EP0898065B1 - Method for establishing an operating characteristic of an internal combustion engine - Google Patents

Method for establishing an operating characteristic of an internal combustion engine Download PDF

Info

Publication number
EP0898065B1
EP0898065B1 EP98114352A EP98114352A EP0898065B1 EP 0898065 B1 EP0898065 B1 EP 0898065B1 EP 98114352 A EP98114352 A EP 98114352A EP 98114352 A EP98114352 A EP 98114352A EP 0898065 B1 EP0898065 B1 EP 0898065B1
Authority
EP
European Patent Office
Prior art keywords
maximum
internal combustion
combustion engine
ion current
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98114352A
Other languages
German (de)
French (fr)
Other versions
EP0898065A3 (en
EP0898065A2 (en
Inventor
Peter Hohner
Jürgen Schenk
Hartung Wilstermann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mercedes Benz Group AG
Original Assignee
DaimlerChrysler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DaimlerChrysler AG filed Critical DaimlerChrysler AG
Publication of EP0898065A2 publication Critical patent/EP0898065A2/en
Publication of EP0898065A3 publication Critical patent/EP0898065A3/en
Application granted granted Critical
Publication of EP0898065B1 publication Critical patent/EP0898065B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/021Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions using an ionic current sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1458Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with determination means using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control
    • F02D41/0072Estimating, calculating or determining the EGR rate, amount or flow

Definitions

  • the present invention relates to methods for determining a Operating size of an internal combustion engine.
  • the Fuel-air ratio in the exhaust gas measured via lambda probes.
  • Ion current measurements on spark plugs of an internal combustion engine are known. Traditionally, such measurements are for detection used by misfires and knocking engine operation.
  • From DE 35 06 114 A1 discloses a method for controlling a Internal combustion engine with detection of ion currents known. In this case, a function of the determined ion current Calculated spectrum and with a reference spectrum on a Computing unit compared, depending on the determined Deviation controlled a manipulated variable of the internal combustion engine becomes.
  • a knock detector for a Internal combustion engine which the ion current via a Ignition coil detected at the time of combustion, and judges whether or not the ion current above a predetermined level after a predetermined time or a crank angle since the ignition is located.
  • This device is exclusively for Detecting a knock used.
  • Post-published WO 98/37322 A1 discloses a control system for an air-fuel ratio of one Internal combustion engine known, which is the reduction of emissions and increasing the efficiency of the internal combustion engine serves.
  • the control system includes an ionization detector for measuring an ion signal in a cylinder of the internal combustion engine. A determined by the control system Control signal is based on the measured ion signal, in particular at its first maximum.
  • WO 96/22458 A1 discloses a method and a system for Control of an internal combustion engine known, wherein from a in a cylinder of the internal combustion engine measured ionization current air-fuel ratio is determined. Therefor becomes a voltage signal indicating the measured ionization represents with respect to characteristic parameters, in particular a fundamental frequency and a first derivative, evaluated.
  • the object of the invention is therefore to provide a method for determining an operating variable of an internal combustion engine, with which they are reliably determined in a simple manner can.
  • a Operating variable namely the exhaust gas recirculation rate
  • a measurement a number of cycles of the ion current signal in dependence performed by the time. By averaging these measurements can cause interference, in particular secondary maxima in the ion current signal, eliminated and the actual main maximum and / or the time of occurrence of the main maximum are determined.
  • the operating size in determine easily.
  • the method according to the invention is a cycle-resolved determination of said operating quantity possible.
  • a determination of said Operating size also possible in lean operation of the engine.
  • the time to reach the first Maximum Ilmax of the ion current not from the Ionisability of the fuel, i. the type of fuel, but depends only on the turbulent burning speed.
  • the turbulent burning speed is in turn dependent on laminar burning rate and turbulence intensity.
  • the laminar burning rate is determined by the Fuel-air ratio ⁇ , the residual gas content, and temperature and pressure of the mixture in the cylinder. Because of suction pressure and Ignition point the temperature and pressure are known therefore, with known fuel-air ratio, the exhaust gas recirculation rate be determined.
  • the measurements according to the invention be carried out on different Cylinders or spark plugs perform. This is a cylinder-selective lambda detection in multi-cylinder engines in a simple manner feasible.
  • the first maximum I1max is created in the Flame nucleation phase, in which the flame is still in the range of Spark plug is. Ideally, the flame spreads spherically in the combustion chamber. Currents at the spark plug and above all However, turbulence influences on the flame core lead to a Crackling of the flame.
  • the first maximum I1max of the ion current signal is therefore not smooth, but has several secondary maxima. For an evaluation of the first maximum in the ion current signal Thus, it is necessary to average over several cycles or over a number of ignitions. traditionally, was calculated for each ion current signal, i. at each ignition, the absolute maximum determined. Of the so the mean values were calculated. Because of the large fluctuation range of the absolute maxima must be the Averaging of the ion current maxima over a very large number of Cycles are performed to the required accuracy of the Lambda measurement to achieve.
  • the course of the ion current signal in Dependence on time over the entire area of the first Maximums determined.
  • the so determined for several ignitions Waveforms are then averaged, resulting in a smoothed, the secondary maxima eliminating waveform results, from which an average maximum amplitude or the Time of the average maximum amplitude in a simple manner is readable.
  • This procedure can be sufficient for a sufficient Accuracy necessary number of cycles compared to the conventional ones Procedures are greatly reduced. It is assumed, that sufficient accuracies of lambda detection already reach an averaging over 5 to 20 cycles.
  • the propagation speed depends the flame, and thus the time between ignition and reaching of the first maximum t1max from the turbulent burning speed from. It is, as explained, from t1max at a known exhaust gas recirculation rate a determination of the air-fuel ratio, or, if the air-fuel ratio is known, a determination the exhaust gas recirculation rate possible.
  • the time t1max until reaching the first maximum in the ion current is on the other hand of the ionizability of the fuel, which is influenced by the fuel quality or fuel additives will, independent.
  • the amplitude of the first maximum I1max of the ionic current depends not only on the fuel / air ratio, but due to different ionizabilities different fuels also from the fuel quality and fuel additives.
  • the further inventive method is for a Number of ignitions each time the maximum value of the Ion current signal determined. Subsequently, an averaging takes place the time points determined for the respective maxima for receipt an average time. On the basis of this averaged Time, it is possible, as explained above, the company sizes in question with sufficient accuracy determine. Also by this method can be sufficient Achieve accuracy of the company sizes.
  • the ion current signal shown in FIG occurring second maximum I2max by a pressure increase in Cylinder due to combustion arises.
  • the flame has changed in this case detached from the spark plug, and the electrical conductivity is formed by the residual ionization of the burned mixture.
  • the second maximum in the ionic current signal is smooth, since the influence of flame development no longer on the spark plug is effective.
  • the second maximum I2max plays in the present Context for determining the air-fuel ratio or the other mentioned company sizes none Role.
  • the cache is preferably a dynamic buffer with shift register function for the respective ion current signals In-In-k.
  • the cache consists of a total of k rows with firstin-first-out function (FIFO), in which ion current signals are stored are. Before the nth ion current signal is read is, are the previously read ion current signals to one Line has been moved. After reading the current ion current signal is an average ion current signal in columns calculated over k lines. This gives the averaged ion current signal the last k cycles. From this averaged ion current signal the calculation of the maximum I1max or of the time takes place this maximum, t1max.
  • FIFO firstin-first-out function

