymerization was performed as in Example 3 except that the reactor temperature was maintained at 80°C.
- the reactor pressure was maintained at 365 psig by a regulated ethylene supply for 1 hour.
- the yield of the copolymer was 234 gms and the polymer was determined to have a number average molecular weight of 2710, a weight average molecular weight of 7980 and polydispersity of 2.9.
- the polymer product was found to contain the ethylene content indicated in Table I and to contain 1.0 wppm Zr and 0.7 wppm Cl.
- the polymerization was performed as in Example 3 except that
- the liquid reaction mixture is then cooled to about 60°C, and transferred to a glass beaker. Dry gaseous nitrogen is passed through the liquid to strip off unreacted maleic anhydride at about 140°C until no trace of maleic anhydride is detected with IR.
- the liquid product containing the EPSA and unreacted EP is analyzed for succinic anhydride by the following titration technique: a 2 g. sample of the polymer is dissolved in a solvent comprising 80 ml of THF, 6 ml of pyridine and 0.3 ml of water and titrated with a methanol solution of tetrabutyl ammonium hydroxide using thymol blue to a color end point. The acidity is calculated from the milliliters of base solution used. The product is also observed to determine the presence of any sediment.
- the data thereby obtained are the mole ratio of polymer and maleic anhydride charged, and the data thereby obtained are summarized in Table I.
- the polyisobutylene polymer employed in Comparative Example 12 comprises Parapol 1300 polymer (Exxon Chemical Americas), and the polyisobutylene polymer employed in Comparative Example 13 comprises reactive polyisobutylene (ultra Vis30; BP Chemicals), having about 0.58 mole of terminal double bonds per mole of polymer (as determined by NMR) and a molecular weight distribution of about 3.0 (based on GPC).
- the data thereby obtained are summarized in Table II.
- MA maleic anhydride
- EPSA products prepared as in Examples 9 and 10, the mixed (EP/PIB)SA product of Example 11 , the PIBSA product of Comparative Example 14, and various blends of the above PIBSA and EPSA products.
- the succinic acid anhydride substituted polymers are dissolved in an equal amount by weight of a mineral oil, S150N To the polymer solution is added a mixture of polyethylene polyamines having the average composition corresponding to tetraethyiene pentamine and containing about 32.6 wt % N (PAM) and the mixture is heated to 140°C under nitrogen while stirring for about 2 to 4 hours. In each run, the molar ratio of total polymer to polyamine in terms of succinic acid equivalents to PAM charged is 2 to 1. Viscosities of the resulting dispersant solutions are determined. Results of the viscometric studies are summarized in Table III below.
- the lower VR' values signify a better viscometric balance that is desirable for dispersant to have.
- Results show that the viscometric behavior of PIB- based dispersants can be improved, as indicated by lower VR' values, by means of blending with the EP-copolymer based dispersants of this invention and also by making polyamine dispersants from a mix of PIBSA and EPSA dispersant intermediates.
- the above results indicate that the VR' values for the dispersant product solutions of Examples 25 -26, unlike the comparative dispersant of Comparative Example 27, are lower than the VR r value for the reference oil itself.
- an EPSA product %AI.54.5
- S150N 50 wt.% polymer solution.
- the resulting composition is then tested for sludge inhibition (via the SIB test) and varnish inhibition (via the VIB test), as described below.
- the SIB test has been found, after a large number of evaluations, to be an excellent test for assessing the dispersing power of lubricating oil dispersant additives.
- the medium chosen for the SIB test is a used crankcase mineral lubricating oil composition having an original viscosity of about 325 SUS at 38_ C that had been used in a taxicab that is driven generally for short trips only, thereby causing a buildup of a high concentration of sludge precursors.
- the oil that is used contains only a refined base mineral lubricating oil, a viscosity index improver, a pour point depressant and zinc dialkyldithiophosphate anti-wear additive.
- the oil contains no sludge dispersant. A quantity of such used oil is acquired by draining and refilling the taxicab crankcase at 1000 - 2000 mile intervals.
- the SIB test is conducted in the following manner: the aforesaid used crankcase oil, which is milky brown in color, is freed of sludge by centrifuging for one hour at about 39,000 gravities (gs.). The resulting clear bright red supernatant oil is then decanted from the insoluble sludge particles thereby separated out. However, the supernatant oil still contains oil-soluble sludge precursors which on heating under the conditions employed by this test will tend to form additional oil-insoluble deposits of sludge.
- the sludge inhibiting properties of the additives being tested are determined by adding to portions of the supernatant used oil, a small amount, such as 0.5, 1 or 2 weight percent, of the particular additive being tested.
- the VIB test is used to determine varnish inhibition.
- the test sample consists of 10 grams of lubricating oil containing a small amount of the additive being tested.
- the test oil to which the additive is admixed is of the same type as used in the above-desc ⁇ bed SIB test.
- the ten gram sample is heat soaked overnight at about 140°C and thereafter centrifuged to remove the sludge.
- the supernatant fluid of the sample is subjected to heat cycling from about 150°C to room temperature over a period of 3.5 hours at a frequency of about 2 cycles per minute.
- gas which was a mixture of about 0.7 volume percent SO2, 1.4 volume percent NO and balance air is bubbled through the test sample.
- Example 28 The procedure of Example 28 is repeated in a series of runs to prepare additional dispersant product solutions. The results thereby obtained, and the EPSA's employed, are summarized in Table VI.
- An amido amine (“AA”) is prepared by reacting tetraethyiene pentamine (TEPA) with methyl acrylate at a 1.5:1 TEPA:methyl acrylate molar ratio, to form a product mixture containing 29.3 wt.% total N, 6.1 wt.% primary N, and about 25 wt.% unreacted TEPA.
- TEPA tetraethyiene pentamine
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Combustion & Propulsion (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
The present invention is directed to an oil-soluble lubricating oil additive comprising at least one terminally unsaturated ethylene/alpha-olefin/diene interpolymer of 300 to 20,000 number average molecular weight substituted with mono- or dicarboxylic acid producing moieties (preferably dicarboxylic acid or anhydride moieties), wherein the terminal unsaturation comprises terminal ethenylidene unsaturation. The mono- and dicarboxylic acid or anhydride substituted interpolymers of this invention are useful per se as additives to lubricating oils, and can also be reacted with a nucleophilic reagent, such as amines, alcohols, amino alcohols and reactive metal compounds, to form products which are also useful lubricating oil additives, e.g., as dispersants.
Description
ETHYLENE ALPHA-OLEFIN/DIENE INTERPOLYMER- SUBSTITUTEP CARBOXYLIC ACID DISPERSANT ADDITIVES
This is a continuation-in-part of U.S. S.N. 263,291 , filed June
21 , 1994, which is a Rule 60 Divisional of U.S. S.N. 132,028, filed 10/5/93, which is a Rule 60 Divisional of U.S. S.N. 984,727, filed 12/4/92, which is a Rule 62 Continuation of U.S. S.N. 769,041 , filed 9/30/91 , which is a Rule 60 Divisional of U.S. S.N. 473,624, filed 2/1/90, which is a Continuation-in-part of U.S. S.N. 226,759, filed (8/1/88 (now abandoned).
FIELD OF THE INVENTION This invention relates to improved oil soluble dispersant additives useful in oleaginous compositions, including fuels and lubricating oil compositions, and to concentrates containing said additives.
BACKGROUND OF THE INVENTION Ashless nitrogen and ester containing lubricating oil dispersants have been widely used by the industry. Typically, these dispersants are prepared from a long chain hydrocarbon polymer by reacting the polymer with maleic anhydride to form the corresponding polymer which is substituted with succinic anhydride groups. Polyiso- butylene has been widely used as the polymer of choice, chiefly because it is readily available by cationic polymerization from butene streams (e.g., using AICI3 catalysts). Such polyisobutylenes generally contain residual unsaturation in amounts of about one ethylenic double bond per polymer chain, positioned along the chain.
The polyisobutylene polymers (PIB) employed in most conventional dispersants are based on a hydrocarbon chain of a number average molecular weight ( n) of from about 900 to about 2500. PIB having a Mn of less than about 300 gives rather poor performance results when employed in dispersants because the molecular weight is insufficient to keep the dispersant molecule fully solubilized in lubricating oils. On the other hand, high molecular weight PIB ( n >3000) becomes so viscous that conventional industrial practices are incapable of handling this product in many operations. This problem becomes much more severe as the PIB molecular weight increases to 5000 or 10,000.
Increased amounts of terminal ethylenic unsaturation in polyisobutylene (so-called "reactive polyisobutylene") has been achieved
by BF3 catalyzed polymerization of isobutylene. Exemplary of references disclosing these polymers is U.S. Patent 4,152,499. However, such reactive polyisobutylene materials can still contain substantial amounts of unsaturation elsewhere along the chain. Further, it is difficult to produce such reactive polyisobutylene polymers at molecular weights of greater than about 2,000, and, even so, the reactive polyisobutylenes themselves still suffer the above-noted viscosity increase disadvantages as molecular weights are increased.
Other polymers, such as ethylene-propylene co-polymers and terpolymers containing non-conjugated dienes, have been disclosed as suitable polymers for the preparation of ashiess nitrogen and ester dispersants.
U.S. Patent 4,234,435, for example, discloses dispersants prepared from polyalkenes, Mn of ,300 to about 5,000. The polyalkene can comprise homopolymers or interpolymers of C2 to C-jg terminal olefins, of which ethylene-propylene copolymers are said to be examples, with specific reference to a copolymer of 80% ethylene and 20% propylene.
However, ethylene-alpha-olefm copolymers of the above molecular weights could be produced using Ziegler-Natta catalysts only in combination with H2 as molecular weight control in order to terminate the growing copolymer chains within this molecular weight range. Without use of H£ or other conventional, so-called "chain stoppers", the copolymers produced with Ziegler-Natta catalysts would tend to have molecular weights greatly in excess of the above range. (Such higher copolymers, for example, are widely employed in ungrafted form as viscosity index improvers, and when grafted with nitrogen-containing groups, as described below, are conventionally employed as dispersant-viscosity index improver polymers.) The use of H2 as a chain stopper has the disadvantage of causing the saturation of the olefinic double bond content of the copolymer. Thus, while lower molecular weight copolymers were theoretically possible to prepare, their low unsaturation content (and the accompanying low graft copolymer yields) would have made their further functionalization by a thermal "ene" reaction, e.g., with dicarboxylic acid moieties in preparing dispersants, highly unattractive.
High molecular weight ethylene-propylene polymers and
ethylene-propylene-diene terpolymers, having viscosity average molecular weights of from about 20,000 to 300,000, are generally produced employing Ziegler catalysts, generally VCI4 or VOCI3 with a halide source, such as organoaiuminum halides and/or hydrogen halides. Such high molecular weight EP and EPDM polymers find use as viscosity index improvers. See, e.g., U.S. Patents 3,563,964; 3,697,429; 4,306,041;
4,540,753; 4,575,574; and 4,666,619.
The concept of derivatizing V.I. improving high molecular weight ethylene copolymers, with acid moieties such as maleic anhydride, followed by reaction with an amine, to form a V.I. -dispersant oil additive is known in the art as indicated by the following patents.
U.S. Patent 3,316,177 teaches ethylene copolymers of at least
50,000, such as ethylene-propylene, or ethylene-propylene-diene, which are heated to elevated temperatures in the presence of oxygen so as to oxidize the polymer and cause its reaction with maleic anhydride which is present during the oxidation. The resulting polymer can then be reacted with alkylene polyamines.
U.S. Patent 3,326,804 teaches reacting ethylene copolymers with oxygen or ozone, to form a hydroperoxidized polymer, which is grafted with maleic anhydride followed by reaction with polyalkylene polyamines.
Preferred are ethylene-propylene copolymers, having Mv from 100,000 to
500,000, prepared by Ziegler type catalysts.
U.S. Patent 4,160,739 teaches an ethylene copolymer (Mv =
10,000 to 200,000) which is grafted, using a free radical technique, with alternating maleic anhydride and a second polymerizabie monomer such as methacrylic acid, which materials are reacted with an amine having a single primary, or a single secondary, amine group.
U.S. Patent 4,161,452 relates to graft copolymers wherein the backbone polymer is a polymeric hydrocarbon such as EP copolymer or EPDM ( v = 10,000 to 200,000) and the grafted units are the residues of an addition copolymerizablβ monomer system comprising, e.g., maleic anhydride, and at least one other addition monomer.
U.S. Patent 4,171,273 reacts an ethylene copolymer (M" v =
10,000 to 100,000) with maleic anhydride in the presence of a free radical initiator and then with mixtures of C4 to C12 n-alcohol and amine such as
N-aminopropylmoφholine or dimethylamino propyl amine to form a V.I.-
dispersant-pour depressant additive.
U.S. Patent 4,517,104 relates to EP and EPDM viscosity index improver-dispersant additives prepared from EP polymer (Mln = 5000 to 500,000), by maleic anhydride grafting and reaction with polyamines. The following references include disclosures of EP/EPDM polymers of M n of 700/500,000, also prepared by conventional Ziegler catalysts.
U.S. Patent 4,089,794 teaches grafting the ethylene copolymer (Mn = 700 to 500,000) with maleic anhydride using peroxide in a lubricating oil solution, wherein the grafting is preferably carried out under nitrogen, followed by reaction with polyamine.
U.S. Patent 4,137,185 teaches reacting C<| to C30 monocarboxylic acid anhydrides, and dicarboxylic anhydrides, such as acetic anhydride, succinic anhydride, etc., with an ethylene copolymer (Mn = 700 to 500,000) reacted with maleic anhydride and a polyalkylene polyamine to inhibit cross linking and viscosity increase due to further reaction of any primary amine groups which were initially unreacted.
U.S. Patent 4,144,181 is similar to 4,137,185 in that it teaches using a sulfonic acid to inactivate the remaining primary amine groups when a maleic anhydride grafted ethylene-propylene copolymer (Mn = 700 to 500,000) is reacted with a polyamine.
U.S. Patent 4,219,432 teaches maleic anhydride grafted ethylene copolymer (Mn = 700 to 500,000) reacted with a mixture of an amine having only one primary group together with a second amine having two or more primary groups.
Related disclosures of maleic anhydride grafted, aminated ethylene-propylene polymer viscosity improver-dispersant additives useful in lubricating oil compositions are contained in U.S. Patents 4,507,515; 4,557,847; 4,632,769; 4,693,838; and 4,707,285. U.S. Patent 4,668,834 to Uniroyal Chemical discloses preparation (via certain metallocene and alumoxane catalyst systems) and composition of ethylene-alpha olefin copolymers and terpolymers having vinyiidene-type terminal unsaturation, which are disclosed to be useful as intermediates in epoxy-grafted encapsulation compositions. U.S. Patent 4,704,491 to Mitsui Petrochemical relates to liquid ethylene alpha-olefin random copolymers, useful when hydrogenated as
synthetic lubricant oil, characterized inter alia bv having 10-85 mol.% ethylene units, 15-90 mol.% alpha-olefin units, Mn of from 300 to 10,000 and a M^M n of not more than 2.5. The patent also indicates that the liquid copolymer can be easily modified since it has a double bond capable of reacting with maleic anhydride, etc., at the molecular chain ends.
Japanese Published Patent Application 87-129.303A of Mitsui Petrochemical relates to narrow molecular weight distribution (Mw Mη <2.5) ethylene alpha-olefin copolymer waxes containing 85-99 mol% ethylene, which are disclosed to be used for dispersing agents, modifiers or materials to produce toners. The copolymers (having crystallinity of from 5-65%) are prepared in the presence of a catalyst system comprising Zr compounds having at least one cycloalkadienyl group and alumoxane.
European Patent 128,046 discloses (co)polyolefin reactor blends of polyethylene and ethylene higher alpha-olefin copolymers prepared by employing described dual-metallocene/alumoxane catalyst systems.
European Patent Publication 129,368 discloses metailocene/alumoxane catalysts useful for the preparation of ethylene homopolymer and ethylene higher alpha-olefin copolymers. European Patent Application Publication 257,696 A1 relates to a process for dimerizing alpha-olefins using a catalyst comprising certain metailocene/alumoxane systems.
European Patent Publication 305.022-A1 to Mitsui Petrochemical relates to certain synthetic hydrocarbon lubricating oil compositions containing a load-withstanding additive and a liquid ethylene alpha-olefin random copolymer modified by graft copolymerization with an unsaturated carboxylic acid or derivative thereof (e.g., maleic anhydride). The ethylene alpha-olefin copolymers (Mn of 300 to 12,000) are obtained using Ziegler catalysts (e.g., catalyst formed from soluble V compound and an organo aluminum compound), are grafted in the presence of a free radical initiator.
PCT Published Patent Application WO 88/01626 relates to transition metal compound alumoxane catalysts for polymerizing alpha- olefins.
SUMMARY OF THE INVENTION
The present invention is a functionalized polymer comprising an ethyiene/alpha-olefin/diene interpolymer substituted with monouπsaturated mono- and dicarboxylic acid-producing moieties, said interpolymer having (i) monomer units derived from ethylene, at least one alpha-olefin of the formula H2C=CHR1 wherein R"1 is a C^-C^ s alkyl group, and at least one diene monomer; (ii) an Mn of about 300-20,000; (iii) at least about 30% of its chains with ethenylidene terminal unsaturation; and (iv) less than 5 wt.% polymer fraction of Mn less than about 300; said functionalized polymer having a VR value of less than about 4.1.
The present invention is an oil-soluble dispersant adduct of: (a) an ethylene/alpha-olefin diene interpolymer substituted with monounsatruated mono- or di-carboxylic acid-producing moieties, said interpolymer having: (i) monomer units derived from ethylene, at least one alpha-olefin of the formula
is C-J-C-I Q alkyl group, and at least one diene monomer; (ii) a Mn of about 300-20,000; and at least about 30% of its chains with ethylidene terminal unsaturation; and (b) at least one nucleophilic reagent selected from the group consisting of amines, alcohols, metal reactants, and mixtures thereof.
The present invention is directed to an oil-soluble lubricating oil additive comprising ethylene alpha-olefin inteφolymers of 300 to 20,000 number average molecular weight terminally substituted with mono- or dicarboxylic acid producing moieties (preferably acid or anhydride moieties), wherein the ethylene alpha-olefin polymer group is derived from a terminally unsaturated ethylene alpha-olefin polymer wherein the terminal unsaturation comprises ethenylidene unsaturation. The monocarboxylic acid and the dicarboxylic acid or anhydride substituted polymers of this invention are useful per se as additives to oleaginous compositions, such as fuels or lubricating oils, and can also be reacted with a nucleophilic reagent, such as amines, alcohols, amino alcohols and metal compounds, to form derivative products which are also useful as additives to oleaginous compositions, such as, e.g., fuel additives or lubricating oil additives, e.g., as dispersants.
The materials of the invention are different from the prior art because of their effectiveness and their ability to provide enhanced lubricating oil dispersancy, as exhibited by their enhanced sludge and varnish control properties. In fuels, the additives serve to minimize the degree of carburetor and fuel injector fouling from deposits. In addition, the additives of this invention possess superior viscometric properties.
The process of this invention permits the preparation of lubricating oil and fuel dispersant additives which are simultaneously characterized by a high active ingredient content (usually at least about 60 wt.%, up to about 95 wt.%) and by advantageous viscosity properties to permit the additives to be readily handled. In addition, the ethylene alpha- olefin polymers substituted by mono- and di-carboxylic acid producing moieties of this invention can be characterized by VR values (as hereinafter defined) of not greater than about 4.1 , thereby providing advantageous viscosity modifying properties to the lubricating oils containing them. The present invention can produce such substituted polymers in a highly concentrated form as substantially halogen free materials, thereby reducing the corrositivity processing difficulties and environmental concerns which are associated with halogen-containing lubricating oil additives.
Further, dispersant materials can be prepared from the substituted polymers of this invention to provide fuel and lubricating oil dispersant products having VR' values of not greater than about 4.1 and VR'/VRp ratios of less than about 1.11 (as such values and ratios are hereinafter defined). Suφrisingly, the process of this invention permits the preparation of highly concentrated, substantially halogen-free dispersants from high molecular weight ethylene-atpha-olefin polymers (M n >5000, e.g., 5,500-20,000) of superior viscosity properties.
DETAILED DESCRIPTION OF THE INVENTION
Preparation of Ethylene Alpha-olefin Polymer
The polymers employed in this invention are polymers of ethylene and at least one alpha-olefin having the formula H2C=CHR1 wherein R1 is straight chain or branched chain alkyl radical comprising 1 to 18 carbon atoms and wherein the polymer contains a high degree of terminal ethenylidene unsaturation. Preferably R1 in the above formula is
alkyi of from 1 to 8 carbon atoms, and more preferably is alkyl of from 1 to 2 carbon atoms. Therefore, useful comonσmers with ethylene in this invention include propylene, 1-butene, hexene-1 , octene-1 , 4- methylpentene-1 , decene-1 , dodecene-1 , tridecene-1 , tetradecene-1 , pentadecene-1 , hexadecene-1 , heptadecene-1 , octadecene-1 , nonadecene-1 and mixtures thereof (e.g., mixtures of propylene and 1- butene, and the like).
The polymers employed in this invention are also diene interpoiymers, especially teφolymers of ethylene, at least one alpha-olefin having the formula H2C=CHR1 wherein R"! is straight chain or branched chain alkyl radical conveniently comprising 1 to 18 carbon atoms, and at least one diene monomer, wherein the polymer contains a high degree of terminal ethenylidene unsaturation (in addition to any other unsaturation provided by diene incoφoration). Exemples of such polymers are ethylene/propylene/cyclopentadiene inteφolymers, especially teφolymers; ethylene/propylene/5-ethylidene-2-norbornene inteφolymers; βthylene butene/cyclopentadiene inteφolymers; ethylene/butene/1 ,4- hexadiene inteφolymers; and the like.
Exemplary of such polymers are ethylene-propylene copolymers, ethylene-butene-1 copolymers and the like. Preferred polymers are copolymers of ethylene and propylene and ethylene and buteπe-1.
