EP0897465B1 - Diesel engine control - Google Patents
Diesel engine control Download PDFInfo
- Publication number
- EP0897465B1 EP0897465B1 EP97920824A EP97920824A EP0897465B1 EP 0897465 B1 EP0897465 B1 EP 0897465B1 EP 97920824 A EP97920824 A EP 97920824A EP 97920824 A EP97920824 A EP 97920824A EP 0897465 B1 EP0897465 B1 EP 0897465B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- engine
- speed
- fuel
- load
- demand pedal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/38—Controlling fuel injection of the high pressure type
Definitions
- the present invention relates to the control of a diesel engine.
- Diesel engines differ from spark ignited engines in that the load is determined by the quantity of fuel injected into the engine rather than by the air intake mass.
- the quantity of fuel injected in any cycle is set by a controller in dependence upon the position of a demand pedal.
- a controller is required because the injection quantity is not related uniquely to the demand pedal position but depends also upon the load on the engine.
- the engine When the driver takes his foot completely off the demand pedal to set the engine to idling speed, the engine is not expected to stall even if it is under load. If the vehicle is in gear, the idle setting is expected to make the vehicle move forward, even up a hill. When the demand pedal is depressed, then the driver immediately expects the vehicle to move faster. Also if the demand pedal is held stationary in a part load position, the driver normally expects the vehicle to speed up when travelling down a hill and to slow down when travelling up a hill.
- the fuelling strategy described above is represented by the graphs in Figure 1 in which the fuel injection quantity expressed in milligrams of fuel per engine stroke is plotted against engine speed, the different graphs representing different demand pedal depressions.
- the vertical line 10 at the engine speed of 800 rpm represents the idle control. During idle control, regardless of load the fuel injection quantity is adjusted to prevent the engine from stalling and the fuel injection quantity is automatically varied with load to hold the engine speed at 800 rpm.
- the inclined lines 12a, 12b and 12c correspond to constant demand pedal depressions of 20%, 40% and 60%, respectively. The inclination represents what is sometimes termed the speed droop. As the engine speed increases on account of reduced load, so is the fuel injection quantity reduced. The reduction is not however sufficient to counteract fully the increase in speed and there is some change in engine speed as the load is varied. In the converse manner, if the load is increased, the fuel injection quantity is increased but again not enough to maintain the vehicle speed constant.
- the pedal depression scheme described above and represented by the diagram of Figure 1 has certain disadvantages because it can sometimes result in a dead band that is disconcerting to the driver. To explain this effect more clearly, let it be assumed in Figure 1 that the vehicle is allowed to creep up a hill under idle control with the driver's foot completely off the demand pedal.
- the fuel injection quantity required to keep the engine at idling speed could be anywhere along the vertical line 10 and it will be supposed, just as an example, that the fuel injection quantity is set at the point designated A in the drawing.
- the driver now puts his foot down on the demand pedal hoping to make the vehicle move slightly faster, the pedal now moving to the 10% demand position.
- FR-A-2,021,606 discloses in the embodiment described by reference to Figures 7 and 8 a variable speed variable governor that has a kinked idling regulating curve but it does not address the dead band problem discussed above.
- the present invention seeks to provide a diesel engine control strategy that avoids a dead band and allows the engine always to respond immediately to a change in the position of the demand pedal.
- a method of varying the quantity of fuel injected into the combustion chambers of a diesel engine during each combustion cycle in dependence upon the position of a demand pedal and the load on the engine wherein at least for demand pedal depressions not exceeding a preset limit the fuel is varied within an idling operating range as a first function of load to regulate the engine speed at a substantially constant idling speed value and within a part load operating range as a second function of load to allow the engine speed to reduce gradually with increased engine load, wherein the regulated idling speed is increased as a function of increased depression of the demand pedal and the fuel amount at which the idle speed is feedback controlled to said regulated value also increases with increased depression of the demand pedal.
- the invention differs from prior art proposals in that instead of a unique idling speed common to all positions of the demand pedal, the regulated idling speed is increased with increased demand. If the driver depresses the demand pedal while the engine is idling, the engine will idle at a higher speed and thereby avoid the dead band within which demand pedal position has no effect on engine speed.