Description

Die vorliegende Erfindung betrifft Verfahren zur Bestimmung einer Betriebsgröße eines Verbrennungsmotors.The present invention relates to methods for determining a Operating size of an internal combustion engine.

Das Kraftstoff-Luft-Verhältnis eines Ottomotors muß bei Verwendung von Katalysatoren für die Abgasnachbehandlung konstant auf dem Wert λ = 1 gehalten werden. Zu diesem Zwecke wird das Kraftstoff-Luft-Verhältnis im Abgas über Lambda-Sonden gemessen.The fuel-air ratio of a gasoline engine must be in use of catalysts for the exhaust aftertreatment constant on the value λ = 1 are kept. For this purpose, the Fuel-air ratio in the exhaust gas measured via lambda probes.

Ionenstrommessungen an Zündkerzen eines Verbrennungsmotors sind bekannt. Herkömmlicherweise werden derartige Messungen zur Erkennung von Zündaussetzern und klopfendem Motorbetrieb verwendet.Ion current measurements on spark plugs of an internal combustion engine are known. Traditionally, such measurements are for detection used by misfires and knocking engine operation.

Aus der DE 35 06 114 A1 ist ein Verfahren zur Steuerung einer Brennkraftmaschine mit Erfassung von Ionenströmen bekannt. Hierbei wird in Abhängigkeit von dem ermittelten Ionenstrom ein Meßspektrum berechnet und mit einem Bezugsspektrum auf einer Recheneinheit verglichen, worauf in Abhängigkeit der ermittelten Abweichung eine Stellgröße der Brennkraftmaschine gesteuert wird.From DE 35 06 114 A1 discloses a method for controlling a Internal combustion engine with detection of ion currents known. In this case, a function of the determined ion current Calculated spectrum and with a reference spectrum on a Computing unit compared, depending on the determined Deviation controlled a manipulated variable of the internal combustion engine becomes.

Aus der DE 40 37 943 A1 ist es bekannt, mittels einer Ionenstrommessung den Betriebszustand einer Brennkraftmaschine zu steuern. Gegenstand dieser Druckschrift ist jedoch die Vermeidung von Glühzündungen bzw. Motorklopfen. From DE 40 37 943 A1 it is known by means of an ion current measurement the operating condition of an internal combustion engine too control. Subject of this document, however, is the avoidance of pre-ignition or engine knock.