The molar ethylene content of the polymers employed in this invention is preferably in the range of between about 20 and about 80 percent, and more preferably between about 30 and about 70 percent. When propylene and or buteπe-1 are employed as comonomer(s) with ethylene, the ethylene content of such copolymers is most preferably between about 45 and about 65 percent, although higher or lower ethylene contents may be present. The diene monomers usable in the invention include the alpha/omega dienes, conjugated dienes, and some non-conjugated dienes. Included are 1 ,4-hexadiene dicyclopentadieπe, 5-ethylidene-2- norbornene, vinyl norbornene, methyl hexadiene, and the like in portions up to about 25 weight percent of the polymer. The polymers employed in this invention generally possess a number average molecular weight of from about 300 to about 20,000 (e.g.,
from 300 to 10,000), preferably from about 900 to 20,000; more preferably of from about 900 to 10,000 (e.g., from about 700 to about 15,000); from about 1500 to about 5,000. Polymers having a number average molecular weight within the range of from about 700 to 5,000 (e.g., 1500 to 3,000) are particularly useful in the present invention. The number average molecular weight for such polymers can be determined by several known techniques. A convenient method for such determination is by size exclusion chromatography (also known as gel permeation chromatography (GPC)) which additionally provides molecular weight distribution information, see W. W. Yau, J.J. Kirkland and D.D. Bly, "Modem Size Exclusion Liquid Chromatography", John Wiley and Sons, New York, 1979.
Consequently, such polymers generally possess an intrinsic viscosity (as measured in tetralin at 135°C) of between about 0.025 and about 0.9 dl/g, preferably of between about 0.05 and about 0.5 dl/g, most preferably of between about 0.075 and about 0.4 dl/g.
The polymers employed in this invention preferably exhibit a degree of crystallinity such that, when grafted, they are essentially amoφhous. The polymers employed in this invention are further characterized in that up to about 95% and more of the polymer chains possess terminal ethenylidene-type unsaturation. Thus, one end of such polymers will be of the formula POLY-C(T1 )=CH2 wherein T1 is Cή to C-*8 alkyl, preferably Ci to Cø alkyl, and more preferably C-* to C2 alkyl, (e.g., methyl or ethyl) and wherein POLY represents the polymer chain. The chain length of the T^ alkyl group will vary depending on the comonomer(s) selected for use in the polymerization. A minor amount of the polymer chains can contain terminal ethenyl unsaturation, i.e. POLY- CH=CH2, and a portion of the polymers can contain internal monounsaturatioπ, e.g. POLY-CH=CH(T1 ), wherein T^ is as defined above.
The polymer employed in this invention comprises polymer chains, at least about 30 percent of which possess terminal ethenylidene unsaturation. Preferably at least about 50 percent, more preferably at least about 60 percent, and most preferably at least about 75 percent (e.g. 75-98%), of such polymer chains exhibit terminal ethyenylidene
unsaturation. The percentage of polymer chains exhibiting terminal ethyenylidene unsaturation may be determined by FTIR spectroscopic analysis, titration, or C^lslMR.
The polymer and the composition employed in this invention may be prepared as described in U.S. Patent 4,668,834, in European Patent Publications 128,046 and 129,368, and in co-pending Serial No. 728,111 , filed April 29, 1985, and copending Serial No. 93,460, filed September 10, 1987, the disclosures of all of which are hereby incorporated by reference in their entirety. The polymers for use in the present invention can be prepared by polymerizing monomer mixtures comprising ethylene in combination with other monomers such as alpha-olefins and dienes having from 3 to 20 carbon atoms (and preferably from 3-4 carbon atoms, i.e., propylene, butene-1 , and mixtures thereof) and cyclopentadiene, vinyl norbornene, etc. in the presence of a catalyst system comprising at least one metallocene (e.g., a cyclopentadienyl-transition metal compound) and an alumoxane compound. The comonomer content can be controlled through the selection of the metallocene catalyst component and by controlling the partial pressure of the various monomers. The catalyst is preferably a bulky ligand transition metal compound. The bulky ligand may contain a multiplicity of bonded atoms, preferably carbon atoms, forming a group which may be cyclic with one or more optional heteroatoms. The bulky ligand may be a cyclopentadienyl derivative which can be mono- or polynuclear. One or more bulky ligands may be bonded to the transition metal atom. The transition metal atom may be a Group IV, V or VI transition metal. ("Group" refers to an identified group of the Periodic Table of Elements, comprehensively presented in "Advanced Inorganic Chemistry," F.A. Cotton, G. Wilkinson, Fifth Edition, 1988, John Wiley & Sons). Other ligands may be bonded to the transition metal, preferably detachable by a cocatalyst such as a hydrocarbyl or halogen leaving group. The catalyst is derivable from a compound of the formula
[L]mM[X]n
wherein L is the bulky ligand, X is the leaving group, M is the transition metal and m and n are such that the total ligand valency corresponds to
the transition metal valency. Preferably the catalyst is four coordinate such that the compound is ionizable to a 1+ valency state.
The ligands L and X may be bridged to each other and if two ligands L and/or X are present, they may be bridged. The metallocenes may be full-sandwich compounds having two ligands L which are cyciopentadienyl groups or half-sandwich compounds having one ligand L only which is a cyciopentadienyl group.
For the puφoses of this patent specification the term "metallocene" is defined to contain one or more cyciopentadienyl moiety in combination with a transition metal of the Periodic Table of Elements. In one embodiment the metallocene catalyst component is represented by the general formula (Cp)mMRnR'p wherein Cp is a substituted or unsubstituted cyciopentadienyl ring; M is a Group IV, V or VI transition metal; R and R' are independently selected halogen, hydrocarbyl group, or hydrocarboxyl groups having 1-20 carbon atoms; m = 1-3, n = 0-3, p = 0-3, and the sum of m + n + p equals the oxidation state of M. In another embodiment the metallocene catalyst is represented by the formulas:
(C5R,m)pR"s(C5R'm)MβQ3.p.x and
wherein Me is a Group IV, V, or VI transition metal C5R'm is a substituted cyciopentadienyl each R\ which can be the same or different is hydrogen, alkenyl aryl alkaryl or arylalkyl radical having from 1 to 20 carbon atoms or two carbon atoms joined together to form a part of a C to CQ ring, R" is one or more of or a combination of a carbon, a germanium, a silicon, a phosphorous or a nitrogen atom containing radical substituting on and bridging two CsR'm rings or bridging one CsR'm ring back to Me, when p = 0 and x = 1 otherwise x is always equal to 0, each Q which can be the same or different is an aryl, alkyl, alkenyl, alkaryl, or arylalkyl radical having from 1 to 20 carbon atoms or halogen, Q' is an alkylidene radical having from 1 to 20 carbon atoms, s is 0 or 1 and when s is 0, m is 5 and p is 0, 1 or 2 and when s is 1 , m is 4 and p is 1.
Various forms of the catalyst system of the metallocene type may be used in the •polymerization process of this invention. Exemplary of the development of metallocene catalysts in the art for the polymerization
of ethylene is the disclosure of US 4,871 ,705 to Hoel, US-A-4937299 to Ewen, et al. and EP-A-0 129 368 published July 26, 1989, and US-A- 5017713 and 5120867 to Welborn, Jr. These publications teach the structure of the metallocene catalysts and include alumoxane as the cocatalyst. There are a variety of methods for preparing alumoxane, one of which is described in U-A^4665208.
For the purposes of this patent specification, the terms "cocatalysts or activators" are used interchangeably and are defined to be any compound or component which can activate a bulky ligand transition metal compound. In one embodiment the activators generally contain a metal of Group II and III of the Periodic Table of Elements. In the preferred embodiment, the bulky transition metal compound are metallocenes, which are activated by trialkylaluminum compounds, alumoxanes both linear and cyclic, or ionizing ionic activators or compounds such as tri(n- butyl)ammoπium tetra (pentafluorophenyl)boron, which ionize the neutral metallocene compound. Such ionizing compounds may contain an active proton, or some other cation associated with but not coordinated, or only loosely coordinated to the remaining ion of the ionizing ionic compound. Such compounds are described in EP-A-0520 732, EP-A- 0277 003, and EP-A-0277 004 published August 3, 1988, and US-A-5153157; 5198401 and 5241025. Further, the metallocene catalyst component can be a monocyclopentadienyl heteroatom containing compound. This heteroatom is activated by either an alumoxane or an ionic activator to form an active polymerization catalyst system to produce polymers useful in this invention. These types of catalyst systems are described in, for example, PCT International Publication WO 92/00333 published January 9, 1992, US-A- 5057475; 5096867; 5055438 and 5227440 and EP-A-0420436, WO 91/04257. In addition, the metallocene catalysts useful in this invention can include non-cyclopentadienyl catalyst components, or ancillary ligands such as boroles or carbollides in combination with a transition metal. Additionally, it is not beyond the scope of this invention that the catalysts and catalyst systems may be those described in US-A- 5064802 and PCT publications WO 93/08221 and WO 93/08199 published April 29, 1993. All the catalyst systems of the invention may be, optionally, prepolymerized or used in conjunction with an additive or scavenging component to enhance catalytic productivity.
The mote ratio of aluminum in the alumoxane to total metal in the metallocenes which can be usefully employed can be in the range of about 0.5:1 to about 1000:1 , and desirably about 1 :1 to about 100:1. Preferably, the mole ratio will be in the range of 50:1 to about 5:1 and most preferably 20:1 to 5:1.
The solvents used in the preparation of the catalyst system are inert hydrocarbons, in particular a hydrocarbon that is inert with respect to the catalyst system. Such solvents are well known and include, for example, isobutane, butane, pentane, hexane, heptane, octane, cyclohexane, methylcyclohexane, toluene, xylene and the like.
Polymerization is generally conducted at temperatures ranging between about 20° and about 300° C, preferably between about 30° and about 200° C. Reaction time is not critical and may vary from several hours or more to several minutes or less, depending upon factors such as reaction temperature, the monomers to be copolymerized, and the like.
One of ordinary skill in the art may readily obtain the optimum reaction time for a given set of reaction parameters by routine experimentation.
The catalyst systems described herein are suitable for the polymerization of olefins in solution over a wide range of pressures. Preferably, the polymerization will be completed at a pressure of from about 10 to about 3,000 bar, and generally at a pressure within the range from about 40 bar to about 2,000 bar, and most preferably, the polymerization will be completed at a pressure within the range from about 50 bar to about 1 ,500 bar. After polymerization and, optionally, deactivation of the catalyst (e.g., by conventional techniques such as contacting the polymerization reaction medium with water or an alcohol, such as methanol, propanol, isopropanol, etc., or cooling or flashing the medium to terminate the polymerization reaction), the product polymer can be recovered by processes well known in the art. Any excess reactants may be flashed off from the polymer.
The polymerization may be conducted employing liquid monomer, such as liquid propylene, or mixtures of liquid monomers (such as mixtures of liquid propylene and 1-butene), as the reaction medium. Alternatively, polymerization may be accomplished in the presence of a hydrocarbon inert to the polymerization such as butane, pentane,
isopentane, hexane, isooctane, decane, toluene, xylene, and the like.
In those situations wherein the molecular weight of the polymer product that would be produced at a given set of operating conditions is higher than desired, any of the techniques known in the prior art for control of molecular weight, such as the use of hydrogen and/or polymerization temperature control, may be used in the process of this invention. If so desired, the polymerization may be carried out in the presence of hydrogen to lower the polymer molecular weight. Care should be taken to assure that terminal ethenylidene unsaturation is not reduced to less than about 30 percent of the polymer chains.
However, the polymers are preferably formed in the substantial absence of added H2 gas. that is, the absence of H2 gas added in amounts effective to substantially reduce the polymer molecular weight. More preferably, the polymerizations will be conducted employing less than 5 wppm, and more preferably less than 1 wppm, of added H2 gas, based on the moles of the ethylene monomer charged to the polymerization zone.
When carrying out the polymerization in a batch-type fashion, the reaction diluent (if any), ethylene and alpha-olefin comonomer(s) are charged at appropriate ratios to a suitable reactor. Care must be taken that all ingredients are dry, with the reactants typically being passed through molecular sieves or other drying means prior to their introduction into the reactor. Subsequently, either the catalyst and then the cocatalyst, or first the cocatalyst and then the catalyst are introduced while agitating the reaction mixture, thereby causing polymerization to commence.
Alternatively, the catalyst and cocatalyst may be premixed in a solvent and then charged to the reactor. As polymer is being formed, additional monomers may be added to the reactor. Upon completion of the reaction, unreacted monomer and solvent are either flashed or distilled off, if necessary by vacuum, and the low molecular weight copolymer withdrawn from the reactor.
The polymerization may be conducted in a continuous manner by simultaneously feeding the reaction diluent (if employed), monomers, catalyst and cocatalyst to a reactor and withdrawing solvent, unreacted monomer and polymer from the reactor so as to allow a residence time of ingredients long enough for forming polymer of the desired molecular
weight and separating the polymer from the reaction mixture.
PREPARATION OF ETHYLENE ALPHA-OLEFIN POLYMER SUBSTITUTED MONO- OR DICARBOXYLIC ACID MATERIAL
The ethylene alpha-olefin polymer substituted mono- or dicarboxylic acid material, i.e., acid, anhydride or acid ester of this invention, includes the reaction product of ethylene alpha-olefin polymer (including diene inteφolymers) with a monounsaturated carboxylic reactant comprising at least one member selected from the group consisting of (i) monounsaturated C4 to C10 dicarboxylic acid wherein (a) the carboxyl groups are vicinyl, (i.e. located on adjacent carbon atoms) and (b) at least one, preferably both, of said adjacent carbon atoms are part of said mono unsaturation; (ii) derivatives of (i) such as anhydrides or C-j to C5 alcohol derived mono- or di-esters of (i); (iii) monounsaturated C3 to C10 monocarboxylic acid wherein the carbon-carbon double bond is allylic to the carboxy group, i.e, of the structure O
II -C=C-C- ; and (iv) derivatives of (iii) such as C-* to C5 alcohol derived mono- or di-esters of (iii). Upon reaction with the polymer, the monounsaturation of the monounsaturated carboxylic reactant becomes saturated. Thus, for example, maleic anhydride becomes a polymer substituted succinic anhydride, and acrylic acid becomes a polymer substituted propionic acid. Typically, from about 0.7 to about 4.0 (e.g., 0.8 to 2.6), preferably from about 1.0 to about 2.0, and most preferably from about 1.1 to about 1.7 moles of said monounsaturated carboxylic reactant are charged to the reactor per mole of polymer charged.
Normally, not all of the polymer reacts with the monounsaturated carboxylic reactant and the reaction mixture will contain unreacted polymer. The unreacted polymer is typically not removed from the reaction mixture (because such removal is difficult and would be commercially infeasible) and the product mixture, stripped of any monounsaturated carboxylic reactant is employed for further reaction with the amine or alcohol as described hereinafter to make the dispersant. Characterization of the average number of moles of monounsaturated carboxylic reactant which have reacted per mole of
polymer charged to the reaction (whether it has undergone reaction or not) is defined herein as functionality. Said functionality is based upon (i) determination of the saponification number of the resulting product mixture using potassium hydroxide; and (ii) the number average molecular weight of the polymer charged, using techniques well known in the art. Functionality is defined solely with reference to the resulting product mixture. Although the amount of said reacted polymer contained in the resulting product mixture can be subsequently modified, i.e. increased or decreased by techniques known in the art, such modifications do not alter functionality as defined above. The terms ethylene-alpha-olefin polymer substituted monocarboxylic acid material and ethylene-alpha-olefin polymer substituted dicarboxylic acid material are intended to refer to the product mixture whether it has undergone such modification or not.
Accordingly, the functionality of the ethylene-alpha-olefin polymer substituted mono- and dicarboxylic acid material will be typically at least about 0.5, preferably at least about 0.8, and most preferably at least about 0.9 and will vary typically from about 0.5 to about 2.8 (e.g., 0.6 to 2), preferably from about 0.8 to about 1.4, and most preferably from about 0.9 to about 1.3. Exemplary of such monounsaturated carboxylic reactants are fumaric acid, itaconic acid, maleic acid, maleic anhydride, chloromaleic acid, chloromaleic anhydride, acrylic acid, methacrylic acid, crotonic acid, cinnamic acid, and lower alkyl (e.g., C-i to C4 alkyl) acid esters of the foregoing, e.g., methyl maleate, ethyl fumarate, methyl fumarate, etc. The polymer can be reacted with the monounsaturated carboxylic reactant by a variety of methods. For example, the polymer can be first halogenated, chlorinated or brominated to about 1 to 8 wt. %, preferably 3 to 7 wt. % chlorine, or bromine, based on the weight of polymer, by passing the chlorine or bromine through the polymer at a temperature of 60 to 250°C, preferably 110 to 160° C, e.g., 120 to 140° C, for about 0.5 to 10, preferably 1 to 7 hours. The halogenated polymer may then be reacted with sufficient monounsaturated carboxylic reactant at 100 to 250° C, usually about 180° to 235° C, for about 0.5 to 10, e.g., 3 to 8 hours, so the product obtained will contain the desired number of moles of the monounsaturated carboxylic reactant per mole of the halogenated polymer. Processes of this general type are taught in U.S. Patents
3,087,436; 3,172,892; 3,272,746 and others. Alternatively, the polymer and the monounsaturated carboxylic reactant are mixed and heated while adding chlorine to the hot material. Processes of this type are disclosed in U.S. Patents 3,215,707; 3,231 ,587; 3,912,764; 4,110,349; 4,234,435; and in U.K. 1 ,440,219.
While chlorination normally helps increase the reactivity of polyolefins with monounsaturated carboxylic reactant, it is not necessary with the present polymers due to their high terminal bond content and reactivity. Also, the diene interpolymers may have additional unsaturation for functionalization. Preferably, therefore, the polymer and the mono¬ unsaturated carboxylic reactant are contacted at elevated temperature to cause a thermal "ene" reaction to take place. Thermal "ene" reactions have been heretofore described in U.S. Patents 3,361 ,673 and 3,401 ,118, the disclosures of which are hereby incoφorated by reference in their entirety. It has been suφrisingly found that the terminally ethylenically- unsaturated ethylene alpha-olefin polymers used in this invention readily undergo such thermal "ene" reactions under conditions in which the formation of sediment, or other by-products contributing to product haze, is greatly minimized or avoided altogether. The improved low sediment ene reaction product mixture is preferably formed using a polymer (more preferably, ethylene-propylene copolymers) having a number average molecular weight of from about 300 to 20,000 (e.g., from 700 to 20,000), more preferably from about 900 to 15,000, still more preferably from about 1500 to 10,000 (e.g., from about 1500 to 5,000), and most preferably greater than about 1800 to about 5,000, and a polydispersity of less than about 4, preferably less than about 3, e.g., from 1.1 to 3.5, most preferably from 1.2 to 3.
Preferably, the polymers used in this invention contain less than 5 wt%, more preferably less than 2 wt%, and most preferably less than 1 wt% of a polymer fraction comprising polymer molecules having a molecular weight of less than about 300, as determined by high temperature gel premeation chromatography employing the corresponding polymer calibration curve. Such preferred polymers have been found to permit the preparation of ene reaction products, particularly when employing maleic anhydride as the unsaturated acid reactant, with substantially no visibly observable sediment. In the event the polymer
produced as described above contains greater than about 5 wt% of such a low molecular weight polymer fraction, the polymer can be first treated by conventional means to remove the low molecular weight fraction to the desired level prior to initiating the ene reaction, and preferably prior to contacting the polymer with the selected unsaturated carboxylic reactant(s). For example, the polymer can be heated preferably with inert gas (e.g., nitrogen) stripping, at elevated temperature under a reduced pressure to volatilize the low molecular weight polymer components which can then be removed from the heat treatment vessel. The precise temperature, pressure and time for such heat treatment can vary widely depending on such factors as as the polymer number average molecular weight, the amount of the low molecular weight fraction to be removed, the particular monomers employed and other factors. Generally, a temperature of from about 60 to 100° C and a pressure of from about 0.1 to 0.9 atmospheres and a time of from about 0.5 to 20 hours (e.g., 2 to 8 hours) will be sufficient.
In this process, the selected polymer and monounsaturated carboxylic reactant are contacted for a time and under conditions effective to form the desired ethylene alpha-olefin polymer substituted mono- or dicarboxylic acid material. Generally, the polymer and monounsaturated carboxylic reactant will be contacted in a polymer to unsaturated carboxylic reactant mole ratio usually from about 1:1 to 1:10, and preferably from about 1 :1 to 1 :5, at an elevated temperature, generally from about 120 to 260°C, preferably from about 160 to 240°C. The reaction will be generally carried out, with stirring for a time of from about 1 to 20 hours, preferably from about 2 to 6 hours. The reaction is preferably conducted in the substantial absence of O2 and water (to avoid competing side reactions), and to this end can be conducted in an atmosphere of dry N2 gas or other gas inert under the reaction conditions. The reactants can be charged separately or together as a mixture to the reaction zone, and the reaction can be carried out continuously, semi-continuously or batchwise. Although not generally necessary, the reaction can be earned out in the presence of a liquid diluent or solvent, e.g., a hydrocarbon diluent such as mineral lubricating oil, toluene, xylene, dichlorobenzene and the like. The polymer substituted mono- or dicarboxylic acid material thus formed can be recovered from the liquid reaction mixture, e.g., after stripping the reaction
mixture, if desired, with an inert gas such as N2 to remove unreacted unsaturated carboxylic reactant.
The "ene" reaction product mixture thereby obtained has been suφrisingly found to have a substantially reduced content of sediment or other solid by-products as impurities and can be employed, without filtering, centrifuging, clarification, phase separation or other conventional product purification treatments, as, e.g., an additive to lubricating oils or as intermediate in the preparation of derivative products for use in lubricating oils, as will be more completely described hereinafter. The ene reaction product mixture is further improved by being substantially free of chlorine, that is, by having a chlorine content of less than about 25 ppm by weight, preferably less than about 10 ppm by weight.
The ene reaction product mixture comprising the desired ethylene-alpha-olefin substituted mono- or dicarboxylic acid material (e.g., ethylene-propylene polymer-substituted succinic anhydride) formed by the process of this invention will generally contain unreacted polymer, (that is, polymer which is unsubstituted by the mono- or dicarboxylic acid moiety), in a concentration of less than about 40 wt.% (e.g., from 5 to 35 wt.%), more preferably less than about 30 wt.% (e.g from 10 to 25 wt.%) and will be generally characterized by a VR value ("viscosity ratio" value) of not greater than about 4.1 , usually not greater than about 4.0, preferably from about 2.0 to 3.9, and most preferably from about 3.0 to 3.8. As used herein, the term "VR value" is intended to mean quotient determined by the expression (IV):
VR = VISb
VISa wherein VISa is the kinematic viscosity (KV) of the ene reaction product mixture at 100°C in units of centistokes (as determined by ASTM Method No. D445) and VISb is the cold cranking simulator (CCS) viscosity of the ene reaction product mixture at -20°C in units of poise (as determined by ASTM Method No. D2602), wherein the measurements are made upon a 2 wt% solution of the ene reaction product mixture in an oil (herein termed the "reference oil") comprising S150N (solvent 150 neutral) mineral lubricating oil (Exxon Company U.S.A.), wherein the such reference oil is characterized by an ASTM D445 kinematic viscosity of 5.2 cSt (100°C) and
an ASTM D2602 CCS viscosity of 19.2 poise (+ 0.4 poise) (at -20ø C). The "VRr" value of the reference oil will then be about 3.7 + 0.1.
