EP0893817A1 - Ion pumping of a microtip flat screen - Google Patents

Ion pumping of a microtip flat screen Download PDF

Info

Publication number
EP0893817A1
EP0893817A1 EP98410073A EP98410073A EP0893817A1 EP 0893817 A1 EP0893817 A1 EP 0893817A1 EP 98410073 A EP98410073 A EP 98410073A EP 98410073 A EP98410073 A EP 98410073A EP 0893817 A1 EP0893817 A1 EP 0893817A1
Authority
EP
European Patent Office
Prior art keywords
screen
microtips
sacrificial
grid
active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP98410073A
Other languages
German (de)
French (fr)
Other versions
EP0893817B1 (en
Inventor
Stéphane Mougin
Lionel Rivière-Cazaux
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Pixtech SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pixtech SA filed Critical Pixtech SA
Priority to EP07102656A priority Critical patent/EP1814136B1/en
Publication of EP0893817A1 publication Critical patent/EP0893817A1/en
Application granted granted Critical
Publication of EP0893817B1 publication Critical patent/EP0893817B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J41/00Discharge tubes for measuring pressure of introduced gas or for detecting presence of gas; Discharge tubes for evacuation by diffusion of ions
    • H01J41/12Discharge tubes for evacuating by diffusion of ions, e.g. ion pumps, getter ion pumps
    • H01J41/18Discharge tubes for evacuating by diffusion of ions, e.g. ion pumps, getter ion pumps with ionisation by means of cold cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/94Selection of substances for gas fillings; Means for obtaining or maintaining the desired pressure within the tube, e.g. by gettering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J7/00Details not provided for in the preceding groups and common to two or more basic types of discharge tubes or lamps
    • H01J7/14Means for obtaining or maintaining the desired pressure within the vessel
    • H01J7/16Means for permitting pumping during operation of the tube or lamp
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/38Exhausting, degassing, filling, or cleaning vessels
    • H01J9/39Degassing vessels