Ferner ist aus der DE 42 39 592 A1 ein Klopfdetektor für eine Brennkraftmaschine bekannt, welche den Ionenstrom über eine Zündspule zur Zeit der Verbrennung erfaßt, und beurteilt ob oder ob nicht der Ionenstrom oberhalb eines vorbestimmten Pegels nach einer vorbestimmten Zeit oder einem Kurbelwinkel seit der Zündung liegt. Diese Vorrichtung wird ausschließlich zur Feststellung eines Klopfens verwendet.Furthermore, from DE 42 39 592 A1 a knock detector for a Internal combustion engine is known which the ion current via a Ignition coil detected at the time of combustion, and judges whether or not the ion current above a predetermined level after a predetermined time or a crank angle since the ignition is located. This device is exclusively for Detecting a knock used.

Es ist ferner bekannt, aus der Amplitude des Ionenstromsignals ein Kraftstoff-Luft-Verhältnis eines Verbrennungsmotors zu ermitteln. Hierbei stellt man jedoch fest, daß das Ionenstromsignal starken zyklischen Schwankungen unterworfen ist, so daß eine Mittelung der Ionenstrommaxima über eine große Anzahl von Zyklen durchgeführt werden muß, um die erforderliche Genauigkeit der Lambda-Messung zu erzielen. Aufgrund der hierdurch entstehenden Fehler im instationären Betrieb sind Verfahren dieser Art nicht serientauglich. Ferner ist die Ionenstromamplitude von der verwendeten Kraftstoffsorte abhängig, so daß zur Bestimmung des tatsächlichen Lambda-Wertes eine Erkennung der Kraftstoffsorte notwendig ist.It is also known from the amplitude of the ion current signal to determine a fuel-air ratio of an internal combustion engine. However, it is found that the ion current signal subject to strong cyclical fluctuations, so that an averaging of the ion current maxima over a large number of Cycles must be performed to the required accuracy to achieve the lambda measurement. Because of this Emerging errors in transient operation are procedures This type not suitable for series production. Further, the ion current amplitude Depending on the type of fuel used, so that to determine the actual lambda value detection the fuel grade is necessary.

Aus der nachveröffentlichten WO 98/37322 A1 ist ein Regelungssystem für ein Luft-Kraftstoff-Verhältnis eines Verbrennungsmotors bekannt, welches der Reduzierung von Emissionen und der Erhöhung des Wirkungsgrades des Verbrennungsmotors dient. Das Regelungssystem umfasst einen Ionisationsdetektor zur Messung eines Ionensignals in einem Zylinder des Verbrennungsmotors. Ein von dem Regelungssystem ermitteltes Regelsignal basiert auf dem gemessenen Ionensignal, insbesondere auf dessen ersten Maximum.Post-published WO 98/37322 A1 discloses a control system for an air-fuel ratio of one Internal combustion engine known, which is the reduction of emissions and increasing the efficiency of the internal combustion engine serves. The control system includes an ionization detector for measuring an ion signal in a cylinder of the internal combustion engine. A determined by the control system Control signal is based on the measured ion signal, in particular at its first maximum.

Aus der WO 96/22458 A1 sind ein Verfahren und ein System zur Regelung eines Verbrennungsmotors bekannt, wobei aus einer in einem Zylinder des Verbrennungsmotors gemessen Ionisierung ein momentanes Luft-Kraftstoff-Verhältnis ermittelt wird. Hierfür wird ein Spannungssignal, welches die gemessene Ionisierung repräsentiert bezüglich charakteristischer Parameter, insbesondere einer Grundfrequenz und einer ersten Ableitung, ausgewertet.WO 96/22458 A1 discloses a method and a system for Control of an internal combustion engine known, wherein from a in a cylinder of the internal combustion engine measured ionization current air-fuel ratio is determined. Therefor becomes a voltage signal indicating the measured ionization represents with respect to characteristic parameters, in particular a fundamental frequency and a first derivative, evaluated.

Aufgabe der Erfindung ist daher die Schaffung eines Verfahrens zur Bestimmung einer Betriebsgröße eines Verbrennungsmotors, mit dem diese in einfacher Weise zuverlässig ermittelt werden kann.The object of the invention is therefore to provide a method for determining an operating variable of an internal combustion engine, with which they are reliably determined in a simple manner can.

Diese Aufgabe wird gelöst durch ein Verfahren zur Bestimmung einer Betriebsgröße eines Verbrennungsmotors gemäß dem Patentanspruch 1.This object is achieved by a method for determination an operating variable of an internal combustion engine according to the claim 1.