Illustrative, therefore, of the improved ene reaction products of this invention are the following ethylene-propylene copolymer-substituted succinic acids and succinic anhydrides (EPSA), ethylene-butene-1 copolymer-substituted succinic acids and succinic anhydrides (EBSA) summarized in Table A below:
NOTES:
(1) Wt.% active ingredient.
(2) SA=succinic anhydride; polymer=ethylene-propylene (EP) or ethylene butylene (EB) copolymer; moles of polymer in ratio based on the total of both the reacted and unreacted polymer; moles of "SA" based on the number of moles of succinic anhydride moieties per mole of ene reaction product.
It will be understood that the ethylene alpha-olefin polymers (including diene inteφolymers) of this invention which are charged to the reaction zone can be charged alone or together with (e.g., in admixture with) other polyaikenes derived from alkenes having from 1 to 20 carbon atoms (butene, pentene, octene, decene, dodecene, tetradodecene and the like) and homopolymers of C3 to C-J O, e.g., C2 to C5, monoolefins, and copolymers of C2 to C-JO. ®-9-. 2 to C5, monoolefins, said additional polymer having a number average molecular weight of at least about 900, and a molecular weight distribution of less than about 4.0, preferably less than about 3.0 (e.g, from 1.2 to 2.8). Preferred such additional olefin polymers comprise a major molar amount of C2 to C-JO. θ-9- C2 to C5 monoolefm. Such olefins include ethylene, propylene, butylene, isobutylene, pentene, octene-1 , styrene, etc. Exemplary of the additionally charged homopolymers is polypropylene, polyisobutylene, and poly-n- butene the like as well as interpolymers of two or more of such olefins such as copolymers of: ethylene and propylene (prepared by conventional methods other than as described above for the preferred ethylene alpha- olefin copolymers employed in this invention, that is, ethylene-propylene copolymers which are substantially saturated, wherein less than about 10 wt% of the polymer chains contain ethylenic unsaturation); butylene and isobutylene; propylene and isobutylene; etc. Other copolymers include those in which a minor molar amount of the copolymer monomers, e.g., 1 to 10 mole %, is a C4 to C-jβ non-conjugated diolefin, e.g., a copolymer of isobutylene and butadiene: or a copolymer of ethylene, propylene and 1 ,4- hexadiene; etc. The additional such olefin polymers charged to the reaction will usually have number average molecular weights of at least about 900, more generally within the range of about 1200 and about 5,000, more usually between about 1500 and about 4,000. Particularly useful such additional olefin polymers have number average molecular weights within the range of about 1500 and about 3,000 with approximately one double bond per chain. An especially useful additional such polymer is polyisobutylene. Preferred are mixtures of such polyisobutylene with ethylene-propylene copolymers wherein at least 30 wt% of the copolymer chains contain terminal ethenylidene monounsaturation as described above.
The number average molecular weight for such polymers can
be determined by several known techniques. A convenient method for such determination is by gel permeation chromatography (GPC) which additionally provides molecular weight distribution information, see W. W. Yau, J. J. Kirkland and D. D. Bly, "Modem Size Exclusion Liquid Chromatography", John Wiley and Sons, New York, 1979.
PREPARATION OF NUCLEOPHILICALLY-SUBSTITUTED DERIVATIVE PRODUCTS
The polymer substituted carboxylic acids/anhydrides/esters of this invention, prepared as described above, can be contacted with a nucleophilic reactant, e.g., amines, alcohols, including polyois, amino- alcohols, reactive metal compounds, etc. to form the novel dispersants of this invention. Amine compounds useful as nucleophilic reactants for reaction with the polymer substituted mono- or dicarboxylic acid materials include mono- and (preferably) polyamines, of about 2 to 60, preferably 2 to 40 (e.g. 3 to 20), total carbon atoms and about 1 to 12, preferably 3 to 12, and most preferably 3 to 9 nitrogen atoms in the molecule. These amines may be hydrocarbyl amines or may be hydrocarbyl amines including other groups, e.g, hydroxy groups, alkoxy groups, amide groups, nitriles, imidazoline groups, and the like. Hydroxy amines with 1 to 6 hydroxy groups, preferably 1 to 3 hydroxy groups are particularly useful. Preferred amines are aliphatic saturated amines, including those of the general formula:
(Va) (Vb)
wherein R, R', R" and R"' are independently selected from the group consisting of hydrogen; Ci to C25 straight or branched chain alkyl radicals; C-j to C25 straight or branched chain alkyl radicals; C- to C12 alkoxy C2 to CQ alkylene radicals; C2 to C12 hydroxy amino alkylene radicals; and C-- to C-j 2 alkylamino C2 to C5 alkylene radicals; and wherein R'" can additionally comprise a moiety of the formula:
— (— (CH2)r N-) H
I f (VI)
R'
wherein R' is as defined above, and wherein r and r1 can be the same or a different number of from 2 to 6, preferably 2 to 4; and t and t' can be the same or different and are numbers of from 0 to 10, preferably 2 to 7, and most preferably about 3 to 7, with the proviso that the sum of t and t* is not greater than 15. To assure a facile reaction, it is preferred that R, R', R", R"\ r, r\ t and t' be selected in a manner sufficient to provide the compounds of Formulas Va and Vb with typically at least one primary or secondary amine group, preferably at least two primary or secondary amine groups. This can be achieved by selecting at least one of said R, R', R" or R'" groups to be hydrogen or by letting t in Formula Vb be at least one when R'" is H or when the Vi moiety possesses a secondary amino group. The most preferred amine of the above formulas are represented by Formula Vb and contain at least two primary amine groups and at least one, and preferably at least three, secondary amine groups. Non-limiting examples of suitable amine compounds include:
1,2-diaminoethane; 1,3-diaminopropane; 1 ,4-diaminobutane; 1,6- diaminohexane; polyethylene amines such as diethylene triamine; triethylene tetramine; tetraethylene pentamine; polypropylene amines such as 1 ,2-propylene diamine; d-(1,2-propylene)triamine; di-(1,3-propylene) triamine; N,N-dimethyl-1 ,3-di-aminopropane; N,N-di-(2-aminoethyl) ethylene diamine; N,N-di(2-hydroxyethyl)-1 ,3-propylene diamine; 3- dodecyloxypropylamine; N-dodecyl-1 ,3-propane diamine; tris hydroxymethylaminomethane (TΗAM); diisopropanol amine; diethaπol amine; triethanol amine; mono-, di-, and tri-tallow amines; amino moφholines such as N-(3-amino-propyl)moφholine; and mixtures thereof. Other useful amine compounds include: alicyclic diamines such as 1 ,4-di(aminomethyl) cyclohexane, and heterocyclic nitrogen compounds such as imidazoiines, and N-aminoaikyl piperazines of the general formula (VII):
wherein p-| and P2 are the same or different and are each integers of from 1 to 4, and n-* , n2 and n3 are the same or different and are each integers of from 1 to 3. Non-limiting examples of such amines include 2-pentadecyl imidazoline; N-(2-amιnoethyi) piperazine; etc.
Commercial mixtures of amine compounds may advantageously be used. For example, one process for preparing alkylene amines involves the reaction of an alkylene dihalide (such as ethylene dichloride or propylene dichloride) with ammonia, which results in a complex mixture of alklene amines wherein pairs of nitrogens are joined by alkylene groups, forming such compounds as diethylene triamine, tπethylenetetramine, tetraethylene pentamine and isomeric piperazines. Low cost poly(ethyleneamιnes) compounds averaging about 5 to 7 nitrogen atoms per molecule are available commercially under trade names such as "Polyamine H", "Polyamine 400", "Dow Polyamine E-100", etc.
Useful amines also include polyoxyalkylene polyamines such as those of the formula (VIII):
NH2 alkylene o-alkyiene — ) — NH2 m
where m has a value of about 3 to 70 and preferably 10 to 35; and the formula (IX):
R4 alkylene ■ o-alkylene • NH2
where n"' has a value of about 1 to 40 with the provision that the sum of all the n"' values is from about 3 to about 70 and preferably from about 6 to about 35, and R4 is a polyvalent saturated hydrocarbon radical of up to ten carbon atoms wherein the number of substituents on the R4 group is represented by the value of "a", which is a number of from 3 to 6. The alkylene groups in either formula (VII) or (IX) may be straight or branched chains containing about 2 to 7, and preferably about 2 to 4 carbon atoms.
The polyoxyalkylene polyamines of formulas (VII) or (IX) above, preferably polyoxyalkylene diamines and polyoxyalkylene triamines, may have average molecular weights ranging from about 200 to about 4000 and preferably from about 400 to about 2000. The preferred polyoxyalkylene polyoxyalkylene polyamines include the polyoxyethylene and polyoxypropylene diamines and the polyoxypropylene triamines having average molecular weights ranging from about 200 to 2000. The polyoxyalkylene polyamines are commercially available and may be obtained, for example, from the Jefferson Chemical Company, Inc. under the trade name "Jeffamines D-230, D-400, D-1000, D-2000, T-403", etc.
A particularly useful class of amines are the polyamido and related amines disclosed in U.S. Patent 4,857,217 (the disclosure of which is hereby incoφorated by reference in its entirety), which comprise reaction products of a polyamine and an alpha, beta unsaturated compound of the formula:
R6 R7 X
I I II (X)
R5 - C = C - C - Y
wherein X is sulfur or oxygen, Y is -OR8, -SR8, or -NR8 (R9), and R5, R6, R?, R8 and R9 are the same or different and are hydrogen or substituted or unsubstituted hydrocarbyl. ANy polyamine, whether aliphatic, cycloaliphatic, aromatic, heterocyclic, etc., can be employed provided it is capable of adding across the acrylic double bond and amidifying with for example the carbonyl group (-C(O)-) of the acrytate-type compound of formula X, or with the thiocarbonyi group (-C(S)-) of the thioacrylate-type compound of formula X.
When R5, R6, R7, R8 or R9 in Formula X are hydrocarbyl, these groups can comprise alkyl, cycloalkyl, aryl, alkaryl, aralkyl orheterocyclic, which can be substituted with groups which are substantially inert to any component of the reaction mixture under conditions selected for preparation of the amido-amine. Such substituent groups include hydroxy, halide (e.g., Cl, F1 , I, Br). -SH and alkylthio. When one or more of R5 through R9 are alkyl, such alkyl groups can be straight or branched chain, and will generally contain from 1 to 20, more usually from 1 to 10, and preferably from 1 to 4, carbon atoms. Illustrative of such alkyl groups are methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, dodecyl, tridecyl, hexadecyl, octadecyl and the like. When one or more of R5 through R9 are aryl, the aryl
group will generally contain from 6 to 10 carbon atoms (e.g., phenyl, naphthyl).
When one or more of R5 through R9 are alkaryl, the alkaryl group will generally contain from about 7 to 20 carbon atoms, and preferably from 7 to 12 carbon atoms. Illustrative of such alkaryl groups are tolyl, m-ethyiphenyl, o-ethyltolyl, and m-hexyltolyl. When one or more of R^ through R9 are aralkyl, the aryl component generally consists of phenyl or (C-* to C ) alkyl- substituted phenol and the alkyl component generally contains from 1 to 12 carbon atoms, and preferably from 1 to 6 carbon atoms. Examples of such aralkyl groups are benzyl, o-ethy I benzyl, and 4-isobutylbeπzyl. When one or more of R^ and R9 are cycloalkyl, the cycloalkyl group will generally contain from 3 to 12 carbon atoms, and preferably from 3 to 6 carbon atoms. Illustrative of such cycloalkyl groups are cyclopropyl, cyclobutyl, cyclohexyl, cyclooctyl, and cyclododecyl. When one or more of R^ through R9 are heterocyclic, the heterocyclic group generally consists of a a compound having at least one ring of 6 to 12 members in which one or more ring caΦon atoms is replaced by oxygen or nitrogen. Examples of such heterocyclic groups are furyl, pyranyl, pyridyl, piperidyl, dioxanyl, tetrahydrofuryl, pyrazinyl and 1 ,4-oxazinyl. The alpha, beta ethylenically unsaturated carboxylate compounds employed herein have the following formula:
R6 R7 O
I I II β (XI) R5 - C = C - C - OR8
Wherein R-5. R8- R7- and R8 are the same or different and are hydrogen or substituted or unsubstituted hydrocarbyl as defined above. Examples of such alpha, beta-ethylenically unsaturated caΦoxylate compounds of formula XI are acrylic acid, methacrylic acid, the methyl, ethyl, isopropyl, n-butyl and isobutyl esters of acrylic and methacrylic acids, 2-butenoic acid, 2-hexenoic acid, 2-decenoic acid, 3-methyl-2-heptenoic acid, 3-methyl-2-butenoic acid, 3-phenyl-2-ρropenoic acid, 3-cyclohexyl-2-butenoic acid, 2-methyl-2-buteπoic acid, 2-ppropyl-2-propenoic acid, 2-isopropyl-2-hexenoic acid, 2,3-dimethyl- 2-butenoic acid, 3-cyclohexyl-2-methyl-2-pentenoic acid, 2-propenoic acid, methyl 2-propenoate, methyl 2-methyl 2-propenoate, methyl 2- butenoate, ethyl 2-hexnoate, isopropyl 2-decenoate, phenyl 2-pentenoate,
tertiary butyl 2-propenoate, octadecyl 2-propenoate, dodecyl 2-decanoate, cyclopropyl 2,3-dimethyl-2-butenoate, methyl 3-phenyl-2-propenoate, and the like.
The alpha, beta ethyienically unsaturated carboxylate thioester compound employed herein have the following formula:
R6 R7 O
J I II β (XN)
R5 - C = C - C - SR8
Wherein R5, R6, R7, and R8 are the same or different and are hydrogen or substituted or unsubstituted hydrocarbyl as defined above. Examples of such alpha, beta-ethylenically unsaturated carboxylate thioesters of formula XII are methylmercapto 2-butenoate, ethyimercapto 2-hexenoate, isopropylmercapto 2-decanoate, phenylmercapto 2-pentenoate, tertiary butylmercapto 2-propenoate, octadecylmercapto 2-propenoate, dodecylmercapto 2-decenoate, cyclopropylmercapto 2,3-dimethyl-2- butenoate, methylmercapto 3-phenyl-2-propenoate, methylmercapto 2- propenoate, methylmercapto 2-methyl-2-propenoate, and the like. The alpha, beta ethyienically unsaturated carboxyamide compounds employed herein have the following formula:
R6 R7 O
I I II (XIII) R5 - C = C - C - NR8(R9)
Wherein RS, R6, R7, R8 and R9 are the same or different and are hydrogen or substituted or unsubstituted hydrocarbyl as defined above. Examples of alpha, beta-ethylenically unsaturated carboxyamides of formula XIII are 2- butenamide, 2-hexenamide, 2-decenamide, 3-methyl-2-heptenamide, 3- methyl-2-butenamide, 3-phenyl-2-propenamide, 3-cyclohexyl-2-butenamide, 2-methyl-2-butenamide, 2-propyl-2-propenamide, 2-isopropyl-2-hexenamide, 2,3-dimethyl-2-butenamide, 3-cyclohexyl-2-methyl-2-pentenamide, N-methyl 2-butenamide, N-methyl 2-butenamide, N,N-diethyl 2-hexenamide, N- isopropyl 2-decenamide, N-phenyl 2-penteπamide, N-tertiary butyl 2- propenamide, N-octadecyl 2-propenamide, N-N-didodecyl 2-decenamide, N- cyclopropyl 2,3-dimethyl-2-butenamide, N-methyl 3-phenyl-2-propeπamide, 2- propenamide, 2-methyl-2-propenamide, 2-ethyl-2-propenamide and the like.
The alpha, beta ethyienically unsaturated thiocarboxylate compounds employed herein have the following formula:
R6 R7 S I I II 0 (XIV)
R5 - C = C - C - OR8
Wherein R5, R6, R7, R8 and R9 are the same or different and are hydrogen or substituted or unsubstituted hydrocarbyl as defined above. Examples of alpha, beta-ethylenically unsaturated thiocarboxylate compounds of formula
XIV are 2-butenthioic acid, 2-hexenthioic acid, 2-decenthioic acid, 3-methyl-2- heptenthioic acid, 3-methyl-2-butenthioic acid, 3-phenyl-2-propenthioic acid, 3-cyclohexyl-2-butenthioic acid, 2-methyl-2-butenthioic acid, 2-propyl-2- propenthioic acid, 2-isopropyl-2-hexenthioic acid, 2,3-dimethyl-2-butenthioic acid, 3-cyciohexyl-2-methyl-2-pententhioic acid, 2-propenthioic acid, methyl 2-propenthioate, methyl 2-methyl 2-propenthioate, methyl 2-butenthioate, ethyl 2-hexenthioate, isopropyl 2-decenthioate, phenyl 2-pententhioate, tertiary butyl 2-propenthioate, octadecyl 2-propenthioate, dodecyl 2- decenthioate, cyclopropyl 2,3-dimethyl-2-butenthioate, methyl 3-phenyl-2- propenthioate, and the like.
The alpha, beta ethyienically unsaturated dithioic acid and acid ester compounds employed herein have the following formula:
R6 R7 S
J I II D (XV)
R5 - C = C - C - SR8
Wherein R5, R6, R?, and R8 are the same or different and are hydrogen or substituted or unsubstituted hydrocarbyl as defined above. Examples of alpha, beta-ethylenically unsaturated dithioic acids and acid esters of formula
XV are 2-butendithioic acid, 2-hexendithioic acid, 2-decendithioic acid, 3- methyl-2-heptendithioic acid, 3-methyl-2-butendithioic acid, 3-phenyl-2- propendithioic acid, 3-cyclohexyl-2-butendithioic acid, 2-methyl-2- butendithioic acid, 2-propyl-2-propendithioic acid, 2-isopropyI-2-hexendithioic acid, 2,3-dimethyl-2-butendithioic acid, 3-cyclo-hexyl-2-methyl-2- pentendithioic acid, 2-propendithioic acid, methyl 2-methyl 2-propendithioate, methyl 2-butendithioate, ethyl 2-hexendithioate, isopropyl 2-decendithioate,
phenyl 2-pentendithioate, tertiary butyl 2-propendithioate, octadecyl 2- propendithioate, dodecyl 2-decendithioate, cyclopropyl 2,3-dimethyl-2- butendithioate, methyl 3-phenyl-2-propendithioate, and the like. The alpha, beta ethyienically unsaturated thiocarboxyamide compounds employed herein have the following formula:
R6 R7 S
_ I I II _ Q (XVI)
R5 - C = C - C - NR8 (R9)
Wherein RS, R8, R7, R8 and R9 are the same or different and are hydrogen or substituted or unsubstituted hydrocarbyl as defined above. Examples of alpha, beta-ethylenically unsaturated thiocarboxyamides of formula XVI are 2-butenthioamide, 2-hexenthioamide, 2-decenthioamide, 3-methyl-2-heptenthioamide, 3-methyl-2-butenthioamide, 3-phenyl-2- propenthioamide, 3-cyclohexyl-2-butenthioamide, 2-methyl-2- butenthioamide, 2-propyl-2-propen-thioamide, 2-isopropyl-2- hexenthioamide, 2,3-dimethyl-2-butenthioamide, 3-cyclohexyl-2-methyl-2- pententhioamide, N-methyl 2-butenthioamide, N,N-diethyl 2- hexenthioamide, N-isopropyl 2-decenthioamide, N-phenyl 2- pententhioamide, N-tertiary butyl 2-propenthioamide, N-octadecyl 2- propenthioamide, N-N-didodecyl 2-decenthioamide, N-cyclopropyl 2,3- dimethyl-2-butenthioamide, N-methyl 3-phenyl-2-propenthioamide, 2- propen-thioamide, 2-methyl-2-propenthioamide, 2-ethyl-2-propenthioamide and the like.
Preferred compounds for reaction with the polyamines in accordance with this invention are lower alkyl esters of acrylic and (lower alkyl) substituted acrylic acid. Illustrative of such preferred compounds are compounds of the formula:
R7 O
I II β (XVII)
CH2 = C - COR8
where PJ is hydrogen or a C<| to C alkyl group, such as methyl, and R8 is hydrogen or a C-) to C4 alkyl group, capable of being removed so as to form an amido group, for example, methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, tert-butyl, aryl, hexyl, etc. In the preferred embodiments these
compounds are acryiic and methacrylic esters such as methyl or ethyl acrylate, methyl or ethyl methacrylate. When the selected alpha, beta- unsaturated compound comprises a compound of formula X wherein X' is oxygen, the resulting reaction product with the polyamine contains at least one amido linkage (-C(O)N<) and such materials are herein termed "amido-amines." Similarly, when the selected alpha, beta unsaturated compound of formula X comprises a compound wherein X* is sulfur, the resulting raction product with the polyamine contains thioamide linkage (- C(S)N<) and these materials are herein termed "thioamido-amines." For convenience, the following discussion is directed to the preparation and use of amido-amines, although it will be understood that such discussion is also applicable to the thioamido-amines.
The type of amido-amine formed varies with reaction condition*: For example, a more linear amido-amine is formed where substantially equimolar amounts of the unsaturated carboxylate and polyamine are reacted. The presence of excesses of the ethyienically unsaturated reactant of formula X tends to yield an amido-amine which is more cross-linked than that obtained where substantially equimolar amounts of reactants are employed. Where for economic or other reasons a cross-linked amido-amine using excess amine is desired, generally a molar excess of the ethyienically unsaturated reactant of about at least 10%, such as 10-300%, or greater, for example, 25-200%, is employed. For more efficient cross-linking an excess of carboxylated material should preferably be used since a cleaner reaction ensures. For example, a molar excess of about 10-100% or greater such as 10-50%, but preferably an excess of 30-50%, of the carboxylated material. Larger excess can be employed, if desired.
In summary, without considering other factors, equimolar amounts of reactants tend to produce a more linear amido-amine whereas excess of the formula XII reactant tends to yield a more cross-linked amido-amine. It should be noted that the higher the polyamine (i.e., in greater the number of amino groups on the molecule) the greater the statistical probability of cross-linking since, for example, a tetraalkylenepentamine, such as tetraethylene pentamine H
NH2(CH2CH2N)4H
has more labile hydrogens than ethylene diamine.