Definitions

  • the present invention relates to the field of screens microtip viewing dishes.
  • the invention relates more particularly the manufacture of such screens.
  • a microtip screen is generally made up a cathode with electronic emission microtips placed opposite an anode provided with clean phosphor elements to be excited by electronic bombardment.
  • the cathode is associated with a grid provided with holes corresponding to the locations microtips.
  • This device uses the electric field that is created between the cathode and the grid so that electrons are microtip extracts. These electrons are then attracted to the phosphor elements of the anode if these are suitably polarized.
  • the microtips are generally deposited on cathode conductors organized in columns and individually addressable.
  • the grid is organized in perpendicular rows to the cathode columns, also individually addressable.
  • the anode is generally provided of alternating bands of phosphor elements each corresponding to a color (Red, Green, Blue).
  • the bands are parallel to the cathode columns and are separated from each other by an insulator.
  • the phosphor elements are deposited on electrodes consisting of corresponding strips of a conductive layer transparent, for example, of indium tin oxide (ITO).
  • intersection of a cathode column and a grid row defines a screen pixel.
  • the sets of red, green, blue stripes are alternately polarized with respect to the cathode so that electrons extracted from the microtips of a pixel of the grid cathode are alternately directed to each of the colors.
  • the intersection of a row of the grid with a cathode column then defines a sub-pixel of a color.
  • the grid rows are sequentially polarized at a potential on the order of 80 volts, while that the bands of phosphors to be excited are polarized under a voltage of the order of 400 volts via of the ITO band on which these phosphor elements are filed.
  • ITO bands, carrying the other element bands phosphors are at low or zero potential.
  • the columns of the cathode are brought to respective potentials between a maximum emission potential and a potential no emission (for example, 0 and 30 volts respectively). The brightness of a color component of each of the pixels of a line.
  • the anode In a monochrome screen, the anode is generally consisting of a plan of phosphor elements of the same color polarized simultaneously, or two sets of alternating bands phosphor elements of the same color addressed alternately.
  • the choice of the values of the polarization potentials is linked to the characteristics of phosphor elements and microtips. Conventionally, below a potential difference 50 volts between the cathode and the grid, there is no emission electronic, and the maximum emission used corresponds to a potential difference of 80 volts.
  • the manufacturing of microtip screens uses techniques commonly used in circuit manufacturing integrated.
  • the cathode is usually formed of layered deposits thin on a substrate, for example, of glass constituting the bottom of the screen.
  • the anode is generally formed on a substrate of glass constituting the screen surface.
  • the anode and the grid cathode are produced independently from each other on the two substrates, then are assembled by means of a peripheral sealing joint while sparing, between the grid and the anode, an empty space to allow the circulation of electrons emitted by the cathode to the anode.
  • the screen is subjected to various treatments thermal degassing. These treatments are carried out generally under pumping by means of a tube communicating with empty space and intended to be closed at the end of the process manufacturing.
  • a getter trap is usually introduced in the screen, for example in the tube, before closing.
  • the role of this getter is to trap desorbed elements, in particular by the anode, during the operation of the screen.
  • this getter is inactive vis-à-vis neutral species, in particular rare gases, which remain in empty space after closing the screen.
  • This final step is carried out once the closed pumping. It consists in causing an electronic emission microtips to ionize neutral species remaining in the inter-electrode space.
  • the bombing of cash neutrals causes an electron to be extracted from their layer of valence and these species are then positively charged. They are then attracted to the microtips with the potential more negative. This step is commonly called a pumping ionic.
  • the present invention relates more particularly vacuum improvement of the inter-electrode space by pumping ionic.
  • the present invention aims to propose a new process ion pumping of a microtip screen which overcomes disadvantages of known methods.
  • the invention is aimed in particular to improve the emissive capacity of microtips.
  • the present invention also aims to provide a new adaptable flat screen display structure to the implementation of this process.
  • the present invention also aims to allow, simple way, the implementation of an ion pumping by the system screen and, in particular, not to be required the supply of other potentials than those which are conventionally used in a conventional screen for its operation.
  • the present invention further aims to provide a screen which allows an improvement of the vacuum not only during the manufacture of the screen but also after the commissioning of the screen.
  • the present invention provides a flat microtip display screen comprising a cathode with active areas of electron emission microtips ; a cathodoluminescent anode provided, at least in look at said active microtip zones, active zones phosphor elements; a main extraction grid of electrons emitted by the active microdots towards the phosphor elements; and cathode side, at least one sacrificial area microdots suitable for being addressed, outside of periods of operation of the screen and independently of said zones active.
  • the sacrificial area of microtips is associated with a grid secondary.
  • the screen comprises, on the anode side, at least one conductive track at directly above the sacrificial microtip zone, said track conductive being, during an ion pumping phase, polarized at a potential greater than a bias potential of said secondary grid, preferably at a corresponding potential at nominal addressing potential of active areas phosphor elements of the anode.
  • the secondary grid is polarized, during a pumping phase ionic, at a potential corresponding to a nominal potential addressing the main grid during periods of operation of the screen.
  • the main and secondary grids are one and the same grid extending directly above the active and sacrificial zones of microtips.
  • said sacrificial microtips are addressed, for one ion pumping phase, at a potential within a range nominal addressing potentials for active microtip areas during screen operation.
  • the area of the sacrificial microtip zone is included between 0.1% and 10% of the surface of the active microtip zones.
  • the screen has sacrificial microtip zones parallel to said columns, each sacrificial area being sandwiched between two neighboring columns.
  • the screen has two sacrificial microtip zones of on either side of the active areas.
  • the invention also provides a method of improvement vacuum in a flat microtip screen, which consists, during an ion pumping phase, applying a positive voltage between a grid associated with the sacrificial microtips and the sacrificial area of microtips.
  • an ion pumping phase is carried out before commissioning of the screen.
  • an ion pumping phase is carried out after each period of screen operation.
  • a feature of the present invention is provide, in addition to the microtips participating in the display, minus an area of sacrificial microdots dedicated to pumping ionic.
  • FIG. 1 represents an embodiment of a display screen according to the present invention.
  • a screen according to the invention consists of a cathode 1 with microtips 2 and a grid 3 provided with corresponding holes 4 at the microtip locations 2.
  • the cathode 1 is placed opposite a cathodoluminescent anode 5 including a substrate of glass 6 constitutes the screen surface.
  • the microtips 2 are generally deposited on organized cathode conductors 7 in columns. Most often, microtips 2 are made on a resistive layer (not shown) deposited on the cathode conductors organized in mesh from a layer conductive, the microtips being arranged inside the meshes defined by the cathode conductors.
  • Grid 3 is consisting of a conductive layer organized in perpendicular rows to cathode conductor columns with interposition an insulator 8 between the cathode and the grid.
  • the rows of grid 3 have a hole 4 plumb with each microtip 2.
  • the intersection of a column 7 of the cathode and a grid row 3 defines a screen pixel. For reasons clarity, only one microtip 2 has been shown associated to each cathode conductor 7. Note, however, that there are usually several thousand microtips per screen pixel.
  • the cathode / grid is made on a substrate 9, for example made of glass, constituting the bottom of the screen.
  • the anode substrate 6 carries a electrode 10 consisting of a plane of a transparent conductive layer such as indium tin oxide (ITO). Elements phosphors 16 of the same color are deposited on this electrode 10.
  • the anode is generally provided with alternating bands of elements phosphors each corresponding to a color (red, green, blue). The bands are parallel to the cathode columns and are separated from each other by an insulator. The elements phosphors are then deposited on electrodes made up of corresponding ITO bands.
  • An empty space 11 is provided between the anode and the cathode / grid when assembling substrates 6 and 9.
  • spacers generally evenly distributed between grid 3 and anode 5 define the height of the space 11 and a peripheral sealing joint (not shown) ensures the tightness of the assembly.
  • such a screen is controlled by means an electronic circuit 12 suitable for addressing individually the columns of conductors 7 of the cathode by connections 13, to address the rows of grid 3 sequentially with links 14, and to bias the anode electrode 10 by means of a link 15.
  • an electronic circuit 12 suitable for addressing individually the columns of conductors 7 of the cathode by connections 13, to address the rows of grid 3 sequentially with links 14, and to bias the anode electrode 10 by means of a link 15.
  • the sets of bands red, green and blue are alternately polarized by connection to the cathode by means of appropriate connections.
  • the cathode 1 comprises a 2 'independently addressable microtip sacrificial area columns 7 by means of an additional electrode 7 '.
  • This zone is associated with a 3 'secondary grid which, depending on the mode shown in Figure 1, can be addressed independently rows of grid 3.
  • the secondary grid can correspond to row extensions of the main grid 3 participating in the display.
  • the sacrificial area of microtips 2 is intended to be addressed, once the screen is finished, to improve the vacuum in the inter-electrode space 11.
  • the screen has active areas of microtips 2 and at least one sacrificial area of microtips 2 'addressable independently of each other.
  • the sacrificial microtips are damaged by ion pumping in which they participate while the microtips of the active area of the screen are preserved.
  • the anode is provided with an electrode secondary 10 'collection of electrons emitted by the area sacrificial microtips.
  • an ITO area preferably without phosphor elements, is provided for directly above the sacrificial microtip zone.
  • This electrode 10 ' is, during ion pumping, polarized at a potential significantly higher than the potential of the 3 'grid.
  • the electrons pass through then the whole inter-electrode space, which increases the probability of hitting a neutral molecule and transforming it into a positive ion.
  • the area where the house the ionized molecules (the 3 'secondary grid). This advantage is particularly interesting in the case where the grid secondary consists of row extensions of the grid 3 used for the extraction of electrons from the active area.
  • the secondary electrode 10 ′ of the anode is merged with the electrode 10, the phosphor elements 16 being, however, preferably deposited only at directly above the active microtip zones.
  • the secondary electrode 10 ′ may be coated with a material with a higher secondary emission factor to one so as to multiply the number of electrons emitted. In in this case, we can apply a transverse field to this electrode secondary 10 'to further increase the number of electrons by avalanche effect.
  • the electrode 7 ′, the secondary grid 3 'and the secondary electrode 10' are addressable by circuit 12 by means of links 13 ', 14' and 15 '.
  • the ion pumping can then be controlled by the electronic circuit control panel.
  • the conductors 13 ', 14' and 15 ' are also accessible to be connected individually, during the manufacturing of the screen or maintenance operations, to a particular pumping system ionic which will be described later in relation to the figure 2.
  • an ion pumping of space inter-electrodes is implemented once the screen is finished in polarizing the secondary gate electrode 3 'at a potential suitable, preferably corresponding to the nominal potential of the grid 3 in operation (for example, of the order of 80 volts), and by bringing the electrode 7 'to a potential allowing an emission electronic.
  • the polarization potential of the electrode 7 ' is included in the range of nominal potentials (for example, between 0 and 30 volts) of zone operation screen active. The choice of the polarization potential of the electrode 7 'depends on the desired electronic emission intensity for ion pumping.
  • the sacrificial area of microtips 2 ' will be polarized to a potential (for example, 0 volts) corresponding to maximum emission.
  • the secondary electrode 10 ' of the anode 5 is polarized at a potential (for example of the order 400 volts) corresponding to the nominal bias potential of electrode 10 of the screen.
  • An advantage of the present invention is that while allowing ion pumping of the inter-electrode space 11, the emitting power of the microtips 2 which participate in the display is not significantly altered.
  • Another advantage of the present invention is that it allows, if the control circuit 12 is adapted to control the 2 'microtip sacrificial area, to pump ionic after commissioning the screen to trap cash not absorbed by the getter and thus prevent degradation emptiness.
  • this ion pumping is carried out screen operating periods, i.e. outside of periods when the screen displays images.
  • this pumping ionic is commanded after each extinction of the screen at the end of use for display. So the vacuum is regenerated for the next use.
  • An advantage of planning a pumping ionic using sacrificial microtips after each use is that these species are then immediately trapped. In addition, damage to the microtips in the areas is minimized active which are otherwise polluted during the next ignition of the screen.
  • sacrificial microtips may be provided in different regions of the screen in order to improve the spatial distribution of ion pumping.
  • sacrificial areas are organized in arranged columns between two neighboring columns 7 of active microtips 2, that is to say used for display. Columns of sacrificial microtips thus obtained can be addressed independently of active columns.
  • the rows of grid 3 used for normal addressing of the screen in operation are used to address the sacrificial areas during ion pumping phases.
  • Active areas of the anode are then preferably polarized at their nominal potential of function and serve to collect electrons not only during the operating phases but also during ion pumping phases.
  • the choice and size of the locations of the sacrificial areas depend on the characteristics (shape, resolution, space available between columns) of the active microtip zone.
  • An advantage of the present invention is that pumping ionic requires no additional potential generation compared to those available in the electronic circuit 12 screen control, which limits adaptations of this circuit 12 if one wishes to carry out an ion pumping after commissioning of the screen.
  • the 3 'grid can be covered with a specific material (for example, titanium) that will sublimate when it is struck by an ionized molecule.
  • a specific material for example, titanium
  • the gas emitted by this material is then redeposited on the grid and the ionized molecules are then buried under the metal. They are therefore more stable and will be much more difficult to extract.
  • This variant is more particularly intended for cases where the anode has no secondary electrode facing the area sacrificial microtips.
  • this area of microtips 2 sacrificial can be placed next to orifices (not shown) formed in the substrate 6 to communicate with a getter housing enclosure.
  • a screen according to the present invention does not require any modification of the manufacture of the cathode, the anode and the grid. Only the deposition and etching masks used for the different layers are, according to the invention, suitable for creating the zone or zones sacrificial, the secondary grid (s), and the electrode (s) additional anode.
  • FIG. 2 illustrates an embodiment of a method of ion pumping a screen according to the present invention. This mode of implementation is more particularly intended ion pumping during the manufacture of the screen or during maintenance operation using a system independent of the screen control circuit 12 (figure 1).
  • the screen has been shown schematically in the form of a cathode plate 1 and a plate anode 5. Active and sacrificial areas of microtips are illustrated by the respective positions of the main grids 3 and secondary 3 'shown in dotted lines.
  • An ion pumping system comprises a controllable supply circuit 20 (ALIM.) and suitable for generating the polarization potentials necessary for ion pumping.
  • circuit 20 generates a voltage Va (for example, 400 volts) of polarization of the secondary electrode (10 ', Figure 1) anode.
  • This voltage Va is sent to a voltage divider 21 generating the gate voltages Vg secondary and Vc of polarization of the electrode 7 '(figure 1) carrying the sacrificial microtips.
  • the voltage Vgc is positive and is preferably adjustable in order to obtain a current adjustable emission.
  • the microtip sacrificial area may be addressed either in pulsed mode or in continuous mode. The advantage of addressing in continuous mode is that it reduces pumping time ionic.
  • Voltage Va is a higher constant voltage at the gate voltage Vg in order to collect the electrons emitted.
  • the duration of ion pumping during manufacturing depends on the screen volume, the initial standard of living and the surface of sacrificial microdots. For example, an area sacrificial representing between 0.1% and 10% of the active area constitutes, according to the invention, a good compromise between the duration necessary ion pumping and screen size.
  • the present invention is capable of various variants and modifications which will appear to the man of art.
  • the polarization potentials during the ion pumping phase will preferably be chosen according to nominal operating potentials of the screen.
  • the practical realization of an ion pumping system such that shown in Figure 2 is within the reach of ordinary skill in the art according to the functional indications given above.
  • the adaptations of the control circuit (12, figure 1) the screen, in an embodiment where pumping is desired after the screen has been put into service are within the range of the skilled person.