Mit den erfindungsgemäßen Verfahren ist es möglich, eine einzustellende Betriebsgröße, nämlich die Abgasrückführrate, eines Verbrennungsmotors über relativ kurze Zyklen mit ausreichender Genauigkeit zu ermitteln. Erfindungsgemäß wird eine Messung einer Anzahl von Zyklen des Ionenstromsignals in Abhängigkeit von der Zeit durchgeführt. Durch Mittelung dieser Messungen können Störeinflüsse, insbesondere Nebenmaxima im Ionenstromsignal, eliminiert und das eigentliche Hauptmaximum und/oder der Zeitpunkt des Auftretens des Hauptmaximums bestimmt werden. Auf der Grundlage dieser Daten lässt sich die Betriebsgröße in einfacher Weise ermitteln. Mit dem erfindungsgemäßen Verfahren ist eine zyklusaufgelöste Bestimmung der genannten Betriebsgröße möglich. Ferner ist eine Ermittlung der genannten Betriebsgröße auch im Magerbetrieb des Motors möglich.With the method according to the invention it is possible to set a Operating variable, namely the exhaust gas recirculation rate, one Internal combustion engine over relatively short cycles with sufficient To determine accuracy. According to the invention, a measurement a number of cycles of the ion current signal in dependence performed by the time. By averaging these measurements can cause interference, in particular secondary maxima in the ion current signal, eliminated and the actual main maximum and / or the time of occurrence of the main maximum are determined. On the basis of this data, the operating size in determine easily. With the method according to the invention is a cycle-resolved determination of said operating quantity possible. Furthermore, a determination of said Operating size also possible in lean operation of the engine.

Vorteilhafte Ausführungsformen sind Gegenstand des Unteranspruchs.Advantageous embodiments are the subject of the subclaim.

Es wurde festgestellt, daß die Zeit bis zum Erreichen des ersten Maximums Ilmax des Ionenstroms nicht von der Ionisierbarkeit des Kraftstoffs, d.h. der Art des Kraftstoffs, sondern nur von der turbulenten Brenngeschwindigkeit abhängt. Die turbulente Brenngeschwindigkeit ist ihrerseits abhängig von der laminaren Brenngeschwindigkeit und der Turbulenzintensität. Die laminare Brenngeschwindigkeit wird bestimmt durch das Kraftstoff-Luft-Verhältnis λ, den Restgasanteil, sowie Temperatur und Druck des Gemisches im Zylinder. Da aus Ansaugdruck und Zündzeitpunkt die Temperatur und der Druck bekannt sind, kann daher bei bekanntem Kraftstoff-Luft-Verhältnis die Abgasrückführrate ermittelt werden.It was found that the time to reach the first Maximum Ilmax of the ion current not from the Ionisability of the fuel, i. the type of fuel, but depends only on the turbulent burning speed. The turbulent burning speed is in turn dependent on laminar burning rate and turbulence intensity. The laminar burning rate is determined by the Fuel-air ratio λ, the residual gas content, and temperature and pressure of the mixture in the cylinder. Because of suction pressure and Ignition point the temperature and pressure are known therefore, with known fuel-air ratio, the exhaust gas recirculation rate be determined.

Es ist bevorzugt, die erfindungsgemäßen Messungen an verschiedenen Zylindern bzw. Zündkerzen durchzuführen. Hierdurch ist eine zylinderselektive Lambda-Erkennung bei Mehrzylindermotoren in einfacher Weise durchführbar.It is preferred that the measurements according to the invention be carried out on different Cylinders or spark plugs perform. This is a cylinder-selective lambda detection in multi-cylinder engines in a simple manner feasible.

Die Erfindung wird nun anhand der beigefügten Zeichnung im einzelnen erläutert. In dieser zeigt

  • Figur 1 den typischen Verlauf eines Ionenstromsignals, und
  • Figur 2 ein Blockschaltbild zur Erläuterung der erfindungsgemäßen Verfahren.
  • The invention will now be explained in detail with reference to the accompanying drawings. In this shows
  • Figure 1 shows the typical course of an ion current signal, and
  • Figure 2 is a block diagram for explaining the method according to the invention.
  • Wie in Figur 1 dargestellt, besitzt ein Ionenstromsignal an der Zündkerze einen charakteristischen Verlauf, der zwei wesentliche Maxima enthält. Das erste Maximum I1max ensteht in der Flammkernbildungsphase, in der die Flamme noch im Bereich der Zündkerze ist. Idealerweise breitet sich die Flamme kugelförmig im Brennraum aus. Strömungen an der Zündkerze und vor allem Turbulenzeinflüsse auf den Flammkern führen jedoch zu einer Zerklüftung der Flamme. Das erste Maximum I1max des Ionenstromsignals ist daher nicht glatt, sondern besitzt mehrere Nebenmaxima. Für eine Auswertung des ersten Maximums im Ionenstromsignal ist es somit erforderlich, eine Mittelung über mehrere Zyklen bzw. über eine Anzahl von Zündungen durchzuführen. Herkömmlicherweise wurde hierzu für jedes Ionenstromsignal, d.h. bei jeder Zündung, das absolute Maximum ermittelt. Von den so ermittelten Werten wurde der Mittelwert gebildet. Wegen der großen Schwankungsbreite der absoluten Maxima muß hierbei die Mittelung der Ionenstrommaxima über eine sehr große Anzahl von Zyklen durchgeführt werden, um die geforderte Genauigkeit der Lambda-Messung zu erreichen.As shown in Figure 1, has an ion current signal at the Spark plug a characteristic course, the two essential Contains maxima. The first maximum I1max is created in the Flame nucleation phase, in which the flame is still in the range of Spark plug is. Ideally, the flame spreads spherically in the combustion chamber. Currents at the spark plug and above all However, turbulence influences on the flame core lead to a Crackling of the flame. The first maximum I1max of the ion current signal is therefore not smooth, but has several secondary maxima. For an evaluation of the first maximum in the ion current signal Thus, it is necessary to average over several cycles or over a number of ignitions. traditionally, was calculated for each ion current signal, i. at each ignition, the absolute maximum determined. Of the so the mean values were calculated. Because of the large fluctuation range of the absolute maxima must be the Averaging of the ion current maxima over a very large number of Cycles are performed to the required accuracy of the Lambda measurement to achieve.

