EP0900104A1 - Dispositif pour l'administration de liquides - Google Patents

Dispositif pour l'administration de liquides

Info

Publication number
EP0900104A1
EP0900104A1 EP96913291A EP96913291A EP0900104A1 EP 0900104 A1 EP0900104 A1 EP 0900104A1 EP 96913291 A EP96913291 A EP 96913291A EP 96913291 A EP96913291 A EP 96913291A EP 0900104 A1 EP0900104 A1 EP 0900104A1
Authority
EP
European Patent Office
Prior art keywords
fluid
membrane
base
housing
prestressed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP96913291A
Other languages
German (de)
English (en)
Other versions
EP0900104A4 (fr
Inventor
Marshall S. Kriesel
Steven M. Arnold
James Garrison
Farhad Kazemzadeh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Science Inc
Original Assignee
Science Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Science Inc filed Critical Science Inc
Publication of EP0900104A4 publication Critical patent/EP0900104A4/xx
Publication of EP0900104A1 publication Critical patent/EP0900104A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/168Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
    • A61M5/16886Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body for measuring fluid flow rate, i.e. flowmeters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/145Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons
    • A61M5/148Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons flexible, e.g. independent bags
    • A61M5/152Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons flexible, e.g. independent bags pressurised by contraction of elastic reservoirs