Abstract

The screen includes a cathode (1) with electron emitting points (2) and a grating (3) with holes (4) corresponding to the emitting points. The cathode is placed opposite an anode with photoluminiscent surface on a glass substrate (6). The emitting points are deposited along conductors (7) which are organised in columns. The grating has rows normal to the direction of the columns. An insulating layer is provided between the grating and the cathode. A vacuumed space (11) is provided between the anode and the cathode which are separated by spacers. An electronic circuit (12) controls the cathode and the anode,

Description

La présente invention concerne le domaine des écrans plats de visualisation à micropointes. L'invention concerne plus particulièrement la fabrication de tels écrans.The present invention relates to the field of screens microtip viewing dishes. The invention relates more particularly the manufacture of such screens.

Un écran à micropointes est généralement constitué d'une cathode pourvue de micropointes d'émission électronique placée en regard d'une anode pourvue d'éléments luminophores propres à être excités par bombardement électronique. La cathode est associée à une grille pourvue de trous correspondant aux emplacements des micropointes.A microtip screen is generally made up a cathode with electronic emission microtips placed opposite an anode provided with clean phosphor elements to be excited by electronic bombardment. The cathode is associated with a grid provided with holes corresponding to the locations microtips.

Ce dispositif utilise le champ électrique qui est créé entre la cathode et la grille pour que des électrons soient extraits de micropointes. Ces électrons sont ensuite attirés par les éléments luminophores de l'anode si ceux-ci sont convenablement polarisés.This device uses the electric field that is created between the cathode and the grid so that electrons are microtip extracts. These electrons are then attracted to the phosphor elements of the anode if these are suitably polarized.

Les micropointes sont généralement déposées sur des conducteurs de cathode organisés en colonnes et adressables individuellement. La grille est organisée en rangées perpendiculaires aux colonnes de la cathode, également adressables individuellement.The microtips are generally deposited on cathode conductors organized in columns and individually addressable. The grid is organized in perpendicular rows to the cathode columns, also individually addressable.

Dans un écran couleur, l'anode est généralement pourvue de bandes alternées d'éléments luminophores correspondant chacune à une couleur (Rouge, Vert, Bleu). Les bandes sont parallèles aux colonnes de la cathode et sont séparées les unes des autres par un isolant. Les éléments luminophores sont déposés sur des électrodes constituées de bandes correspondantes d'une couche conductrice transparente, par exemple, en oxyde d'indium et d'étain (ITO).In a color screen, the anode is generally provided of alternating bands of phosphor elements each corresponding to a color (Red, Green, Blue). The bands are parallel to the cathode columns and are separated from each other by an insulator. The phosphor elements are deposited on electrodes consisting of corresponding strips of a conductive layer transparent, for example, of indium tin oxide (ITO).

L'intersection d'une colonne de la cathode et d'une rangée de la grille définit un pixel de l'écran. Pour un écran couleur, les ensembles de bandes rouges, vertes, bleues sont alternativement polarisées par rapport à la cathode pour que des électrons extraits des micropointes d'un pixel de la cathode-grille soient alternativement dirigés vers chacune des couleurs. Dans certains écrans couleurs où les colonnes de cathode (ou les lignes de grille) sont subdivisées en trois pour correspondre à chaque couleur, l'intersection d'une rangée de la grille avec une colonne de la cathode définit alors un sous-pixel d'une couleur.The intersection of a cathode column and a grid row defines a screen pixel. For a screen color, the sets of red, green, blue stripes are alternately polarized with respect to the cathode so that electrons extracted from the microtips of a pixel of the grid cathode are alternately directed to each of the colors. In some color screens where the cathode columns (or the grid lines) are subdivided into three to match each color, the intersection of a row of the grid with a cathode column then defines a sub-pixel of a color.

Généralement, les rangées de la grille sont séquentiellement polarisées à un potentiel de l'ordre de 80 volts, tandis que les bandes d'éléments luminophores devant être excitées sont polarisées sous une tension de l'ordre de 400 volts par l'intermédiaire de la bande d'ITO sur laquelle ces éléments luminophores sont déposés. Les bandes d'ITO, portant les autres bandes d'éléments luminophores sont à un potentiel faible ou nul. Les colonnes de la cathode sont portées à des potentiels respectifs compris entre un potentiel d'émission maximale et un potentiel d'absence d'émission (par exemple, respectivement 0 et 30 volts). On fixe ainsi la brillance d'une composante couleur de chacun des pixels d'une ligne.Generally, the grid rows are sequentially polarized at a potential on the order of 80 volts, while that the bands of phosphors to be excited are polarized under a voltage of the order of 400 volts via of the ITO band on which these phosphor elements are filed. ITO bands, carrying the other element bands phosphors are at low or zero potential. The columns of the cathode are brought to respective potentials between a maximum emission potential and a potential no emission (for example, 0 and 30 volts respectively). The brightness of a color component of each of the pixels of a line.

Dans un écran monochrome, l'anode est généralement constituée d'un plan d'éléments luminophores de même couleur polarisés simultanément, ou de deux ensembles de bandes alternées d'éléments luminophores de même couleur adressés alternativement.In a monochrome screen, the anode is generally consisting of a plan of phosphor elements of the same color polarized simultaneously, or two sets of alternating bands phosphor elements of the same color addressed alternately.

Le choix des valeurs des potentiels de polarisation est lié aux caractéristiques des éléments luminophores et des micropointes. Classiquement, en dessous d'une différence de potentiel de 50 volts entre la cathode et la grille, il n'y a pas d'émission électronique, et l'émission maximale utilisée correspond à une différence de potentiel de 80 volts.The choice of the values of the polarization potentials is linked to the characteristics of phosphor elements and microtips. Conventionally, below a potential difference 50 volts between the cathode and the grid, there is no emission electronic, and the maximum emission used corresponds to a potential difference of 80 volts.

La fabrication des écrans à micropointes fait appel aux techniques couramment utilisées dans la fabrication des circuits intégrés. La cathode est généralement formée de dépôts en couches minces sur un substrat, par exemple, de verre constituant le fond de l'écran. L'anode est généralement formée sur un substrat de verre constituant la surface d'écran.The manufacturing of microtip screens uses techniques commonly used in circuit manufacturing integrated. The cathode is usually formed of layered deposits thin on a substrate, for example, of glass constituting the bottom of the screen. The anode is generally formed on a substrate of glass constituting the screen surface.

L'anode et la cathode-grille sont réalisées indépendamment l'une de l'autre sur les deux substrats, puis sont assemblées au moyen d'un joint périphérique de scellement en ménageant, entre la grille et l'anode, un espace vide pour permettre la circulation des électrons émis par la cathode jusqu'à l'anode.The anode and the grid cathode are produced independently from each other on the two substrates, then are assembled by means of a peripheral sealing joint while sparing, between the grid and the anode, an empty space to allow the circulation of electrons emitted by the cathode to the anode.

Lors de l'assemblage, l'écran est soumis à divers traitements thermiques de dégazage. Ces traitements s'effectuent généralement sous pompage au moyen d'un tube communiquant avec l'espace vide et destiné à être fermé à la fin du processus de fabrication.During assembly, the screen is subjected to various treatments thermal degassing. These treatments are carried out generally under pumping by means of a tube communicating with empty space and intended to be closed at the end of the process manufacturing.

Un élément de piégeage d'impureté (getter) est généralement introduit dans l'écran, par exemple dans le tube, avant fermeture. Ce getter a pour rôle de piéger des éléments désorbés, en particulier par l'anode, lors du fonctionnement de l'écran. Toutefois, ce getter est inactif vis-à-vis des espèces neutres, en particulier des gaz rares, qui subsistent dans l'espace vide après fermeture de l'écran.A getter trap is usually introduced in the screen, for example in the tube, before closing. The role of this getter is to trap desorbed elements, in particular by the anode, during the operation of the screen. However, this getter is inactive vis-à-vis neutral species, in particular rare gases, which remain in empty space after closing the screen.

On doit donc généralement provoquer un piégeage des espèces subsistant dans l'espace inter-électrodes afin d'améliorer le vide. Cette étape ultime s'effectue une fois le tube de pompage fermé. Elle consiste à provoquer une émission électronique des micropointes afin d'ioniser des espèces neutres subsistant dans l'espace inter-électrodes. Le bombardement des espèces neutres provoque une extraction d'un électron de leur couche de valence et ces espèces se trouvent alors chargées positivement. Elles sont alors attirées par les micropointes au potentiel le plus négatif. Cette étape est communément appelée un pompage ionique.We must therefore generally cause trapping of species remaining in the inter-electrode space to improve the void. This final step is carried out once the closed pumping. It consists in causing an electronic emission microtips to ionize neutral species remaining in the inter-electrode space. The bombing of cash neutrals causes an electron to be extracted from their layer of valence and these species are then positively charged. They are then attracted to the microtips with the potential more negative. This step is commonly called a pumping ionic.

La présente invention concerne plus particulièrement l'amélioration du vide de l'espace inter-électrodes par pompage ionique.The present invention relates more particularly vacuum improvement of the inter-electrode space by pumping ionic.