    Erfindungsgemäß wird nun der Verlauf des Ionenstromsignals in Abhängigkeit von der Zeit über den gesamten Bereich des ersten Maximums ermittelt. Die für mehrere Zündungen derart ermittelten Signalverläufe werden anschließend gemittelt, wodurch sich ein geglätteter, die Nebenmaxima eliminierender Signalverlauf ergibt, aus dem eine gemittelte maximale Amplitude bzw. der Zeitpunkt der gemittelten maximalen Amplitude in einfacher Weise ablesbar ist. Mit diesem Verfahren kann die für eine ausreichende Genauigkeit notwendige Zyklenzahl gegenüber den herkömmlichen Verfahren stark vermindert werden. Es wird davon ausgegangen, daß sich genügende Genauigkeiten der Lambda-Erkennung schon bei einer Mittelung über 5 bis 20 Zyklen erreichen lassen.According to the invention, the course of the ion current signal in Dependence on time over the entire area of the first Maximums determined. The so determined for several ignitions Waveforms are then averaged, resulting in a smoothed, the secondary maxima eliminating waveform results, from which an average maximum amplitude or the Time of the average maximum amplitude in a simple manner is readable. With this procedure can be sufficient for a sufficient Accuracy necessary number of cycles compared to the conventional ones Procedures are greatly reduced. It is assumed, that sufficient accuracies of lambda detection already reach an averaging over 5 to 20 cycles.

    Es wurde festgestellt, daß der Zeitpunkt der gemittelten maximalen Amplitude t1max für die Bestimmung des Kraftstoff-Luft-Verhältnisses bzw. der Abgasrückführrate ein geeigneter Parameter ist, anhand dessen ausreichende Genauigkeiten für eine effektive Steuerung des Verbrennungsmotors erzielbar sind.It was found that the time of the averaged maximum Amplitude t1max for the determination of the air-fuel ratio or the exhaust gas recirculation rate a suitable parameter is, by means of which sufficient accuracy for an effective Control of the internal combustion engine can be achieved.

    Wie bereits erläutert, hängt die Ausbreitungsgeschwindigkeit der Flamme, und damit die Zeit zwischen Zündung und Erreichen des ersten Maximums t1max von der turbulenten Brenngeschwindigkeit ab. Es ist, wie erläutert, aus t1max bei bekannter Abgasrückführrate eine Bestimmung des Kraftstoff-Luft-Verhältnisses, oder bei bekanntem Kraftstoff-Luft-Verhältnis eine Bestimmung der Abgasrückführrate möglich.As already explained, the propagation speed depends the flame, and thus the time between ignition and reaching of the first maximum t1max from the turbulent burning speed from. It is, as explained, from t1max at a known exhaust gas recirculation rate a determination of the air-fuel ratio, or, if the air-fuel ratio is known, a determination the exhaust gas recirculation rate possible.

    Die Zeit t1max bis zum Erreichen des ersten Maximums im Ionenstrom ist hingegen von der Ionisierbarkeit des Kraftstoffes, welche von der Kraftstoffqualität bzw. Kraftstoffadditiven beeinfluBt wird, unabhängig. Die Amplitude des ersten Maximums I1max des Ionenstroms hängt jedoch nicht nur vom Kraftfstoff-Luft-Verhältnis, sondern aufgrund unterschiedlicher Ionisierbarkeiten verschiedener Kraftstoffe auch von der Kraftstoffqualität und Kraftstoffadditiven ab.The time t1max until reaching the first maximum in the ion current is on the other hand of the ionizability of the fuel, which is influenced by the fuel quality or fuel additives will, independent. The amplitude of the first maximum I1max of the ionic current depends not only on the fuel / air ratio, but due to different ionizabilities different fuels also from the fuel quality and fuel additives.