Definitions

  • the present invention relates generally to fluid delivery devices. More particularly, the invention concerns an improved apparatus, including visual flow indicator means, for infusing medicinal agents into an ambulatory patient at specific rates over extended periods of time.
  • the apparatus of the present invention overcomes many of the drawbacks of the prior art by eliminating the bladder and making use of recently developed elastomeric films and similar materials, which, in cooperation with a base, define a fluid chamber that contains the fluid which is to be dispensed.
  • the elastomeric film membrane controllably forces fluid within the chamber into fluid flow channels provided in the base.
  • Patent No. 5,205,820 issued to the present inventor. Therefore, U.S. Patent No. 5,205,820 is hereby incorporated by reference in its entirety as though fully set forth herein.
  • Co-pending USSN 08/046,438 filed by the present inventor on May 18, 1993 also describes various alternate constructions and modified physical embodiments of the invention. This co-pending application is also hereby incorporated by reference in its entirety as though fully set forth herein.
  • the apparatus of the present invention can be used with minimal professional assistance in an alternate health care environment, such as the home.
  • devices of the invention can be comfortably and conveniently removably affixed to the patient's body and can be used for the continuous infusion of antibiotics, hormones, steroids, blood clotting agents, analgesics, and like medicinal agents.
  • the devices can be used for I-N chemotherapy and can accurately deliver fluids to the patient in precisely the correct quantities and at extended microfusion rates over time.
  • One of the embodiments of the invention described in Continuation-In-Part application Serial No. 08/046,438 includes a highly novel, laminate stored energy means made up of a plurality of individual membranes. As before, this unique stored energy means cooperates with the base to define one or more fluid reservoirs or chambers. However, by constructing the stored energy means from a composite of several elements or layers, the elastic characteristics of the stored energy means can be precisely tailored and the stored energy means can be uniquely constructed to function also as a gas permeability valve as well as the means for expelling fluids from the fluid reservoir.
  • This unique, multilayered or gradient construction may permit venting to atmosphere through the membrane surface certain selected, entrained gases or vapors in the reservoir while simultaneously precluding any negative migration of selected atmospheric gases or vapors into the reservoir.
  • the composite is made up of two or more layers of alternating thickness and permeability, and the permeability constants of the individual film layers are pressure dependent, the permeability of the stored energy means is effected and the direction of flow of the permeant through the membrane wall is controlled by the order in which the individual layers or gradations of the composite are assembled.
  • the embodiments of the invention described in Serial No. 08/046,438 also include an embodiment wherein the rate of fluid flowing from the dispensing means of the device is controlled by flow control means disposed intermediate the reservoir outlet and the fluid dispensing port of the device. More particularly, the flow rate control means comprises a fluid flow micro-conduit and a porous member which functions to restrict the flow of fluid between the outlet and the dispensing port.
  • the embodiments of the invention described herein include different forms of flow control means and also include novel flow identification means. Summary of The Invention
  • Another object of the invention is to provide an apparatus which can be factory prefilled with a wide variety of medicinal fluids or one which can readily be filled in the field shortly prior to use.
  • a further object of the invention is to provide a low profile, fluid delivery device of laminate construction which can be manufactured inexpensively in large volume by automated machinery.
  • Another object of the invention is to provide an apparatus of the aforementioned character in which the stored energy source is of a novel laminate construction which can be precisely tailored to deliver fluid from the device at precise rates.
  • Another object of the invention is to provide a method of making a device of the character described in the preceding paragraphs in which the elastomeric membrane is prestessed and then connected to the base in a sealable manner.
  • the fluid delivery apparatus of the present form of the invention comprises three cooperating subassemblies, namely a reservoir assembly, a fluid flow control subassembly and a flow indicator subassembly.
  • the reservoir subassembly which readily lends itself to automated manufacture, is generally similar to that described in copending Serial No. 08/046,438 and includes a base and a stored energy means comprising at least one distendable elastomeric membrane which cooperates with the base to form a fluid reservoir.
  • the fluid flow control subassembly is also similar to that described in Serial No. 08/046,438 in that it comprises a thin permeable flow control membrane which controls the rate of flow of fluid flowing toward the outlet port of the device.
  • the highly novel fluid flow indicator means of the invention comprises a mechanical fluid flow indicator that provides a clear visual indication of normal fluid flow and absence of fluid flow either because the reservoir is empty or because the flow lines are occluded. More particularly, symbols indicating the operating condition of the device are produced by the movement of thin, indicia-carrying films. These films, which comprise a part of the flow indicator means, are shifted by the movement of mechanical actuators which are deflected solely by the fluid pressure within the device.
  • the fluid flow indicator design does not invade the fluid flow path and yet utilizes the same stored energy means to generate fluid pressure that provides for the normal functioning of the device.
  • the fluid flow indicator is highly reliable in operation, can be produced inexpensively, and, because it has very few parts, is easy to manufacture.