These amido-amine adducts so formed are characterized by both amido and amino groups. In their simplest embodiments they may be represented by units of the following idealized formula (XVIII):
R10 R10 R10 o
I I I II
. N — {— A - N — )— CH2 - CH - C - n4 wherein the R10's, which may be the same or different, are hydrogen or a substituted group, such as a hydrocarbon group, for example, alkyl, alkenyl, alkynyl, aryl, etc., and A is a moiety of the polyamine which, for example, may be aryl, cycloalkyl, alkyl, etc., and n4 is an integer such as 1-10 or greater.
The above siimplified formula represents a linear amido-amine polymer. However, cross-linked polymers may also be formed by employing certain conditions since the polymer has labile hydrogens which can further react with either the unsaturated moiety by adding across the double bond or by amidifying with a carboxylate group.
Preferably, however, the amido-amines employed in this invention are not cross-linked to any substantial degree, and more preferably are substantially linear.
Preferably, the polyamine reactant contains at least one primary amine (and more preferably from 2 to 4 primary amines) group per molecule, and the polyamine and the unsaturated reactant of formula X are contacted in an amount of from about 1 to 10, more preferably from about 2 to 6, and most preferably from about 3 to 5, equivalents of primary amine in the polyamine reactant per mole of the unsaturated reactant of formula X.
The reaction between the selected polyamine and acryiate- type compound is carried out at any suitable temperature. Temperatures up to the decomposition points of reactants and products can be employed. In practice, one generally carried out the reaction by heating the reactants below 100°C, such as 80-90°C, for a suitable period of time, such as a few hours. Where an acrylic-type ester is employed, the progress of the reaction can be judged by the removal of the alcohol in
formmg the amide. Duπng the early part of the reaction alcohol is removed quite readily below 100°C in the case of low boiling alcohols such as methanol or ethanol. As the reaction slows, the temperature is raised to push the polymerization to completion and the temperature may be raised to 150°C toward the end of the raction. Removal of alcohol is a cnvenient method of judging the progress and completion of the reaction which is generally continued until no more alcohol is evolved. Based on removal of alcohol, the yields are generally stoichiometric. In more difficult reactions, yields of at least 95% are generally obtained. Similarly, it will be understood that the reaction of an ethyienically unsaturated carboxylate thioester of formula XII liberates the corresponding HSR8 compound (e.g., H2S when R8 is hydrogen) as a by¬ product, and the reaction of an ethyienically unsaturated carboxyamide of formula XIII liberates the correspnding HNR8 (R9) compound (e.g., ammonia when R8 and R are each hydrogen) as by-product.
The reaction time involved can vary widely depending on a wide variety of factors. For example, there is a relationship between time and temperature. In general, lower temperature demands longer times. Usually, reaction times of from about 2 to 30 hours, such as 5 to 25 hours, and preferably 3 to 10 hours will be employed.
Although one can employ a solvent, the reaction can be run without the use of any solvent. In fact, where a high degree of cross- linking is desired, it is preferable to avoid the use of a solvent and most particularly to avoid a polar solvent such as water. However, taking into consideration the effect of solvent on the reaction, where desired, any suitable solvent can be employed, whether organic or inorganic, polar or non-polar.
As an example of the amido-amine adducts, the reactin of tetraethylene pentaamine (TEPA) with methyl methacrylate can be illustrated as follows:
O -(CH3OH)
II H2N[CH2CH2NH]3CH2CH2NH2 + CH2=CH-C-OCH3
O II H2 [CH2CH2NH33CH2CH2NHCH2CH2CNHCH2CH2[NHCH2CH2]3NH2
ln a preferred embodiment, the nucleophilic reactant comprises a branched chain nitrogen containing adduct formed by a process which comprises: (a) contacting in a first liquid reaction mixture a first nitrogen-containing compound having at least two reactive nitrogen moieties with a polyfunctional reactant having within its structure a first functional group reactive with a -NH- group, and at least one additional functional group reactive with a -NH- group, in an amount and under conditions sufficient to selectively react the first functional groups in the polyfunctional ractant with the reactive nitrogen moieties to form a first reaction mixture containing a first adduct; and (b) contacting the first adduct with a second nitrogen-containing compound having at lest two - NH- groups in an amount and under conditions sufficient to react the additional functional groups in the first adduct with said -NH- groups in the second nitrogen-containing compound per nitrogen-containing moiety derived from the first nitrogen-containing compound and (ii) at least two unreacted primary or secondary amine groups per molecule.
Preferably, the branched chain nitrogen-containing adduct comprises a branched amido-amine adduct, and more preferably to a star branched amido-amine adduct, formed by (a) reacting a first nitrogen- containing compound (e.g., ammonia or an organic amine) with an alpha, beta-unsaturated compound of the formula:
R2 R3 W1
I I II
R1 - C = C - C - Y
wherein W1 is sulfur or oxygen, Y is -OR4, -SR4, or -NR4(R5), and R1 , R2, R3, R4 and R5 are the same or different and are hydrogen or substituted or unsubstituted hydrocarbyl, to form a first adduct containing unreacted -C(W1 )-Y groups; and (b) reacting the first adduct with a polyamine (e.g., a polyalkylene polyamine) to form a second adduct containing unreacted -NH- groups (preferably primary amine groups) and comprising a branched amido-amine oligomer.
The first above adduct is prepared by contacting a polyfunctional reactant with a first nitrogen-containing compound
containiπg at least two (e.g., from 2 to 20), preferably at least 3 (e.g., from 3 to 15), and most preferably from 3 to 8, reactive nitrogen moieties (that is, the total of the nitrogen-bonded H atoms) per molecule of the first nitrogen-containing compound. The first nitrogen-containing compound will generally comprise at least one member selected from the group consisting of ammonia, organic primary monoamines and organic polyamines containing at least one primary amine gorup or at least two secondary amine groups per molecule.
Most preferred as the first nitrogen-containing compound are members selected from the group consisting of ammonia and organic diprimary amines having from 2 to 12 carbon atoms and from 2 to 8 nitrogen atoms per molecule. Examples of such preferred organic diprimary amines are ethylene diamine, propylene diamine, diethylene triamine, dipropylene triamine, triethylene tetraamiπe, tripropylene tetraamine, tetraethylene pentaamine, tetrapropylene pentaamine, polyhexamethylene diamine, phenyl diamine.
The polyfunctional ractants useful in this invention include compounds having the formula (XX):
WI W2
II II
X - C - (Da - [(C)b - Ylc
wherein W*- and W2 are the same or different and are O or S, X and Y are the same or different, and preferably are each groups reactive with a -NH- group (i.e., with NH3 or with primary or secondary amine groups), T is a substituted or unsubstituted hydrocarbon moiety, "a" is 0 or 1 , "b" is 0 or 1 , and "c" is an integer of at least 1 , with the provisos that c = 1 when a = 0 and b = 1 when a = 1 , and with the further proviso that at least two of X, Y and T are reactive with a -NH- group.
The X and Y functional groups are the same or different and include groups selected from the group consisting of: halide, -OR4, -SR4, -N(R )(R*5), -Z1C(O)OR4, -C(O)R4, -(R3)C=C(R1)(R2), -Z1-nitrile, -Z1- cyano, -Z1 -thiocyano, -Z1-isothiocyano, and -Z1-isocyano, wherein R1 , R2, R3, R4 and RS are the same or different and are H or substituted or unsubstituted hydrocarbyl and wherein Z is C-j to C20 (preferably C to C10) bivalent hydrocarbylene (preferably alkylene or arylene). If a = b = 1 ,
and T contains at least one >C=C< group, X and Y can together further comprise -0- or -S-, to provide as reactants a class of ethyienically unsaturated and aromatic anhydrides and suifo-anhydrides. Preferably, the X and Y groups in the selected polyfunctional reactant are different, and the reactivity of the X moiety with -NH- groups, under the selected reaction conditions, is greater than the reactivity of the Y moieties with such -NH- groups to permit a substantially selective reaction of the X groups with the first nitrogen-containing compound as described below. The relative reactivity of these groups on a polyfunctional reactant can be readily determined by conventional methods.
When R1 , R2, R3, R4, or R5 are hydrocarbyl, these groups can comprise alkyl, cycloalkyl, aryl, aralkyl or heterocyclic, which can be substituted with groups which are substantially inert to any component of the reaction mixture under conditions selected for preparation of the amido-amine. Such substituent groups include hydroxy, halide (e.g., C1 , F1 , I, Br), -SH and alkylthio. When one or more of R1 through R5 are alkyl, such alkyl groups can be straight or branched chain, and will generally contain from 1 to 20, more usually from 1 to 10, and preferably from 1 to 4, carbon atoms. Illustrative of such alkyl groups are methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, dodecyl, tridecyl.hexadecyl, octadecyl and the like. When one or more of R1 through R5 are aryl, the aryl group will generally contain from 6 to 10 carbon atoms (e.g., phenyl, nephthyl).
When one or more of R1 through R are alkaryl, the alkaryl group will generally contain from about 7 to 20 carbon atoms, and preferably from 7 to 12 carbon atoms. Illustrative of such alkaryl groups are tolyl, m-ethy I phenyl, o-ethy Itoly I, and m-hexyltolyl. When one or more of R1 through R5 are aralkykl, the aryl component generally consists of phenyl or (C-| to CQ) alkyl-substituted phenol and the alkyicomponent generally contains from 1 to 12 carbona toms, and preferably from 1 to 6 carbon atoms. Examples of such aralkyl groups are benzyl, o-ethylbenzyi, and 4-isobutylbenzyl. When one or more of R^ through R5 are cycloalkyl, the cycloalkyl group will generally contain from 3 to 12 carbon atoms, and preferably from 3 to 6 carbon atoms. Illustrative of such cycloalkyl groups are cyclopropyl, cyclobutyl, cyclohexyl, cyclooctyl, and cyclododecyl. When one or more of R1 through R5 are heterocyclic, the heterocyclic
group generally consists fo a compound having at lest one ring of 6 to 12 members in which one or more ring carbon atoms is replaced by oxygen or nitrogen. Examples of such heterocyclic groups are furyl, pyranyl, pyridyl, piperidyl, dioxanyl, tetrahydrofuryl, pyrazinyl and 1 ,4-oxazinyl. T is a polyvalent organic radical whose valence is equal to c +
1 , wherein "c" is an integer of at least 1 , preferably 1 to 3. Ordinarily T will not contain more than 20 carbon atoms and preferably not more than 10 carbon atoms. T can therefore include divalent groups such as saturated and unsaturated hydrocarbylene (e.g., alkylene, alkenylene, arylene, and the like). When T is substituted, it can contain one or more substituents selected from the class consisting of halo, lower alkoxy, lower alkyl mercapto, nitro, lower alkyl, carboxy and oxo. It also may contain interrupting groups such as -O-, -S-, -S(O)-, -S(O)2-, -NH-, -C(O)- and the like. Exemplary of Z1 groups are C1 to C10 branched and straight chained alkylene such as -(C 2 - whereinT is an integer of from 1 to 10 (e.g., -CH2-, -C2H4-, -C3H7-, -C4H8-, -C5H10-, and the like), and CQ to C20 arylene, and alkyl-substituted arylene such as -Ar-, -Ar-((CH2)f)-> - ((CH2)f)-Ar-, -Ar-((CH2)f-Ar- and the like, wherein Ar is phenylene, methylphenylene, naphthylene, methylnaphthylene and the like and wherein f is as defined above.
Examples of polyfunctional reactants of formula XX wherein X is (R1 )(R2)C=C(R3)-, a = b = 0 and c = 1 are difunctional reactants comprising alpha, beta-ethylenically unsaturated compounds selected from the group consisting of compounds of the formula:
R2 R3 W1
I I II (XXI)
R1 - C = C - C - Y
wherein W1 is sulfur or oxygen, Y is as defined above, and is preferably -OR4, -SR4, or -NR4(R5), wherein R1 , R2, R3, R4 and R5 are as defined above.
Preparation of the Dispersant The amine is readily reacted with the selected material, e.g., the ethylene-propylene copolymer substituted succinic anhydride, by reacting an oil solution containing 5 to 95 wt.% of the polymer substituted
mono- or dicarboxylic acid material at about 100 to 250°C, preferably 125 to 175°C, generally for 1 to 10, e.g., 2 to 6 hours until the desired amount of water is removed. The heating is preferably carried out to favor formation of imides or mixtures of imides and amides, rather than amides and salts.
Reaction ratios of polymer substituted mono- and dicarboxylic acid material to equivalents of amine as well as the other nucleophilic reactants described herein can vary considerably, depending on the reactants and type of bonds formed. When the polymer comprises a polymer substituted dicarboxylic acid material, containing dicarboxylic acid producing moieties derived from any of the above monounsaturated dicarboxylic acids, or anhydride or ester derivatives thereof, generally from 0.05 to 1.0, preferably from about 0.1 to 0.6, e.g., 0.2 to 0.4, moles of dicarboxylic acid moiety content (e.g., grafted maleic anhydride content) is used, per equivalent of nucleophilic reactant, e.g., amine. For example, about 0.8 mole of a pentamine (having two primary amino groups and 5 equivalents of nitrogen per molecule) is preferably used to convert into a mixture of amides and imides, the product formed by reacting one mole of polymer with sufficient maleic anhydride to add 1.6 moles of succinic anhydride groups per mole of polymer, i.e., preferably the pentamine is used in an amount sufficient to provide about 0.4 mole (that is 1.6/[0.8 x 5] mole) of succinic anhydride moiety per nitrogen equivalent of the amine. If an amido-amine, as above, is employed, generally from 1 to 5, preferably from about 1.5 to 3 moles of dicarboxylic acid moiety content (e.g., grafted maleic anhydride content) is used per equivalent of amido-amine reactant, e.g., amine.
When the polymer comprises a polymer substituted monocarboxylic acid material, containing monocarboxylic acid producing moieties derived from any of the above monounsaturated monocarboxylic acids, or ester derivatives thereof, generally from 0.05 to 1.0, preferably from about 0.1 to 0.6, e.g., 0.2 to 0.4, moles of monocarboxylic acid moiety content (e.g., grafted acrylic acid content) is used, per equivalent of nucleophilic reactant, e.g., amine. If an amido-amine, as above, is employed, generally from 1 to 5, preferably from about 1.5 to 3 moles of monocarboxylic acid moiety content (e.g., grafted acrylic acid content) is used per equivalent of amido-amine reactant, e.g., amine.
An example of the reaction of an amido-amine reactant with a
polymer mono- or dicarboxylic acid producing reactant is the reaction of ethylene-propylene copolymer substituted succinic anhydride (EPSA) with a polyamido-amine having two terminal -NH2 groups, which can be illustrated as follows:
EP
R10 R10
H2N-[A-N]n4-ANH-[Z1]x-[Z2]yC(O)(CH2)2NHA-{A-N]n4NH2
where x and y are each integers of from 0 to 10, EP represents an ethylene- propylene copolymer group as described above, Z1 and Z2 are moieties of the formula:
O R10
II II
-C(CH2)2NH-[A-N]n -ANH-
wherein R10, A and n4 are as defined above for Formula XVIII. Preferred are amido-amine reactin products of the above equation wherein R10 is H, and most preferably wherein x and y are each zero, and A is -(CH2)2- or -(CH3H7)-.
It will be understood that the amine reactant can comprise one or a mixture of any of the above described amines, such as a mixture of an amido-amine and a polyalkylene polyamine. substituted mono- or dicarboxylic acid producing material and amine will be contacted for a time and under conditions sufficient to react substantially all of the primary nitrogens in the amine reactant. The progress of this reaction can be followed by infrared analysis.
The dispersant-forming reaction can be conducted in a polar or non-polar solvent (e.g., xylene, toluene, benzene and the like), and is preferably conducted in the presence of a mineral or synthetic lubricating oil. Tris(hydroxymethyl) amino methane (THAM) can be reacted with the aforesaid polymer substituted acid material to form amides, imides or ester type additives as taught by U.K. 984,409, or to form oxazoline compounds and borated oxazoline compounds as described, for example, in U.S. 4,102,798; 4,116,876 and 4,113,639.
The ashless dispersants may also be esters derived from the aforesaid ethylene alpha-olefin polymer substituted mono- or dicarboxylic acid material and from hydroxy compounds such as monohydric and polyhydric alcohols or aromatic compounds such as phenols and naphthols, etc. The polyhydric alcohols are the most preferred hydroxy compound and preferably contain from 2 to about 10 hydroxy radicals, for example, ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, and other alkylene glycols in which the alkylene radical contains from 2 to about 8 carbon atoms. Other useful polyhydric alcohols include glycerol, mono-oleate of glycerol, monostearate of glycerol, monomethyl ether of glycerol, pentaerythritol, dipentaerythritol, and mixtures thereof.
The ester dispersant may also be derived from unsaturated alcohols such as allyl alcohol, cinnamyl alcohol, propargyl alcohol, I- cyciohexane-3-ol, and oleyl alcohol. Still other classes of the alcohols capable of yielding the esters of this invention comprise the ether-alcohols and amino-alcohols including, for example, the oxy-alkylene, oxy-arylene-, amino-alkylene-, and amino-arylene-substituted alcohols having one or more oxy-alkylene, amino-alkylene or amino-arylene oxy-arylene radicals. They are exemplified by Cellosolve, Carbitoi, N.^N'.N'-tetrahydroxy-trimethylene di-amine, and ether-alcohols having up to about 150 oxy-alkylene radicals in which the alkylene radical contains from 1 to about 8 carbon atoms.
The ester dispersant may be di-esters of succinic acids or acidic esters, i.e., partially esterified succinic acids; as well as partially esterified polyhydric alcohols or phenols, i.e., esters having free alcohols or phenolic hydroxyl radicals. Mixtures of the above illustrated esters likewise are contemplated within the scope of this invention.
The ester dispersant may be prepared by one of several known methods as illustrated for example in U.S. Patent 3,381 ,022. The ester dispersant may also be borated, similar to the nitrogen containing dispersants, as described above. Hydroxyamines which can be reacted with the aforesaid ethylene alpha-olefin polymer substituted dicarboxylic acid material to form dispersants include 2-amino-1-butanol, 2-amino-2-methyl-1-propanol, p- (beta-hydroxyethyl)-aniline, 2-amino-1-propanol, 3-amino-1 -propanol, 2- amino-2-methy1-1 ,3-propane-diol, 2-amino-2-ethyl-1 ,3-propanediol, N-(beta- hydroxypropyl)-N'-(beta-amino-ethyl)-piperazine, tris(hydroxymethyl) amino- methane (also known as trismethylolaminomethane), 2-amino-1-butanol, ethanolamiπe, beta-(beta-hydroxyethoxy)-ethylamine, and the like. Mixtures of these or similar amines can also be employed. The above description of nucleophilic reactants suitable for reaction with the ethylene alpha-olefin polymer substituted dicarboxylic acid or anhydride includes amines, alcohols, and compounds of mixed amine and hydroxy containing reactive functional groups, i.e., amino-alcohols.
Reactive metals or reactive metal compounds useful for reaction with the ethylene-alpha-olefin polymer substituted mono- and dicarboxylic acid materials of this invention are those which will form carboxylic acid metal salts with the ethylene-alpha-olefin polymer substituted mono- and dicarboxylic acid materials of this invention and those which will form metal- containing complexes with such dispersant derivative compositions produced by reacting the ethylene-alpha-olefin polymer substituted mono- and dicarboxylic acid materials with amines and/or alcohols as discussed above. Reactive metal compounds useful for the formation of such complexes are disclosed in U.S. Patent 3,306,908. Complex-forming metal reactants include the nitrates, nitrites, halides, carboxylates, phosphates, phosphites, sulfates, sulfites, carbonates, borates, and oxides of cadmium as well as metals having atomic numbers from 24 to 30 (including chromium, manganese, iron, cobalt, nickel, copper and zinc). These metals are the so-called transition or
co-ordination metals, i.e., they are capable of forming complexes by means of their secondary or co-ordination valence. Specific examples of the complex- forming metal compounds useful as the reactant in this invention are cobaltous nitrate, cobaltous oxide, cobaltic oxide, cobalt nitrite, cobaltic phosphate, cobaltous chloride, cobaltic chloride, cobaltous carbonate, chromous acetate, chromic acetate, chromic bromide, chromous chloride, chromic fluoride, chromous oxide, chromium dioxide, chromic oxide, chromic sulfite, chromous sulfate heptahydrate, chromic sulfate, chromic formate, chromic hexanoate, chromium oxychloride, chromic phosphite, manganous acetate, manganous benzoate, manganous carbonate, manganese dichloride, manganese trichloride, manganous citrate, manganous formate, manganous nitrate, manganous oxalate, manganese monooxide, manganese dioxide, manganese trioxide, manganese heptoxide, manganic phosphate, manganous pyrophosphosate, manganic metaphosphate, manganous hypophosphite, manganous valerate, ferrous acetate, ferric benzoate, ferrous bromide, ferrous carbonate, ferric formate, ferrous lactate, ferrous nitrate, ferrous oxide, ferric oxide, ferric hypophosphite, ferric sulfate, ferrous sulfite, ferric hydrosulfite, nickel dibromide, nickel dichloride, nickel nitrate, nickel dioleate, nickel stearate, nickel sulfite, cupric propionate, cupric acetate, cupric metaborate, cupric benzoate, cupric formate, cupric laurate, cupric nitrite, cupric oxychloride, cupric palmitate, cupric salicylate, zinc benzoate, zinc borate, zinc bromide, zinc chromate, zinc dichromate, zinc iodide, zinc lactate, zinc nitrate, zinc oxide, zinc stearate, zinc sulfite, cadmium benzoate, cadmimum carbonate, cadmium butyrate, cadmium chloroactate, cadmium, fumerate, cadmium nitrate, cadmium di-hydrogenphosphate, cadmium sulfite, and cadmium oxide. Hydrates of the above compounds are especially convenient for use in the process of this invention.
U.S. Patent 3,306,908 is expressly incoφorated herein by reference for its discussion of reactive metal compounds suitable for forming such complexes and its disclosure of processes for preparing the complexes. Basically, those processes are applicable to the dispersant derivative compositions of the ethylene-alpha-olefin polymer substituted mono- and dicarboxylic acid materials of this invention with the amines as described above by substituting, or on an equivalent basis, the ethylene-alpha-olefin polymer substituted mono- and dicarboxylic acid materials of this invention with the high molecular weight carboxylic acid acylating agents disclosed in
U.S. Patent 3,306,908. The ratio of equivalents of the acylated amine thus produced and the complex-forming metal reactant remains the same as disclosed in 3,306,908.
