EP0898695A1 - Triaxial laser rate gyro symmetrized with respect to its axis of activation - Google Patents

Triaxial laser rate gyro symmetrized with respect to its axis of activation

Info

Publication number
EP0898695A1
EP0898695A1 EP98905482A EP98905482A EP0898695A1 EP 0898695 A1 EP0898695 A1 EP 0898695A1 EP 98905482 A EP98905482 A EP 98905482A EP 98905482 A EP98905482 A EP 98905482A EP 0898695 A1 EP0898695 A1 EP 0898695A1
Authority
EP
European Patent Office
Prior art keywords
axis
cavity
capillaries
mirrors
revolution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP98905482A
Other languages
German (de)
French (fr)
Inventor
Eric Thomson-CSF S.C.P.I. HEMERY
Etienne Thomson-CSF S.C.P.I. BONNAUDET
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales Avionics SAS
Original Assignee
Thales Avionics SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales Avionics SAS filed Critical Thales Avionics SAS
Publication of EP0898695A1 publication Critical patent/EP0898695A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/58Turn-sensitive devices without moving masses
    • G01C19/64Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams
    • G01C19/66Ring laser gyrometers
    • G01C19/668Assemblies for measuring along different axes, e.g. triads

Definitions

  • the subject of the present invention is a triaxial laser gyrometer symmetrized with respect to its cathode axis and to its activation axis.
  • a laser gyrometer with a monobloc optic comprising an optical block, for example made of quartz or Zerodur, comprising three resonant optical cavities (one per detection axis) intercommunicating, for example of the type described in the patent FR No 80 06298, filed on March 21, 1980 on behalf of the French Society of Equipment for Air Navigation (SFENA), sold to Sextant Avionique.
  • SFENA French Society of Equipment for Air Navigation
  • all of these three cavities form a regular octahedron having eight triangular faces: the cavities each have a square shape and extend in three orthogonal planes (respectively perpendicular to the three sensitive axes). These cavities are arranged so that each of the angles of one cavity coincides and communicates with the angle of another cavity.
  • a mirror associated with each pair of coincident angles is oriented so as to be used by the two cavities forming said pair.
  • one of these mirrors called a reading mirror
  • a mixing prism which makes it possible to generate an interference phenomenon making it possible to detect the movements of the gyrometer and therefore of the vehicle which supports it.
  • Another mirror called servo mirror, is mounted on a transducer support so as to be able to slave the length of the cavity in order to obtain maximum output power.
  • Each of the cavities which contain a gas under low pressure is provided with at least one cathode and two anodes suitably placed, so as to cause an excitation of the electrons of the atoms of the gas and to produce inside the cavity, two beams of counterpropagative laser radiation which propagate in opposite directions along the optical path.
  • two symmetrical discharges are generated in the cavity thanks to a cathode whose cathodic housing is in commumcation, thanks to two capillaries, with the two opposite regions of the cavity where wishes to obtain the two discharges.
  • a single cathode is used which connects the three cavities by means of three cathode capillaries.
  • this cathode constitutes a concentrated heat source on the same side of the optical unit and therefore generates, in this unit, a thermal gradient disturbing the flows of the gas flows.
  • this problem is added that due to the fact that there is a pressure difference between the two ends of the discharge and, in particular, between the anode and the gas reserve constituted by the cathode.
  • the invention more particularly aims to improve the performance of this type of gyrometer.
  • FIG. 1 is a diagrammatic representation, in perspective, of the cavities of a three-piece mono-block laser gyrometer with six mirrors according to the invention
  • FIG. 2 shows a cavity of the gyrometer shown in FIG. 1 with its connections to the cathode and to the compensation chamber as well as its two anodes;
  • Figure 3 shows, in perspective, the optical unit of a gyrometer with the IFe »m m proceedingsfc.annniiscmmpe r dT'anrcttiiv / a ⁇ irtiinonn n quuii l luuii p es ⁇ tt aç ⁇ snorcviitig
  • the gyrometer comprises an optical block 1 of octahedral shape with chamfered edges (FIG. 3) inside which are produced, in three orthogonal planes, three cavities B, C, D comprising the capillary segments Bj to B 4 - C. to C 4 - D. to D 4 and each delimiting an optical path of square shape.
  • cavities B, C, D are arranged so that each of the angles of one cavity coincides and communicates with the angle of another cavity. They therefore define, in the interior space of the block, a regular octahedron having eight triangular faces parallel to those of the block and six vertices at the level of which are placed six respective mirrors M., M 2 , M 3 , M, M 5 , M 6 which extend respectively in the planes of the faces of a cube in which the octahedron is located.
  • the mirrors Mi, M 2 , M 3 are reading mirrors
  • the mirrors M 4 , M 5 , M 6 are servo mirrors associated with piezoelectric transducers making it possible to adjust the lengths cavities.
  • the gyrometer To generate the pairs of counterpropagative beams inside the three cavities B, C, D, the gyrometer includes a cathode K and six anodes A.
  • the cathode K equips a cathode chamber CK whose axis ⁇ is perpendicular to the cathode face F. of the octahedron delimited by the capillary segments B 3 , C 3 , D 3 and passes through the center of this face F ..