  • Figure 1 is a generally perspective top view of one form of the fluid delivery apparatus of the invention.
  • Figure 2 is a generally perspective, bottom view of the apparatus shown in Figure 1.
  • Figure 3A is a generally perspective, exploded view of the downstream portion of one form of the fluid dispensing apparatus of the invention showing the flow indicator means and a portion of the flow control means.
  • Figure 3B is a generally perspective, exploded view of the remainder of the flow control means along with the reservoir subassembly portion of one form of the fluid dispenser apparatus of the invention shown in Figures 1 and 2.
  • Figure 3C is a generally perspective, fragmentary view of a portion of the distendable membrane assembly of the apparatus.
  • Figure 3D is a generally perspective, exploded view of the fluid flow control assembly illustrating its laminate construction.
  • Figure 4 is a top plan view of the apparatus, partly broken away to show internal construction.
  • Figure 5 is a cross-sectional view taken along lines 5-5 of Figure 4.
  • Figure 6 is a cross-sectional view taken along lines 6-6 of Figure 5.
  • Figure 7 is a cross-sectional view taken along lines 7-7 of Figure 5.
  • Figure 8 is a view of the apparatus taken along lines 8-8 of Figure 5.
  • Figure 9 is a cross-sectional view taken along lines 9-9 of Figure 8.
  • Figure 10 is a cross-sectional view taken along lines 10-10 of Figure 8.
  • Figure 11 is a cross-sectional view taken along lines 11-11 of Figure 8.
  • Figure 12 is a generally perspective, exploded view of one form of forward housing portionof the apparatus of the invention which is also shown on the left-hand portion of Figure 3.
  • Figure 13 is a front view of the housing portion.
  • Figure 14 is a cross-sectional view taken along lines 14-14 of Figure 13.
  • Figure 15 is a generally perspective view of the cover for the rate control apparatus of the invention.
  • Figure 16 is a generally perspective, front view of the substrate portion of the rate control apparatus.
  • Figure 17 is a generally perspective rear view of the substrate portion.
  • Figure 18 is a generally perspective view of the output port of the apparatus.
  • Figure 19 is a front view of the output port shown in Figure 18.
  • Figure 20 is a cross-sectional view taken along lines 20-20 of Figure 19.
  • Figure 21 is a front view of the luer valve fitting of the apparatus.
  • Figure 22 is a cross-sectional view taken along lines 22-22 of Figure 21.
  • Figure 23 is an enlarged plan view of the indicia carrying thin films of the apparatus of the invention.
  • Figure 24 is a cross-sectional view similar to Figure 14 showing the indicator means of the invention in its starting configuration.
  • Figure 25 is a fragmentary plan view of the symbol that is viewable by the user when the apparatus is in the configuration shown in Figure 24.
  • Figure 26 is a cross-sectional view similar to Figure 24 but showing the indicator means as it appears when fluid is flowing through the apparatus in a normal fashion.
  • Figure 27 is a fragmentary plan view of the symbol that is viewable by the user when the apparatus is in the configuration shown in Figure 26.
  • Figure 28 is a cross-sectional view similar to Figure 24, but showing the indicator means as it appears when there is a blockage downstream of the indicator means that prevents normal fluid flow.
  • Figure 29 is a fragmentary plan view of the symbol that is viewable by the user when the apparatus is in the configuration shown in Figure 28.
  • Figure 30 is a generally perspective, exploded view of one type of apparatus for carrying out the first step of one form of the method of the invention.
  • Figure 30A is a generally perspective view of another type of apparatus used in accomplishing the method of the invention.
  • Figure 30B is a fragmentary, cross-sectional view of one of the membrane gripping elements of the apparatus of Figure 30A.
  • Figure 31 is a cross-sectional view of the base portion of the device illustrating the second step of one form of the method of the invention.
  • Figure 32 is a generally perspective exploded view showing the next sequential steps of one form of the method of the invention.
  • Figure 33 is a generally perspective exploded view of an apparatus for carrying out the first step of an alternate form of the method of the invention.
  • Figure 34 is a top plan diagrammatic view of a portion of the apparatus depicted generally in Figure 33 showing the tenter frame apparatus of the invention.
  • Figure 34A is an enlarged cross-sectional view taken along lines 34A-34A of Figure 34 showing the membrane gripper means of the tenter frame apparatus.
  • Figure 35 is a generally perspective, exploded view of yet another type of apparatus for carrying out still another form of the method of the invention wherein an elastomeric laminate is formed, which laminate provides the stored energy for expelling fluids from the device.
  • the apparatus comprises three major cooperating subassemblies namely, a reservoir subassembly, a flow rate control subassembly, and a flow indicator subassembly. These subassemblies will be discussed in detail in the paragraphs which follow.
  • this subassembly is similar in many respects to that described in Serial No. 08/046,438 and includes a base assembly 32, a stored energy source, or distendable membrane assembly 34, and a cover 36 for enclosing the stored energy source and the base assembly (see also Figures 1 and
  • the base assembly includes an ullage substrate 38 and a membrane capture housing 40 having a bottom opening 42 which receives the distendable membrane engaging element or protuberance 44 (see also Figure 5).
  • the ullage substrate 38 comprises, in addition to the distendable member engaging protuberance, or ullage, 44, filling means which enables filling of the fluid reservoir which is formed between protuberance 44 and distended membrane 34.
  • This filling means here comprises a fluid inlet 48 provided in a luer valve fitting 50, the character of which will presently be described.
  • Protuberance 44 is provided with a longitudinally extending fluid passageway 52 ( Figure 3B) which communicates with fluid passageways 54 and 56 provided in the base portion 38a of ullage substrate 38 (see also Figures 5 and 7).