Un inconvénient des écrans classiques est que le pompage ionique endommage les micropointes de la cathode. En effet, la collection des espèces ionisées par les micropointes provoque une érosion mécanique et/ou chimique (en particulier, par les gaz rares) des micropointes. Si le vide de l'écran est amélioré, on constate une diminution du pouvoir émissif des micropointes.One drawback of conventional screens is that pumping ionic damages the microdots of the cathode. Indeed, the collection of species ionized by microtips causes mechanical and / or chemical erosion (in particular by gases rare) microtips. If the screen vacuum is improved, we notes a decrease in the emissivity of the microtips.

Un autre inconvénient des écrans classiques est que, pendant le fonctionnement de l'écran, certaines espèces dégazées ne parviennent pas à être piégées par le getter. Il en découle une dégradation de la qualité du vide qui nuit à la fiabilité de l'écran.Another disadvantage of conventional screens is that, during the operation of the screen, some degassed species fail to be trapped by the getter. It follows a deterioration in the quality of the vacuum which affects the reliability of the screen.

La présente invention vise à proposer un nouveau procédé de pompage ionique d'un écran à micropointes qui pallie aux inconvénients des procédés connus. L'invention vise en particulier à améliorer la capacité émissive des micropointes.The present invention aims to propose a new process ion pumping of a microtip screen which overcomes disadvantages of known methods. The invention is aimed in particular to improve the emissive capacity of microtips.

La présente invention vise également à proposer une nouvelle structure d'écran plat de visualisation qui soit adaptée à la mise en oeuvre de ce procédé.The present invention also aims to provide a new adaptable flat screen display structure to the implementation of this process.

La présente invention vise également à permettre, de façon simple, la mise en oeuvre d'un pompage ionique par le système de commande de l'écran et, en particulier, à ne pas nécessiter la fourniture d'autres potentiels que ceux qui sont classiquement utilisés dans un écran classique pour son fonctionnement.The present invention also aims to allow, simple way, the implementation of an ion pumping by the system screen and, in particular, not to be required the supply of other potentials than those which are conventionally used in a conventional screen for its operation.

La présente invention vise en outre à proposer un écran qui permette une amélioration du vide non seulement lors de la fabrication de l'écran mais également après la mise en service de l'écran.The present invention further aims to provide a screen which allows an improvement of the vacuum not only during the manufacture of the screen but also after the commissioning of the screen.

Pour atteindre ces objets, la présente invention prévoit un écran plat de visualisation à micropointes comportant une cathode pourvue de zones actives de micropointes d'émission électronique ; une anode cathodoluminescente pourvue, au moins en regard desdites zones actives de micropointes, de zones actives d'éléments luminophores ; une grille principale d'extraction d'électrons émis par les micropointes actives en direction des éléments luminophores ; et côté cathode, au moins une zone sacrificielle de micropointes propre à être adressée, hors de périodes de fonctionnement de l'écran et indépendamment desdites zones actives.To achieve these objects, the present invention provides a flat microtip display screen comprising a cathode with active areas of electron emission microtips ; a cathodoluminescent anode provided, at least in look at said active microtip zones, active zones phosphor elements; a main extraction grid of electrons emitted by the active microdots towards the phosphor elements; and cathode side, at least one sacrificial area microdots suitable for being addressed, outside of periods of operation of the screen and independently of said zones active.

Selon un mode de réalisation de la présente invention, la zone sacrificielle de micropointes est associée à une grille secondaire.According to an embodiment of the present invention, the sacrificial area of microtips is associated with a grid secondary.

Selon un mode de réalisation de la présente invention, l'écran comporte, côté anode, au moins une piste conductrice à l'aplomb de la zone sacrificielle de micropointes, ladite piste conductrice étant, pendant une phase de pompage ionique, polarisée à un potentiel supérieur à un potentiel de polarisation de ladite grille secondaire, de préférence, à un potentiel correspondant à un potentiel nominal d'adressage des zones actives d'éléments luminophores de l'anode.According to an embodiment of the present invention, the screen comprises, on the anode side, at least one conductive track at directly above the sacrificial microtip zone, said track conductive being, during an ion pumping phase, polarized at a potential greater than a bias potential of said secondary grid, preferably at a corresponding potential at nominal addressing potential of active areas phosphor elements of the anode.

Selon un mode de réalisation de la présente invention, la grille secondaire est polarisée, pendant une phase de pompage ionique, à un potentiel correspondant à un potentiel nominal d'adressage de la grille principale pendant les périodes de fonctionnement de l'écran.According to an embodiment of the present invention, the secondary grid is polarized, during a pumping phase ionic, at a potential corresponding to a nominal potential addressing the main grid during periods of operation of the screen.

Selon un mode de réalisation de la présente invention, les grilles principale et secondaire sont une seule et même grille s'étendant à l'aplomb des zones active et sacrificielle de micropointes.According to an embodiment of the present invention, the main and secondary grids are one and the same grid extending directly above the active and sacrificial zones of microtips.

Selon un mode de réalisation de la présente invention, lesdites micropointes sacrificielles sont adressées, pendant une phase de pompage ionique, à un potentiel compris dans une plage de potentiels nominaux d'adressage des zones actives de micropointes pendant le fonctionnement de l'écran.According to an embodiment of the present invention, said sacrificial microtips are addressed, for one ion pumping phase, at a potential within a range nominal addressing potentials for active microtip areas during screen operation.

Selon un mode de réalisation de la présente invention, la surface de la zone sacrificielle de micropointes est comprise entre 0,1% et 10% de la surface des zones actives de micropointes.According to an embodiment of the present invention, the area of the sacrificial microtip zone is included between 0.1% and 10% of the surface of the active microtip zones.

Selon un mode de réalisation de la présente invention, dans lequel les zones actives de micropointes sont organisées en colonnes parallèles et adressables indépendamment les unes des autres, l'écran comporte des zones sacrificielles de micropointes parallèles auxdites colonnes, chaque zone sacrificielle étant intercalée entre deux colonnes voisines.According to an embodiment of the present invention, in which the active microtip zones are organized into parallel and independently addressable columns others, the screen has sacrificial microtip zones parallel to said columns, each sacrificial area being sandwiched between two neighboring columns.

Selon un mode de réalisation de la présente invention, l'écran comporte deux zones sacrificielles de micropointes de part et d'autre des zones actives.According to an embodiment of the present invention, the screen has two sacrificial microtip zones of on either side of the active areas.

L'invention prévoit également un procédé d'amélioration du vide dans un écran plat à micropointes, qui consiste, pendant une phase de pompage ionique, à appliquer une tension positive entre une grille associée aux micropointes sacrificielles et la zone sacrificielle de micropointes.The invention also provides a method of improvement vacuum in a flat microtip screen, which consists, during an ion pumping phase, applying a positive voltage between a grid associated with the sacrificial microtips and the sacrificial area of microtips.

Selon un mode de réalisation de la présente invention, on effectue une phase de pompage ionique avant la mise en service de l'écran.According to an embodiment of the present invention, an ion pumping phase is carried out before commissioning of the screen.

Selon un mode de réalisation de la présente invention, on effectue une phase de pompage ionique après chaque période de fonctionnement de l'écran.According to an embodiment of the present invention, an ion pumping phase is carried out after each period of screen operation.

Ces objets, caractéristiques et avantages, ainsi que d'autres de la présente invention seront exposés en détail dans la description suivante de modes de réalisation particuliers faite à titre non-limitatif en relation avec les figures jointes parmi lesquelles :

  • la figure 1 représente, partiellement et en coupe, un écran plat de visualisation à micropointes selon un mode de réalisation de la présente invention ; et
  • la figure 2 illustre un mode de mise en oeuvre du procédé de pompage ionique selon la présente invention.
  • These objects, characteristics and advantages, as well as others of the present invention will be explained in detail in the following description of particular embodiments given without limitation in relation to the attached figures among which:
  • FIG. 1 shows, partially and in section, a flat microtip display screen according to an embodiment of the present invention; and
  • FIG. 2 illustrates an embodiment of the ion pumping method according to the present invention.
  • Pour des raisons de clarté, seuls les éléments de l'écran et les étapes de procédé nécessaires à la compréhension de l'invention ont été représentés aux figures et seront décrits par la suite.For reasons of clarity, only the elements of the screen and the process steps necessary for understanding of the invention have been shown in the figures and will be described thereafter.

    Une caractéristique de la présente invention est de prévoir, en plus des micropointes participant à l'affichage, au moins une zone de micropointes sacrificielles dédiées au pompage ionique.A feature of the present invention is provide, in addition to the microtips participating in the display, minus an area of sacrificial microdots dedicated to pumping ionic.