- a diesel engine regulator for setting the quantity of fuel injected into the combustion chambers of the engine during each combustion cycle, comprising a demand pedal, means for sensing the engine speed, an idle speed controller responsive for determining the quantity of fuel required to maintain the engine idling at a speed that varies as a function of the demand pedal position only and is substantially independent of engine load, a speed droop controller for determining as a function of the demand pedal depression and engine speed the quantity of fuel required to allow the engine speed to vary with load for any given demand pedal depression, and means for setting the fuel injection pump of the engine to deliver to the combustion chambers of the engine the higher of the fuel quantities determined by the two controllers, whereby the fuel amount at which the idle speed is feedback controlled to said regulated value increases with increased depression of the demand pedal.
- Each constant demand pedal position line in Figure 4 (at least those lower than the 50% demand position line), for example the line 32 for a 20% demand pedal position is formed of two distinct parts.
- the first part 32a is an idle control line which is very steep and maintains a substantially constant idle speed and a second part 32b which corresponds to a speed droop characteristic that allows some variation of the engine speed with the engine load.
- Figures 1 and 4 differ is that, in accordance with the invention, there is a different idling speed maintained for each position of the demand pedal, the idling speed increasing with increased demand pedal position. As a result, the engine will idle at a higher speed as the demand pedal is depressed. When the engine is idling, therefore, changes in the position of the demand pedal will be reflected in different regulated idling speeds without the presence of an objectionable dead band.
- the method of the invention is implemented by providing two separate controllers, the first determining the fuel quantity required to maintain the minimum idling speed for the position of the demand pedal and the second determining the quantity of fuel to achieve the desired speed droop characteristic.
- the fuel pump is set in accordance with the higher of the two fuel quantities.
- the speed droop controller can be a P (proportional) or a PD (proportional-differential) controller but it is preferred to use a look-up table.
- the idle speed controller on the other hand is preferably a PI (proportional-integral) or a PID controller.
- Such a controller may be implemented in the form of a variable gain amplifier with feedback but in the described embodiment both controllers are implemented in software using a programmable processor.
- the position of the demand pedal is sensed by a demand pedal position sensor 20 which produces an analogue signal.
- the latter signal is converted into a digital signal by an A/D converter 22 before being applied to a processor 26 and provides the processor with an indication of pedal position.
- the processor 26 also receives a digital signal from a crankshaft position sensor 24.
- the crankshaft position sensor 24 produces pulses that coincide with instants when a crankshaft passes through predetermined angular positions. These pulses are processed in the processor 26 to generate an actual engine speed signal.
- the processor sends a signal to the fuel pump 28 to vary the fuel quantity injected into the combustion chambers of the engine during each operating cycle and thereby changes the speed of the engine.
- the operation of the processor 26 can best be understood from the flow chart of Figure 3.
- the processor consists of an idle speed regulator 52 and a speed droop regulator 40 arranged to operate in parallel on the two signals indicative of the desired and actual engine speeds.
- the pulses from the crankshaft position sensor are processed in a block 46 to calculate the actual engine speed.
- the demand pedal position signal from the A/D converter is used in block 44 to calculate or look-up a desired engine idling speed. This idling speed will vary with pedal depression in the manner shown in Figure 4.
- the actual engine speed is subtracted from the desired engine speed to produce an error signal that is applied to a PI controller 50.
- the PI controller has an output signal composed of the sum of two components, the first related to instantaneous value of the error signal and the second to the integral of the error signal.
- the effect of using a PI controller is that a fuel quantity is computed that maintains the engine speed within a very narrow band centred on the desired value, hence the steepness in Figure 4 of the idling curve sections 34b.
- the second regulator 40 could be a second controller, this time without an integral component, but in the illustrated embodiment of the invention is constituted as a look-up table addressed by the demand pedal position signal and the actual speed calculated within the block 46 of the idle speed regulator.
- the quantity of fuel derived from the look-up table is sufficient to allow the engine speed to vary with load for any given demand pedal position along the speed droop curves 34a shown in Figure 4.