  • This chamber CK which is external to the octahedral volume defined by the cavities B, C, D, communicates with these at the level of the three servo mirrors M 4 , M 5 , M 6 which define the face F., via three respective capillaries CK 1; CK 2 , CK 3 .
  • These three cathodic capillaries are arranged symmetrically according to a symmetry of revolution of order 3 around the axis ⁇ (that is to say are deduced from each other by a rotation of 120 ° around the axis ⁇ ), which is , as can be seen a trisector of the cube enveloping the optical unit 1 of octahedral shape and having the mirrors at the centers of its faces.
  • capillaries CK., CK 2 , CK 3 (or cathode outlets) allow the ionization of the active capillaries between cathode K and anode A.
  • the six anodes A are arranged so as to obtain in each cavity a pair of discharge zones "active zones" symmetrical with respect to an axis of symmetry distinct from the axis of symmetry ⁇ .
  • Each pair of anodes A extends in the plane of the corresponding cavity B, C, D.
  • Thermal and thermodynamic balancing is obtained here by means of a balancing chamber CE of cylindrical shape, substantially identical to that of the cathode chamber CK and arranged coaxially, relatively to the latter, outside the octahedral volume opposite of the face F 2 opposite the face F. (these two faces being perpendicular to the axis ⁇ ).
  • This face F 2 is delimited by three capillary segments B., C h D. which each have in their central region a diaphragm DC.
  • These three DC diaphragms are arranged symmetrically, according to a symmetry of revolution of order 3 by relative to the axis ⁇ and are deduced from each other by a rotation of 120 ° around this axis of revolution ⁇ ..
  • the balancing chamber CE communicates with the three cavities B, C, D at the level of the three reading mirrors M 1 ⁇ M 2 , M 3 which define the face F 2 , by means of three balancing capillaries CE., CE 2 , CE 3 arranged symmetrically, according to a symmetry of revolution of order 3 with respect to the axis ⁇ and are deduced from each other by a rotation of 120 ° around this axis of revolution ⁇ .
  • the three capillaries CE., CE 2 , CE 3 can be arranged in the same plane perpendicular to the axis ⁇ . The same is true for the three capillaries CK., CK 2 , CK 3 .
  • the balancing chamber CE achieves a pressure balance, on the anode side A of each of the six active zones.
  • the assembly comprising the cathode chamber CK and the three capillaries CK., CK 2 , CK 3 which are associated with it ensures, meanwhile, the pressure equalization of the six active zones, cathode side K.
  • the six active zones are subjected to the same pressure difference and give rise to the same flows, even in the case where these flows are disturbed by thermal gradients, which are inimited for the reasons described above.
  • the balancing chamber may include means making it possible to obtain a Getter effect, or even to exercise a thermal compensation heating of the block.
  • the optical unit of the gyroscope is mounted on an activation mechanism in such a way that the axis of symmetry of revolution ⁇ is coincident with the axis of activation of the gyrometer.
  • the activation mechanism firstly comprises an activation wheel R. comprising two coaxial rings CA., CA 2 connected to each other by a plurality of radial fins L. These fins L comprise a piezoelectric motor and detection element connected to an amplifier so as to cause an alternating rotational movement of one of the rings CA 2 relative to the other CA ..
  • the optical unit 1 is fixed to the central crown CA 2 (activation crown) of the activation mechanism is carried out by means of a fixing crown CF l5 substantially of the same diameter as the activation crown CA 2 on which it can be assembled coaxially by screwing.
  • This CF fixing crown which is intended to be arranged coaxially with the cathode K, comprises three pairs of bevelled wedges (not visible) located at 120 ° from one another, and intended to come respectively to stick on the central regions of the chamfered edges surrounding the face F. of the block.
  • the activation mechanism also comprises a balancing wheel R 2 comprising two coaxial rings CA '., CA' 2 connected to each other by a plurality of flexible radial fins L '.
  • the crown CA ' 2 is fixed to the optical unit 1 (opposite its equatorial plane relative to the activation wheel R.) is carried out by means of a crown CF 2 fastener of substantially the same diameter as the CF crown. and identical to the crown CA ' 2 on which it can be assembled coaxially using screws.
  • This CF 2 fixing ring which is intended to be arranged coaxially with the balancing chamber CE comprises three pairs of beveled shims CB, CB ′ located at 120 ° from one another and intended to be bonded respectively to the central regions of the chamfered edges surrounding the face F 2 .
  • This method of attachment has the advantage of considerably reducing the tearing stresses between the shims CB and CB 'and the optical unit during the latter's rotational drive.
  • the CA crowns. and that'. of the two wheels R l5 R 2 may be secured to one another. Thanks to these arrangements, an excellent balancing of the optical unit 1 is obtained and a corresponding reduction of the conical movement (this is already considerably reduced thanks to the fact that the center of gravity and the center of inertia are on the axis d 'activation).
  • the axis ⁇ of the optical unit will be vertical. Indeed, in this case, the gas flows as well as the thermal gradients remain perfectly symmetrical and therefore the effects induced on the false zero are zero.