    La figure 1 représente un mode de réalisation d'un écran de visualisation selon la présente invention. De façon classique, un écran selon l'invention est constitué d'une cathode 1 à micropointes 2 et d'une grille 3 pourvue de trous 4 correspondant aux emplacements des micropointes 2. La cathode 1 est placée en regard d'une anode cathodoluminescente 5 dont un substrat de verre 6 constitue la surface d'écran. Les micropointes 2 sont généralement déposées sur des conducteurs 7 de cathode organisés en colonnes. Le plus souvent, les micropointes 2 sont réalisées sur une couche résistive (non représentée) déposée sur les conducteurs de cathode organisés en mailles à partir d'une couche conductrice, les micropointes étant disposées à l'intérieur des mailles définies par les conducteurs de cathode. La grille 3 est constituée d'une couche conductrice organisée en rangées perpendiculaires aux colonnes de conducteurs de cathode avec interposition d'un isolant 8 entre la cathode et la grille. Les rangées de grille 3 sont pourvues d'un trou 4 à l'aplomb de chaque micropointe 2. L'intersection d'une colonne 7 de la cathode et d'une rangée de la grille 3 définit un pixel de l'écran. Pour des raisons de clarté, une seule micropointe 2 a été représentée associée à chaque conducteur de cathode 7. On notera toutefois que les micropointes sont généralement au nombre de plusieurs milliers par pixel d'écran. La cathode/grille est réalisée sur un substrat 9, par exemple en verre, constituant le fond de l'écran.FIG. 1 represents an embodiment of a display screen according to the present invention. In a way conventional, a screen according to the invention consists of a cathode 1 with microtips 2 and a grid 3 provided with corresponding holes 4 at the microtip locations 2. The cathode 1 is placed opposite a cathodoluminescent anode 5 including a substrate of glass 6 constitutes the screen surface. The microtips 2 are generally deposited on organized cathode conductors 7 in columns. Most often, microtips 2 are made on a resistive layer (not shown) deposited on the cathode conductors organized in mesh from a layer conductive, the microtips being arranged inside the meshes defined by the cathode conductors. Grid 3 is consisting of a conductive layer organized in perpendicular rows to cathode conductor columns with interposition an insulator 8 between the cathode and the grid. The rows of grid 3 have a hole 4 plumb with each microtip 2. The intersection of a column 7 of the cathode and a grid row 3 defines a screen pixel. For reasons clarity, only one microtip 2 has been shown associated to each cathode conductor 7. Note, however, that there are usually several thousand microtips per screen pixel. The cathode / grid is made on a substrate 9, for example made of glass, constituting the bottom of the screen.

    En supposant que la représentation de la figure 1 correspond à un écran monochrome, le substrat 6 d'anode 5 porte une électrode 10 constituée d'un plan d'une couche conductrice transparente telle que de l'oxyde d'indium et d'étain (ITO). Des éléments luminophores 16 de même couleur sont déposés sur cette électrode 10. Dans le cas d'un écran couleur (non représenté), l'anode est généralement pourvue de bandes alternées d'éléments luminophores correspondant chacune à une couleur (rouge, vert, bleu). Les bandes sont parallèles aux colonnes de la cathode et sont séparées les unes des autres par un isolant. Les éléments luminophores sont alors déposés sur des électrodes constituées de bandes correspondantes d'ITO.Assuming that the representation of figure 1 corresponds to a monochrome screen, the anode substrate 6 carries a electrode 10 consisting of a plane of a transparent conductive layer such as indium tin oxide (ITO). Elements phosphors 16 of the same color are deposited on this electrode 10. In the case of a color screen (not shown), the anode is generally provided with alternating bands of elements phosphors each corresponding to a color (red, green, blue). The bands are parallel to the cathode columns and are separated from each other by an insulator. The elements phosphors are then deposited on electrodes made up of corresponding ITO bands.

    Un espace vide 11 est ménagé entre l'anode et la cathode/grille lors de l'assemblage des substrats 6 et 9. Des espaceurs (non représentés) généralement régulièrement répartis entre la grille 3 et l'anode 5 définissent la hauteur de l'espace 11 et un joint périphérique de scellement (non représenté) assure l'étanchéité de l'assemblage.An empty space 11 is provided between the anode and the cathode / grid when assembling substrates 6 and 9. spacers (not shown) generally evenly distributed between grid 3 and anode 5 define the height of the space 11 and a peripheral sealing joint (not shown) ensures the tightness of the assembly.

    De façon classique, un tel écran est commandé au moyen d'un circuit électronique 12 propre à adresser individuellement les colonnes de conducteurs 7 de la cathode par des liaisons 13, à adresser séquentiellement les rangées de la grille 3 par des liaisons 14, et à polariser l'électrode d'anode 10 au moyen d'une liaison 15. Dans le cas d'un écran couleur, les ensembles de bandes rouges, vertes et bleues sont alternativement polarisées par rapport à la cathode au moyen de liaisons appropriées.Conventionally, such a screen is controlled by means an electronic circuit 12 suitable for addressing individually the columns of conductors 7 of the cathode by connections 13, to address the rows of grid 3 sequentially with links 14, and to bias the anode electrode 10 by means of a link 15. In the case of a color screen, the sets of bands red, green and blue are alternately polarized by connection to the cathode by means of appropriate connections.

    Selon la présente invention, la cathode 1 comporte une zone sacrificielle de micropointes 2' adressable indépendamment des colonnes 7 au moyen d'une électrode 7' additionnelle. Cette zone est associée à une grille secondaire 3' qui, selon le mode de réalisation représenté à la figure 1, est adressable indépendamment des rangées de la grille 3. A titre de variante, la grille secondaire peut correspondre à des prolongements de rangées de la grille principale 3 participant à l'affichage.According to the present invention, the cathode 1 comprises a 2 'independently addressable microtip sacrificial area columns 7 by means of an additional electrode 7 '. This zone is associated with a 3 'secondary grid which, depending on the mode shown in Figure 1, can be addressed independently rows of grid 3. Alternatively, the secondary grid can correspond to row extensions of the main grid 3 participating in the display.

    Selon l'invention, la zone sacrificielle de micropointes 2 est destinée à être adressée, une fois l'écran terminé, pour améliorer le vide dans l'espace 11 inter-électrodes. Ainsi, selon la présente invention, l'écran comporte des zones actives de micropointes 2 et au moins une zone sacrificielle de micropointes 2' adressables indépendamment les unes des autres. Les micropointes sacrificielles sont endommagées par le pompage ionique auquel elles participent tandis que les micropointes de la zone active de l'écran sont préservées.According to the invention, the sacrificial area of microtips 2 is intended to be addressed, once the screen is finished, to improve the vacuum in the inter-electrode space 11. So, according to the present invention, the screen has active areas of microtips 2 and at least one sacrificial area of microtips 2 'addressable independently of each other. The sacrificial microtips are damaged by ion pumping in which they participate while the microtips of the active area of the screen are preserved.

    De préférence, l'anode est pourvue d'une électrode secondaire 10' de collection des électrons émis par la zone sacrificielle de micropointes. Par exemple, une zone d'ITO, de préférence dépourvue d'éléments luminophores, est prévue à l'aplomb de la zone sacrificielle de micropointes. Cette électrode 10' est, pendant le pompage ionique, polarisée à un potentiel nettement supérieur au potentiel de la grille 3'. Cela présente l'avantage que les électrons émis par les micropointes sacrificielles 2' ne sont pas collectés par la grille secondaire 3' qui se trouve ainsi préservée. De plus, les électrons traversent alors tout l'espace inter-électrodes, ce qui augmente la probabilité de heurter une molécule neutre et de la transformer en un ion positif. En outre, on fixe ainsi la zone où vont se loger les molécules ionisées (la grille secondaire 3'). Cet avantage est particulièrement intéressant dans le cas où la grille secondaire est constituée de prolongements de rangées de la grille 3 servant à l'extraction des électrons de la zone active.Preferably, the anode is provided with an electrode secondary 10 'collection of electrons emitted by the area sacrificial microtips. For example, an ITO area, preferably without phosphor elements, is provided for directly above the sacrificial microtip zone. This electrode 10 'is, during ion pumping, polarized at a potential significantly higher than the potential of the 3 'grid. This presents the advantage that the electrons emitted by the microtips sacrificial 2 'are not collected by the secondary grid 3 'which is thus preserved. In addition, the electrons pass through then the whole inter-electrode space, which increases the probability of hitting a neutral molecule and transforming it into a positive ion. In addition, the area where the house the ionized molecules (the 3 'secondary grid). This advantage is particularly interesting in the case where the grid secondary consists of row extensions of the grid 3 used for the extraction of electrons from the active area.

    A titre de variante, l'électrode secondaire 10' de l'anode est confondue avec l'électrode 10, les éléments luminophores 16 étant toutefois déposés, de préférence, uniquement à l'aplomb des zones actives de micropointes.As a variant, the secondary electrode 10 ′ of the anode is merged with the electrode 10, the phosphor elements 16 being, however, preferably deposited only at directly above the active microtip zones.