- the higher of the fuel quantities set by the two regulators 52 and 50 is selected in the block 42 and used to control the fuel injection pump so that as the engine slows down to its idling speed, the regulator 52 takes over from the regulator 40 and conversely as the engine speed increases, the speed droop regulator 40 takes over from the idle speed regulator 52.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Description
Claims (5)
- A method of varying the quantity of fuel injected into the combustion chambers of a diesel engine during each combustion cycle in dependence upon the position of a demand pedal and the load on the engine, wherein at least for demand pedal depressions not exceeding a preset limit the fuel is varied within an idling operating range as a first function of load to regulate the engine speed at a substantially constant idling speed value and within a part load operating range as a second function of load to allow the engine speed to reduce gradually with increased engine load, wherein the regulated idling speed is increased as a function of increased depression of the demand pedal and the fuel amount at which the idle speed is feedback controlled to said regulated value also increases with increased depression of the demand pedal.
- A diesel engine regulator for setting the quantity of fuel injected into the combustion chambers of the engine during each combustion cycle, comprising a demand pedal, means (46) for sensing the engine speed, an idle speed controller (44,48,50) for determining the quantity of fuel required to maintain the engine idling at a speed that varies as a function of the demand pedal position only and is substantially independent of engine load, a speed droop controller (40) for determining as a function of the demand pedal depression and engine speed the quantity of fuel required to allow the engine speed to vary with load for any given demand pedal depression, and means (42) for setting the fuel injection pump of the engine to deliver to the combustion chambers of the engine the higher of the fuel quantities determined by the two controllers, so that the fuel amount at which the idle speed is feedback controlled to said regulated value increases with increased depression of the demand pedal.
- A diesel engine regulator as claimed in claim 2, wherein the idle speed controller is a closed loop controller having a proportional and an integral component (50), the proportional component determining the fuel quantity required to minimise the error between the actual and desired engine speeds and the integral component determining the fuel quantity required to minimise the time integral of the error between the actual and desired engine speeds.
- A diesel engine regulator as claimed in claim 2 or 3, wherein the second controller (40) comprises a look up table wherein the cell addresses in the table correspond to the demand pedal depression and the prevailing engine speed.
- A diesel engine regulator as claimed in any of claims 2 to 4, wherein the two controllers are constituted by a programmed microprocessor (26).
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB9609869A GB2312970A (en) | 1996-05-11 | 1996-05-11 | Diesel engine control |
GB9609869 | 1996-05-11 | ||
PCT/GB1997/001216 WO1997043534A1 (en) | 1996-05-11 | 1997-05-06 | Diesel engine control |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0897465A1 EP0897465A1 (en) | 1999-02-24 |
EP0897465B1 true EP0897465B1 (en) | 2000-02-09 |
Family
ID=10793543
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP97920824A Expired - Lifetime EP0897465B1 (en) | 1996-05-11 | 1997-05-06 | Diesel engine control |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP0897465B1 (en) |
DE (1) | DE69701285T2 (en) |
ES (1) | ES2142160T3 (en) |
GB (1) | GB2312970A (en) |
WO (1) | WO1997043534A1 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19801206A1 (en) * | 1998-01-15 | 1999-07-22 | Volkswagen Ag | Method and device for improving the starting behavior of a motor vehicle with a manual transmission |
US6089207A (en) * | 1998-03-02 | 2000-07-18 | Cummins Engine Company, Inc. | Throttle control response selection system |
US6434466B1 (en) | 1999-05-06 | 2002-08-13 | Ford Global Technologies, Inc. | System and method for determining engine torque for controlling a powertrain |
US6119063A (en) * | 1999-05-10 | 2000-09-12 | Ford Global Technologies, Inc. | System and method for smooth transitions between engine mode controllers |
US6364812B1 (en) | 1999-05-11 | 2002-04-02 | Ford Global Technologies, Inc. | Automatic transmission dynamic electronic pressure control based on desired powertrain output |
US6220987B1 (en) | 1999-05-26 | 2001-04-24 | Ford Global Technologies, Inc. | Automatic transmission ratio change schedules based on desired powertrain output |
US6425373B1 (en) | 1999-08-04 | 2002-07-30 | Ford Global Technologies, Inc. | System and method for determining engine control parameters based on engine torque |
US6279531B1 (en) | 1999-08-09 | 2001-08-28 | Ford Global Technologies, Inc. | System and method for controlling engine torque |