  • Base portion 38a of ullage substrate 38 also includes an upstanding tongue 60 which extends about the perimeter of the base portion and is closely receivable within a groove 62 formed in the base of membrane capture housing 40 ( Figure 5).
  • housing 40 is bonded to substrate 38 by any suitable means such as adhesive or sonic bonding.
  • cover 36 is mated with housing 40 in the manner shown in Figure 5 and bonded in place.
  • Cover 36 is preferably constructed from a substantially transparent plastic material which is impermeable to fluids, including gases.
  • the apparatus of this latest embodiment of the invention is adapted to be filled with the selected medicinal fluid either at time of manufacture or in the field as may be desired. Filling is accomplished by introducing fluid under pressure into inlet passageway 48 and thence into reservoir 46 via luer fitting 50.
  • Luer fitting 50 includes a skirt portion 50a, a valve seat 50b and a biasing spring 50c(see also Figure 22).
  • Receivable into valve seat 50b is a ball check valve 68 which will lift from seat 50b against the urging of spring 50c during reservoir filling, but will sealably engage seat 50b after the reservoir has been filled.
  • Inlet 48 is closed by a closure cap 51 prior to and following the filling step.
  • the stored energy means can be in the form of a single prestressed or unstressed isotropic, elastomeric distendable membrane, it is here shown as a laminate assemblage made up of a plurality of initially generally planar distendable elements or films.
  • the stored energy means can be seen to comprise a laminate assemblage made up of individual layers 34, 34a, 34b, 34c, and 34d.
  • Assemblage 34 which is typically prestressed, functions in much the same way as the distendable membranes described in Serial No. 08/046,438 and cooperates with ullage substrate 38 to define a fluid chamber, or reservoir 46.
  • the elastic characteristics of the stored energy means can be precisely tailored in the manner described in Serial No. 08/046,438.
  • the distendable membrane assemblage 34 As previously discussed, as the distendable membrane assemblage 34 is distended by the fluid pressure exerted by the fluid flowing into inlet 48, internal stresses are formed therein which continuously urge the assemblage toward engagement with protuberance 44 as it tends to return toward its original configuration. As the assemblage moves toward protuberance 44, fluid within reservoir 46 will be uniformly and controUably forced outwardly through longitudinally extending passageway 52 in protuberance 44 and then into passageways 54 and 56 of portion 38a of ullage substrate 38. For certain applications it is desirable to provide on one or more layers of the membrane assemblage a surface which is specifically designed to be compatible with the fluid to be delivered. For example, layer 34e can be provided on its underside with a compatibility layer 34f constructed from a co-polyester sold by DuPont under the name and style of HYTREL.
  • this subassembly includes novel flow control means which are disposed externally of reservoir 46 for controlling the rate of fluid flow of fluid from the device.
  • the flow control means comprises a rate control membrane 66 ( Figure 3 A) which is closely received within a circular recess 68 formed in support means shown here as a membrane support structure 70.
  • the downstream wall 72 of recess 68 is provided with fluid distribution means comprising a multiplicity of circumferentially spaced, manifolding stand-off elements 74 against which membrane 66 is held in engagement by a disc-like member 76 ( Figure 3B) which is receivable within recess 68 (see also Figures 16 and 17).
  • member 76 is provided with fluid collection means shown here as a multiplicity of circumferentially spaced, manifolding stand-offs 78 which engage membrane 66 when member 76 is in position within cavity 68.
  • the flow control membrane 66 is bonded at its circumference to member 70 and is securely positioned between stand-offs 74 and 78 which cooperate to define a multiplicity of concentric and radial extending fluid passageways, which function to direct fluid flow through the flow control means.
  • Air within chamber 68 is vented via vent patch 92a and opening 92b ( Figure 3B).
  • flow control 66 here comprises a laminate construction made up of layers 66a, 66b, 66c, 66d, 66e, and 66f. More particularly, layer 66a comprises first filter for initially filtering the fluid; while layer 66b comprises a second filter for providing a second, more refined, filtering of the fluid.
  • Layer 66c is here shown as a first flow rate control membrane for controlling flow at a first rate.
  • Layer 66e is a second flow rate control membrane for controlling flow at a second rate.
  • Disposed intermediate rate control membranes or layers 66c and 66e is a distribution means or porous distribution layer for distributing the fluid flowing through membrane 66c across the surface of membrane 66e.
  • Layer 66f comprises a porous support member for supporting membrane 66e.
  • First and second filters 66a and 66b can be constructed from polyether sulfone sold by Gelman Sciences under the name and style of SUPOR.
  • Flow rate control layers 66c and 66e can be constructed from a porous polycarbonate material available from Poretics Corporation or from Corning Costar Corporation.
  • the distribution or separation layer can be constructed from polypropylene available from Gelman Sciences. It is preferable that the surface and orifice chemistry of each layer of the flow control 66 be rendered hydrophillic.
  • member 76 includes a downwardly extending fluid inlet leg or segment 80 which is provided with a fluid passageway 82. Passageway 82 is adapted to communicate with chamber 68 when member 76 is mated with support structure 70. As best seen in Figure 16, support structure 70 has a centrally disposed recess 84 that receives inlet segment 80.
  • wing-like protuberances 86 are received within spaced-apart, arcuate-shaped cavities 88 formed in the base portion 38a of ullage substrate 38.
  • socket 90 which closely receives a tubular extension 92 formed as a part of inlet segment 80 ( Figure 14).
  • Located proximate the upper edge of support structure 70 are spaced-apart capture grooves 96, which attach cover 36 to member 70.
  • fluid inlet passageway 82 of member 76 is placed in fluid communication with reservoir 46 via passageways 54 and 56.