Abstract

According to the invention, the rate gyro contains, within a single lamp, three square-shaped optical cavities (B, C, D) arranged so that each of the angles of a cavity (B, C, D) coincides and communicates with the angle of another cavity. A control mirror (M4 to M6) or reading mirror (M1 to M3) is connected to each pair of coinciding angles; the three cavities (B, C, D) communicate with a cathodic chamber (CK) by means of three cathodic capillaries (CK1 to CK3), and with an balance chamber (CE) by means of three balance capillaries (CE1 to CE3). The control mirrors (M4 to M6), reading mirrors (M1 to M3), cathodic capillaries (CK1 to CK3), balance capillaries (CE1 to CE3), and anodes are symmetric amongst themselves on the basis of 3-fold rotational symmetry about the axis of activation Δ (i.e. they derive themselves from one another by rotating 120° about the axis Δ).

Description

GYROMETRE LASER TRIAXIAL SYMETRISE PAR RAPPORT A SYMMETRIC TRIAXIAL LASER GYROMETER RELATIVE TO
SON AXE D'ACTIVATIONHIS AREA OF ACTIVATION
La présente invention a pour objet un gyromètre laser triaxial symétrisé par rapport à son axe cathode et à son axe d'activation.The subject of the present invention is a triaxial laser gyrometer symmetrized with respect to its cathode axis and to its activation axis.
Elle concerne plus particulièrement un gyromètre laser à optique monobloc comportant un bloc optique, par exemple en quartz ou en Zérodur, comprenant trois cavités optiques résonnantes (une par axe de détection) intercommunicantes, par exemple du type de celui qui se trouve décrit dans le brevet FR No 80 06298, déposé le 21 mars 1980 au nom de la Société Française d'Equipements pour la Navigation Aérienne (S.F.E.N.A.), cédé à Sextant Avionique. Dans cet exemple, l'ensemble de ces trois cavités forme un octaèdre régulier présentant huit faces triangulaires : les cavités présentent chacune une forme carrée et s'étendent dans trois plans orthogonaux (respectivement perpendiculaires aux trois axes sensibles). Ces cavités sont agencées de manière à ce que chacun des angles d'une cavité coïncide et communique avec l'angle d'une autre cavité. Un miroir associé à chaque couple d'angles en coïncidence est orienté de manière à être utilisé par les deux cavités formant ledit couple. Dans chaque cavité l'un de ces miroirs, dit miroir de lecture, est associé à un prisme mélangeur qui permet d'engendrer un phénomène d'interférences permettant de détecter les mouvements du gyromètre et donc du véhicule qui le supporte. Un autre miroir, dit miroir d'asservissement, est monté sur un support transducteur de manière à pouvoir asservir la longueur de la cavité en vue d'obtenir une puissance de sortie maximum. Chacune des cavités qui renferment un gaz sous faible pression est munie d'au moins une cathode et de deux anodes convenablement placées, de manière à provoquer une excitation des électrons des atomes du gaz et à produire à l'intérieur de la cavité, deux faisceaux de rayonnement laser contrapropagatifs qui se propagent en sens inverse le long du parcours optique. Pour compenser l'écart de fréquence entre les deux ondes contrapropagatives, on engendre deux décharges symétriques dans la cavité grâce à une cathode dont le logement cathodique est en commumcation, grâce à deux capillaires, avec les deux régions opposées de la cavité où l'on souhaite obtenir les deux décharges.It relates more particularly to a laser gyrometer with a monobloc optic comprising an optical block, for example made of quartz or Zerodur, comprising three resonant optical cavities (one per detection axis) intercommunicating, for example of the type described in the patent FR No 80 06298, filed on March 21, 1980 on behalf of the French Society of Equipment for Air Navigation (SFENA), sold to Sextant Avionique. In this example, all of these three cavities form a regular octahedron having eight triangular faces: the cavities each have a square shape and extend in three orthogonal planes (respectively perpendicular to the three sensitive axes). These cavities are arranged so that each of the angles of one cavity coincides and communicates with the angle of another cavity. A mirror associated with each pair of coincident angles is oriented so as to be used by the two cavities forming said pair. In each cavity, one of these mirrors, called a reading mirror, is associated with a mixing prism which makes it possible to generate an interference phenomenon making it possible to detect the movements of the gyrometer and therefore of the vehicle which supports it. Another mirror, called servo mirror, is mounted on a transducer support so as to be able to slave the length of the cavity in order to obtain maximum output power. Each of the cavities which contain a gas under low pressure is provided with at least one cathode and two anodes suitably placed, so as to cause an excitation of the electrons of the atoms of the gas and to produce inside the cavity, two beams of counterpropagative laser radiation which propagate in opposite directions along the optical path. To compensate for the frequency difference between the two counterpropagative waves, two symmetrical discharges are generated in the cavity thanks to a cathode whose cathodic housing is in commumcation, thanks to two capillaries, with the two opposite regions of the cavity where wishes to obtain the two discharges.
En fait, dans un gyromètre triaxe du type susdit, on utilise une seule cathode reliant les trois cavités par l'intermédiaire de trois capillaires cathodiques.In fact, in a triaxial gyrometer of the aforementioned type, a single cathode is used which connects the three cavities by means of three cathode capillaries.
En conséquence, cette cathode constitue une source de chaleur concentrée d'un même côté du bloc optique et engendre donc, dans ce bloc, un gradient thermique perturbant les écoulements des flux gazeux. A ce problème, se rajoute celui dû au fait qu'il existe une différence de pression entre les deux extrémités de la décharge et, en particulier, entre l'anode et la réserve de gaz que constitue la cathode.Consequently, this cathode constitutes a concentrated heat source on the same side of the optical unit and therefore generates, in this unit, a thermal gradient disturbing the flows of the gas flows. To this problem is added that due to the fact that there is a pressure difference between the two ends of the discharge and, in particular, between the anode and the gas reserve constituted by the cathode.
Pour résoudre ces problèmes, on a déjà proposé, notamment par la demande de brevet FR No 95 01645, déposée le 10 février 1995 au nom de Sextant Avionique, de compenser la dissymétrie engendrée dans le bloc optique par la chambre cathodique grâce à une chambre d'équilibrage communicant avec la cavité du gyromètre et ménagée dans le bloc optique à l'opposé de la chambre cathodique. Cette chambre d'équilibrage est avantageusement disposée symétriquement vis-à-vis de la chambre cathodique par rapport à un plan, un axe ou un centre de symétrie du bloc.To solve these problems, it has already been proposed, in particular by patent application FR No. 95 01645, filed on February 10, 1995 in the name of Sextant Avionique, to compensate for the asymmetry generated in the optical unit by the cathode chamber thanks to a balancing communicating with the gyrometer cavity and arranged in the optical unit opposite the cathode chamber. This balancing chamber is advantageously arranged symmetrically with respect to the cathode chamber with respect to a plane, an axis or a center of symmetry of the block.