U.S. Reissue Patent 26,433 discloses metals useful in preparing salts from the dispersant derivative compositions of the ethylene-alpha-olefin polymer substituted mono- and dicarboxylic acid materials of this invention and amines as described hereinabove. Metal salts are prepared, according to this patent, from alkali metals, alkaline earth metals, zinc, cadmium, lead, cobalt and nickel. Examples of a reactive metal compound suitable for use herein are sodium oxide, sodium hydroxide, sodium carbonate, sodium methylate, sodium propylate, sodium pentylate, sodium phenoxide, potassium oxide, potasium hydroxide, potassium carbonate, potassium methylate, potassium pentylate, potassium phenoxide, lithium oxide, lithium hydroxide, lithium carbonate, lithium pentylate, calcium oxide, calcium hydroxide, calcium carbonate, calcium methylate, calcium ethylate, calcium propylate, calcium chloride, calcium fluoride, calcium pentylate, calcium phenoxide, calcium nitrate, barium oxide, barium hydroxide, barium carbonate, barium chloride, barium fluoride, barium methylate, barium propylate, barium pentylate, barium nitrate, magnesium oxide, magnesium hydroxide, magnesium carbonate, magnesium ethylate, magnesium propylate, magnesium chloride, magnesium bromide, barium, iodide, magnesium phenoxide, zinc oxide, zinc hydroxide, zinc carbonate, zinc methylate, zinc propylate, zinc pentylate, zinc chloride, zinc fluoride, zinc nitrate trihydrate, cadmium oxide, cadmium hydroxide, cadmium carbonate, cadmium methylate, cadmium propylate, cadmium chloride, cadmium bromide, cadmium fluoride, lead oxide, lead hydroxide, lead carbonate, lead ethylate, lead pentylate, lead chloride, lead fluoride lead iodide, lead nitrate, nickel oxide, nickel hydroxide, nickel carbonate, nickel chloride, nickel bromide, nickel fluoride, nickel methylate, nickel pentylate, nickel nitrate hexahydrate, cobalt oxide, cobalt hydroxide, cobaltous bromide, cobaltous chloride, cobalt butyiate, cobaltous nitrate hexahydrate, etc. The above metal compounds are merely illustrative of those useful in this invention and the invention is not to be considered as limited to such.
U.S. Reissue 26,433 is expressly incoφorated herein by reference for its disclosure of reactive metal compounds useful herein and processes for utilizing these compounds in the formation of salts. Again, in
applying the teachings of this patent to the present invention, it is only necessary to substitute the ethylene-alpha-olefin polymer substituted mono- and dicarboxylic acid materials of this invention on an equivalent weight basis for the high molecular weight carboxylic acylating agents of the reissue patent.
U.S. Patent 3,271 ,310 discloses the preparation of metal salt of high molecular weight carboxylic acid acylating agents, in particular alkenyl succinic acids. The metal salts disclosed therein are acid salts, neutral salts, and basic salts. Among the illustrative reactive metal compounds used to prepare the acidic, neutral and basic salts of the high molecular weight carboxylic acids disclosed in 3,271 ,310 are lithium oxide, lithium hydroxide, lithium carbonate, lithium pentylate, sodium oxide, sodium hydroxide, sodium carbonate, sodium methylate, sodium propylate, sodium phenoxide, potassium oxide, potassium hydroxide, potassium carbonate, potassium methylate, silver oxide, silver carbonate, magnesium oxide, magnesium hydroxide, magnesium carbonate, magnesium ethylate, magnesium propylate, magnesium phenoxide, calcium oxide, calcium hydroxide, calcium caΦonate, calcium methylate, calcium propylate, calcium pentylate, zinc oxide, zinc hydroxide, zinc carbonate, zinc propylate, strontium oxide, strontium hydroxide, cadmium oxide, cadmium hydroxide, cadmium carbonate, cadmium ethylate, barium oxide, barium hydroxide, barium hydrate, barium carbonate, barium ethylate, barium pentylate, aluminum oxide, aluminum propylate, lead oxide, lead hydroxide, lead carbonate, tin oxide, tin butylate, cobalt oxide, cobalt hydroxide, cobalt carbonate, cobalt pentylate, nickel oxide, nickel hydroxide, and nickel carbonate. The present invention is not to be considered as limited to the use of the above metal compounds; they are presented merely to illustrate the metal compounds included within the invention.
U.S. Patent 3,271,310 is expressly incoφorated herein by reference for its disclosure of suitable reactive metal compounds for forming salts of the ethylene-alpha-olefin polymer substituted mono- and dicarboxylic acid materials of this invention as well as illustrative processes for preparing salts of these materials. As will be apparent, the processes of 3,271 ,310 are applicable to the polymer substituted materials of this invention merely by substituting on an equivalent weight basis, the ethylene-alpha-olefin polymer substituted mono- and dicarboxylic acid materials of this invention for the
high molecular weight carboxylic acids of the patent.
From the foregoing description, it is apparent that the ethylene- alpha-olefin polymer substituted mono- and dicarboxylic acid materials of this invention can be reacted with any individual amine, alcohol, reactive metal, reactive metal compound or any combination of two or more of any of these; that is, for example, one or more amines, one or more alcohols, one or more reactive metals or reactive metal compounds, or a mixture of any of these. The mixture can be a mixture of two or more amines, a mixture of two or more alcohols, a mixture of two or more metals or reactive metal compounds, or a mixture of two or more components selected from amines and alcohols, from amines and reactive metals or reactive metal compounds, from alcohols and reactive metals compounds, or one or more components from each of the amines, alcohols, and reactive metal or reactive metal compounds. Furthermore, the ethylene-alpha-olefin polymer substituted mono- and dicarboxylic acid materials of this invention can be reacted with the amines, alcohols, reactive metals, reactive metal compounds, or mixtures thereof, as described above, simultaneously (concurrently) or sequentially in any order of reaction.
Canadian Patent 956,397 is expressly incoφorated herein by reference for its disclosure of procedures for reacting the ethylene-alpha- olefin polymer substituted mono- and dicarboxylic acid materials of this invention with amines, alcohols, reactive metal and reactive metal compounds, or mixtures of these, sequentially and simultaneously. All that is required to apply the processes of that patent to this invention is to substitute, on an equivalent weight basis, the ethylene-alpha-olefin polymer substituted mono- and dicarboxylic acid materials of this invention for the high molecular weight carboxylic acid acylating agents disclosed in that Canadian patent. Carboxylic acid derivatives of this invention prepared utilizing the processes disclosed in the Canadian patent constitute a preferred class of carboxylic acids or carboxylic acid derivative compositions. The following Patents are also incoφorated herein by reference, being counteφarts of the incoφorated Canadian patent, for the same reasons given for incoφorating the Canadian patent: 3,836,469; 3,836,470; 3,836,471; 3,838,050; 3,838,052; 3,879,308; 3,957,854; 3,957,855. The Canadian patent and the U.S. patents are also incoφorated herein to illustrate that the amount of polyoxyalkylene alcohol demulsifier utilized in preparing dispersant/detergents from the ethylene-
alpha-olefin polymer substituted mono- and dicarboxylic acid materials of this invention is normally quite small on an equivalent basis.
It is also pointed out that, among the more preferred carboxylic derivative compositions of this invention are those prepared according to the Canadian patent and corresponding U.S. patent and application identified above in which the polyoxyalkylene alcohol demulsifier has been omitted. In other words, a preferred class of carboxylic derivative compositions of this invention are the various reaction products of the high molecular weight carboxylic acid acylating agents of the Canadian patent with one or more amines, alcohols, and reactive metal compounds as disclosed therein differing only in that the ethylene-alpha-olefin polymer substituted mono- and dicarboxylic acid materials of this invention are substituted on an equivalent weight basis and, further, that the polyoxyalkylene alcohol demulsifier reactant is omitted. In addition, U.S. Patent 3,806,456 is expressly incoφorated herein by reference for its disclosure of processes useful in preparing products from the ethylene-alpha-olefin polymer substituted mono- and dicarboxylic acid materials of this invention and polyoxyalkylene polyamines as described hereinbefore. Substitution of the ethylene-alpha-olefin polymer substituted mono- and dicarboxylic acid materials of this invention for the high molecular weight carboxylic acid acylating agents disclosed in U.S. Patent 3,806,456 on an equivalent weight basis produces compounds of similar utility further characterized by the desired viscosity index improving properties discussed hereinbefore. U.S. Patent 3,576,743 is also incorporated herein by reference for its disclosure of a process for preparing carboxylic derivative compositions from both polyhydric alcohols and amine; in particular, hydroxy-substituted primary amines. Again, substitution of the ethylene-alpha-olefin polymer substituted mono- and dicarboxylic acid materials of this invention on an equivalent weight basis for the high molecular carboxylic acid acylating agents disclosed in U.S. Patent 3,576,743 provides compositions having the desired dispersant/detergent compositions and the V.I. improving properties already discussed.
U.S. Patent 3,632,510 is expressly incoφorated herein by reference for its disclosure of processes for preparing mixed ester-metal salts. Mixed ester-metal salts derived from ethylene-alpha-olefin polymer
substituted mono- and dicarboxylic acid materials of this invention, the alcohols, and the reactive metal compounds can be prepared by following the processes disclosed in U.S. Patent 3,632,510 but substituting, on an equivalent weight basis, the ethylene-alpha-olefin polymer substituted mono- and dicarboxylic acid materials of this invention for the high molecular weight carboxylic acid acylating agents of the patent. The carboxylic acid derivative compositions thus produced also represent a preferred aspect of this invention.
Finally, U.S. Patents 3,755,169; 3,804,763; 3,868,330; and 3,948,800 are expressly incoφorated herein by reference for their disclosure of how to prepare carboxylic acid derivative compositions. By following the teachings of these patents and substituting the ethylene-alpha-olefin polymer substituted mono- and dicarboxylic acid materials of this invention for the high molecular weight carboxylic acylating agents of the patents, a wide range of carboxylic derivative compositions within the scope of the present invention can be prepared.
Incorporation of so many patents is done for the sake of brevity and because, it is felt, that the procedures necessary to prepare the carboxylic derivative compositions from the ethylene-alpha-olefin polymer substituted mono- and dicarboxylic acid materials and the amines, alcohols, and reactive metals and reactive metal compounds, as well as mixtures thereof, is well within the skill of the art, such that a detailed description herein is not necessary.
A preferred group of ashless dispersants are those derived from ethylene-propylene copolymer (and diene inteφolymer) substituted with succinic anhydride groups (referred to herein as "EPSA") and reacted with polyethylene amines, e.g., tetraethyiene pentamine, pentaethylene hexaminβ, polyoxyethylene and polyoxypropylene amines, e.g., polyoxypropylene diamine, trismethylolaminomethane and pentaerythritol, and combinations thereof. One particularly preferred dispersant combination involves a combination of (A) ethylene-propylene copolymer substituted with succinic anhydride groups and reacted with (B) a hydroxy compound, e.g., pentaerythritol, (C) a polyoxyalkylene polyamine, e.g., polyoxypropylene diamine, and (D) a polyalkylene polyamine, e.g. polyethylene diamine and tetraethyiene pentamine using about 0.3 to about 2 moles each of (B) and (D) and about 0.3 to about 2 moles of (C) per mole of (A) as described in U.S.
Patent 3,804,763. Another preferred dispersant combination involves the combination of (A) ethylene-propylene copolymer succinic anhydride with (B) a polyalkylene polyamine, e.g., tetraethyiene pentamine, and (C) a polyhydric alcohol or polyhydroxy-substituted aliphatic primary amine, e.g., pentaerythritol or trismethylolaminomethane as described in U.S. Patent 3,632,511.
The dispersant materials of this invention are preferably characterized by a VR' value of not greater than about 4.1 , preferably not greater than about 4.0, e.g., from about 2.5 to 4.0, and most preferably from about 3.5 to 3.9. As used herein, the term "VR' value" is intended to refer to the quotient obtained by the expression (XIX):
VR' = VIS'b VIS'a wherein VIS'a is the kinematic viscosity (ASTM Method D445) of the dispersant material at 100°C in units of centistokes, and VIS'b is the cold cranking simulator (CCS) viscosity (ASTM Method D2602) at -20°C in units of poise, as determined at a dispersant material polymer concentration of 2 wt.% in the reference oil as defined above for Formula IV. Preferably, the disperant materials of this invention are also characterized by a VR'/VRr ratio of not greater than about 1.11, more preferably not greater than about 1.09, still more preferably from about 0.7 to 1.08 and most preferably from about 0.9 to 1.05, wherein VRr = 3.7 + 0.1 for the reference oil.
Another aspect of this invention involves the post treatment of the nitrogen or ester containing dispersant materials. The process for post- treating said nitrogen or ester containing dispersant materials is analogous to the post-treating processes used with respect to derivatives of conventional ethylene copolymers of the prior art. Accordingly, the same reaction conditions, ratio of reactants and the like can be used. The nitrogen-containing dispersant materials of the instant invention as described above are post-treated by contacting said nitrogen- containing dispersant materials with one or more post-treating reagents selected from the group consisting of boron oxide, boron oxide hydrate, boron halides, boron acids, esters of boron acids, carbon disulfide, sulfur, sulfur chlorides, alkenyl cyanides, aldehydes, ketones, urea, thio-urea, guanidine, dicyanodiamide, hydrocarbyl phosphates, hydrocarbyl phosphites,
hydrocarbyl thiophosphates, hydrocarbyl thiophosphites, C-) to C30 hydrocarbyl substituted succinic acids and anhydrides (e.g., succinic anhydride, dodecyl succinic anhydride and the like), maleic anhydride (or any of the above discussed monounsaturated carboxylic reactants useful in forming the ethylene-alpha-olefin polymer-substituted mono- and dicarboxylic acid materials employed in this invention), phosphorus sulfides, phosphorus oxides, phosphoric acid, hydrocarbyl thiocyanates, hydrocarbyl isocyanates, hydrocarbyl isothiocyantes, epoxides, episulfides, formaldehyde or formaldehyde-producing compounds plus phenols, and sulfur plus phenols. The same post-treating reagents are used with the dispersant materials prepared from a combination of polyamines and polyois. However, when the dispersant materials are derived from polyois, and that is, when they are esters, the post-treating reagents are usually selected from the group consisting of boron oxide, boron oxide hydrate, boron halides, boron acids, esters of boron acids, sulfur, sulfur chlorides, phosphorus sulfides, phosphorus oxides, epoxides, and episulfides.
For example, the nitrogen containing dispersants can be treated with a boron compound selected from the class consisting of boron oxide, boron halides, boron acids and esters of boron acids in an amount to provide from about 0.1 atomic proportion of boron for each mole of said nitrogen composition to about 20 atomic proportions of boron for each atomic proportion of nitrogen of said nitrogen composition. Usefully the borated dispersants of the invention contain from about 0.05 to 2.0 wt. %, e.g. 0.05 to 0.7 wt. % boron based on the total weight of said borated nitrogen-containing dispersant compound. The boron, which appears to be in the product as dehydrated boric acid polymers (primarily (HB02)3), is believed to attach to the dispersant as amine salts, e.g., the metaborate salt of said amine dispersants.
Treating is readily carried out by adding from about 0.05 to 4, e.g. 1 to 3 wt. % (based on the weight of said nitrogen compound) of said boron compound, preferably boric acid which is most usually added as a slurry to said nitrogen compound and heating with stirring at from about 135°C. to 190, e.g. 140-170°C, for from 1 to 5 hours followed by nitrogen stripping at said temperature ranges. Or, the boron treatment can be carried out by adding boric acid to the hot reaction mixture of the dicarboxylic acid material and amine while removing water.
Since post-treating processes involving the use of these post- treating reagents is known insofar as application to reaction products of high molecular weight carboxylic acid acylating agents of the prior art and amines and/or alcohols, further descriptions of these processes herein is unnecessary. In order to apply the prior art processes to the compositions of this invention, all that is necessary is that reaction conditions, ratio of reactants, and the like as described in the prior art, be applied to the novel compositions of this invention. The following U.S. patents are expressly incoφorated herein by reference for their disclosure of post-treating processes and post-treating reagents applicable to the compositions of this invention: U.S. Pat. Nos. 3,087,936; 3,184,411; 3,185,645; 3,185,704, 3,200,107; 3,245,908;3,245,909; 3,245,910, 3,254,025; 3,256,185; 3,278,550; 3,280,034; 3,281,428; 3,282,955; 3,284,410; 3,312,619; 3,338,832, 3,344,069; 3,366,569; 3,367,943; 3,369,021; 3,373,111; 3,390,086; 3,403, 102; 3,415,750; 3,428,561 ; 3,458,530; 3,470,098; 3,502,677; 3,513,093; 3,533,945; 3,541 ,012; 3,551 ,466; 3,558,743; 3,573,205; 3,639,242; 3,652,616; 3,692,681; 3,708,522; 3,718,663; 3,749,695; 3,859,318; 3,865,740; 3,865,813; 3,954,639; 4,338,205; 4,428,849; 4,686,054; 4,839,070; 4,839,071; 4,839,072; 4,839,073; U.K. Pat. No. 1 ,085,903; U.K. Pat. No. 1,162,436.
The nitrogen and or ester containing dispersant materials of this invention can also be treated with poiymerizable lactones (such as epsilon- caprolactone) to form dispersant adducts having the moiety - [C(0)(CH2)zO]mH, wherein z is a number of from 4 to 8 (e.g., 5 to 7) and has an average value of from about 0 to 100 (e.g., 0.2 to 20). The dispersants of this invention can be post-treated with a C5 to Cg lactone, e.g., epsilon-caprolactone, by heating a mixture of the dispersant material and lactone in a reaction vessel in the absence of a solvent at a temperature of about 50°C to about 200°C, more preferably from about 75°C to about 180° C, and most preferably from about 90°C to about 160°C, for a sufficient period of time to effect reaction. Optionally, a solvent for the lactone, dispersant material and or the resulting adduct may be employed to control viscosity and/or the reaction rates. in one preferred embodiment, the C5 to Cg lactone, e.g., epsilon- caprolactone, is reacted with a dispersant material in a 1:1 mole ratio of lactone to dispersant material. In practice, the ration of lactone to dispersant
material may vary considerably as a means of controlling the length of the sequence of the lactone units in the adduct. For example, the mole ratio of the lactone to the dispersant material may vary from about 10:1 to about 0.1 :1 , more preferably from about 5:1 to about 0.2:1 , and most preferably from about 2:1 to about 0.4:1. It is preferable to maintain the average degree of polymerization of the lactone monomer below about 100, with a degree of polymerization on the order of from about 0.2 to about 50 being preferred, and from about 0.2 to about 20 being more preferred. For optimum dispersant performance, sequences of from about 1 to about 5 lactone units in a row are preferred.
Catalysts useful in the promotion of the lactone-dispersant material reactions are selected from the group consisting of stannous octanoate, stannous hexanoate, tetrabutyl titanate, a variety of organic based acid catalysts and amine catalysts, as described on page 266, and forward, in a book chapter authored by R.D. Lundberg and E. F. Cox, entitled "Kinetics and Mechanisms of Polymerization: Ring Opening Polymerization", edited by Frisch and Reegen, published by Marcel Dekker in 1969, wherein stannous octanoate is an especially preferred catalyst. The catalyst is added to the reaction mixture at a concentration level of about 50 to about 10,000 parts per weight of catalyst per one million parts of the total reaction mixture.
Exemplary of adducts formed by reaction of dispersant materials if this invention and epsilon-caprolactone are those adducts illustrated by the following equation:
^ ^2 ) 5 ^ H
I I
O
wherein m and EP are as defined above. The reactions of such lactones with dispersant materials containing nitrogen or ester groups is more completely described in U.S. Patents 4,486,326; 4,820,432; 4,828,742; 4,851 ,524;
4,866,135; 4,366 139; 4,866,140; 4,866,141 ; 4,866,142, and 4,866,187, the disclosure of each of which is hereby incoφorated by reference in its entirety. Further aspects of the present invention reside in the formation of metal complexes of the novel dispersant additives prepared in accordance with this invention. Suitable metal complexes may be formed in accordance with known techniques of employing a reactive metal ion species during or after the formation of the present dispersant materials. Complex forming metal reactants include the metal nitrates, thiocyanates, halides, carboxylates, phosphates, thio-phosphates, sulfates, and borates of transition metals such as iron, cobalt, nickel, copper, chromium, manganese, molybdenum, tungsten, ruthenium, palladium, platinum, cadmium, lead, silver, mercury, antimony and the like. Prior art disclosures of these compiexing reactions may be also found in U.S. Patents 3 , 306 , 908 and Re. 26,433, the disclosures of which are hereby incoφorated by reference in their entirety.
The processes of these incoφorated patents, as applied to the compositions of this invention, and the post-treated compositions thus produced constitute a further aspect of this invention.
As a further feature of the present invention, the (A) ethylene- alpha-olefin polymer (including diene teφolymer) substituted mono- and di¬ carboxylic acid materials of this invention can be admixed, prior to, after or during being contacted with the selected nucleophilic reagant, with (B) a conventional polyolefin-substituted mono- or dicarboxylic acid material
derived from any of the polyolefins discussed above as being useful as a mixed charge with the ethenylenically unsaturated ethylene-alpha-olefin polymers in the formation of the ethylene-alpha-olefin polymer substituted mono-and di-carboxylic acid materials of this invention. The ethlyene-alpha- olefin polymer substituted mono- and di-carboxylic acid materials of this invention and the polyolefin-substituted mono- or dicarboxylic acid material will be generally admixed prior to contact with the selected selected nucleophilic reagant, e.g., alkylene polyamine. Such mixtures will generally employ a weight:weight ratio of ethlyene-alpha-olefin polymer substituted mono-and di-carboxylic acid materials of this invention to polyolefin- substituted mono- or dicarboxylic acid material from about 10:90 to 90:10, preferably from about 20:80 to 80:20, and more preferably from about 40: 60 to 60 : 40. Especially preferred are mixtures of ethylene- propylene copolymer-substituted succinic anhydride materials of this invention and polybutyl-substituted succinic anhydride (derived from polyisobutylene, poly-n-butene, or mixtures thereof, having a number average molecular weight as described above for the above conventional polyolefins, e.g., 900 - 5,000, more usually from about 1300 to 3,000). The resulting mixtures can then be contacted for reaction with the selected nucleophilic reagent as described above for formation of dispersant materials having improved viscosity properties, wherein the VR' of the resulting dispersant material is preferably less than the VR' of the corresponding dispersant prepared from the polyolefin-substituted mono- or dicarboxylic acid material alone. The resulting mixed dispersant materials can also be treated with any of the above-described post-treatment methods for incorporation of additional functional groups thereon, such as boron, hydroxy, ester, epoxy, lactone, sulfur, metals and the like, as discussed above.