DE102004041660B3 (en) * | 2004-08-27 | 2006-05-04 | Siemens Ag | Method and device for determining an output torque |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1805050C3 (en) * | 1968-10-25 | 1979-08-23 | Robert Bosch Gmbh, 7000 Stuttgart | Electronic control device for an internal combustion engine, in particular a diesel engine |
US3973538A (en) * | 1973-01-06 | 1976-08-10 | C.A.V. Limited | Fuel systems for engines |
JPS5720525A (en) * | 1980-07-14 | 1982-02-03 | Nippon Denso Co Ltd | Electric governor for fuel injection pump |
JPS5963333A (en) * | 1982-10-01 | 1984-04-11 | Isuzu Motors Ltd | Combustion control device for diesel engine |
JPS61129446A (en) * | 1984-11-28 | 1986-06-17 | Fuji Heavy Ind Ltd | Idle revolution speed controller |
-
1996
- 1996-05-11 GB GB9609869A patent/GB2312970A/en not_active Withdrawn
-
1997
- 1997-05-06 EP EP97920824A patent/EP0897465B1/en not_active Expired - Lifetime
- 1997-05-06 WO PCT/GB1997/001216 patent/WO1997043534A1/en active IP Right Grant
- 1997-05-06 ES ES97920824T patent/ES2142160T3/en not_active Expired - Lifetime
- 1997-05-06 DE DE69701285T patent/DE69701285T2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
ES2142160T3 (en) | 2000-04-01 |
GB9609869D0 (en) | 1996-07-17 |
DE69701285D1 (en) | 2000-03-16 |
DE69701285T2 (en) | 2000-10-26 |
EP0897465A1 (en) | 1999-02-24 |
WO1997043534A1 (en) | 1997-11-20 |
GB2312970A (en) | 1997-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4884203A (en) | Method for influencing the driving speed of a motor vehicle and apparatus therefor | |
US5740045A (en) | Predictive spark controller | |
US4727838A (en) | Apparatus for controlling internal combustion engine | |
US4428341A (en) | Electronic regulating device for rpm regulation in an internal combustion engine having self-ignition | |
US4311123A (en) | Method and apparatus for controlling the fuel supply of an internal combustion engine | |
US5521825A (en) | Engine inlet air valve positioning | |
EP0110226A2 (en) | Internal combustion engine control system with means for reshaping of command derived from accelerator control | |
US6425370B1 (en) | Diesel engine load governing using engine speed setpoint | |
US4414943A (en) | Method of and apparatus for controlling the air intake of an internal combustion engine | |
EP0897465B1 (en) | Diesel engine control | |
JPS6350540B2 (en) | ||
US5613474A (en) | Control method for starting diesel engines | |
US5251598A (en) | System for regulating the idling speed of an internal-combustion engine | |
JP2860852B2 (en) | Idle speed control device for internal combustion engine | |
US4637280A (en) | Control system for motor vehicle with continuously variable transmission and engine | |
US4711211A (en) | Fuel injection apparatus for internal combustion engine | |
US6283101B1 (en) | Method of controlling exhaust recycling in an internal combustion engine | |
GB2165669A (en) | Regulation of the idling speed of an internal combustion engine | |
JPS61200346A (en) | Engine idle speed control system | |
EP0412999B1 (en) | Adaptive charge mixture control system for internal combustion engine | |
US5163398A (en) | Engine idle speed control based upon fuel mass flow rate adjustment | |
WO1991002148A1 (en) | Device for producing a desired value of a control parameter of an internal combustion engine | |
US4727836A (en) | Fuel injection apparatus for internal combustion engine | |
US4756292A (en) | Method for adjusting the start of a pump delivery in a timing device of an injection pump of an air-compressing internal combustion engine | |
US5970954A (en) | Control of fueling of an internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19981112 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE ES FR GB |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
17Q | First examination report despatched |
Effective date: 19990407 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE ES FR GB |
|
REF | Corresponds to: |
Ref document number: 69701285 Country of ref document: DE Date of ref document: 20000316 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2142160 Country of ref document: ES Kind code of ref document: T3 |
|
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP Ref country code: FR Ref legal event code: CD |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CD Ref country code: FR Ref legal event code: CA |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 69701285 Country of ref document: DE Representative=s name: DOERFLER, THOMAS, DR.-ING., DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20160517 Year of fee payment: 20 Ref country code: DE Payment date: 20160524 Year of fee payment: 20 Ref country code: GB Payment date: 20160426 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20160428 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 69701285 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20170505 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20170505 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20180508 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20170507 |