L'invention a plus particulièrement pour but d'améliorer les performances de ce type de gyromètre.The invention more particularly aims to improve the performance of this type of gyrometer.
Elle propose, d'une part, de répartir les différentes catégories d'éléments : miroirs d'asservissement, miroirs de lecture, capillaires actifs, capillaires passifs, anodes, d'un gyromètre laser triaxial construit à partir d'un bloc optique pourvu d'une chambre cathodique et d'une chambre d'équilibrage coaxiales, dans et autour du bloc optique de manière à respecter au niveau de chaque catégorie d'éléments une symétrie de révolution d'ordre 3 autour de l'axe Δ commun à la chambre cathodique et à la chambre d'équilibrage et confondu avec une trisectrice du cube enveloppant le bloc optique et ayant les miroirs aux centres de ces faces, les éléments d'une même catégorie se déduisant l'un de l'autre par une rotation de 120° autour de l'axe de révolution Δ et, d'autre part, d'utiliser le susdit axe de révolution Δ en tant qu'axe d'activation.It proposes, on the one hand, to distribute the different categories of elements: servo mirrors, reading mirrors, active capillaries, passive capillaries, anodes, of a triaxial laser gyrometer constructed from an optical unit provided with '' a cathode chamber and a coaxial balancing chamber, in and around the optical unit so as to respect, at the level of each category of elements, a symmetry of revolution of order 3 around the axis Δ common to the chamber cathodic and to the balancing chamber and confused with a trisector of the cube enveloping the optical unit and having the mirrors at the centers of these faces, the elements of the same category being deduced from each other by a rotation of 120 ° around the axis of revolution Δ and, on the other hand, to use the above-mentioned axis of revolution Δ as an activation axis.
On constate que ces dispositions ont en outre pour effet de faciliter l'assemblage mécanique du bloc optique du fait que le centre de gravité et le centre d'inertie sont situés sur l'axe d'activation, ce qui limite les mouvements coniques du bloc.It can be seen that these arrangements also have the effect of facilitating the mechanical assembly of the optical unit because the center of gravity and the center of inertia are located on the activation axis, which limits the conical movements of the unit. .
Un mode d'exécution de l'invention sera décrit ci-après, à titre d'exemple non limitatif, avec référence aux dessins annexés dans lesquels :An embodiment of the invention will be described below, by way of non-limiting example, with reference to the accompanying drawings in which:
La figure 1 est une représentation schématique, en perspective, des cavités d'un gyromètre laser monobloc triaxial à six miroirs selon l'invention ;FIG. 1 is a diagrammatic representation, in perspective, of the cavities of a three-piece mono-block laser gyrometer with six mirrors according to the invention;
La figure 2 montre une cavité du gyromètre représenté figure 1 avec ses connexions à la cathode et à la chambre de compensation ainsi que ses deux anodes ;FIG. 2 shows a cavity of the gyrometer shown in FIG. 1 with its connections to the cathode and to the compensation chamber as well as its two anodes;
La figure 3 montre, en perspective, le bloc optique d'un gyromètre avec l IFe» m mpéfc.annniiscmmpe r dT'anrcttiiv/aïirtiinonn n quuii l luuii p esςtt a asçςsnorcviipéFigure 3 shows, in perspective, the optical unit of a gyrometer with the IFe »m mpéfc.annniiscmmpe r dT'anrcttiiv / aïirtiinonn n quuii l luuii p esςtt açςsnorcviipé
Dans cet exemple, le gyromètre comprend un bloc optique 1 de forme octaédrique à arêtes chanfreinées (figure 3) à l'intérieur duquel sont réalisées, dans trois plans orthogonaux, trois cavités B, C, D comprenant les segments capillaires Bj à B4 - C. à C4 - D. à D4 et délimitant chacune un parcours optique de forme carrée.In this example, the gyrometer comprises an optical block 1 of octahedral shape with chamfered edges (FIG. 3) inside which are produced, in three orthogonal planes, three cavities B, C, D comprising the capillary segments Bj to B 4 - C. to C 4 - D. to D 4 and each delimiting an optical path of square shape.
Ces cavités B, C, D sont agencées de manière que chacun des angles d'une cavité coïncide et communique avec l'angle d'une autre cavité. Elles définissent donc, dans l'espace intérieur du bloc, un octaèdre régulier présentant huit faces triangulaires parallèles à celles du bloc et six sommets au niveau desquels sont placés six miroirs respectifs M., M2, M3, M , M5, M6 qui s'étendent respectivement dans les plans des faces d'un cube dans lequel l'octaèdre se trouve inscrit. Dans cet exemple, les miroirs Mi, M2, M3 sont des miroirs de lecture, tandis que les miroirs M4, M5, M6 sont des miroirs d'asservissement associés à des transducteurs piézo-électriques permettant d'ajuster les longueurs des cavités. Pour engendrer les couples de faisceaux contrapropagatifs à l'intérieur des trois cavités B, C, D, le gyromètre comprend une cathode K et six anodes A.These cavities B, C, D are arranged so that each of the angles of one cavity coincides and communicates with the angle of another cavity. They therefore define, in the interior space of the block, a regular octahedron having eight triangular faces parallel to those of the block and six vertices at the level of which are placed six respective mirrors M., M 2 , M 3 , M, M 5 , M 6 which extend respectively in the planes of the faces of a cube in which the octahedron is located. In this example, the mirrors Mi, M 2 , M 3 are reading mirrors, while the mirrors M 4 , M 5 , M 6 are servo mirrors associated with piezoelectric transducers making it possible to adjust the lengths cavities. To generate the pairs of counterpropagative beams inside the three cavities B, C, D, the gyrometer includes a cathode K and six anodes A.