OLEAGINOUS COMPOSITIONS
The dispersants of the present invention can be incoφorated into a lubricating oil (or a fuel) in any convenient way. Thus, these dispersants can be added directly to the lubricating oil (or fuel) by dispersing or dissolving the same in the lubricating oil (or fuel) at the desired level of concentration of the dispersant. Such blending into the additional lubricating oil (or fuel) can occur at room temperature or elevated temperatures. Alternatively, the
dispersants can be blended with a suitable oil-soluble solvent/diluent (such as benzene, xylene, toluene, lubricating base oils and petroleum distillates, including the various normally liquid fuels described in detail below) to form a concentrate, and then blending the concentrate with a lubricating oil (or fuel) to obtain the final formulation. Such dispersant concentrates will typically contain (on an active ingredient (A.I.) basis) from about 3 to about 45 wt.%, and preferably from about 10 to about 35 wt.%, dispersant additive, and typically from about 30 to 90 wt.%, preferably from about 40 to 60 wt.%, base oil, based on the concentrate weight. When the products of this invention are incoφorated into crude oil refinery process streams and other hydrocarbon fluid process streams, they function as antifoulants and will be generally used, e.g., in amounts of up to 100 ppm, e.g., 5 to 50 ppm, in the same manner as the macrocyclic polyamine additive as described in U.S. Patent 4,569,750, the disclosure of which is hereby incoφorated by reference, in its entirety.
The dispersant products of the present invention possess very good dispersant properties as measured herein in a wide variety of environments. Accordingly, the dispersant products are used by incoφoration and dissolution into oleaginous materials such as fuels and lubricating oils. When the dispersant products of this invention are used in normally liquid petroleum fuels such as middle distillates boiling from about 65° to 430°C, including kerosene, diesel fuels, home heating fuel oil, jet fuels, etc., a concentration of the additives in the fuel in the range of typically from about 0.001 to about 0.5, and preferably 0.005 to about 0.15 weight percent, based on the total weight of the composition, will usually be employed. The properties of such fuels are well known as illustrated, for example, by ASTM Specifications D #396-73 (Fuel Oils) and D #439-73 (Gasolines) available from the American Society for Testing Materials ("ASTM"), 1916 Race Street, Philadelphia, Pennsylvania 19103. The fuel compositions of this invention can contain, in addition to the products of this invention, other additives which are well known to those of skill in the art. These can include anti-knock agents such as tetraalkyl lead compounds, lead scavengers such as haloaikanes, deposit preventers or modifiers such as triaryl phosphates, dyes, cetane improvers, antioxidants such as 2,6-ditertiary-butyl-4-methylphenol, rust inhibitors, bacteriostatic agents, gum inhibitors, metal deactivators, upper cylinder lubricants and the
like.
The dispersant products of the present invention find their primary utility in lubricating oil compositions which employ a base oil in which the additives re dissolved or dispersed. Such base oils may be natural or synthetic. Base oils suitable for use in preparing the lubricating oil compositions of the present invention include those conventionally employed as crankcasβ lubricating oils for spark-ignited and compression-ignited internal combustion engines, such as automobile and truck engines, marine and railroad diesel engines, and the like. Advantageous results are also achieved by employing the additive mixtures of the present invention in base oils conventionally employed in and/or adapted for use as power transmitting fluids, universal tractor fluids and hydraulic fluids, heavy duty hydraulic fluids, power steering fluids and the like. Gear lubricants, industrial oils, pump oils and other lubricating oil compositions can also benefit from the incorporation therein of the additive mixtures of the present invention.
These lubricating oil formulations conventionally contain several different types of additives that will supply the characteristics that are required in the formulations. Among these types of additives are included viscosity index improvers, antioxidants, corrosion inhibitors, detergents, dispersants, pour point depressants, antiwear agents, friction modifiers, and other ashless dispersant (e.g., polyisobutenyl succinimides) and borated derivatives thereof), etc.
In the preparation of lubricating oil formulations it is common practice to introduce the additives in the form of 10 to 80 wt. %, e.g., 20 to 80 wt. % active ingredient concentrates in hydrocarbon oil, e.g. mineral lubricating oil, or other suitable solvent. Usually these concentrates may be diluted with 3 to 100, e.g., 5 to 40 parts by weight of lubricating oil, per part by weight of the additive package, in forming finished lubricants, e.g. crankcase motor oils. The puφose of concentrates, of course, is to make the handling of the various materials less difficult and awkward as well as to facilitate solution or dispersion in the final blend. Thus, a dispersant would be usually employed in the form of a 40 to 50 wt. % concentrate, for example, in a lubricating oil fraction.
The ashless dispersants of the present invention will be generally used in admixture with a lube oil basestock, comprising an oil of lubricating viscosity, including natural and synthetic lubricating oils and mixtures thereof.
Natural oils include animal oils and vegetable oils (e.g., castor, lard oil) liquid petroleum oils and hydrorefined, solvent-treated or acid-treated mineral lubricating oils of the paraffinic, naphthenic and mixed paraffinic- naphthenic types. Oils of lubricating viscosity derived from coal or shale are also useful base oils.
Alkylene oxide polymers and interpolymers and derivatives thereof where the terminal hydroxyl groups have been modified by esterification, etherification, etc., constitute another class of known synthetic lubricating oils. These are exemplified by polyoxyalkylene polymers prepared by polymerization of ethylene oxide or propylene oxide, the alkyl and aryl ethers of these polyoxyalkylene polymers (e.g., methyl-poly isopropylene glycol ether having an average molecular weight of 1000, diphenyi ether of poly-ethylene glycol having a molecular weight of 500-1000, diethyl ether of polypropylene glycol having a molecular weight of 1000-1500); and mono- and polycarboxylic esters thereof, for example, the acetic acid esters, mixed C3-C8 fatty acid esters and C13 Oxo acid diester of tetraethyiene glycol.
Another suitable class of synthetic lubricating oils comprises the esters of dicarboxylic acids (e.g., phthalic acid, succinic acid, alkyl succinic acids and alkenyl succinic acids, maleic acid, azelaic acid, suberic acid, sebasic acid, fumaric acid, adipic acid, linoleic acid dimer, malonic acid, alkylmalonic acids, alkenyl malonic acids) with a variety of alcohols (e.g., butyl alcohol, hexyl alcohol, dodecyl alcohol, 2-ethylhexyl alcohol, ethylene glycol, diethylene glycol monoether, propylene glycol). Specific examples of these esters include dibutyl adipate, di(2-ethyihexyl)sebacate, di-n-hexyl fumarate, dioctyl sebacate, diisooctyl azelate, diisodecyl azelate, dioctyl phthalate, didecyl phthaiate, dieicosyl sebacate, the 2-ethylhexyl diester of linoleic acid dimer, and the complex ester formed by reacting one mote of sebacic acid with two moles of tetraethyiene glycol and two moles of 2- ethylhexanoic acid. Esters useful as synthetic oils also include those made from C5 to C-J2 monocarboxylic acids and polyois and polyol ethers such as neopentyl glycol, trimethylolpropane, pentaerythritol, dipentaerythritol and tripentaerythritol.
Silicon-based oils such as the polyalkyl-, polyaryl-, polyalkoxy-, or polyaryloxysiloxane oils and silicate oils comprise another useful class of synthetic lubricants; they include tetraethyl silicate, tetraisopropyl silicate,
tetra-(2-ethylhexyl)silicate, tetra-(4-methyl-2-ethylhexyl)silicate, tetra-(p-tert- butylphenyl)silicate, hexa-(4-methyl-2-pentoxy)disiloxane, poly(methyl)- siloxanes and poly(methylphenyl)siloxanes. Other synthetic lubricating oils include liquid esters of phosphorus-containing acids (e.g., tricresyl phosphate, trioctyl phosphate, diethyl ester of decylphosphonic acid) and polymeric tetrahydrofurans.
Unrefined, refined and rerefined oils can be used in the lubricants of the present invention. Unrefined oils are those obtained directly from a natural or synthetic source without further purification treatment. For example, a shale oil obtained directly from retorting operations, a petroleum oil obtained directly from distillation or ester oil obtained directly from an esterification process and used without further treatment would be an unrefined oil. Refined oils are similar to the unrefined oils except they have been further treated in one or more purification steps to improve one or more properties. Many such purification techniques, such as distillation, solvent extraction, acid or base extraction, filtration and percolation are known to those skilled in the art. Rerefined oils are obtained by processes similar to those used to obtain refined oils applied to refined oils which have been already used in service. Such rerefined oils are also known as reclaimed or reprocessed oils and often are additionally processed by techniques for removal of spent additives and oil breakdown products.
Metal containing rust inhibitors and/or detergents are frequently used with ashless dispersants. Such detergents and rust inhibitors include the metal salts of sulphonic acids, alkyl phenols, sulphurized alkyl phenols, alkyl salicylates, naphthenates, and other oil soluble mono- and di-carboxylic acids. Highly basic, that is overbased metal salts which are frequently used as detergents appear particularly prone to interaction with the ashless dispersant. Usually these metal containing rust inhibitors and detergents are used in lubricating oil in amounts of about 0.01 to 10, e.g. 0.1 to 5 wt. %, based on the weight of the total lubricating composition. Marine diesel lubricating oils typically employ such metal-containing rust inhibitors and detergents in amounts of up to about 20 wt.%.
Highly basic alkaline earth metal sulfonates are frequently used as detergents. They are usually produced by heating a mixture comprising an oil-soluble sulfonate or alkaryl sulfonic acid, with an excess of alkaline earth metal compound above that required for complete neutralization of any
sulfonic acid present and thereafter forming a dispersed carbonate complex by reacting the excess metal with carbon dioxide to provide the desired overbasing. The sulfonic acids are typically obtained by the sulfonation of alkyl substituted aromatic hydrocarbons such as those obtained from the fractionation of petroleum by distillation and/or extraction or by the alkylation of aromatic hydrocarbons as for example those obtained by alkylating benzene, toluene, xylene, naphthalene, diphenyl and the halogen derivatives such as chlorobenzene, chlorotoluene and chloronaphthalene. The alkylation may be carried out in the presence of a catalyst with alkylating agents having from about 3 to more than 30 carbon atoms. For example haioparaffins, olefins obtained by dehydrogenation of paraffins, polyolefins produced from ethylene, propylene, etc. are all suitable. The alkaryl sulfonates usually contain from about 9 to about 70 or more carbon atoms, preferably from about 16 to about 50 carbon atoms per alkyl substituted aromatic moiety.
The alkaline earth metal compounds which may be used in neutralizing these alkaryl sulfonic acids to provide the sulfonates includes the oxides and hydroxides, alkoxides, carbonates, carboxylate, sulfide, hydrosulfide, nitrate, borates and ethers of magnesium, calcium, and barium. Examples are calcium oxide, calcium hydroxide, magnesium acetate and magnesium borate. As noted, the alkaline earth metal compound is used in excess of that required to complete neutralization of the alkaryl sulfonic acids. Generally, the amount ranges from about 100 to 220%, although it is preferred to use at least 125%, of the stoichiometric amount of metal required for complete neutralization.
Various other preparations of basic alkaline earth metal alkaryl sulfonates are known, such as U.S. Patents 3,150,088 and 3,150,089 wherein overbasing is accomplished by hydrolysis of an alkoxide-carbonate complex with the alkaryl sulfonate in a hydrocarbon solvent-diluent oil. A preferred alkaline earth sulfonate additive is magnesium alkyl aromatic sulfonate having a total base number ranging from about 300 to about 400 with the magnesium sulfonate content ranging from about 25 to about 32 wt. %, based upon the total weight of the additive system dispersed in mineral lubricating oil. Neutral metal sulfonates are frequently used as rust inhibitors.
Polyvalent metal alkyl salicylate and naphthenate materials are known
additives for lubricating oil compositions to improve their high temperature performance and to counteract deposition of carbonaceous matter on pistons (U.S. Patent 2,744,069). An increase in reserve basicity of the polyvalent metal alkyl salicylates and naphthenates can be realized by utilizing alkaline earth metal, e.g. calcium, salts of mixtures of Cg-C26 a'kyl saiicylates and phenates (see U.S. Patent 2,744,069) or polyvalent metal salts of alkyl salicyclic acids, said acids obtained from the alkylation of phenols followed by phenation, carboxylation and hydrolysis (U.S. Patent 3,704,315) which could then be converted into highly basic salts by techniques generally known and used for such conversion. The reserve basicity of these metal-containing rust inhibitors is usefully at TBN levels of between about 60 and 150. Included with the useful polyvalent metal saiicylate and naphthenate materials are the methylene and sulfur bridged materials which are readily derived from alkyl substituted salicylic or naphthenic acids or mixtures of either or both with alkyl substituted phenols. Basic sulfurized salicylates and a method for their preparation is shown in U.S. Patent 3,595,791. Such materials include alkaline earth metal, particularly magnesium, calcium, strontium and barium salts of aromatic acids having the general formula:
HOOC-ArR -Xy(ArR10H)n (XX)
where Ar is an aryl radical of 1 to 6 rings, R-* is an alkyl group having from about 8 to 50 carbon atoms, preferably 12 to 30 carbon atoms (optimally about 12), X is a sulfur (-S-) or methylene (-CH2-) bridge, y is a number from 0 to 4 and n is a number from 0 to 4.
Preparation of the overbased methylene bridged salicylate- phenate salt is readily carried out by conventional techniques such as by alkylation of a phenol followed by phenation, carboxylation, hydrolysis, methylene bridging a coupling agent such as an alkylene dihalide followed by salt formation concurrent with carbonation. An overbased calcium salt of a methylene bridged phenol-salicylic acid of the general formula (XXI):
with a TBN of 60 to 150 is highly useful in this invention.
The suifurized metal phenates can be considered the "metal salt of a phenol sulfide" which thus refers to a metal salt whether neutral or basic, of a compound typified by the general formula (XXII):
where x = 1 or 2, π = 0, 1 or 2; or a polymeric form of such a compound, where R is an alkyl radical, n and x are each integers from 1 to 4, and the average number of carbon atoms in all of the R groups is at least about 9 in order to ensure adequate solubility in oil. The individual R groups may each contain from 5 to 40, preferably 8 to 20, carbon atoms. The metal salt is prepared by reacting an alkyl phenol sulfide with a sufficient quantity of metal containing material to impart the desired alkalinity to the suifurized metal phenate.
Regardless of the manner in which they are prepared, the suifurized alkyl phenols which are useful generally contain from about 2 to about 14% by weight, preferably about 4 to about 12 wt. % sulfur based on the weight of suifurized alkyl phenol.
The suifurized alkyl phenol may be converted by reaction with a metal containing material including oxides, hydroxides and complexes in an amount sufficient to neutralize said phenol and, if desired, to overbase the product to a desired alkalinity by procedures well known in the art. Preferred is a process of neutralization utilizing a solution of metal in a glycol ether. The neutral or normal suifurized metal phenates are those in which the ratio of metal to phenol nucleus is about 1 :2. The "overbased" or
"basic" suifurized metal phenates are suifurized metal phenates wherein the ratio of metal to phenol is greater than that of stoichiometric, e.g. basic suifurized metal dodecyl phenate has a metal content up to and greater than 100% in excess of the metal present in the corresponding normal suifurized metal phenates wherein the excess metal is produced in oil-soluble or dispersible form (as by reaction with CO2). The overbased suifurized metal phenates desirably have a TBN value of at least 150, e.g. from 200 to 300.
Magnesium and calcium containing additives although beneficial in other respects can increase the tendency of the lubricating oil to oxidize. This is especially true of the highly basic sulphonates.
According to a preferred embodiment the invention therefore provides a crankcase lubricating composition also containing from 2 to 8000 parts per million of calcium or magnesium.
The magnesium and/or calcium is generally present as basic or neutral detergents such as the sulphonates and phenates, our preferred additives are the neutral or basic magnesium or calcium sulphonates. Preferably the oils contain from 500 to 5000 parts per million of calcium or magnesium. Basic magnesium and calcium sulphonates are preferred.
A particular advantage of the novel dispersants of the present invention is use with V.I improvers to form multi-grade automobile engine lubricating oils. Viscosity modifiers impart high and low temperature operability to the lubricating oil and permit it to remain relatively viscous at elevated temperatures and also exhibit acceptable viscosity or fluidity at low temperatures. Viscosity modifiers are generally high molecular weight hydrocarbon polymers including polyesters. The viscosity modifiers may also be derivatized to include other properties or functions, such as the addition of dispersancy properties. These oil soluble viscosity modifying polymers will generally have number average molecular weights of from 103 to 106, preferably 104 to 106, e.g., 20,000 to 250,000, as determined by gel permeation chromatography or osmometry.
Examples of suitable hydrocarbon polymers include homopolymers and copolymers of two or more monomers of C2 to C30, e.g. C2 to Cβ olefins, including both alpha olefins and internal olefins, which may be straight or branched, aliphatic, aromatic, alkyl-aromatic, cycloaiiphatic, etc. Frequently they will be of ethylene with C3 to C30 olefins, particularly preferred being the copolymers of ethylene and propylene. Other polymers
can be used such as polyisobutylenes, homopolymers and copolymers of Cg and higher alpha olefins, atactic polypropylene, hydrogenated polymers and copolymers and terpolymers of styrene, e.g., with isoprene and/or butadiene and hydrogenated derivatives thereof. The polymer may be degraded in molecular weight, for example by mastication, extrusion, oxidation or thermal degradation, and it may be oxidized and contain oxygen. Also included are derivatized polymers such as post-grafted inteφolymers of ethylene- propylene with an active monomer such as maleic anhydride which may be further reacted with an alcohol, or amine, e.g. an alkylene polyamine or hydroxy amine, e.g. see U.S. Patent Nos. 4,089,794; 4,160,739; 4,137,185; or copolymers of ethylene and propylene reacted or grafted with nitrogen compounds such as shown in U.S. Patent Nos. 4,068,056; 4,068,058; 4,146,489 and 4,149,984.
The preferred hydrocarbon polymers are ethylene copolymers containing from 15 to 90 wt.% ethylene, preferably 30 to 80 wt.% of ethylene and 10 to 85 wt.%, preferably 20 to 70 wt.% of one or more C3 to C28. preferably C3 to C18. more preferably C3 to Cβ, alpha-olefins. While not essential, such copolymers preferably have a degree of crystallinity of less than 25 wt.%, as determined by X-ray and differential scanning caiorimetry. Copolymers of ethylene and propylene are most preferred. Other alpha- olefins suitable in place of propylene to form the copolymer, or to be used in combination with ethylene and propylene, to form a teφolymer, tetrapolymer, etc., include 1 -butene, 1 -pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, etc.; also branched chain alpha-olefins, such as 4-methyl-1 - pentene, 4-methyl-1 -hexene, 5-methylpentene-1 , 4,4-dimethyl-1 -pentene, and 6-methylheptene-1 , etc., and mixtures thereof.
Terpolymers, tetrapolymers, etc., of ethylene, said C3.28 alpha- olefin, and a non-conjugated diolefm or mixtures of such diolefins may also be used. The amount of the non-conjugated diolefin generally ranges from about 0.5 to 20 mole percent, preferably from about 1 to about 7 mole percent, based on the total amount of ethylene and alpha-olefin present.
The polyester V.I. improvers are generally polymers of esters of ethyienically unsaturated C3 to Cβ mono- and dicarboxylic acids such as methacrylic and acrylic acids, maleic acid, maleic anhydride, fumaric acid, etc.
Examples of unsaturated esters that may be used include those
of aliphatic saturated mono alcohols of at least 1 carbon atom and preferably of from 12 to 20 carbon atoms, such as decyl acryiate, lauryl acrylate, stearyl acrylate, eicosanyl acrylate, docosanyl acrylate, decyl methacrylate, diamyl fumarate, lauryl methacrylate, cetyl methacrylate, stearyl methacrylate, and the like and mixtures thereof.
Other esters include the vinyl alcohol esters of C2 to C22 fatty or mono carboxylic acids, preferably saturated such as vinyl acetate, vinyl laurate, vinyl palmitate, vinyl stearate, vinyl oleate, and the like and mixtures thereof. Copolymers of vinyl alcohol esters with unsaturated acid esters such as the copolymer of vinyl acetate with dialkyl fumarates, can also be used. The esters may be copolymerized with still other unsaturated monomers such as olefins, e.g. 0.2 to 5 moles of C2 - C20 aliphatic or aromatic olefin per mole of unsaturated ester; or per mole of unsaturated acid or anhydride followed by esterification. For example, copolymers of styrene with maleic anhydride esterified with alcohols and amines are known, e.g., see U.S. Patent 3,702,300.
Such ester polymers may be grafted with, or the ester copolymerized with, polymerizable unsaturated nitrogen-containing monomers to impart dispersancy to the V.I. improvers. Examples of suitable unsaturated nitrogen-containing monomers include those containing 4 to 20 carbon atoms such as amino substituted olefins as p-(beta-diethylamino- ethyl)styrene; basic nitrogen-containing heterocycles carrying a polymerizable ethyienically unsaturated substituent, e.g. the vinyl pyridines and the vinyl alkyl pyridines such as 2-vinyl-5-ethyl pyridine, 2-methyl-5-vinyl pyridine, 2-vinyl-pyridine, 4-vinylpyridine, 3-vinyl-pyridine, 3-methyl-5-vinyl- pyridine, 4-methyl-2-vinyl-pyridine, 4-ethyl-2-vinyl-pyridine and 2-butyl-1 -5- vinyl-pyridine and the like.
N-vinyl lactams are also suitable, e.g. N-vinyl pyrrolidones or N- vinyl piperidones. The vinyl pyrrolidones are preferred and are exemplified by N- vinyl pyrrolidone, N-(1 -methyl vinyl) pyrrolidone, N-vinyl-5-methyl pyrrolidone, N-vinyl-3, 3-dimethylpyrrolidone, N-vinyl-5-ethyl pyrrolidone, etc.
Dihydrocarbyl dithiophosphate metal salts are frequently used as anti-wear agents and also provide antioxidant activity. The zinc salts are most commonly used in lubricating oil in amounts of 0.1 to 10, preferably 0.2 to 2 wt. %, based upon the total weight of the lubricating oil composition.
They may be prepared in accordance with known techniques by first forming a dithiophosphoric acid, usually by reaction of an alcohol or a phenol with P2S5 and then neutralizing the dithiophosphoric acid with a suitable zinc compound. Mixtures of alcohols may be used including mixtures of primary and secondary alcohols, secondary generally for imparting improved anti- wear properties, with primary giving improved thermal stability properties. Mixtures of the two are particularly useful. In general, any basic or neutral zinc compound could be used but the oxides, hydroxides and carbonates are most generally employed. Commercial additives frequently contain an excess of zinc due to use of an excess of the basic zinc compound in the neutralization reaction.