  • the fluid will flow into passageway 54, next into passageway 56, then into passageway 82 of member 76, and finally into chamber 68 formed in member 70.
  • the fluid under pressure flows into the upstream portion of chamber 68 behind membrane 66, it will be distributed by stand-offs 78 so that it will uniformly flow through membrane 66 and toward the fluid outlet port of the flow control subassembly.
  • the outlet port comprises an assembly 87 which is receivable in a cavity 73 formed in the back of downstream wall 70a of substrate 70.
  • Assembly 87 includes a fluid outlet 90 and an internal chamber 92, the purpose of which will presently be described.
  • a flexible strain relief tube 91 is sealably receivable over the extremity of assembly 87 ( Figure 10) and a centrally disposed microbore delivery tube 91a is telescopically received internally of the extremity in the manner shown in Figure 10.
  • air therewithin can be vented to atmosphere via vent patch 92a.
  • the flow control means can also comprise an assemblage of a plurality of layers of permeable materials, P-l, P-2, and P-3 of the character seen in Figure 31 of U. S. Patent No. 5,205,820.
  • These layers which may be composites, thin films, or porous substrates, may be constructed of any one of the materials described in U.S. Patent No. 5,205,820 so that the fluid pressure flow characteristics of the assemblage can be precisely tailored for the particular medicinal or other fluid being dispensed.
  • the flow indicator means here comprises an indicator base or platform 100, a support or lens plate 102, and a hollow housing 104 within which the platform and the support plate are mounted.
  • plate 102 has a viewing lens 102a which indexes with an aperture 104a provided in housing 104.
  • first and second indicia-carrying means Disposed between platform 100 and plate 102 are first and second indicia-carrying means shown here as thin films. These films identified here as 106 and 108, are in intimate contact and are constructed from a substantially transparent, flexible polymer material such as mylar.
  • the indicia-carrying means need not be thin films, but rather can be any type of surface presenting member upon which indicia can be provided.
  • the downstream surface of the inferior or first film 106 is printed with three integrated symbols 107 ( Figure 23), namely, a blue circle 107a ( Figure 25), a green arrow 107b ( Figure 27), and a red X 107c ( Figure 29), each consisting of diagonal stripes of color printed in an alternating pattern (blue, green, red, blue, green red, and so on.
  • the superior, or second film 108 serves as a "mask” over the inferior film 106 and is printed with a pattern of diagonal alternating clear and opaque strips 108a that occur in a 1:2 ratio.
  • the printed ratio of the superior "mask” allows only one colored symbol to appear at a time when viewed through viewing lens 102a in plate 102.
  • the inferior and superior films are provided at their opposite ends with apertures 110 which receive retention pins 112 provided on platform 100 ( Figure 12) which permit attachment of the film to platform 100 in a manner such that the non-patterned portions of each film covers actuator slots 114 and 116 provided proximate each end of platform 100 with the patterned portions of both the superior and inferior films being maintained in the index.
  • each thin film is able to move in opposing directions parallel to the film plane with its range of motion limited to one axis in the film plane by edge guides 118 provided on platform 100 ( Figure 12).
  • edge guides 118 provided on platform 100 ( Figure 12).
  • the visible symbol pattern changes due to the transverse displacement of the patterns imprinted thereon.
  • support plate 102 is provided with transversely spaced, channel-like depressions 120 and 122 which index with slots 114 and 116 respectively when the components are assembled in the manner shown in Figures 9 and 14.
  • mechanical actuator means Aligned with the upstream side of slots 114 and 116 are mechanical actuator means, here provided as mechanical actuators or elastomeric elements 124 and 126. More particularly the first actuator element 124 aligns with slot 114 and the second actuator element 126 aligns with slot 116.
  • the mechanical actuator means are deflected from their initial configuration whenever there is sufficient fluid pressure present within the fluid flow path to cause their outward deflection toward thin films 106 and 108.
  • the first mechanical actuator element 124 is deflected by fluid pressure of reservoir 46. More particularly, when there is sufficient fluid pressure in the fluid reservoir and fluid is being delivered by the stored energy means of the device, the first mechanical actuator means is deflected outwardly so as to urge the non-patterned portion 109 of indicator film 108 into expansion channel 122. As the film arches into channel 122, the printed portion of the film is transversely displaced a specific distance. This film displacement re-aligns the printed symbol patterns on the inferior film 106 with the mask pattern on the superior film 108 and results in a change of the symbol (in this case an arrow) that is visible through the support plate view aperture 102a (see Figures 1, 26 and 27).
  • both the first and second mechanical elastomeric actuator elements 124 and 126 are inflated and deflected outwardly toward their respective extension channels when the device is filled and primed but not in a state of delivery or when there is a build up of fluid pressure during delivery that is caused by blockage of the delivery line downstream from second mechanical actuator element 126. While element 124 can be deflected by normal line pressure, element 126 is deflected only by pressure buildup resulting from the downstream blockage.
  • both the superior and inferior films are displaced transversely to a second position revealing a second symbol, as for example, an X as viewed through the viewing aperture of the support plate (see Figures 28 and 29).
  • a third alignment of symbol patterns as shown in Figures 24 and 25 is visible when the device is in an unfilled state or when the delivery line is open, the reservoir is empty and fluid delivery to the patient has been completed.
  • the inferior and superior films are not transversely displaced and thus exhibit a third combination of patterns resulting in a third symbol as, for example, a circle being visible through the viewing aperture of the support plate (see Figure 25).