La cathode K équipe une chambre cathodique CK dont l'axe Δ est perpendiculaire à la face cathodique F. de l'octaèdre délimité par les segments capillaires B3, C3, D3 et passe par le centre de cette face F.. Cette chambre CK qui est extérieure au volume octaédrique défini par les cavités B, C, D, communique avec celles-ci au niveau des trois miroirs d'asservissement M4, M5, M6 qui définissent la face F., par l'intermédiaire de trois capillaires respectifs CK1; CK2, CK3. Ces trois capillaires cathodiques sont disposés symétriquement selon une symétrie de révolution d'ordre 3 autour de l'axe Δ (c'est à dire se déduisent les uns des autres par une rotation de 120° autour de l'axe Δ), qui est, comme on peut le remarquer une trisectrice du cube enveloppant le bloc optique 1 de forme octaédrique et ayant les miroirs aux centres de ses faces.The cathode K equips a cathode chamber CK whose axis Δ is perpendicular to the cathode face F. of the octahedron delimited by the capillary segments B 3 , C 3 , D 3 and passes through the center of this face F .. This chamber CK which is external to the octahedral volume defined by the cavities B, C, D, communicates with these at the level of the three servo mirrors M 4 , M 5 , M 6 which define the face F., via three respective capillaries CK 1; CK 2 , CK 3 . These three cathodic capillaries are arranged symmetrically according to a symmetry of revolution of order 3 around the axis Δ (that is to say are deduced from each other by a rotation of 120 ° around the axis Δ), which is , as can be seen a trisector of the cube enveloping the optical unit 1 of octahedral shape and having the mirrors at the centers of its faces.
Ces trois capillaires CK., CK2, CK3 (ou débouchés de cathode) permettent l'ionisation des capillaires actifs entre cathode K et anode A.These three capillaries CK., CK 2 , CK 3 (or cathode outlets) allow the ionization of the active capillaries between cathode K and anode A.
Les six anodes A, dont deux seulement ont été représentées sur la figure 2, sont disposées de manière à obtenir dans chaque cavité un couple de zones de décharge "zones actives" symétriques par rapport à un axe de symétrie distinct de l'axe de symétrie Δ. Chaque couple d'anode A s'étend dans le plan de la cavité B, C, D correspondante. Pour l'ensemble des trois cavités B, C, D il y a trois paires d'anodes qui sont également réparties dans le bloc optique de manière à respecter la symétrie de révolution d'ordre 3 autour de l'axe Δ et à se déduire les unes des autres par une rotation de 120° autour de cet axe de révolution Δ.The six anodes A, only two of which have been shown in FIG. 2, are arranged so as to obtain in each cavity a pair of discharge zones "active zones" symmetrical with respect to an axis of symmetry distinct from the axis of symmetry Δ. Each pair of anodes A extends in the plane of the corresponding cavity B, C, D. For all three cavities B, C, D there are three pairs of anodes which are also distributed in the optical unit so as to respect the symmetry of revolution of order 3 around the axis Δ and to deduce from each other by a rotation of 120 ° around this axis of revolution Δ.
L'équilibrage thermique et thermodynamique est ici obtenu au moyen d'une chambre d'équilibrage CE de forme cylindrique, sensiblement identique à celle de la chambre cathodique CK et disposée coaxialement, relativement à cette dernière, à l'extérieur du volume octaédrique en regard de la face F2 opposée à la face F. (ces deux faces étant perpendiculaires à l'axe Δ). Cette face F2 est délimitée par trois segments capillaires B., Ch D. qui présentent chacun dans leur région centrale un diaphragme DC. Ces trois diaphragmes DC sont disposés symétriquement, selon une symétrie de révolution d'ordre 3 par rapport à l'axe Δ et se déduisent les uns des autres par une rotation de 120° autour de cet axe de révolution Δ..Thermal and thermodynamic balancing is obtained here by means of a balancing chamber CE of cylindrical shape, substantially identical to that of the cathode chamber CK and arranged coaxially, relatively to the latter, outside the octahedral volume opposite of the face F 2 opposite the face F. (these two faces being perpendicular to the axis Δ). This face F 2 is delimited by three capillary segments B., C h D. which each have in their central region a diaphragm DC. These three DC diaphragms are arranged symmetrically, according to a symmetry of revolution of order 3 by relative to the axis Δ and are deduced from each other by a rotation of 120 ° around this axis of revolution Δ ..
La chambre d'équilibrage CE communique avec les trois cavités B, C, D au niveau des trois miroirs de lecture M1} M2, M3 qui définissent la face F2, grâce à trois capillaires d'équilibrage CE., CE2, CE3 disposés symétriquement, selon une symétrie de révolution d'ordre 3 par rapport à l'axe Δ et se déduisent les uns des autres par une rotation de 120° autour de cet axe de révolution Δ.The balancing chamber CE communicates with the three cavities B, C, D at the level of the three reading mirrors M 1} M 2 , M 3 which define the face F 2 , by means of three balancing capillaries CE., CE 2 , CE 3 arranged symmetrically, according to a symmetry of revolution of order 3 with respect to the axis Δ and are deduced from each other by a rotation of 120 ° around this axis of revolution Δ.
Pour respecter la symétrie des écoulements, les trois capillaires CE., CE2, CE3 peuvent être disposés dans un même plan perpendiculaire à l'axe Δ. Il en est de même pour les trois capillaires CK., CK2, CK3.To respect the symmetry of the flows, the three capillaries CE., CE 2 , CE 3 can be arranged in the same plane perpendicular to the axis Δ. The same is true for the three capillaries CK., CK 2 , CK 3 .
Grâce à ces dispositions, la chambre d'équilibrage CE réalise un équilibre des pressions, côté anode A de chacune des six zones actives. L'ensemble comprenant la chambre cathodique CK et les trois capillaires CK., CK2, CK3 qui lui sont associés assure, quant à lui, l'égalisation des pressions des six zones actives, côté cathode K.Thanks to these provisions, the balancing chamber CE achieves a pressure balance, on the anode side A of each of the six active zones. The assembly comprising the cathode chamber CK and the three capillaries CK., CK 2 , CK 3 which are associated with it ensures, meanwhile, the pressure equalization of the six active zones, cathode side K.
En conséquence, les six zones actives sont soumises à une même différence de pression et donnent lieu aux mêmes écoulements, même dans le cas où ces écoulements sont perturbés par des gradients thermiques, lesquels sont n inimisés pour les raisons précédemment décrites.Consequently, the six active zones are subjected to the same pressure difference and give rise to the same flows, even in the case where these flows are disturbed by thermal gradients, which are inimited for the reasons described above.
Bien entendu, la chambre d'équilibrage pourra comprendre des moyens permettant d'obtenir un effet Getter, voire même d'exercer un chauffage de compensation thermique du bloc.Of course, the balancing chamber may include means making it possible to obtain a Getter effect, or even to exercise a thermal compensation heating of the block.
Ces dispositions permettent donc de réduire les sensibilités intrinsèques du gyromètre (faux zéro) aux variations de température, à l'effet Fizeau, et au courant de fonctionnement.These provisions therefore make it possible to reduce the intrinsic sensitivities of the gyrometer (false zero) to temperature variations, to the Fizeau effect, and to the operating current.