    Le cas échéant, l'électrode secondaire 10' pourra être revêtue d'un matériau à coefficient d'émission secondaire supérieur à un de façon à multiplier le nombre d'électrons émis. Dans ce cas, on pourra appliquer un champ transversal à cette électrode secondaire 10' pour encore accroítre le nombre d'électrons par effet d'avalanche.If necessary, the secondary electrode 10 ′ may be coated with a material with a higher secondary emission factor to one so as to multiply the number of electrons emitted. In in this case, we can apply a transverse field to this electrode secondary 10 'to further increase the number of electrons by avalanche effect.

    Dans le mode de réalisation représenté, l'électrode 7', la grille secondaire 3' et l'électrode secondaire 10' sont adressables par le circuit 12 au moyen de liaisons 13', 14' et 15'. Le pompage ionique peut alors être commandé par le circuit électronique de commande de l'écran. A titre de variante, les conducteurs 13', 14' et 15' sont également accessibles pour être connectés individuellement, lors de la fabrication de l'écran ou d'opérations de maintenance, à un système particulier de pompage ionique qui sera décrit par la suite en relation avec la figure 2.In the embodiment shown, the electrode 7 ′, the secondary grid 3 'and the secondary electrode 10' are addressable by circuit 12 by means of links 13 ', 14' and 15 '. The ion pumping can then be controlled by the electronic circuit control panel. Alternatively, the conductors 13 ', 14' and 15 'are also accessible to be connected individually, during the manufacturing of the screen or maintenance operations, to a particular pumping system ionic which will be described later in relation to the figure 2.

    Selon l'invention, un pompage ionique de l'espace inter-électrodes est mis en oeuvre une fois l'écran terminé en polarisant l'électrode secondaire de grille 3' à un potentiel adapté, correspondant de préférence au potentiel nominal de la grille 3 en fonctionnement (par exemple, de l'ordre de 80 volts), et en portant l'électrode 7' à un potentiel permettant une émission électronique. De préférence, le potentiel de polarisation de l'électrode 7' est compris dans la plage de potentiels nominaux (par exemple, entre 0 et 30 volts) de fonctionnement de la zone active de l'écran. Le choix du potentiel de polarisation de l'électrode 7' dépend de l'intensité d'émission électronique souhaitée pour le pompage ionique. De préférence, pour accélérer le pompage ionique, la zone sacrificielle de micropointes 2' sera polarisée à un potentiel (par exemple, 0 volt) correspondant à une émission maximale. De préférence, l'électrode secondaire 10' de l'anode 5 est polarisée à un potentiel (par exemple de l'ordre de 400 volts) correspondant au potentiel nominal de polarisation de l'électrode 10 de l'écran.According to the invention, an ion pumping of space inter-electrodes is implemented once the screen is finished in polarizing the secondary gate electrode 3 'at a potential suitable, preferably corresponding to the nominal potential of the grid 3 in operation (for example, of the order of 80 volts), and by bringing the electrode 7 'to a potential allowing an emission electronic. Preferably, the polarization potential of the electrode 7 'is included in the range of nominal potentials (for example, between 0 and 30 volts) of zone operation screen active. The choice of the polarization potential of the electrode 7 'depends on the desired electronic emission intensity for ion pumping. Preferably, to speed up the ion pumping, the sacrificial area of microtips 2 'will be polarized to a potential (for example, 0 volts) corresponding to maximum emission. Preferably, the secondary electrode 10 ' of the anode 5 is polarized at a potential (for example of the order 400 volts) corresponding to the nominal bias potential of electrode 10 of the screen.

    Un avantage de la présente invention est que, tout en permettant un pompage ionique de l'espace inter-électrodes 11, le pouvoir émissif des micropointes 2 qui participent à l'affichage n'est sensiblement pas altéré.An advantage of the present invention is that while allowing ion pumping of the inter-electrode space 11, the emitting power of the microtips 2 which participate in the display is not significantly altered.

    Un autre avantage de la présente invention est qu'elle permet, si le circuit 12 de commande est adapté à commander la zone sacrificielle de micropointes 2', de procéder à un pompage ionique après la mise en service de l'écran pour piéger des espèces non absorbées par le getter et empêcher ainsi la dégradation du vide.Another advantage of the present invention is that it allows, if the control circuit 12 is adapted to control the 2 'microtip sacrificial area, to pump ionic after commissioning the screen to trap cash not absorbed by the getter and thus prevent degradation emptiness.

    Selon l'invention, on effectue ce pompage ionique hors des périodes de fonctionnement de l'écran, c'est-à-dire hors des périodes où l'écran affiche des images. De préférence, ce pompage ionique est commandé après chaque extinction de l'écran à la fin d'une utilisation pour affichage. Ainsi, le vide est régénéré pour l'utilisation suivante. On a en effet constaté que le vide se dégradait malgré le pompage ionique que pourraient effectuer les zones actives de micropointes pendant les périodes de fonctionnement. On suppose que des espèces continuent à être désorbées juste après l'extinction. Un avantage de prévoir un pompage ionique au moyen des micropointes sacrificielles après chaque utilisation est que ces espèces sont alors immédiatement piégées. De plus, on minimise l'endommagement des micropointes des zones actives qui sont autrement polluées lors de l'allumage suivant de l'écran.According to the invention, this ion pumping is carried out screen operating periods, i.e. outside of periods when the screen displays images. Preferably, this pumping ionic is commanded after each extinction of the screen at the end of use for display. So the vacuum is regenerated for the next use. We have indeed found that the vacuum degraded despite the ion pumping that could be done active microtip areas during operating periods. Species continue to be desorbed just after the extinction. An advantage of planning a pumping ionic using sacrificial microtips after each use is that these species are then immediately trapped. In addition, damage to the microtips in the areas is minimized active which are otherwise polluted during the next ignition of the screen.

    On notera que plusieurs zones de micropointes sacrificielles pourront être prévues dans différentes régions de l'écran afin d'améliorer la répartition spatiale du pompage ionique. Par exemple, on pourra prévoir des colonnes parallèles aux colonnes 7, hors de la zone d'affichage, c'est-à-dire de part et d'autre de l'écran. Selon un autre mode de réalisation non représenté, des zones sacrificielles sont organisées en colonnes ménagées entre deux colonnes voisines 7 de micropointes actives 2, c'est-à-dire servant à l'affichage. Les colonnes de micropointes sacrificielles ainsi obtenues sont adressables indépendamment des colonnes actives. Dans ce mode de réalisation, les rangées de grille 3 servant à l'adressage normal de l'écran en fonctionnement sont utilisées pour adresser les zones sacrificielles pendant les phases de pompage ionique. Les zones actives de l'anode sont alors, de préférence, polarisées à leur potentiel nominal de fonctionnement et servent à collecter des électrons, non seulement pendant les phases de fonctionnement mais également pendant les phases de pompage ionique.Note that several areas of sacrificial microtips may be provided in different regions of the screen in order to improve the spatial distribution of ion pumping. Through example, we could provide columns parallel to the columns 7, outside the display area, i.e. on both sides of the screen. According to another embodiment not shown, sacrificial areas are organized in arranged columns between two neighboring columns 7 of active microtips 2, that is to say used for display. Columns of sacrificial microtips thus obtained can be addressed independently of active columns. In this embodiment, the rows of grid 3 used for normal addressing of the screen in operation are used to address the sacrificial areas during ion pumping phases. Active areas of the anode are then preferably polarized at their nominal potential of function and serve to collect electrons not only during the operating phases but also during ion pumping phases.

    Le choix et la taille des emplacements des zones sacrificielles dépendent des caractéristiques (forme, résolution, espace disponible entre colonnes) de la zone active de micropointes. The choice and size of the locations of the sacrificial areas depend on the characteristics (shape, resolution, space available between columns) of the active microtip zone.

    Un avantage de la présente invention est que le pompage ionique ne requiert aucune génération de potentiel supplémentaire par rapport à ceux qui sont disponibles dans le circuit électronique 12 de commande de l'écran, ce qui limite les adaptations de ce circuit 12 si l'on souhaite effectuer un pompage ionique après la mise en service de l'écran.An advantage of the present invention is that pumping ionic requires no additional potential generation compared to those available in the electronic circuit 12 screen control, which limits adaptations of this circuit 12 if one wishes to carry out an ion pumping after commissioning of the screen.

    Le cas échéant, la grille 3' peut être recouverte d'un matériau spécifique (par exemple, du titane) qui va sublimer quand il sera frappé par une molécule ionisée. Le gaz émis par ce matériau se redépose alors sur la grille et les molécules ionisées se trouvent alors enterrées sous le métal. Elles sont donc plus stables et auront beaucoup plus de mal à être extraites. Cette variante est plus particulièrement destinée aux cas où l'anode est dépourvue d'électrode secondaire en regard de la zone sacrificielle de micropointes.If necessary, the 3 'grid can be covered with a specific material (for example, titanium) that will sublimate when it is struck by an ionized molecule. The gas emitted by this material is then redeposited on the grid and the ionized molecules are then buried under the metal. They are therefore more stable and will be much more difficult to extract. This variant is more particularly intended for cases where the anode has no secondary electrode facing the area sacrificial microtips.