  • Actuating elements 124 and 126 can be precisely tailored to deflect under various pressures thereby permitting great apparatus versatility.
  • the fluid to be dispensed is introduced into reservoir 46 via a fluid inlet conduit 49a ( Figure 1) which is connected to luer fitting 50. Fluid flowing into the fitting lifts check valve ball 68 against the urging of spring 50c and causes the distendable membrane assembly to be displaced away from ullage protuberance 44 in the manner shown in Figure 5. Air within housing 40 and cover 36 will be suitably vented to at ⁇ mosphere via a vent 41 which is receivable within a vent aperture 41a provided in housing 40 ( Figure 3B). During the filling step, the gaseous component of the fluid is vented to atmosphere via a vent patch 43 provided in portion 38a of substrate 38 ( Figures 3B and 5).
  • the prestressed membrane assembly will tend to return toward a less distended configuration causing fluid within the reservoir to flow outwardly of passageway 52 and into passageways 54 and 56.
  • the fluid under pressure will next flow into passageway 82 of disc-shaped member 76.
  • a portion of the fluid entering chamber 68 of member 70 from passageway 82 and upstream of membrane 66 can by pass flow rate control member 66 and flow directly toward an ear-shaped extension 76a provided on member 76 via flow passageways 76b and 76c. From passageway 76c, the fluid will flow under pressure into a passageway 70a formed in substrate 70 and toward passageway outlet 70b.
  • passageway 70a extends through a protuberance 71 formed on end wall 70c of substrate 70.
  • This construction permits the fluid flowing into ear-shaped protuberance 76a to flow through passageway 70a and impinge directly upon flow indicator element 124 which sealably engages the protuberance, causing it to deform outwardly in a manner to force portion 109 of indicator film 108 to arch into expansion channel 122 ( Figure 26). This, in turn, will cause transverse displacement of indicator film 108 in the manner previously described.
  • fluid flowing through passageway 82 of disc-shaped member 76 will also be distributed over the upstream face of the rate control membrane 66 by the fluid distribution means, or protuberances 78 and will pass through the membrane at a predetermined controlled rate.
  • the fluid flowing through the rate control membrane will be collected by the fluid collection means or protuberance 74 and then will flow via passageway 85 into passageway 92 of outlet port assembly 87.
  • the fluid will then flow outwardly of the device through fluid outlet 90 to which an infusion line 93 is connected. ( Figures 1, 18, 19, and 20). It is to be observed that a portion of the fluid flowing into outlet port assembly 87 is free to flow through a passageway 92a provided in a protruding portion 87a thereof.
  • film 108 will also return to its at rest position thereby once again causing the "O" symbol to be viewable through the viewing lens.
  • This initial step of the method comprises simultaneous stretching the elastomeric membrane substantially uniformly, differentially, uniaxially, or biaxially using a stretching means of the general character shown in Figure 30.
  • This membrane stretching means here comprises a stretching, or elongation fixture 150 which functions to controUably stretch the elastomeric membrane 34 in the manner shown in Figure 30.
  • Stretching fixture 150 includes four circumferentially spaced membrane gripping assemblies 154, each having gripping elements 156 for gripping the edges of the elastomeric, isotropic membrane 34.
  • Each of the gripping assemblies 154 is affixed to a slide block 158 which is slidably movable along a pair of tracks 160 by means of a screw assembly 162 which is carried by an end plate 160a provided on tracks 160.
  • Each screw assembly 162 comprises a threaded rod 162a, one end of which is connected to a slide block 158. As the threaded rod is rotated by means of a handle 162b, the slide block, along with its associated gripping element 156, will move outwardly relative to the center of membrane 34 causing it to extend outwardly.
  • a manual vernier 166 is provided on each screw assembly for indicating the extent of movement of the slide block relative to the membrane.
  • This apparatus also includes a membrane stretching fixture 167 which functions to controUably radially stretch the elastomeric membrane 34 in the manner illustrated in Figure 30a.
  • Stretching fixture 167 includes a plurality of circumferentially spaced mechanically actuated membrane gripping assemblies 171, each having gripping elements 171a ( Figure 30B) for gripping the edges of the isotropic membrane.
  • Each of the gripping assemblies 171 is mounted on a support table "T" , which also supports the mechanical equipment for operating assemblies 171. This type of equipment is of a character well known to those skilled in the art. As the gripping assemblies are actuated, the gripping elements will move radially outwardly relative to the center of membrane 34 causing it to extend outwardly a predetermined amount.
  • a centrally disposed sonic welding apparatus 173 Surrounding the sonic welder are vacuum operated article pick-up devices 174a, 174b, and 174c which can be used to position the cover portion of the fluid delivery devices relative to the membrane during the assembly operation.
  • Each of these pick-up devices includes a gripping member 174d which is rotatable about a support shaft 174e.
  • the next step in the method of the invention comprises affixing the prestressed membrane 34 to the periphery of the base portion 38a of ullage substrate 38. This is accomplished by moving capture housing 40 downwardly relative to base portion 38a in a manner such that prestressed membrane 34 will be securely clamped between the peripheral portions of base 38a and the peripheral portion of capture housing 40. As the capture housing is moved toward the base, which is typically supported beneath membrane 34, the membrane will engage and conform to the ullage defining means or protuberance 44 in the manner illustrated in Figure 31 (see also Figure 3B).
  • capture housing 40 as well as membrane 34, can be interconnected with base portion 38a in any suitable manner well known to those skilled in the art, such as adhesive or sonic bonding.