Par ailleurs, conformément à l'invention, le bloc optique du gyromètre est monté sur un mécanisme d'activation de telle manière que l'axe de symétrie de révolution Δ soit confondu avec l'axe d'activation du gyromètre. Cela est possible car les trois cavités du bloc optique tournent à la même vitesse autour de cet axe de révolution Δ. Dans cet exemple, le mécanisme d'activation comprend tout d'abord une roue d'activation R. comprenant deux couronnes coaxiales CA., CA2 reliées l'une à l'autre par une pluralité d'ailettes radiales L. Ces ailettes L comportent un élément moteur et de détection piézo-électrique relié à un amplificateur de manière à provoquer un mouvement de rotation alternatif de l'une des couronnes CA2 par rapport à l'autre CA..Furthermore, in accordance with the invention, the optical unit of the gyroscope is mounted on an activation mechanism in such a way that the axis of symmetry of revolution Δ is coincident with the axis of activation of the gyrometer. This is possible because the three cavities of the optical unit rotate at the same speed around this axis of revolution Δ. In this example, the activation mechanism firstly comprises an activation wheel R. comprising two coaxial rings CA., CA 2 connected to each other by a plurality of radial fins L. These fins L comprise a piezoelectric motor and detection element connected to an amplifier so as to cause an alternating rotational movement of one of the rings CA 2 relative to the other CA ..
La fixation du bloc optique 1 sur la couronne centrale CA2 (couronne d'activation) du mécanisme d'activation s'effectue au moyen d'une couronne de fixation CFl5 sensiblement de même diamètre que la couronne d'activation CA2 sur laquelle elle peut s'assembler coaxialement par vissage.The optical unit 1 is fixed to the central crown CA 2 (activation crown) of the activation mechanism is carried out by means of a fixing crown CF l5 substantially of the same diameter as the activation crown CA 2 on which it can be assembled coaxially by screwing.
Cette couronne de fixation CF. qui est destinée à être disposée coaxialement à la cathode K, comprend trois couples de cales biseautées (non visibles) situés à 120° l'un de l'autre, et destinés à venir respectivement se coller sur les régions centrales des arêtes chanfreinées entourant la face F. du bloc.This CF fixing crown. which is intended to be arranged coaxially with the cathode K, comprises three pairs of bevelled wedges (not visible) located at 120 ° from one another, and intended to come respectively to stick on the central regions of the chamfered edges surrounding the face F. of the block.
Le mécanisme d'activation comprend, par ailleurs, une roue d'équilibrage R2 comprenant deux couronnes coaxiales CA'., CA'2 reliées l'une à l'autre par une pluralité d'ailettes radiales flexibles L'.The activation mechanism also comprises a balancing wheel R 2 comprising two coaxial rings CA '., CA' 2 connected to each other by a plurality of flexible radial fins L '.
D'une façon analogue à la précédente, la fixation de la couronne CA'2 sur le bloc optique 1 (à l'opposé de son plan équatorial relativement à la roue d'activation R.) s'effectue au moyen d'une couronne de fixation CF2 sensiblement de même diamètre que la couronne CF. et identique à la couronne CA'2 sur laquelle elle peut s'assembler coaxialement à l'aide de vis.In a manner analogous to the previous one, the crown CA ' 2 is fixed to the optical unit 1 (opposite its equatorial plane relative to the activation wheel R.) is carried out by means of a crown CF 2 fastener of substantially the same diameter as the CF crown. and identical to the crown CA ' 2 on which it can be assembled coaxially using screws.
Cette couronne de fixation CF2 qui est destinée à être disposée coaxialement à la chambre d'équilibrage CE comprend trois couples de cales biseautées CB, CB' situées à 120° l'une de l'autre et destinées à venir respectivement se coller sur les régions centrales des arêtes chanfreinées entourant la face F2.This CF 2 fixing ring which is intended to be arranged coaxially with the balancing chamber CE comprises three pairs of beveled shims CB, CB ′ located at 120 ° from one another and intended to be bonded respectively to the central regions of the chamfered edges surrounding the face F 2 .
Ce mode de fixation présente l'avantage de réduire considérablement les contraintes à l'arrachement entre les cales CB et CB' et le bloc optique lors de l'entraînement en rotation de ce dernier.This method of attachment has the advantage of considerably reducing the tearing stresses between the shims CB and CB 'and the optical unit during the latter's rotational drive.
Avantageusement, les couronnes CA. et CA'. des deux roues Rl5 R2 pourront être solidarisées l'une à l'autre. Grâce à ces dispositions, on obtient un excellent équilibrage du bloc optique 1 et une réduction correspondante du mouvement conique (celui-ci se trouve déjà considérablement réduit grâce au fait que le centre de gravité et le centre d'inertie sont sur l'axe d'activation).Advantageously, the CA crowns. and that'. of the two wheels R l5 R 2 may be secured to one another. Thanks to these arrangements, an excellent balancing of the optical unit 1 is obtained and a corresponding reduction of the conical movement (this is already considerably reduced thanks to the fact that the center of gravity and the center of inertia are on the axis d 'activation).
Par ailleurs, en raison du respect de la symétrie de révolution d'ordre 3 autour de l'axe Δ par les pièces mécaniques et de la disposition symétrique des couples de cales de fixation CB, CB' par lesquelles s'effectuent des dissipations thermiques, on conserve, voire même on améliore, la symétrisation thermique du bloc.In addition, due to the respect of the order 3 symmetry of revolution around the axis Δ by the mechanical parts and the symmetrical arrangement of the pairs of fixing shims CB, CB ′ by which heat dissipations take place, the thermal symmetrization of the block is preserved, or even improved.
Or, on constate que l'association de cette symétrisation par rapport à l'axe d'activation Δ pris pour axe de révolution à l'égalisation des pressions internes des anodes A grâce à la présence de la chambre d'équilibrage permet d'annuler l'effet potentiel de la mise sous tension sur le faux zéro et réduit les effets thermiques extérieurs.However, it can be seen that the association of this symmetrization with respect to the activation axis Δ taken for axis of revolution with the equalization of the internal pressures of the anodes A thanks to the presence of the balancing chamber makes it possible to cancel the potential effect of power-up on the false zero and reduces the external thermal effects.
Avantageusement, l'axe Δ du bloc optique sera vertical. En effet, dans ce cas, les écoulements de gaz ainsi que les gradients thermiques restent parfaitement symétriques et donc les effets induits sur le faux zéro sont nuls. Advantageously, the axis Δ of the optical unit will be vertical. Indeed, in this case, the gas flows as well as the thermal gradients remain perfectly symmetrical and therefore the effects induced on the false zero are zero.