    Dans le cas où les électrons émis par les zones sacrificielles ne sont pas collectés par l'anode, cette zone de micropointes 2 sacrificielles pourra être placée en regard d'orifices (non représentés) ménagés dans le substrat 6 pour communiquer avec une enceinte de logement du getter. On profite ainsi de la présence d'une surface inutilisable pour la zone active de l'écran.In the case where the electrons emitted by the sacrificial zones are not collected by the anode, this area of microtips 2 sacrificial can be placed next to orifices (not shown) formed in the substrate 6 to communicate with a getter housing enclosure. We take advantage of the presence of an unusable surface for the active area of the screen.

    On notera que la réalisation d'un écran selon la présente invention ne requiert aucune modification du procédé de fabrication de la cathode, de l'anode et de la grille. Seuls les masques de dépôt et de gravure utilisés pour les différentes couches sont, selon l'invention, adaptés pour créer la ou les zones sacrificielle, la ou les grilles secondaires, et la ou les électrodes d'anode additionnelles.It will be noted that the production of a screen according to the present invention does not require any modification of the manufacture of the cathode, the anode and the grid. Only the deposition and etching masks used for the different layers are, according to the invention, suitable for creating the zone or zones sacrificial, the secondary grid (s), and the electrode (s) additional anode.

    La figure 2 illustre un mode de mise en oeuvre d'un procédé de pompage ionique d'un écran selon la présente invention. Ce mode de mise en oeuvre est plus particulièrement destiné à un pompage ionique lors de la fabrication de l'écran ou lors d'opération de maintenance au moyen d'un système indépendant du circuit 12 (figure 1) de commande de l'écran. FIG. 2 illustrates an embodiment of a method of ion pumping a screen according to the present invention. This mode of implementation is more particularly intended ion pumping during the manufacture of the screen or during maintenance operation using a system independent of the screen control circuit 12 (figure 1).

    A la figure 2, l'écran a été représenté de façon schématique sous la forme d'une plaque de cathode 1 et d'une plaque d'anode 5. Les zones actives et sacrificielles de micropointes sont illustrées par les positions respectives des grilles principale 3 et secondaire 3' représentées en pointillé.In Figure 2, the screen has been shown schematically in the form of a cathode plate 1 and a plate anode 5. Active and sacrificial areas of microtips are illustrated by the respective positions of the main grids 3 and secondary 3 'shown in dotted lines.

    Un système de pompage ionique selon la présente invention comporte un circuit 20 d'alimentation (ALIM.) commandable et propre à générer les potentiels de polarisation nécessaires au pompage ionique. Par exemple, le circuit 20 génère une tension Va (par exemple, 400 volts) de polarisation de l'électrode secondaire (10', figure 1) d'anode. Cette tension Va est envoyée sur un diviseur de tension 21 générant les tensions Vg de grille secondaire et Vc de polarisation de l'électrode 7' (figure 1) portant les micropointes sacrificielles. La tension Vgc est positive et est, de préférence, réglable afin d'obtenir un courant d'émission réglable. La zone sacrificielle de micropointes pourra être adressée soit en mode pulsé soit en mode continu. L'avantage d'un adressage en mode continu est qu'il réduit le temps de pompage ionique. La tension Va est une tension constante supérieure à la tension de grille Vg afin de collecter les électrons émis.An ion pumping system according to the present invention comprises a controllable supply circuit 20 (ALIM.) and suitable for generating the polarization potentials necessary for ion pumping. For example, circuit 20 generates a voltage Va (for example, 400 volts) of polarization of the secondary electrode (10 ', Figure 1) anode. This voltage Va is sent to a voltage divider 21 generating the gate voltages Vg secondary and Vc of polarization of the electrode 7 '(figure 1) carrying the sacrificial microtips. The voltage Vgc is positive and is preferably adjustable in order to obtain a current adjustable emission. The microtip sacrificial area may be addressed either in pulsed mode or in continuous mode. The advantage of addressing in continuous mode is that it reduces pumping time ionic. Voltage Va is a higher constant voltage at the gate voltage Vg in order to collect the electrons emitted.

    La durée du pompage ionique lors de la fabrication dépend du volume de l'écran, du niveau de vie initial et de la surface de micropointes sacrificielles. Par exemple, une zone sacrificielle représentant entre 0,1% et 10% de la zone active constitue, selon l'invention, un bon compromis entre la durée nécessaire de pompage ionique et l'encombrement de l'écran.The duration of ion pumping during manufacturing depends on the screen volume, the initial standard of living and the surface of sacrificial microdots. For example, an area sacrificial representing between 0.1% and 10% of the active area constitutes, according to the invention, a good compromise between the duration necessary ion pumping and screen size.

    Bien entendu, la présente invention est susceptible de diverses variantes et modifications qui apparaítront à l'homme de l'art. En particulier, les potentiels de polarisation pendant la phase de pompage ionique seront, de préférence, choisis en fonction des potentiels nominaux de fonctionnement de l'écran. De plus, la réalisation pratique d'un système de pompage ionique tel que représenté à la figure 2 est à la portée de l'homme du métier en fonction des indications fonctionnelles données ci-dessus. De même, les adaptations du circuit (12, figure 1) de commande de l'écran, dans un mode de réalisation où l'on souhaite un pompage ionique après la mise en service de l'écran, sont à la portée de l'homme du métier.Of course, the present invention is capable of various variants and modifications which will appear to the man of art. In particular, the polarization potentials during the ion pumping phase will preferably be chosen according to nominal operating potentials of the screen. Of more, the practical realization of an ion pumping system such that shown in Figure 2 is within the reach of ordinary skill in the art according to the functional indications given above. Of even, the adaptations of the control circuit (12, figure 1) the screen, in an embodiment where pumping is desired after the screen has been put into service, are within the range of the skilled person.

    Claims (12)