  • base portion 38a is provided with a capture groove 59 and an adjacent tongue 60.
  • Capture housing 40 is provided with a capture tongue 61 and a groove 62 which closely receives tongue 60 as the capture housing moves into engagement with base portion 38a in the manner shown in Figures 5, 6, and 31.
  • Base portion 38a is also provided with an upstanding membrane cutting means or protuberance 155 which circumscribes tongue 60 and functions to cleanly cut membrane 34 upon capture housing 40 engaging base portion 38a.
  • Protuberance 155 also uniquely functions as an energy director for sonic weldment of housing 40 to base 38a.
  • the capture housing can be sonically welded to the base portion in the proximity of protuberance 155 through use of a sonic welder 173 ( Figure 30A) by techniques well understood by those skilled in the art. After the sonic welding step, the capture plate and membrane are securely, sealably interconnected with the base portion. Manipulation of the capture housing can be accomplished using the pick-up devices shown in Figure 30A when this type of fixture is used.
  • cover 36 is connected to base assembly 175 to form a fluid delivery reservoir assembly 177 of the character depicted in Figure 32.
  • Cover 36 can be interconnected with base assembly 175 by any suitable means such as adhesive bonding or sonic welding.
  • the next step in the present form of the method of the invention is to connect support structure 70 of the rate control assembly of the invention with fluid delivery reservoir assembly 177.
  • This step is accomplished in the manner previously described herein by inserting wings 86 of support 70 into the wing-receiving apertures 88 formed in base portion 38a.
  • wings 86 are secured in place by any suitable bonding means such as adhesive bonding or sonic welding to form the controlled fluid delivery subassembly 179 ( Figure 32).
  • the final step in this form of the method of the invention comprises interconnecting housing 104 of the indicator assembly 181 with the control delivery assembly 179.
  • the elastomeric membrane which is to be interconnected with base 38a, comprises a length of elastomeric membrane 34a that is controUably removed from a first roll 183.
  • Roll 183 comprises a long length of elastomeric membrane material that has been wound upon a spindle 185 which is suitably mounted for rotation about its transverse axis so that the membrane material can be controUably unrolled therefrom.
  • the biaxial stretching means can take several forms, but preferably comprises a tenter apparatus 188 of the general character illustrated in Figure 34. While a number of different types of tenter apparatus have been suggested in the past and their design and operation is well known to those skilled in the art, a tenter apparatus of the general character described in German patent 1,504,479 issued to Erwin Meeting can be used in modified form to accomplish the biaxial stretching step of the invention.
  • the stretching ratios can be precisely tailored to each axis to provide the desired initial strain energy density and extension pattern of the distendable membrane.
  • the extension values for the MDO axis may be different than the extension values for the TDO axis. It is to be appreciated, however, that in the same instances, no prestretch of the membrane will be desired and the tenter frame apparatus will not be used.
  • the distendable membrane After the distendable membrane has been appropriately stretched to produce a prestressed membrane 34a of the desired biaxial dimension (Figure 33), it is positioned over the upper surface of base portion 38a. This done, capture housing 40 is placed over membrane 34a and base portion 38a in a manner to urge a peripheral portion of the prestressed membrane into engagement with base 38a.
  • the prestressed membrane is cut and then, along with capture housing 40, is affixed to base 38a by any suitable bonding technique such as mechanical or adhesive bonding or sonic welding. Following the cutting step the remaining elastomeric membrane material is wound about a take-up drum 190 in the manner shown in Figure 33 for later salvage.
  • the prestressed membrane can be of considerable width so that a plurality of side-by-side housings 40 can be placed over the membrane simultaneously and the membrane can then be cut at a plurality of side-by-side locations. The housings and the cut membranes can then be simultaneously joined with a plurality of bases 38a disposed in a side-by-side relationship beneath the membrane.
  • the stored energy source which is to be interconnected with the base 38a, comprises a length of elastomeric laminate 34b that is formed by controUably removing lengths of membrane material from three rolls of material.
  • These rolls designated as 200, 202, and 204, each comprise a long length of elastomeric membrane material that has been wound upon a spindle which is suitably mounted for rotation about its transverse axis so that the membrane material can be controUably unrolled from each of the rolls.
  • the biaxial stretching means can take several forms, but preferably comprises a tenter apparatus 188 of the general character illustrated in Figure 34.
  • the membrane laminate 34b is formed in the manner shown in Figure 35, it is introduced into the tenter apparatus 188 so that the edges of the laminate are gripped by gripping clamps 187.
  • these gripping clamps are, in turn, associated with elongated endless chain assemblies "C” and guide rails "R” so that as the chains move about rotating sprockets "S”, and differential screws "DS", the clamps diverge so as to controUably impart biaxial stretching forces on the laminate causing it to be controUably biaxially stretched.
  • the laminate After the distendable elastomeric membrane laminate has been appropriately stretched to produce the prestressed laminate 34b the laminate is positioned over the upper surface of base portion 38a. This done, capture housing 40 is placed over the laminate and base portion 38a in a manner to urge a peripheral portion of the laminate into engagement with base 38a. Next the laminate is cut and then, along with capture housing 40, is affixed to base 38a in the manner previously described. Following the cutting step, the remaining elastomeric membrane laminate material is wound about a take-up drum 190 for later salvage.