The zinc dihydrocarbyl dithiophosphates useful in the present invention are oil soluble salts of dihydroca yl esters of dithiophosphoric acids and may be represented by the following formula:
Zn (XXIII )
wherein R and R" may be the same or different hydrocarbyl radicals containing from 1 to 18, preferably 2 to 12 carbon atoms and including radicals such as alkyl, alkenyl, aryl, aralkyl, alkaryl and cycloaliphatic radicals. Particularly preferred as R and R' groups are alkyl groups of 2 to 8 carbon atoms. Thus, the radicals may, for example, be ethyl, π-propyl, i- propyl, n-butyl, i-butyl, sec-butyl, amyl, n-hexyl, i-hexyl, n-octyl, decyl, dodecyl, octadecyl, 2-ethylhexyl, phenyl, butylphenyl, cyclohexyl, methylcyclopentyl, propenyl, butenyl, etc. In order to obtain oil solubility, the total number of carbon atoms (i.e., R and R' in formula XXIII) in the dithiophosphoric acid will generally be about 5 or greater.
The antioxidants useful in this invention include oil soluble copper compounds. The copper may be blended into the oil as any suitable oil soluble copper compound. By oil soluble we mean the compound is oil soluble under normal blending conditions in the oil or additive package. The copper compound may be in the cuprous or cupric form. The copper may be
in the form of the copper dihydrocarbyl thio- or dithio-phosphates wherein copper may be substituted for zinc in the compounds and reactions described above although one mole of cuprous or cupric oxide may be reacted with one or two moles of the dithiophosphoric acid, respectively. Alternatively the copper may be added as the copper salt of a synthetic or natural carboxylic acid. Examples include C-J O to C-jg fatty acids such as stearic or palmitic, but unsaturated acids such as oleic or branched carboxylic acids such as napthenic acids of molecular weight from 200 to 500 or synthetic carboxylic acids are preferred because of the improved handling and solubility properties of the resulting copper carboxylates. Also useful are oil soluble copper dithiocarbamates of the general formula (RR'NCSS)nCu, where n is 1 or 2 and R and R' are the same or different hydrocarbyl radicals containing from 1 to 18 and preferably 2 to 12 carbon atoms and including radicals such as alkyl, alkenyl, aryl, aralkyl, alkaryl and cycloaiiphatic radicals. Particularly preferred as R and R' groups are alkyl groups of 2 to 8 carbon atoms. Thus, the radicals may, for example, be ethyl, n-propyl, i-propyl, n-butyl, i-butyl, sec-butyl, amyl, n-hexyl, i-hexyl, n-heptyl, n-octyl, decyl, dodecyl, octadecyl, 2-ethylhexyl, phenyl, butylphenyl, cyclohexyl, methylcyclopentyl, propenyl, butenyl, etc. In order to obtain oil solubility, the total number of carbon atoms (i.e., R and R') will generally be about 5 or greater. Copper sulphonates, phenates, and acetylacetonates may also be used.
Exemplary of useful copper compounds are copper (Cu1 and/or Cu") salts of alkenyl succinic acids or anhydrides. The salts themselves may be basic, neutral or acidic. They may be formed by reacting (a) any of the materials above discussed ashless dispersants which have at least one free carboxylic acid (or anhydride) group with (b) a reactive metal compound. Suitable acid (or anhydride) reactive metal compounds include those such as cupric or cuprous hydroxides, oxides, acetates, borates, and carbonates or basic copper carbonate. Examples of the metal salts of this invention are Cu salts of polyisobutenyl succinic anhydride (hereinafter referred to as Cu-PIBSA), and Cu salts of polyisobutenyl succinic acid. Preferably, the selected metal employed is its divalent form, e.g., Cu+2. The preferred substrates are polyaikenyl succinic acids in which the alkenyl group has a molecular weight greater than about 700. The alkenyl group desirably has a Mn from about 900 to 1400, and up to 2500, with a Mn of about 950 being most preferred.
Especially preferred is polyisobutylene succinic acid (PIBSA). These materials may desirably be dissolved in a solvent, such as a mineral oil, and heated in the presence of a water solution (or slurry) of the metal bearing material. Heating may take place between 70° and about 200°C. Temperatures of 110° to 140°C are entirely adequate. It may be necessary, depending upon the salt produced, not to allow the reaction to remain at a temperature above about 140°C for an extended period of time, e.g., longer than 5 hours, or decomposition of the salt may occur.
The copper antioxidants (e.g., Cu-PIBSA, Cu-oleate, or mixtures thereof) will be generally employed in an amount of from about 50-500 ppm by weight of the metal, in the final lubricating composition.
The copper antioxidants used in this invention are inexpensive and are effective at low concentrations and therefore do not add substantially to the cost of the product. The results obtained are frequently better than those obtained with previously used antioxidants, which are expensive and used in higher concentrations. In the amounts employed, the copper compounds do not interfere with the performance of other components of the lubricating composition, in many instances, completely satisfactory results are obtained when the copper compound is the sole antioxidant in addition to the ZDDP. The copper compounds can be utilized to replace part or all of the need for supplementary antioxidants. Thus, for particularly severe conditions it may be desirable to include a supplementary, conventional antioxidant. However, the amounts of supplementary antioxidant required are small, far less than the amount required in the absence of the copper compound. While any effective amount of the copper antioxidant can be incorporated into the lubricating oil composition, it is contemplated that such effective amounts be sufficient to provide said lube oil composition with an amount of the copper antioxidant of from about 5 to 500 (more preferably 10 to 200, still more preferably 10 to 180, and most preferably 20 to 130 (e.g., 90 to 120)) part per million of added copper based on the weight of the lubricating oil composition. Of course, the preferred amount may depend amongst other factors on the quality of the basestock lubricating oil.
Corrosion inhibitors, also known as anti-corrosive agents, reduce the degradation of the metallic parts contacted by the lubricating oil composition. Illustrative of corrosion inhibitors are phosphosulfurized hydrocarbons and the products obtained by reaction of a phosphosulfurized
hydrocarbon with an alkaline earth metal oxide or hydroxide, preferably in the presence of an alkylated phenol or of an alkylphenol thioester, and also preferably in the presence of carbon dioxide. Phosphosulfurized hydrocarbons are prepared by reacting a suitable hydrocarbon such as a terpene, a heavy petroleum fraction of a C2 to Ce olefin polymer such as polyisobutylene, with from 5 to 30 weight percent of a sulfide of phosphorus for 1/2 to 15 hours, at a temperature in the range of 65° to 315°C. Neutralization of the phosphosulfurized hydrocarbon may be effected in the manner taught in U.S. Patent No. 1 ,969,324. Oxidation inhibitors reduce the tendency of mineral oils to deteriorate in service which deterioration can be evidenced by the products of oxidation such as sludge and varnish-like deposits on the metal surfaces and by viscosity growth. Such oxidation inhibitors include alkaline earth metal salts of alkylphenolthioesters having preferably C5 to C-J2 alkyl side chains, calcium nonylphenol sulfide, barium t-octylphenyl sulfide, dioctylphenylamine, phenylalphanaphthylamine, phosphosulfurized or suifurized hydrocarbons, etc.
Friction modifiers serve to impart the proper friction characteristics to lubricating oil compositions such as automatic transmission fluids.
Representative examples of suitable friction modifiers are found in U.S. Patent No. 3,933,659 which discloses fatty acid esters and amides; U.S. Patent No. 4,176,074 which describes molybdenum complexes of polyisobutenyl succinic anhydride-amino alkanols; U.S. Patent No. 4,105,571 which discloses glycerol esters of dimerized fatty acids; U.S. Patent No. 3,779,928 which discloses alkane phosphonic acid salts; U.S. Patent No. 3,778,375 which discloses reaction products of a phosphonate with an oleamide; U.S. Patent No. 3,852,205 which discloses S-carboxy-alkylene hydrocarbyl succinimide, S-carboxyalkylene hydrocarbyl succinamic acid and mixtures thereof; U.S. Patent No. 3,879,306 which discloses N-(hydroxyalkyl) alkenyl-succinamic acids or succinimides; U.S. Patent No. 3,932,290 which discloses reaction products of di-(lower alkyl) phosphites and epoxides; and U.S. Patent No. 4,028,258 which discloses the alkylene oxide adduct of phosphosulfurized N-(hydroxyalkyl) alkenyl succinimides. The disclosures of the above references are herein incoφorated by reference. The most preferred friction modifiers are glycerol mono and dioleates, and succinate
esters, or metal salts thereof, of hydrocarbyl substituted succinic acids or anhydrides and thiobis alkaπols such as described in U.S. Patent No. 4,344,853.
Pour point depressants lower the temperature at which the lubricating oil will flow or can be poured. Such depressants are well known. Typical of those additives which usefully optimize the low temperature fluidity of the fluid are Cβ-Ciβ dialkylfumarate vinyl acetate copolymers, poly- methacrylates, and wax naphthalene.
Foam control can be provided by an antifoamant of the polysiloxane type, e.g. silicone oil and polydimethyl siloxane.
Organic, oil-soluble compounds useful as rust inhibitors in this invention comprise nonionic surfactants such as polyoxyalkylene polyois and esters thereof, and anionic surfactants such as salts of alkyl sulfonic acids. Such anti-rust compounds are known and can be made by conventional means. Nonionic surfactants, useful as anti-rust additives in the oleaginous compositions of this invention, usually owe their surfactant properties to a number of weak stabilizing groups such as ether linkages. Nonionic anti-rust agents containing ether linkages can be made by alkoxylating organic substrates containing active hydrogens with an excess of the lower alkylene oxides (such as ethylene and propylene oxides) until the desired number of alkoxy groups have been placed in the molecule.
The preferred rust inhibitors are polyoxyalkylene polyois and derivatives thereof. This class of materials are commercially available from various sources: Pluronic Polyois from Wyandotte Chemicals Coφoration; Polyglycol 112-2, a liquid triol derived from ethylene oxide and propylene oxide available from Dow Chemical Co.; and Tergitol, dodecylphenyl or monophenyl polyethylene glycol ethers, and Ucon, polyalkylene glycols and derivatives, both available from Union Carbide Corp. These are but a few of the commercial products suitable as rust inhibitors in the improved composition of the present invention.
In addition to the polyois per se. the esters thereof obtained by reacting the polyois with various carboxylic acids are also suitable. Acids useful in preparing these esters are lauric acid, stearic acid, succinic acid, and alkyl- or alkenyl-substituted succinic acids wherein the alkyi-or alkenyl group contains up to about twenty carbon atoms.
The preferred polyois are prepared as block polymers. Thus, a
hydroxy-substituted compound, R-(OH)π (wherein n is 1 to 6, and R is the residue of a mono- or polyhydric alcohol, phenol, naphthol, etc.) is reacted with propylene oxide to form a hydrophobic base. This base is then reacted with ethylene oxide to provide a hydrophylic portion resulting in a molecule having both hydrophobic and hydrophylic portions. The relative sizes of these portions can be adjusted by regulating the ratio of reactants, time of reaction, etc., as is obvious to those skilled in the art. Thus it is within the skill of the art to prepare polyois whose molecules are characterized by hydrophobic and hydrophylic moieties which are present in a ratio rendering rust inhibitors suitable for use in any lubricant composition regardless of differences in the base oils and the presence of other additives.
If more oil-solubility is needed in a given lubricating composition, the hydrophobic portion can be increased and/or the hydrophylic portion decreased. If greater oii-in-water emulsion breaking ability is required, the hydrophylic and or hydrophobic portions can be adjusted to accomplish this. Compounds illustrative of R-(OH)n include alkylene polyois such as the alkylene glycols, alkylene triols, alkylene tetrols, etc., such as ethylene glycol, propylene glycol, glycerol, pentaerythritol, sorbitol, mannitol, and the like. Aromatic hydroxy compounds such as aikyfated mono- and polyhydric phenols and naphthols can also be used, e.g., heptyiphenol, dodecylphenol, etc.
Other suitable demulsifiers include the esters disclosed in U.S. Patents 3,098,827 and 2,674,619.
The liquid polyois available from Wyandotte Chemical Co. under the name Pluronic Polyois and other similar polyois are particularly well suited as rust inhibitors. These Pluronic Polyois correspond to the formula:
HO-(CH2CH2O)x(CHCH2O)y(CH2CH2θ)zH (XXIV) CH3
wherein x,y, and z are integers greater than 1 such that the — CH2CH2O— groups comprise from about 10% to about 40% by weight of the total molecular weight of the glycol, the average molecule weight of said glycol being from about 1000 to about 5000. These products are prepared by first condensing propylene oxide with propylene glycol to produce the hydrophobic base
HO(-CH-CH2-0)y-H (XXV)
I
CH3
This condensation product is then treated with ethylene oxide to add hydrophylic portions to both ends of the molecule. For best results, the ethylene oxide units should comprise from about 10 to about 40% by weight of the molecule. Those products wherein the molecular weight of the polyol is from about 2500 to 4500 and the ethylene oxide units comprise from about 10% to about 15% by weight of the molecule are particularly suitable. The polyois having a molecular weight of about 4000 with about 10% attributable to (CH2CH2O) units are particularly good. Also useful are alkoxylated fatty amines, amides, alcohols and the like, including such alkoxylated fatty acid derivatives treated with Cg to C-iβ alkyl-substituted phenols (such as the mono- and di-heptyl, octyl, nonyl, decyl, undecyl, dodecyl and tridecyl phenols), as described in U.S. Patent 3,849,501 , which is also hereby incoφorated by reference in its entirety.
These compositions of our invention may also contain other additives such as those previously described, and other metal containing additives, for example, those containing barium and sodium.
The lubricating composition of the present invention may also include copper lead bearing corrosion inhibitors. Typically such compounds are the thiadiazole polysulphides containing from 5 to 50 carbon atoms, their derivatives and polymers thereof. Preferred materials are the derivatives of 1,3,4-thiadiazoles such as those described in U.S. Patents 2,719,125; 2,719,126; and 3,087,932; especially preferred is the compound 2,5 bis (t- octadithio)-1 ,3,4-thiadiazole commercially available as Amoco 150. Other similar materials also suitable are described in U.S. Patents 3,821 ,236; 3,904,537; 4,097,387; 4,107,059; 4,136,043; 4,188,299; and 4,193,882.
Other suitable additives are the thio and polythio sulphenamides of thiadiazoles such as those described in U.K. Patent Specification 1,560,830. When these compounds are included in the lubricating composition, we prefer that they be present in an amount from 0.01 to 10, preferably 0.1 to 5.0 weight percent based on the weight of the composition. Some of these numerous additives can provide a multiplicity of effects, e.g., a dispersant-oxidation inhibitor. This approach is well known
and need not be further elaborated herein.
Compositions when containing these conventional additives are typically blended into the base oil in amounts effective to provide their normal attendant function. Representative effective amounts of such additives (as the respective active ingredients) in the fully formulated oil are illustrated as follows:
When other additives are employed, it may be desirable, although not necessary, to prepare additive concentrates comprising concentrated solutions or dispersions of the novel dispersants of this invention (in concentrate amounts hereinabove described), together with one or more of said other additives (said concentrate when constituting an additive mixture being referred to herein as an additive-package) whereby several additives can be added simultaneously to the base oil to form the lubricating oil composition. Dissolution of the additive concentrate into the lubricating oil may be facilitated by solvents and by mixing accompanied with mild heating, but this is not essential. The concentrate or additive-package will typically be formulated to contain the additives in proper amounts to provide the desired concentration in the final formulation when the additive- package is combined with a predetermined amount of base lubricant. Thus, the dispersants of the present invention can be added to small amounts of base oil or other compatible solvents along with other desirable additives to form additive-packages containing active ingredients in collective amounts of typically from about 2.5 to about 90%, and preferably from about 15 to about
75%, and most preferably from about 25 to about 60% by weight additives in the appropriate proportions with the remainder being base oil.
The final formulations may employ typically about 10 wt. % of the additive-package with the remainder being base oil. All of said weight percents expressed herein (unless otherwise indicated) are based on active ingredient (A.I.) content of the additive, and/or upon the total weight of any additive-package, or formulation which will be the sum of the A.I. weight of each additive plus the weight of total oil or diluent. This invention will be further understood by reference to the following examples, wherein all parts are parts by weight, unless otherwise noted and which include preferred embodiments of the invention. In the Examples, SA:P1B and SA:EP-polymer ratios are based upon the total PIB and EP-polymer, respectively, charged to the reactor as starting material, i.e., both the PIB and EP-polymer which reacts and the PIB and EP-polymer which remains unreacted. In the Examples, wt.% ethylene in the polymers was determined by FTIR (ASTM Method D3900). In the Examples, the "reference oil" was as defined above for Formula IV.
EXAMPLE 1 - Preparation of Ethylene-Prooyleπe Copolymer.
A 1 liter Zipperclave reactor (Autoclave Engineers) equipped with a water jacket for temperature control, with a septum inlet for syringe injection of catalyst, and with a supply of purified nitrogen, liquid propylene, and ethylene was used used in these polymerizations. The reactor was cleaned with hot toluene and then was purged well with dry nitrogen at 100°C. The reactor was cooled to 25°C and 10.0 cc of a 4.0 wt% toluene solution of methylalumoxane was injected along with 100 cc of distilled toluene at 0 psig under nitrogen. Liquid propylene monomer (200 cc) was added from a calibrated burette at 25°C. The reactor contents were stirred and heated to 115°C at which point the reactor pressure was 375 psig. 1.00 cc of a toluene solution of bis(n-butylcyclopentadienyl) zirconium dichloride (1.00 mg) was injected and ethylene at a pressure of 405 psig was immediately supplied. Ethylene was fed on pressure demand in order to keep the system pressure at 405 psig. The rate of ethylene flow was recorded continuously during the course of the polymerization. The reaction was continued for 15 minutes after which the reaction was stopped by rapidly depressuring and cooling the reactor to 25°C. The polymer product was collected and the toluene solvent was evaporated in an air stream. The polymer weight was determined to be 103.1 gms, and the polymer was analyzed by size-exclusion chromatography and found to contain 68 wt% ethylene and to have a number average molecular weight of 1100, a weight average molecular weight of 5400 and a polydispersity of 4.9. The polymer product was found to contain 2.5 wppm Zr and 1.75 wppm Cl.
EXAMPLE 2 - Preparation of Ethylene-Propylene Copolvmer.
The polymerization was performed as in Example 1 except that the reactor temperature was maintained at 100°C and 1.00 mg of dimethyl- silyldicyclopentadienyl zirconium dichloride was used as catalyst instead of bis(n-butylcyclopentadienyl) zirconium dichloride. The reactor pressure was maintained at 380 psig by a regulated ethylene supply. The yield of the copolymer was 111.2 gms and the polymer was determined to contain the ethylene content indicated in Table I and to have a number average molecular weight of 1390, a weight average molecular weight of 4030 and polydispersity of 2.9. The polymer product was found to contain 2.0 wppm Zr and 1.5 wppm Cl.
EXAMPLE 3 - Preparation of Ethylene-Propylene Copolvmer.
The polymerization was performed as in Example 2 except that the reactor temperature was maintained at 90°C and 270 cc of liquid propylene was charged. The reactor pressure was maintained by a regulated ethylene supply. The yield of the copolymer was 16.3 gms and the polymer was determined to contain the ethylene content indicated in Table I and to have a number average molecular weight of 1750, a weight average molecular weight of 4960 and polydispersity of 2.8. The polymer product was found to contain 16 wppm Zr and 10 wppm Cl.
EXAMPLE 4 - Preparation of Ethylene-Propylene Copolymer.
The polymerization was performed as in Example 3 except that the reactor temperature was maintained at 80°C. The reactor pressure was maintained at 365 psig by a regulated ethylene supply for 1 hour. The yield of the copolymer was 234 gms and the polymer was determined to have a number average molecular weight of 2710, a weight average molecular weight of 7980 and polydispersity of 2.9. The polymer product was found to contain the ethylene content indicated in Table I and to contain 1.0 wppm Zr and 0.7 wppm Cl.
EXAMPLE 5 - Preparation of Ethylene Butene-1 Copolvmer.
The polymerization was performed as in Example 3 except that
270 cc of liquid butene-1 was charged instead of the propylene. The reactor pressure was maintained at 167 psig by a regulated ethylene supply. The yield of the copolymer was 176.6 gms and the polymer was determined to have a number average molecular weight of 860, a weight average molecular weight of 2710 and polydispersity of 3.1. The polymer product was found to contain 1.5 wppm Zr and 1.1 wppm Cl.
EXAMPLES 6-10 - Preparation of Ethylene-Propylene Copolymer Substituted Succinic Anhydride (EPSA)
In a series of runs, the selected moles of the EP copolymers prepared as above and pulverized maleic anhydride are charged under dry N2 at atmospheric pressure to a 100 ml. pressure reactor equipped with a stirrer and a thermocouple and heated by means of an electric heating mantle. No added solvent or diluent for the reactants is emptoyed. Rather
the reaction is conducted in the melt. In each run, the reaction mixture is heated to 70°C and the reactor is gently purged with dry N2 by bubbling through the liquid reaction mass for 15 minutes. The purging is then ceased and the reactor temperature is raised to 220°C and kept at that temperature under autogenous pressure for 4 hours while stirring. The liquid reaction mixture is then cooled to about 60°C, and transferred to a glass beaker. Dry gaseous nitrogen is passed through the liquid to strip off unreacted maleic anhydride at about 140°C until no trace of maleic anhydride is detected with IR. The liquid product containing the EPSA and unreacted EP is analyzed for succinic anhydride by the following titration technique: a 2 g. sample of the polymer is dissolved in a solvent comprising 80 ml of THF, 6 ml of pyridine and 0.3 ml of water and titrated with a methanol solution of tetrabutyl ammonium hydroxide using thymol blue to a color end point. The acidity is calculated from the milliliters of base solution used. The product is also observed to determine the presence of any sediment.
In Example 11 , the procedure of Example 6 is repeated except that the polymer was charged comprised a 50:50 wt:wt mixture of the ethylene-propylene copolymer prepared as in Example 4 (Mn = 2710), and the polyisobutylene polymer which is employed in Comparative Example 13 (Mπ = 1300). The data thereby obtained are the mole ratio of polymer and maleic anhydride charged, and the data thereby obtained are summarized in Table I.
NOTES: EP - ethylene-propylene copolymer; PIB=polyisobutylene; MA = maleic anhydride.
(1) EP Mn = 2710, 55 wt.% C2 =; PIB M„ = 1200.