    Obwohl es ausreichend ist, zur Bestimmung der genannten Betriebsgrößen den Zeitpunkt des gemittelten Signalmaximums festzustellen, erweist es sich als vorteilhaft, gleichzeitig auch den tatsächlichen Wert des Maximums zu berechnen. Dieser Amplitudenwert ist zwar, wie erläutert, abhängig von dem verwendeten Kraftstoff, doch kann unter Berücksichtigung der maximalen Amplitude als auch des Zeitpunkts der maximalen Amplitude eine Steigung des Ionenstromsignalverlaufs berechnet werden, aus welcher in besonders einfacher Weise, insbesondere bei bekanntem Kraftstoff, das Kraftstoff-Luft-Verhältnis bzw. die Abgasrückführrate berechnet werden kann. Auf der Grundlage des Signalmaximums bzw. des maximalen Amplitudenwertes läßt sich, insbesondere unter Berücksichtigung der ermittelten Steigung des Ionenstromsignals, auch die Kraftstoffqualität ermitteln. Bei bekannter Kraftstoffqualität ist es auch möglich, lediglich aufgrund des Signalmaximums des gemittelten Signalverlaufs die gewünschten Betriebsgrößen zu ermitteln.Although it is sufficient to determine the above operating sizes determine the time of the averaged signal maximum, proves to be beneficial, at the same time calculate the actual value of the maximum. This amplitude value Although, as explained, depending on the used Fuel, but taking into account the maximum Amplitude as well as the time of maximum amplitude Slope of the ion current waveform can be calculated from which in a particularly simple manner, especially in known Fuel, the air-fuel ratio and the exhaust gas recirculation rate can be calculated. Based on the signal maximum or the maximum amplitude value can be, in particular taking into account the determined slope of the ionic current signal, also to determine the fuel quality. With known fuel quality, it is also possible only due to the maximum signal of the averaged waveform the to determine desired farm sizes.

    Gemäß dem weiteren erfindungsgemäßen Verfahren wird für eine Anzahl von Zündungen jeweils der Zeitpunkt des Maximalwerts des Ionenstromsignals bestimmt. Anschließend erfolgt eine Mittelung der für die jeweiligen Maxima ermittelten Zeitpunkte zum Erhalt eines gemittelten Zeitpunktes. Auf der Grundlage dieses gemittelten Zeitpunktes ist es, wie oben bereits erläutert, möglich, die fraglichen Betriebsgrößen mit ausreichender Genauigkeit zu bestimmen. Auch durch dieses Verfahren lassen sich ausreichende Genauigkeiten der Betriebsgrößen erreichen.According to the further inventive method is for a Number of ignitions each time the maximum value of the Ion current signal determined. Subsequently, an averaging takes place the time points determined for the respective maxima for receipt an average time. On the basis of this averaged Time, it is possible, as explained above, the company sizes in question with sufficient accuracy determine. Also by this method can be sufficient Achieve accuracy of the company sizes.

    Es sei angemerkt, daß das im dargestellten Ionenstromsignal auftretende zweite Maximum I2max durch eine Druckerhöhung im Zylinder aufgrund der Verbrennung entsteht. Die Flamme hat sich hierbei von der Zündkerze gelöst, und die elektrische Leitfähigkeit entsteht durch die Restionisierung des verbrannten Gemischs. Das zweite Maximum im Ionenstromsignal ist glatt, da der Einfluß der Flammenentfaltung nicht mehr an der Zündkerze wirksam ist. Das zweite Maximum I2max spielt jedoch im vorliegenden Zusammenhang zur Bestimmung des Kraftstoff-Luft-Verhältnisses bzw. der übrigen genannten Betriebsgrößen keine Rolle.It should be noted that the ion current signal shown in FIG occurring second maximum I2max by a pressure increase in Cylinder due to combustion arises. The flame has changed in this case detached from the spark plug, and the electrical conductivity is formed by the residual ionization of the burned mixture. The second maximum in the ionic current signal is smooth, since the influence of flame development no longer on the spark plug is effective. The second maximum I2max, however, plays in the present Context for determining the air-fuel ratio or the other mentioned company sizes none Role.

    Eine Ausführungsmöglichkeit der erfindungsgemäßen Verfahren ist in Figur 2 dargestellt. Hierbei wird das Ionenstromsignal über einen Analog-Digital-Wandler AD zeilenweise in einen Zwischenspeicher Z geladen. Bei dem Zwischenspeicher handelt es sich vorzugsweise um einen dynamischen Zwischenspeicher mit Schieberegisterfunktion für die jeweiligen Ionenstromsignale In-In-k. Der Zwischenspeicher besteht aus insgesamt k Zeilen mit firstin-first-out-Funktion (FIFO), in denen Ionenstromsignale abgespeichert sind. Bevor das n-te Ionenstromsignal eingelesen wird, sind die zuvor eingelesenen Ionenstromsignale um eine Zeile verschoben worden. Nach dem Einlesen des aktuellen Ionenstromsignals wird spaltenweise ein gemitteltes Ionenstromsignal über k Zeilen berechnet. Dies ergibt das gemittelte Ionenstromsignal der letzten k Zyklen. Aus diesem gemittelten Ionenstromsignal erfolgt die Berechnung des Maximums I1max bzw. des Zeitpunkts dieses Maximums, t1max.One possible embodiment of the method according to the invention is shown in FIG. Here, the ion current signal over an analog-to-digital converter AD line by line in a buffer Z loaded. The cache is preferably a dynamic buffer with shift register function for the respective ion current signals In-In-k. The cache consists of a total of k rows with firstin-first-out function (FIFO), in which ion current signals are stored are. Before the nth ion current signal is read is, are the previously read ion current signals to one Line has been moved. After reading the current ion current signal is an average ion current signal in columns calculated over k lines. This gives the averaged ion current signal the last k cycles. From this averaged ion current signal the calculation of the maximum I1max or of the time takes place this maximum, t1max.