Claims

REVENDICATIONS
1. Gyromètre laser triaxial du type comprenant un bloc optique (1) comprenant trois cavités optiques résonnantes communicantes (B, C, D) qui forment un octaèdre régulier présentant huit faces triangulaires, chacune des cavités présentant quatre segments capillaires formant un carré (Bt à B4, Ci à C4, Di à D4) perpendiculaire à un axe sensible correspondant, ces cavités étant agencées de manière à ce que chacun des angles d'une cavité (B, C, D) coïncide et communique avec l'angle d'une autre cavité, un miroir (M! à Mg) associé à chaque couple d'angles en coïncidence étant orienté de manière à être utilisé par les deux cavités formant ledit couple, chaque cavité (B, C, D) utilisant quatre miroirs dont un miroir de lecture (M à M3) et un miroir d'asservissement de longueur de cavité (M4 à M6), cette cavité étant reliée à une chambre cathodique (CK) par l'intermédiaire de deux capillaires cathodiques (CK., CK2, CK3) débouchant au niveau de deux miroirs successifs (M», M5, M6) et à une chambre d'équilibrage (CE), par l'intermédiaire de deux capillaires d'équilibrage (CE., CE2, CE3) débouchant au niveau des deux autres miroirs (M>, M2, M3), ledit gyromètre comprenant en outre un mécanisme d'activation permettant d'entraîner le bloc optique (1) selon un mouvement alternatif de rotation autour d'un axe d'activation, caractérisé en ce que différentes catégories d'éléments équipant le bloc optique (1) dont au moins les miroirs d'asservissement (M4 à M6), les miroirs de lecture (M! à M3), les capillaires cathodiques (CKi à CK3), les capillaires (CE! à CE3) d'équilibrage (CE) et les anodes (A) sont disposés dans et autour du bloc optique (1) de manière à respecter une symétrie de révolution d'ordre 3 autour d'un axe de révolution commun Δ confondu avec l'axe d'activation.1. Triaxial laser gyrometer of the type comprising an optical unit (1) comprising three communicating resonant optical cavities (B, C, D) which form a regular octahedron having eight triangular faces, each of the cavities having four capillary segments forming a square (B t to B 4 , Ci to C 4 , Di to D 4 ) perpendicular to a corresponding sensitive axis, these cavities being arranged so that each of the angles of a cavity (B, C, D) coincides and communicates with the angle of another cavity, a mirror (M ! to Mg) associated with each pair of coincident angles being oriented so as to be used by the two cavities forming said pair, each cavity (B, C, D) using four mirrors including a reading mirror (M to M 3 ) and a cavity length servo mirror (M 4 to M 6 ), this cavity being connected to a cathode chamber (CK) via two cathode capillaries ( CK., CK 2 , CK 3 ) opening at n iveau of two successive mirrors (M ”, M 5 , M 6 ) and to a balancing chamber (CE), via two balancing capillaries (CE., CE 2 , CE 3 ) opening at the level of the two other mirrors (M>, M 2 , M 3 ), said gyrometer further comprising an activation mechanism enabling the optical unit (1) to be driven in an alternating rotational movement around an activation axis, characterized in that different categories of elements equipping the optical unit (1) including at least the servo mirrors (M 4 to M 6 ), the reading mirrors (M ! to M 3 ), the cathode capillaries (CKi to CK 3 ), the balancing capillaries (CE ! to CE 3 ) (CE) and the anodes (A) are arranged in and around the optical unit (1) so as to respect a symmetry of order 3 revolution around a common axis of revolution Δ coincident with the activation axis.
2. Gyromètre selon la revendication 1, caractérisé en ce que la chambre cathodique (CK) et la chambre de compensation (CE) sont coaxiales à l'axe de révolution Δ qui est perpendiculaire et passe au centre de deux faces triangulaires opposées (Fb F2) de l'octaèdre respectivement délimitées par les trois miroirs d'asservissement de cavité (M4, M5, M6) et les trois miroirs de lecture (M., M2, M3) au niveau desquels débouchent respectivement les trois capillaires cathodiques (CK>, CK2, CK3) et les trois capillaires d'équilibrage (CE,, CE2, CE3).2. Gyrometer according to claim 1, characterized in that the cathode chamber (CK) and the compensation chamber (CE) are coaxial with the axis of revolution Δ which is perpendicular and passes through the center of two opposite triangular faces (F b F 2 ) of the octahedron respectively delimited by the three cavity servo mirrors (M 4 , M 5 , M 6 ) and the three reading mirrors (M., M 2 , M 3 ) at the level of which the three cathodic capillaries (CK>, CK 2 , CK 3 ) and the three balancing capillaries (CE ,, CE 2 , CE 3 ).
3. Gyromètre selon la revendication 1, caractérisé en ce que chaque cavité (B, C, D) comprend un couple d'anodes (A) qui s'étendent dans le plan de la cavité de manière à délimiter dans la cavité un couple de zones de décharges actives symétriques par rapport à un axe de symétrie distinct de l'axe Δ.3. Gyrometer according to claim 1, characterized in that each cavity (B, C, D) comprises a pair of anodes (A) which extend in the plane of the cavity so as to delimit in the cavity a pair of symmetrical active discharge zones with respect to an axis of symmetry distinct from the axis Δ.
4. Gyromètre selon la revendication 2, caractérisé en ce que les trois segments capillaires (Bh , D! - B3, C3, D3) qui délimitent l'une des susdites faces (F F2) présentent dans leur région centrale un diaphragme (DC), les trois diaphragmes (DC) étant disposés symétriquement, selon une symétrie de révolution d'ordre 3 par rapport à l'axe de révolution Δ.4. Gyrometer according to claim 2, characterized in that the three capillary segments (B h , D ! - B 3 , C 3 , D 3 ) which delimit one of the above faces (FF 2 ) have in their central region a diaphragm (DC), the three diaphragms (DC) being arranged symmetrically, according to a symmetry of revolution of order 3 relative to the axis of revolution Δ.
5. Gyromètre selon la revendication 2, caractérisé en ce que le mécanisme d'activation comprend au moins une roue (Ri) comprenant deux couronnes coaxiales (CA., CA2) reliées l'une à l'autre par une pluralité d'ailettes radiales (L) comportant un élément moteur, la fixation du bloc optique (1) sur la couronne centrale (CA2) s'effectuant par l'intermédiaire de cales de fixation (CB, CB') venant se coller sur le bloc (1) et disposées symétriquement, selon une symétrie d'ordre 3 par rapport au susdit axe de révolution Δ.5. Gyrometer according to claim 2, characterized in that the activation mechanism comprises at least one wheel (Ri) comprising two coaxial rings (CA., CA 2 ) connected to each other by a plurality of fins radial (L) comprising a motor element, the fixing of the optical unit (1) on the central crown (CA 2 ) being effected by means of fixing shims (CB, CB ') coming to stick on the block (1 ) and arranged symmetrically, according to a symmetry of order 3 with respect to the aforesaid axis of revolution Δ.
6. Gyromètre selon la revendication 5, caractérisé en ce que les susdites cales (CB, CB') sont disposées par paire et sont collées sur les régions centrales d'arêtes chanfreinées entourant l'une des susdites faces (F., F2) de l'octaèdre.6. Gyrometer according to claim 5, characterized in that the aforesaid wedges (CB, CB ') are arranged in pairs and are bonded to the central regions of chamfered edges surrounding one of the above faces (F., F 2 ) of the octahedron.
7. Gyromètre selon la revendication 2, caractérisé en ce que l'axe de révolution Δ du bloc optique est vertical. 7. Gyrometer according to claim 2, characterized in that the axis of revolution Δ of the optical unit is vertical.
EP98905482A 1997-02-05 1998-02-03 Triaxial laser rate gyro symmetrized with respect to its axis of activation Withdrawn EP0898695A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9701267 1997-02-05
FR9701267A FR2759160B1 (en) 1997-02-05 1997-02-05 SYMMETRIZED TRIAXIAL LASER GYROMETER RELATIVE TO ITS AXIS OF ACTIVATION
PCT/FR1998/000192 WO1998035207A1 (en) 1997-02-05 1998-02-03 Triaxial laser rate gyro symmetrized with respect to its axis of activation