(2) (EP + PIB)/MA = 1.0:1.2 mole ratio charged.
(3) Based on (theoretical - found) meq/gm SA.
(4) Low amounts of sediment not quantified.
COMPARATIVE EXAMPLES 12-14
To determine the degree of sediment formed in maleic anhydride reactions with conventional polyisobutylene polymers and conventional ethylene-propylene copolymers, the above procedure is repeated in a series of runs. The polyisobutylene polymer employed in Comparative Example 12 comprises Parapol 1300 polymer (Exxon Chemical Americas), and the polyisobutylene polymer employed in Comparative Example 13 comprises reactive polyisobutylene (ultra Vis30; BP Chemicals), having about 0.58 mole of terminal double bonds per mole of polymer (as determined by NMR) and a molecular weight distribution of about 3.0 (based on GPC). The ethylene-propylene copolymer of Comparative Example 14 (42 wt % ethylene, 58 wt % propylene; Mn = 1060; Mw = 1903) is prepared by conventional Ziegler Natta catalysis of ethylene and propylene using a catalyst system comprising VOCI3 and aluminum sesquichloride, with H2 as molecular weight control. The data thereby obtained are summarized in Table II.
(1) (2)
12 PIB (1300) 1/1.2 0.77 0.34 44.2 heavy(2)
13 PIB (1200) 1/1.2 0.83 0.47 56.4 heavy(2)
14 EP (1060) 1/1.2 0.94 0.15 16.0 none
Notes: EP - ethylene-propylene copolymer; PIB = polyisobutylene; MA = maleic anhydride.
(1) Calculated as in Table I.
(2) Sediment (1.24 wt.% and 0.36 wt.% based on PIB charged) found in Examples 12 and 13, respectively, as hexane insoluble solids on reaction vessel bottom.
The above results illustrate the surprisingly reduced sediment formation and high conversions achieved in the thermal "ene" reaction of maleic anhyαπde and the ethylene-propylene copolymers in accordance with the process of this invention in Examples 6-10, as compared to conventional polyisobutylene polymers (Comparative Examples 12- 3) and conventional ethylene-propylene copolymers (Comparative Example 14).
EXAMPLES 15-20, COMPARATIVE EXAMPLES 21-22 -
Preparation of Polyamine Dispersants A series of dispersant materials are prepared employing the
EPSA products prepared as in Examples 9 and 10, the mixed (EP/PIB)SA product of Example 11 , the PIBSA product of Comparative Example 14, and various blends of the above PIBSA and EPSA products.
The succinic acid anhydride substituted polymers are dissolved in an equal amount by weight of a mineral oil, S150N To the polymer solution is added a mixture of polyethylene polyamines having the average composition corresponding to tetraethyiene pentamine and containing about 32.6 wt % N (PAM) and the mixture is heated to 140°C under nitrogen while stirring for about 2 to 4 hours. In each run, the molar ratio of total polymer to polyamine in terms of succinic acid equivalents to PAM charged is 2 to 1. Viscosities of the resulting dispersant solutions are determined. Results of the viscometric studies are summarized in Table III below.
Polymer in
Example S150N. 15 EPSA from Ex. 10
16 A Hix of 20%
EPSA from Ex. 10 and 80% PIBSA from Comp. Ex.
17 λ Mix of 50% EPSA 2/1 0. 79 6. 75 24 . 29 3 . 60 from Ex. 10 and 50% PIBSA from Comp. Ex. 14
18 A Mix of 50% PIBSA 2/1 0.66 7.52 28.26 3.76 from Comp. Ex. 13 and 50% EPSA from Ex. 9
19 A Mix of 50% PIBSA 2/1 0.80 8.11 28.86 3.56 from Comp. Ex. 13 and 50% EPSA from Ex. 10
20 (A 50/50 Mix of EP 2/1 0.82 6.43 23.42 3.64 and PIB) SA from
Ex.11
Comp. 21 PIBSA from Comp. 2/1 0.73 6.20 24.65 4.0 Ex. 14
Comp. 22 Control None 5.19 19.20 3.70
Notes: (1) Mole ratio of polymer (calculated in terms of mole of contained
succinic acid/anhydride groups) per mole of polyamine charged.
(2 ) VR ' = [ CCS , -20°C, poise ] / [KV 100°C, cSt ] .
EXAMPLES 25-26: COMPARATIVE EXAMPLE 27
A series of dispersant blends are prepared employing the dispersant product solutions maαe as in Example 15 and Comparative Example 21 , and the viscometncs measured, as summarized in Table IV below:
Table IV
The lower VR' values signify a better viscometric balance that is desirable for dispersant to have. Results show that the viscometric behavior of PIB- based dispersants can be improved, as indicated by lower VR' values, by means of blending with the EP-copolymer based dispersants of this invention and also by making polyamine dispersants from a mix of PIBSA and EPSA dispersant intermediates. Moreover, the above results indicate that the VR' values for the dispersant product solutions of Examples 25 -26, unlike the comparative dispersant of Comparative Example 27, are lower than the VRr value for the reference oil itself.
EXAMPLE 28
Ethylene-propylene copolymer (M~ n = 1100) prepared as in Example 1 is reacted thermally with maleic anhydride as in Example 6 to give an EPSA product (%AI.54.5) which is diluted with an equal amount of S150N to give a 50 wt.% polymer solution. To 25 g of the solution, 0.75 g of the PAM (wt% N = 32.6) is added dropwise while stirring and light N2 sparging at 140 °C for 2 hours followed by nitrogen stripping for an hour at 140°C.
The resulting composition is then tested for sludge inhibition (via the SIB test) and varnish inhibition (via the VIB test), as described below.
The SIB test has been found, after a large number of evaluations, to be an excellent test for assessing the dispersing power of lubricating oil dispersant additives.
The medium chosen for the SIB test is a used crankcase mineral lubricating oil composition having an original viscosity of about 325 SUS at 38_ C that had been used in a taxicab that is driven generally for short trips only, thereby causing a buildup of a high concentration of sludge precursors. The oil that is used contains only a refined base mineral lubricating oil, a viscosity index improver, a pour point depressant and zinc dialkyldithiophosphate anti-wear additive. The oil contains no sludge dispersant. A quantity of such used oil is acquired by draining and refilling the taxicab crankcase at 1000 - 2000 mile intervals.
The SIB test is conducted in the following manner: the aforesaid used crankcase oil, which is milky brown in color, is freed of sludge by centrifuging for one hour at about 39,000 gravities (gs.). The resulting clear bright red supernatant oil is then decanted from the insoluble sludge particles thereby separated out. However, the supernatant oil still contains oil-soluble sludge precursors which on heating under the conditions employed by this test will tend to form additional oil-insoluble deposits of sludge. The sludge inhibiting properties of the additives being tested are determined by adding to portions of the supernatant used oil, a small amount, such as 0.5, 1 or 2 weight percent, of the particular additive being tested. Ten grams of each blend being tested are placed in a stainless steel centrifuge tube and are heated at 135°C for 16 hours in the presence of air. Following the heating, the tube containing the oil being tested is cooled and then centrifuged for about 30 minutes at room temperature at about 39,000 gs. Any deposits of new sludge that form in this step are separated from the oil by decanting the supernatant oil and then carefully washing the sludge deposits with 25 ml of heptane to remove all remaining oil from the sludge and further centrifuging. The weight of the new solid sludge that has been formed in the test, in milligrams, is determined by drying the residue and weighing it. The results are reported as amount of precipitated sludge in comparison with the precipitated sludge
of a blank not containing any additional additive, which blank is normalized to a rating of 10. The less new sludge precipitated in the presence of the additive, the lower the SIB value and the more effective is the additive as a sludge dispersant. In other words, if the additive gives half as much precipitated sludge as the blank, then it would be rated 5.0 since the blank will be normalized to 10.
The VIB test is used to determine varnish inhibition. Here, the test sample consists of 10 grams of lubricating oil containing a small amount of the additive being tested. The test oil to which the additive is admixed is of the same type as used in the above-descπbed SIB test. The ten gram sample is heat soaked overnight at about 140°C and thereafter centrifuged to remove the sludge. The supernatant fluid of the sample is subjected to heat cycling from about 150°C to room temperature over a period of 3.5 hours at a frequency of about 2 cycles per minute. During the heating phase, gas which was a mixture of about 0.7 volume percent SO2, 1.4 volume percent NO and balance air is bubbled through the test sample. During the cooling phase, water vapor is bubbled through the test sample. At the end of the test period, which testing cycle can be repeated as necessary to determine the inhibiting effect of any additive, the wail surfaces of the test flask in which the sample is contained are visually evaluated as to the varnish inhibition. The amount of varnish imposed on the walls is rated to values of from 1 to 11 with the higher number being the greater amount of varnish, in comparison with a blank with no additive that was rated 11. 10.00 grams of SIB test oil are mixed with 0.05 grams of the products of the Examples as described in Table II and tested in the aforedescribed SIB and VIB tests.
The test results are summarized below in Table V.
Notes:
(1) Blank S150N oil, no dispersant.
(2) Polyisobutylene succinimide prepared from 2250 Mn PIB.
(3) Polyisobutylene succinimide prepared from 1300 Mn PIB.
EXAMPLES 29 - 34
The procedure of Example 28 is repeated in a series of runs to prepare additional dispersant product solutions. The results thereby obtained, and the EPSA's employed, are summarized in Table VI.
Notes: (1) Mole ratio of polymer (calculated in terms of mole of contained succinic acid/anhydride groups) per mole of polyamine charged.
(2) Estimated wt. % N in the dispersant material product solutions,
EXAMPLE 35
The procedure of Example 6 is repeated except that 1 mole of ethylene-butene-1 copolymer (Mn = 860) prepared as in Example 5 is employed instead of the ethylene-propylene copolymer. The ethylene butene copoiymer-substituted succinic anhydride (EBSA) product thereby obtained is found to contain about 76 wt % active ingredient EBSA and less than about 1 wppm of chlorine and to have a VR ratio of 3.9 (KV at 100°C = 5.77 cSt; CCS at -20°C = 22.63 poise).
EXAMPLES 36 - 39
In a separate series of runs, additional dispersants are prepared by employing the EPSA products of Examples 6, 7, 8 and 9 and the EBSA products of Example 35.
An amido amine ("AA") is prepared by reacting tetraethyiene pentamine (TEPA) with methyl acrylate at a 1.5:1 TEPA:methyl acrylate molar ratio, to form a product mixture containing 29.3 wt.% total N, 6.1 wt.% primary N, and about 25 wt.% unreacted TEPA.
A mixture of 10 parts by weight of the EPSA (or EBSA) product formed in the indicated Example and 10 parts of S150N mineral oil are heated to 150°C under N2- Then the desired amount of amido-amine prepared as above are added dropwise while stirring and light nitrogen sparging. The mixture is nitrogen stripped at 150°C for 3 hours and then filtered. The dispersant product solution is found to have the nitrogen content and kinematic viscosity reported in Table VII. Each dispersant product solution is then tested as described in
Examples 29 - 34 in the SIB and VIB tests. The results thereby obtained are also set forth in Table VII.
pimple No, 36 22_ 40
EPSA as in Ex. 6 9
EP Mn 1100
2710 EBSA as In Ex. 35
EB Mn 860 Dispersant (1) SA/AA (2) 1.2 1.2 1.2 Wt.% N (3) 1.66 0.70 1.28 Wt.% Al 42 35.5 SIB, mg 2.7 4.51 0.8 VIB rating 3 4 4-5 KV, 100°C, cSt 6.76 6.92 6.12 CCS, -20°C, p 22.49 23.95 24.00 VR', p/cSt 3.3 3.5 3.9 VR«/ Rr (4) 0.89
0.95 1.05
NOTES:
(1) Dispersant product admixed with equal weight of S150N oil.
(2) Mole ratio of EPSA (or EBSA), calculated as moles of SA
(succinic anhydride) per equivalent of primary amine.
(3) Estimated N content of dispersant product.
(4) VRr = 3.7
Example 40
About 73.5 grams Uniroyal Trilene® 65 ethylene/propylene/di- cyclopentadiene semiiiquid terpolymer having a Brooktleld viscosity of 67,000 centipoise at 100°C, 9.0 wt.% cyclopentadiene, and an ethylene:propylene monomer ratio of 48/52 was dissolved in 76.4 grams 150N oil in a 300 ml Parr reactor. About 9.8 grams maleic anhydride was added; the reactor was N2 purged and heated at 250°C for eight hours. The product was heated in a kugeirόhr at 180°C and 0.1 mm Hg to remove excess maleic anhydride. The saponification equivalent of the purified product was 48 mg KOH per gram (96 KVH/gram on active ingredient basis).
About 16.2 grams of the above maleated product in 19 grams xylene was heated with 2.04 grams dimethyl amiπopropyl amine at 60°C for two hours. The excess xylene and amine were partially removed by N2 purge at 160°C and purified in a Kugeirόhr at 160°C and 0.4 mm Hg.
Elemental analysis indicated 2.128 wt.% (?) nitrogen for the polymer product.
Claims
1 A functionalized polymer comprising an ethylene/alpha- olefm/diene interpolymer substituted with monounsaturated mono- and dicarboxylic acid-producing moieties, said interpolymer having (i) monomer units derived from ethylene, at least one alpha-olefin of the formula
H2C=CHR1 wherein R1 is a C1-C 18 alkyl group, and at least one diene monomer; (ii) a of about 300-20,000, (iii) at least about 30% of its
chains with ethenylidene terminal unsaturation, and (iv) less than 5 wt.% polymer fraction of less than about 300;
said functionalized polymer having a VR value of less than about 4 1.
2. The functionalized polymer of claim 1 wherein said
interpolymer is functionalized by "ene" reaction.
3. The functionalized polymer of claim 1 wherein said acid- produαng moieties are C3-C10 monounsaturated monocarboxylic acid- producmg moieties, C4-C10 monounsaturated dicarboxylic acid-producing moieties, or derivatives thereof.
4. The functionalized polymer of claim 1 wherein said
interpolymer has a molar ethylene content of about 20-80%.
5. The functionalized polymer of claim 1 wherein said alpha- olefin is propylene or butene.
6. The functionalized polymer of claim 1 wherein said acid- producmg moieties are maleic anhydride or derived therefrom
7. The functionalized polymer of claim 1 wherein said at least one diene monomer comprises at least one of cyclopentadiene, 5- ethylidene-2-norbomene, 1 ,4-hexadiene, vinyl norbornene, norbomadiene, and methyl hexadiene.
8. A lubricating oil concentrate containing about 10-80 wt. % of the functionalized polymer of claim 1.
9. A lubricating oil composition containing about 5-70 wt.% of the functionalized polymer of claim 1.
10. An oil-soluble dispersant adduct of:
(a) an ethylene/alpha-olefin/diene interpolymer substituted with monounsaturated mono- or di-carboxylic acid-producing moieties, said interpolymer having:
(i) monomer units derived from ethylene, at least one alpha-olefin of the formula H2C=CHR' wherein R' is C1 - C=18 alkyl group, and at least one diene monomer;
(ii) a of about 300-20,000; and at least about
30% of its chains with ethylidene terminal unsaturation; and
(b) at least one nucleophilic reagent selected from the group consisting of amines, alcohols, metal reactants, and mixtures thereof.
11. The dispersant adduct of claim 10 wherein said acid-producing moieties are C3-C 10 monounsaturated mono-carboxylic acid-producing moieties, C4-C10 monounsaturated di-carboxylic acid-producing moieties, or derivatives thereof.
12. The dispersant adduct of claim 11 wherein said acid-producing moieties are maleic anhydride or derived therefrom.
13. The dispersant adduct of claim 10 wherein said interpolymer is functionalized by "ene" reaction.
14. The dispersant adduct of claim 10 wherein said alpha-olefin is propylene or butene.
15. The dispersant adduct of claim 10 wherein said interpolymer has a molar content of about 20-80%.
16. The dispersant adduct of claim 10 wherein said interpolymer substituted with acid-producing moieties has a VR value less than about 4.1.
17. The dispersant adduct of claim 10 having a VR' value less than about 4.1.
18. The dispersant adduct of claim 10 wherein said at least one diene monomer comprises at least one of cyclopentadiene, 5-ethylidene-2- norbornene, 1 ,4-hexadiene, vinyl norbornene, norbomadiene, and methyl hexadiene.
19. A lubricating oil concentrate containing about 10-80 wt.% of the dispersant adduct of claim 10.
20. A lubricating oil composition containing about 0.1-20 wt.% of the dispersant adduct of claim 10.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA002251599A CA2251599A1 (en) | 1996-05-16 | 1996-05-16 | Ethylene/alpha-olefin/diene interpolymer-substituted carboxylic acid dispersant additives |
PCT/US1996/006993 WO1997043322A1 (en) | 1988-08-01 | 1996-05-16 | Ethylene/alpha-olefin/diene interpolymer-substituted carboxylic acid dispersant additives |
Publications (1)
Publication Number | Publication Date |
---|---|
EP0900238A1 true EP0900238A1 (en) | 1999-03-10 |
Family
ID=25680599
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP96914644A Withdrawn EP0900238A1 (en) | 1996-05-16 | 1996-05-16 | Ethylene/alpha-olefin/diene interpolymer-substituted carboxylic acid dispersant additives |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0900238A1 (en) |
CA (1) | CA2251599A1 (en) |
WO (1) | WO1997043322A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6295000B1 (en) * | 1997-07-18 | 2001-09-25 | Daimler Benz Aktiengesellschaft | Method for assessing actuations of the accelerator by a vehicle driver to detect nervousness |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114717746B (en) * | 2022-04-12 | 2023-07-04 | 扬州大学 | Preparation method of lead-containing radiation-proof nanofiber felt |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU498559B2 (en) * | 1975-06-25 | 1979-03-15 | Exxon Research And Engineering Company | Lubricating oil concentrate |
US4357250A (en) * | 1978-04-17 | 1982-11-02 | The Lubrizol Corporation | Nitrogen-containing terpolymer-based compositions useful as multi-purpose lubricant additives |
MX172794B (en) * | 1988-08-01 | 1994-01-13 | Exxon Chemical Patents Inc | IMPROVEMENTS IN COMPOSITION OF ADDITIVES DISPERSANT LUBRICATORS BASED ON NOVELTY POLYMERS ETHYLENE ALPHA-OLEFINICOS SUBSTITUTED WITH MONO AND DICARBOXILIC ACIDS AND PROCESS TO PRODUCE THEM |
CA2110649C (en) * | 1992-12-17 | 2004-10-26 | Jacob Emert | Gel-free alpha-olefin dispersant additives useful in oleaginous compositions |
US5674950A (en) * | 1994-03-07 | 1997-10-07 | Exxon Chemical Patents Inc. | Polymers having terminal hydroxyl aldehyde, or alkylamino substitutents and derivatives thereof |
ES2137527T3 (en) * | 1994-06-16 | 1999-12-16 | Exxon Chemical Ltd | MULTIGRADE LUBRICATING COMPOSITIONS THAT DO NOT CONTAIN VISCOSITY MODIFIER. |
-
1996
- 1996-05-16 CA CA002251599A patent/CA2251599A1/en not_active Abandoned
- 1996-05-16 WO PCT/US1996/006993 patent/WO1997043322A1/en not_active Application Discontinuation
- 1996-05-16 EP EP96914644A patent/EP0900238A1/en not_active Withdrawn
Non-Patent Citations (1)
Title |
---|
See references of WO9743322A1 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6295000B1 (en) * | 1997-07-18 | 2001-09-25 | Daimler Benz Aktiengesellschaft | Method for assessing actuations of the accelerator by a vehicle driver to detect nervousness |
Also Published As
Publication number | Publication date |
---|---|
CA2251599A1 (en) | 1997-11-20 |
WO1997043322A1 (en) | 1997-11-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5681799A (en) | Ethylene alpha-olefin/diene interpolymer-substituted carboxylic acid dispersant additives | |
US5266223A (en) | Ethylene alpha-olefin polymer substituted mono-and dicarboxylic acid dispersant additives | |
US5229022A (en) | Ethylene alpha-olefin polymer substituted mono- and dicarboxylic acid dispersant additives (PT-920) | |
EP0353935B1 (en) | Ethylene alpha-olefin polymer substituted mono-and dicarboxylic acid lubricant dispersant additives | |
US5225092A (en) | Ethylene alpha-olefin polymer substituted amine dispersant additives | |
CA2034717C (en) | Derivatized ethylene alpha-olefin polymer useful as multifunctional viscosity index improver additive for oleaginous composition | |
EP0356010B1 (en) | Ethylene alpha-olefin polymer substituted mannich base lubricant dispersant additives | |
US5277833A (en) | Ethylene alpha-olefin polymer substituted mono-and dicarboxylic acid lubricant dispersant additives | |
US5186851A (en) | Ethylene alpha-olefin copolymer substituted mannich base lubricant dispersant additives | |
CA2110649C (en) | Gel-free alpha-olefin dispersant additives useful in oleaginous compositions | |
US5435926A (en) | Ethylene alpha-olefin polymer substituted mono- and dicarboxylic acid dispersant additives | |
EP0440507B1 (en) | Ethylene alpha-olefin copolymer substituted Mannich base lubricant dispersant additives | |
US5663129A (en) | Gel-free ethylene interpolymer dispersant additives useful in oleaginous compositions | |
US5128056A (en) | Ethylene alpha-olefin copolymer substituted amino phenol mannich base lubricant dispersant additives | |
US5345002A (en) | Ethylene alpha-olefin copolymer substituted hydroxy aromatic compounds | |
US5759967A (en) | Ethylene α-olefin/diene interpolymer-substituted carboxylic acid dispersant additives | |
US5268115A (en) | Alkyl-substituted hydroxyaromatic compounds useful as a multifunctional viscosity index improver | |
EP0440505B1 (en) | Ethylene alpha-olefin polymer substituted mannich base useful as multifunctional viscosity index improver | |
US5225091A (en) | Ethylene alpha-olefin polymer substituted thiocarboxylic acid lubricant dispersant additives | |
EP0357217B1 (en) | Ethylene alpha-olefin copolymer substituted amino phenol mannich base lubricant dispersant additives | |
EP0900238A1 (en) | Ethylene/alpha-olefin/diene interpolymer-substituted carboxylic acid dispersant additives | |
KR0134194B1 (en) | Ethylene alpha-olefin polymer substituted mono and dicarboxylic acid dispersant additives |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): BE DE FR GB IT NL |
|
17P | Request for examination filed |
Effective date: 19981214 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 19990415 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: INFINEUM USA L.P. |
|
18D | Application deemed to be withdrawn |
Effective date: 19990826 |