    Claims (2)

    1. Process, for determining an extent of operation of an internal combustion engine, with the following stages:
      measurement of the behaviour of an ion-flow signal at a spark plug of the internal combustion engine for a number of ignitions, dependent, in each case, on time,
      averaging of the given measured signal behaviour to obtain an averaged signal behaviour,
      determination of the maximum and/or the timepoint of the maximum of the averaged signal behaviour,
      calculation of an extent of operation on the basis of the maximum and/or the timepoint of the maximum of the averaged signal behaviour,
      characterized in that the extent of operation to be determined is the exhaust return rate.
    2. Process in accordance with claim 1,
      characterized in that the measurements are made on different spark plugs or cylinders.
    EP98114352A 1997-08-16 1998-07-30 Method for establishing an operating characteristic of an internal combustion engine Expired - Lifetime EP0898065B1 (en)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE19735454 1997-08-16
    DE19735454A DE19735454A1 (en) 1997-08-16 1997-08-16 Method for determining an operating variable of an internal combustion engine

    Publications (3)

    Publication Number Publication Date
    EP0898065A2 EP0898065A2 (en) 1999-02-24
    EP0898065A3 EP0898065A3 (en) 2000-11-22
    EP0898065B1 true EP0898065B1 (en) 2003-09-03

    Family

    ID=7839102

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP98114352A Expired - Lifetime EP0898065B1 (en) 1997-08-16 1998-07-30 Method for establishing an operating characteristic of an internal combustion engine

    Country Status (3)

    Country Link
    US (1) US6125691A (en)
    EP (1) EP0898065B1 (en)
    DE (2) DE19735454A1 (en)

    Families Citing this family (14)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE19849115C2 (en) * 1998-10-24 2000-10-12 Daimler Chrysler Ag Method for recognizing the quality of fuel for internal combustion engines
    DE19911019C2 (en) 1999-03-12 2001-02-08 Daimler Chrysler Ag Method for determining the air / fuel ratio in a combustion chamber of an internal combustion engine
    DE19924500C1 (en) * 1999-05-28 2000-08-24 Daimler Chrysler Ag Operating method for gas-fuelled combustion engine, controlling combustion processes in dependence on gas quality of conveyed fuel gas
    DE10011614A1 (en) * 2000-03-10 2001-09-13 Delphi Tech Inc Procedure for determining commencement of combustion in cylinder in internal combustion engine entails forming difference between last calculated average value and last stored value and comparing this with threshold value
    JP3579404B2 (en) * 2002-05-27 2004-10-20 三菱電機株式会社 Misfire detection device for internal combustion engine
    EP1435445A1 (en) * 2002-12-30 2004-07-07 Ford Global Technologies, Inc., A subsidiary of Ford Motor Company Internal combustion engine, method for auto-ignition operation and computer readable storage device
    US6910449B2 (en) * 2002-12-30 2005-06-28 Ford Global Technologies, Llc Method for auto-ignition operation and computer readable storage device for use with an internal combustion engine
    DE102004041230A1 (en) * 2004-08-26 2006-03-02 Volkswagen Ag Cylinder equalization method using ionic flow measurement for combustion engine, involves comparing determined average values of specific cylinders and average values of specific cylinder groups to identify cylinder and its operation mode
    DE102007021283A1 (en) 2007-05-07 2008-11-13 Continental Automotive Gmbh Method and device for determining the combustion lambda value of an internal combustion engine
    JP4462315B2 (en) * 2007-09-24 2010-05-12 株式会社デンソー Internal combustion engine control device
    WO2012103368A1 (en) * 2011-01-28 2012-08-02 Wayne State University Autonomous operation of electronically controlled internal combustion engines on a variety of fuels and/or other variabilities using ion current and/or other combustion sensors
    RU2015103802A (en) * 2011-07-20 2016-09-10 СиЭмТиИ ДЕВЕЛОПМЕНТ ЛИМИТЕД Spark control device
    ITRE20110060A1 (en) 2011-08-02 2013-02-03 Emak Spa "CARBURETION CONTROL SYSTEM"
    JP5753142B2 (en) 2012-09-19 2015-07-22 本田技研工業株式会社 Combustion control device for internal combustion engine and method for burning homogeneous lean mixture