Landscapes

  • Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Anesthesiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)
  • External Artificial Organs (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

L'invention se rapporte à un appareil (30) qui permet d'administrer avec précision par perfusion des agents médicinaux à un patient ambulatoire, selon des débits spécifiques et sur des durées données. L'appareil (30) présente une structure stratifiée compacte à profil bas et comporte une membrane élastique (34) pouvant être distendue (34) et qui, avec une mince base plane (32) définit un compartiment (46) de liquide pourvu d'un orifice de sortie de liquide. Dans le compartiment (46) de liquide se trouve une pièce (66) perméable aux liquides qui régule avec précision le débit du liquide par l'orifice de sortie de liquide. L'appareil (30) comporte également un indicateur (104) d'écoulement inédit qui donne une indication visuelle clairement lisible de l'écoulement du liquide à travers l'appareil (30).
EP96913291A 1995-05-01 1996-05-01 Dispositif pour l'administration de liquides Withdrawn EP0900104A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US43222195A 1995-05-01 1995-05-01
US430221 1995-05-01
PCT/US1996/006047 WO1996034651A1 (fr) 1995-05-01 1996-05-01 Dispositif pour l'administration de liquides

Publications (2)

Publication Number Publication Date
EP0900104A4 EP0900104A4 (fr) 1999-03-10
EP0900104A1 true EP0900104A1 (fr) 1999-03-10

Family

ID=23706592

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96913291A Withdrawn EP0900104A1 (fr) 1995-05-01 1996-05-01 Dispositif pour l'administration de liquides

Country Status (6)

Country Link
EP (1) EP0900104A1 (fr)
JP (1) JP2002514943A (fr)
AU (1) AU722783B2 (fr)
BR (1) BR9608383A (fr)
MX (1) MX9708395A (fr)
WO (1) WO1996034651A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU5803698A (en) * 1996-12-18 1998-07-15 Science Incorporated Fluid delivery apparatus
IL120693A (en) 1997-04-17 2001-11-25 Teva Medical Ltd Flow indicators for ambulatory infusion
EP3503944A1 (fr) 2016-08-24 2019-07-03 Avent, Inc. Indicateur de débit pour pompe de perfusion.

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3675722A (en) * 1971-04-05 1972-07-11 Gen Fire Extinguisher Corp Pressure indicator
WO1995009026A1 (fr) * 1993-09-29 1995-04-06 Science Incorporated Appareil pour administrer des fluides

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4968301A (en) * 1989-02-02 1990-11-06 Imed Corporation Disposable infusion device
DE3915251A1 (de) * 1989-05-10 1990-11-22 Annemarie Schloegl Ges M B H Implantierbare vorrichtung zur dosierten abgabe von medikamenten in den menschlichen koerper
US5205820A (en) * 1989-06-16 1993-04-27 Science, Incorporated Fluid delivery apparatus
US5176641A (en) * 1991-07-08 1993-01-05 Infusaid, Inc. Implantable drug infusion reservoir having fluid impelling resilient foam member
US5167631A (en) * 1991-09-17 1992-12-01 Imed Corporation Portable infusion device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3675722A (en) * 1971-04-05 1972-07-11 Gen Fire Extinguisher Corp Pressure indicator
WO1995009026A1 (fr) * 1993-09-29 1995-04-06 Science Incorporated Appareil pour administrer des fluides

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO9634651A1 *

Also Published As

Publication number Publication date
MX9708395A (es) 1998-10-31
WO1996034651A1 (fr) 1996-11-07
BR9608383A (pt) 1999-05-04
AU5634496A (en) 1996-11-21
AU722783B2 (en) 2000-08-10
EP0900104A4 (fr) 1999-03-10
JP2002514943A (ja) 2002-05-21

Similar Documents

Publication Publication Date Title
US5649910A (en) Fluid delivery apparatus and method of making same
US6010482A (en) Apparatus for indicating fluid pressure in a conduit
US6293159B1 (en) Fluid delivery apparatus with reservoir fill assembly
US5962794A (en) Fluid delivery apparatus with reservior fill assembly
US6159180A (en) Fluid delivery apparatus with flow indicator and vial fill
US6394980B2 (en) Fluid delivery apparatus with flow indicator and vial fill
US6086561A (en) Fluid delivery apparatus with reservoir fill assembly
US6183441B1 (en) Variable rate infusion apparatus with indicator and adjustable rate control
US6645175B2 (en) Variable rate infusion apparatus with indicator and adjustable rate control
US6355019B1 (en) Variable rate infusion apparatus with indicator and adjustable rate control
US6090071A (en) Fluid dispenser with fill adapter
US5656032A (en) Fluid delivery apparatus and method of making same
EP0424494B1 (fr) Injecteur de doses continues et de bolees
US5980489A (en) Fluid dispenser with fill adapter
WO2007095297A2 (fr) Appareil d'administration de fluides avec contrôle de débit
US6231545B1 (en) Variable rate infusion apparatus with indicator and adjustable rate control
AU722783B2 (en) Fluid delivery apparatus and method of making same
US20010039397A1 (en) Fluid delivery apparatus with flow indicator and vial fill
WO1998026834A1 (fr) Dispositif d'administration de fluide
CA2219884A1 (fr) Dispositif pour l'administration de liquides
EP0824674B1 (fr) Appareil indicateur d'ecoulement de fluide
AU5848490A (en) Fluid delivery apparatus

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19971126

A4 Supplementary search report drawn up and despatched

Effective date: 19980623

AK Designated contracting states

Kind code of ref document: A4

Designated state(s): AT BE CH DE DK ES FR GB IT LI NL SE

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 20010517

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20021119