Publications (1)

Publication Number Publication Date
EP0898695A1 true EP0898695A1 (en) 1999-03-03

Family

ID=9503329

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98905482A Withdrawn EP0898695A1 (en) 1997-02-05 1998-02-03 Triaxial laser rate gyro symmetrized with respect to its axis of activation

Country Status (5)

Country Link
US (1) US6069699A (en)
EP (1) EP0898695A1 (en)
FR (1) FR2759160B1 (en)
RU (1) RU2210737C2 (en)
WO (1) WO1998035207A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2787878B1 (en) 1998-12-23 2001-03-16 Sextant Avionique ANTI-VIBRATION ELASTIC SUSPENSION FOR INERTIAL MEASUREMENT UNIT
FR2902870B1 (en) * 2006-06-23 2008-09-05 Thales Sa DEVICE FOR IMPROVING THE LIFETIME OF A TRIAXIAL GYROMETER
CN1888822B (en) * 2006-07-28 2010-05-12 北京航空航天大学 Optical fiber gyro assembling test platform adapted to space application
CN1888821B (en) * 2006-07-28 2010-05-12 北京航空航天大学 Light assembling structure for optical fiber gyro-space application
CN1904554B (en) * 2006-07-28 2010-05-12 北京航空航天大学 Low power consumption optical fiber gyro unitized designing method for space application
FR2927698B1 (en) * 2008-02-15 2010-12-24 Thales Sa METHOD FOR POSITIONING THE MIRRORS OF A TRIAXIC LASER GYROMETER, IN PARTICULAR AT STARTING THE GYROMETER
RU2488776C1 (en) * 2011-11-30 2013-07-27 Общество с ограниченной ответственностью "Научно-производственная фирма "Эпсилон" Method to increase accuracy of calibration of triaxial laser gyroscopes with one common vibrator
RU2503926C1 (en) * 2012-08-03 2014-01-10 Открытое акционерное общество "Раменский приборостроительный завод" (ОАО "РПЗ") Block of laser gyroscopes
RU2599182C1 (en) * 2015-09-24 2016-10-10 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Method of determining scaling factors of triaxial laser gyroscope

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2512198A1 (en) * 1980-03-21 1983-03-04 Sfena TRIAXIAL LASER GYROMETER, MONOBLOC, COMPACT WITH SIX MIRRORS
US4585346A (en) * 1983-03-17 1986-04-29 The Singer Company Pathlength controller for three-axis ring laser gyroscope assembly
US4839903A (en) * 1985-06-27 1989-06-13 British Aerospace Public Limited Company Ring laser gyroscopes
US4837774A (en) * 1987-09-29 1989-06-06 Litton Systems, Inc. Common mirror triaxial ring laser gyroscope having a single internal cathode
FR2730561B1 (en) * 1995-02-10 1997-04-18 Sextant Avionique PROCESS FOR INCREASING PRECISION AND DECREASING THE START-UP TIME OF A LASER GYROMETER AND LASER GYROMETER IMPLEMENTING SAID METHOD
FR2759162B1 (en) * 1997-02-05 1999-04-30 Sextant Avionique DEVICE FOR FIXING THE OPTICAL BLOCK OF A TRIAXIAL LASER GYROMETER ON AN ACTIVATION DEVICE

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9835207A1 *

Also Published As

Publication number Publication date
WO1998035207A1 (en) 1998-08-13
FR2759160A1 (en) 1998-08-07
US6069699A (en) 2000-05-30
FR2759160B1 (en) 1999-04-23
RU2210737C2 (en) 2003-08-20

Similar Documents

Publication Publication Date Title
FR2525343A1 (en) MONOLITHIC THREE-AXIS RING LASER GYROSCOPE
CA2335763C (en) Gyroscopic sensor and apparatus for measuring rotation using same
WO1998035207A1 (en) Triaxial laser rate gyro symmetrized with respect to its axis of activation
WO2015036666A1 (en) Low-deformation telescope
FR2789170A1 (en) VIBRATING GYROSCOPE
FR2542867A1 (en) PATH LENGTH CONTROLLER FOR LASER GYROSCOPIC ASSEMBLY IN THREE-AXIS RINGS
EP0857947A1 (en) Means for fixing laser block of a triaxial laser gyro to dithering means
WO2000039526A1 (en) Antivibration elastic suspension for inertial measuring unit
FR2510336A1 (en) PIEZOELECTRIC TRANSDUCER
WO2006096741A1 (en) High accuracy strapdown digital accelerometer
CA1320062C (en) Acoustical rate gyro
EP0331581B1 (en) Piezoelectric mirror for a laser gyroscope
FR2507312A1 (en) LASER RING GYROSCOPE USING OPTICAL FIBERS
CA1292544C (en) Common mirror triaxial ring laser gyroscope having a single internal cathode
EP2340409B1 (en) Device and method for vibrating a solid amplification member within a gyrolaser
EP0312552B1 (en) Device for eliminating parasitic rotations of mobile mirrors in laser gyrometers
FR2730561A1 (en) Laser gyroscope start-up method
EP2625557B1 (en) Optical head for atmospheric measurement, related systems and manufacturing methods
EP0323359B1 (en) Fixation device for the actuation mechanism of a laser gyroscope
WO1990001144A1 (en) Redundant laser gyrometers
FR2739189A1 (en) VIBRATING GYROMETER
WO1989010539A1 (en) Compensated piezoelectric mirror for laser gyrometer
FR2879396A1 (en) Vacuum enclosure for the slowing down of atoms in a generator of slow-moving atoms, notably for atomic clocks and interferometer inertial sensors
FR2886724A1 (en) Compact, lightweight central position guiding plant, e.g. for orbiting missile or spacecraft, includes core structure with accelerometer(s), gyroscope(s), mirrors and Cassegrain telescope as star viewer
FR2645261A1 (en) MIXING AND READING DEVICE FOR A LASER GYROMETER

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980917

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THOMSON-CSF SEXTANT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THALES AVIONICS S.A.

17Q First examination report despatched

Effective date: 20020506

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20021119