    Family Cites Families (12)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    AT386256B (en) * 1984-07-02 1988-07-25 Atlas Fahrzeugtechnik Gmbh ARRANGEMENT FOR GENERATING A TRIGGER PULSE FOR THE IGNITION OF AN INTERNAL COMBUSTION ENGINE
    DE3506114A1 (en) * 1985-02-22 1986-09-04 Robert Bosch Gmbh, 7000 Stuttgart Method for controlling an internal combustion engine in an open-loop or closed-loop fashion
    DE4037943C2 (en) 1990-11-29 2000-12-07 Bayerische Motoren Werke Ag Operating method for a spark-ignited multi-cylinder internal combustion engine with a cylinder-specific fuel supply
    JPH05149230A (en) 1991-11-26 1993-06-15 Mitsubishi Electric Corp Knocking detecting device for internal combustion engine
    JP2909345B2 (en) * 1993-03-23 1999-06-23 三菱電機株式会社 Internal combustion engine control device
    JPH07293315A (en) * 1994-04-27 1995-11-07 Daihatsu Motor Co Ltd Air-fuel ratio detecting method
    SE503900C2 (en) * 1995-01-18 1996-09-30 Mecel Ab Method and system for monitoring internal combustion engines by detecting the actual air-fuel mixing ratio
    US5803047A (en) * 1995-10-19 1998-09-08 Mecel Ab Method of control system for controlling combustion engines
    JPH09324690A (en) * 1996-06-03 1997-12-16 Mitsubishi Electric Corp Internal combustion engine control device
    JP3205512B2 (en) * 1996-09-05 2001-09-04 トヨタ自動車株式会社 Device for detecting combustion state of internal combustion engine
    JP3662364B2 (en) * 1996-09-27 2005-06-22 トヨタ自動車株式会社 Internal combustion engine knock detection device
    US6029627A (en) * 1997-02-20 2000-02-29 Adrenaline Research, Inc. Apparatus and method for controlling air/fuel ratio using ionization measurements

    Also Published As

    Publication number Publication date
    DE59809469D1 (en) 2003-10-09
    EP0898065A3 (en) 2000-11-22
    EP0898065A2 (en) 1999-02-24
    US6125691A (en) 2000-10-03
    DE19735454A1 (en) 1999-02-18

    Similar Documents

    Publication Publication Date Title
    EP0898065B1 (en) Method for establishing an operating characteristic of an internal combustion engine
    DE19681269C2 (en) Knock control method in internal combustion engines
    DE112007001877B4 (en) Using an ion current to measure NOx in combustion chambers of a diesel engine
    DE2658614C2 (en) Device for sensing misfire in internal combustion engines
    DE4232845C2 (en) Method and device for determining the combustion state of internal combustion engines
    DE3918772A1 (en) MOTOR CONTROL UNIT
    DE102008000127B4 (en) Adaptive closing time of the ignition; based on ionization feedback
    DE4036080C2 (en) Device for setting the fuel injection quantity of an internal combustion engine
    DE10243612B4 (en) Knock control system for an internal combustion engine
    DE2939580A1 (en) METHOD FOR REGULATING THE IGNITION TIMING
    DE102006027204B3 (en) Combustion process monitoring method e.g. for petrol engine, involves measuring the high-frequency current and high-frequency voltage for ascertaining impedance of ignited mixture
    DE102004057282B4 (en) Engine diagnostic system
    EP1525382A1 (en) Regulating the mode of operation of an internal combustion engine
    DE2449836A1 (en) DEVICE FOR REGULATING THE OPERATING BEHAVIOR OF AN COMBUSTION ENGINE
    DE10313558A1 (en) Knock control device for an internal combustion engine
    DE102007054650B3 (en) Determination of the fuel quality in a self-igniting internal combustion engine
    DE19635926C2 (en) Device and method for detecting the state of combustion in internal combustion engines
    DE19853841A1 (en) High voltage detection electrode for particles in gases
    DE102007041871A1 (en) Compensation of varying fuel and air properties with an ion signal
    DE112014001958T5 (en) System and method for controlling the power of an engine
    AT503276B1 (en) METHOD FOR EVALUATING THE CONDITION OF A FUEL / AIR MIXTURE
    DE19749814A1 (en) Method to measure pressure in internal combustion chamber as function of crankshaft angle
    DE19845965B4 (en) Method for determining the actual value of the compression ratio in an internal combustion engine
    DE19963225B4 (en) Method for monitoring the combustion process in a diesel engine and corresponding measuring system
    EP0868660A2 (en) Process for detecting cyclical fluctuations in combustion in an internal combustion engine

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A2

    Designated state(s): DE FR GB IT

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: DAIMLERCHRYSLER AG

    PUAL Search report despatched

    Free format text: ORIGINAL CODE: 0009013

    RIC1 Information provided on ipc code assigned before grant

    Free format text: 7F 02D 41/00 A, 7F 02D 41/14 B

    AK Designated contracting states

    Kind code of ref document: A3

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    17P Request for examination filed

    Effective date: 20001020

    AKX Designation fees paid

    Free format text: DE FR GB IT

    17Q First examination report despatched

    Effective date: 20020513

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE FR GB IT

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REF Corresponds to:

    Ref document number: 59809469

    Country of ref document: DE

    Date of ref document: 20031009

    Kind code of ref document: P

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20031231

    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20040604

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: CD

    Ref country code: FR

    Ref legal event code: CA

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20080722

    Year of fee payment: 11

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20080724

    Year of fee payment: 11

    Ref country code: FR

    Payment date: 20080715

    Year of fee payment: 11

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20080722

    Year of fee payment: 11

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20090730

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20100331

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090731

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090730

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20100202

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090730