    Écran plat à micropointes comportant : une cathode (1) pourvue de zones actives de micropointes (2) d'émission électronique ; une anode (5) cathodoluminescente pourvue, au moins en regard desdites zones actives de micropointes, de zones actives d'éléments luminophores (16) ; et une grille principale (3) d'extraction d'électrons émis par les micropointes actives (2) en direction des éléments luminophores (16),    caractérisé en ce qu'il comporte, côté cathode (1), au moins une zone sacrificielle de micropointes (2') propre à être adressée, hors de périodes de fonctionnement de l'écran et indépendamment desdites zones actives.Flat microtip screen comprising: a cathode (1) provided with active areas of microtips (2) of electronic emission; a cathodoluminescent anode (5) provided, at least opposite said active areas of microtips, with active areas of phosphor elements (16); and a main grid (3) for extracting electrons emitted by the active microdots (2) in the direction of the phosphor elements (16), characterized in that it comprises, on the cathode side (1), at least one sacrificial area of microtips (2 ') suitable for being addressed, outside of periods of operation of the screen and independently of said active areas. Écran selon la revendication 1, caractérisé en ce que la zone sacrificielle de micropointes (2') est associée à une grille secondaire (3').Screen according to claim 1, characterized in that the sacrificial area of microtips (2 ') is associated with a secondary grid (3 '). Écran selon la revendication 2, caractérisé en ce qu'il comporte, côté anode (5), au moins une piste conductrice (10') à l'aplomb de la zone sacrificielle de micropointes (2'), ladite piste conductrice étant, pendant une phase de pompage ionique, polarisée à un potentiel supérieur à un potentiel de polarisation de ladite grille secondaire (3'), de préférence, à une potentiel correspondant à un potentiel nominal d'adressage des zones actives d'éléments luminophores (16) de l'anode (5).Screen according to claim 2, characterized in that it comprises, on the anode side (5), at least one conductive track (10 ') directly above the sacrificial microtip zone (2'), said conductive track being, during a pumping phase ionic, polarized at a potential higher than a potential of polarization of said secondary grid (3 '), preferably at a potential corresponding to a nominal addressing potential active areas of phosphor elements (16) of the anode (5). Écran selon la revendication 2 ou 3, caractérisé en ce que la grille secondaire (3') est polarisée, pendant une phase de pompage ionique, à un potentiel correspondant à un potentiel nominal d'adressage de la grille principale (3) pendant les périodes de fonctionnement de l'écran.Screen according to claim 2 or 3, characterized in that the secondary grid (3 ') is polarized, during a phase ion pumping, at a potential corresponding to a potential nominal address of the main gate (3) during screen operating times. Écran selon l'une quelconque des revendications 2 à 4, caractérisé en ce que les grilles principale (3) et secondaire sont une seule et même grille s'étendant à l'aplomb des zones active et sacrificielle de micropointes (2, 2'). Screen according to any one of claims 2 to 4, characterized in that the main (3) and secondary grids are a single grid extending directly over the areas active and sacrificial microtips (2, 2 '). Écran selon l'une quelconque des revendications 1 à 5, caractérisé en ce que lesdites micropointes sacrificielles (2') sont adressées, pendant une phase de pompage ionique, à un potentiel compris dans une plage de potentiels nominaux d'adressage des zones actives de micropointes (2) pendant le fonctionnement de l'écran.Screen according to any one of claims 1 to 5, characterized in that said sacrificial microtips (2 ') are addressed, during an ion pumping phase, to a potential included in a range of nominal addressing potentials active microtip zones (2) during operation of the screen. Écran selon l'une quelconque des revendications 1 à 6, caractérisé en ce que la surface de la zone sacrificielle de micropointes (2') est comprise entre 0,1% et 10% de la surface des zones actives de micropointes (2).Screen according to any one of claims 1 to 6, characterized in that the surface of the sacrificial zone of microtips (2 ') is between 0.1% and 10% of the surface active microtip zones (2). Écran selon l'une quelconque des revendications 1 à 7, dans lequel les zones actives de micropointes (2) sont organisées en colonnes parallèles et adressables indépendamment les unes des autres, caractérisé en ce qu'il comporte des zones sacrificielles de micropointes (2') parallèles auxdites colonnes, chaque zone sacrificielle étant intercalée entre deux colonnes voisines.Screen according to any one of claims 1 to 7, in which the active microtip zones (2) are organized in parallel and independently addressable columns each other, characterized in that it has zones sacrificial microtips (2 ') parallel to said columns, each sacrificial zone being inserted between two columns neighbors. Écran selon l'une quelconque des revendications 1 à 7, caractérisé en ce qu'il comporte deux zones sacrificielles de micropointes (2') de part et d'autre des zones actives.Screen according to any one of claims 1 to 7, characterized in that it comprises two sacrificial zones of microtips (2 ') on either side of the active areas. Procédé d'amélioration du vide dans un écran plat à micropointes selon l'une quelconque des revendications 1 à 9, caractérisé en ce qu'il consiste, pendant une phase de pompage ionique, à appliquer une tension positive entre une grille (3') associée au micropointes sacrificielles et la zone sacrificielle de micropointes (2').Method of improving the vacuum in a flat screen microtips according to any one of claims 1 to 9, characterized in that it consists, during a pumping phase ionic, to apply a positive voltage between a grid (3 ') associated with the sacrificial microtips and the sacrificial area microtips (2 '). Procédé selon la revendication 10, caractérisé en ce qu'il consiste à effectuer une phase de pompage ionique avant la mise en service de l'écran.Method according to claim 10, characterized in what it consists of performing an ion pumping phase before commissioning of the screen. Procédé selon la revendication 10 ou 11, caractérisé en ce qu'il consiste à effectuer une phase de pompage ionique après chaque période de fonctionnement de l'écran.Method according to claim 10 or 11, characterized in that it consists in carrying out an ion pumping phase after each period of screen operation.
    EP98410073A 1997-06-27 1998-06-26 Ion pumping of a microtip flat screen Expired - Lifetime EP0893817B1 (en)

    Priority Applications (1)

    Application Number Priority Date Filing Date Title
    EP07102656A EP1814136B1 (en) 1997-06-27 1998-06-26 Ionic pumping of a flat screen with microdots

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    FR9708363A FR2765392B1 (en) 1997-06-27 1997-06-27 IONIC PUMPING OF A MICROPOINT FLAT SCREEN
    FR9708363 1997-06-27

    Related Child Applications (1)

    Application Number Title Priority Date Filing Date
    EP07102656A Division EP1814136B1 (en) 1997-06-27 1998-06-26 Ionic pumping of a flat screen with microdots

    Publications (2)

    Publication Number Publication Date
    EP0893817A1 true EP0893817A1 (en) 1999-01-27
    EP0893817B1 EP0893817B1 (en) 2007-09-26

    Family

    ID=9508759

    Family Applications (2)

    Application Number Title Priority Date Filing Date
    EP07102656A Expired - Lifetime EP1814136B1 (en) 1997-06-27 1998-06-26 Ionic pumping of a flat screen with microdots
    EP98410073A Expired - Lifetime EP0893817B1 (en) 1997-06-27 1998-06-26 Ion pumping of a microtip flat screen

    Family Applications Before (1)

    Application Number Title Priority Date Filing Date
    EP07102656A Expired - Lifetime EP1814136B1 (en) 1997-06-27 1998-06-26 Ionic pumping of a flat screen with microdots

    Country Status (5)

    Country Link
    US (1) US6107745A (en)
    EP (2) EP1814136B1 (en)
    JP (1) JP4011742B2 (en)
    DE (2) DE69841931D1 (en)
    FR (1) FR2765392B1 (en)

    Families Citing this family (11)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US20070161010A1 (en) * 1998-08-04 2007-07-12 Gjerde Douglas T Methods and compositions for mutation analysis
    DE10241549B4 (en) * 2002-09-05 2004-07-22 Nawotec Gmbh Orbitron pump
    JP3908708B2 (en) * 2003-09-22 2007-04-25 株式会社東芝 Driving method of image forming apparatus
    JP2006066267A (en) * 2004-08-27 2006-03-09 Canon Inc Image display device
    JP4475646B2 (en) * 2004-08-27 2010-06-09 キヤノン株式会社 Image display device
    JP4817641B2 (en) * 2004-10-26 2011-11-16 キヤノン株式会社 Image forming apparatus
    US20060113888A1 (en) * 2004-12-01 2006-06-01 Huai-Yuan Tseng Field emission display device with protection structure
    GB2454508B (en) * 2007-11-09 2010-04-28 Microsaic Systems Ltd Electrode structures
    JP2009244625A (en) * 2008-03-31 2009-10-22 Canon Inc Image display apparatus and method of driving the same
    GB2479191B (en) * 2010-04-01 2014-03-19 Microsaic Systems Plc Microengineered multipole ion guide
    GB2479190B (en) * 2010-04-01 2014-03-19 Microsaic Systems Plc Microengineered multipole rod assembly

    Citations (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US5063323A (en) * 1990-07-16 1991-11-05 Hughes Aircraft Company Field emitter structure providing passageways for venting of outgassed materials from active electronic area
    FR2709373A1 (en) * 1993-07-08 1995-03-03 Futaba Denshi Kogyo Kk Gas fixator, gas fixator device and fluorescent display device
    US5578900A (en) * 1995-11-01 1996-11-26 Industrial Technology Research Institute Built in ion pump for field emission display
    WO1996039582A1 (en) * 1995-06-06 1996-12-12 Color Planar Displays, Inc. Vacuum maintenance device for high vacuum chambers

    Family Cites Families (10)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US3240421A (en) * 1963-01-24 1966-03-15 Itt Ion transport pump
    JPS5650042A (en) * 1979-09-29 1981-05-07 Univ Tohoku Ion pump for super high vacuum
    JPH04289640A (en) * 1991-03-19 1992-10-14 Hitachi Ltd Image display element
    JP3430560B2 (en) * 1993-07-08 2003-07-28 双葉電子工業株式会社 Getter device and fluorescent display tube having getter device
    JP3217579B2 (en) * 1994-03-07 2001-10-09 株式会社東芝 Display device
    JP2992927B2 (en) * 1994-11-29 1999-12-20 キヤノン株式会社 Image forming device
    JP3183122B2 (en) * 1995-08-31 2001-07-03 双葉電子工業株式会社 Field emission display device
    US5697827A (en) * 1996-01-11 1997-12-16 Rabinowitz; Mario Emissive flat panel display with improved regenerative cathode
    FR2748347B1 (en) * 1996-05-06 1998-07-24 Pixtech Sa FLAT VISUALIZATION SCREEN ANODE WITH PROTECTIVE RING
    GB2321335A (en) * 1997-01-16 1998-07-22 Ibm Display device

    Patent Citations (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US5063323A (en) * 1990-07-16 1991-11-05 Hughes Aircraft Company Field emitter structure providing passageways for venting of outgassed materials from active electronic area
    FR2709373A1 (en) * 1993-07-08 1995-03-03 Futaba Denshi Kogyo Kk Gas fixator, gas fixator device and fluorescent display device
    WO1996039582A1 (en) * 1995-06-06 1996-12-12 Color Planar Displays, Inc. Vacuum maintenance device for high vacuum chambers
    US5578900A (en) * 1995-11-01 1996-11-26 Industrial Technology Research Institute Built in ion pump for field emission display

    Also Published As

    Publication number Publication date
    DE69841931D1 (en) 2010-11-18
    EP1814136B1 (en) 2010-10-06
    FR2765392B1 (en) 2005-08-26
    DE69838467T2 (en) 2008-06-26
    EP1814136A2 (en) 2007-08-01
    EP0893817B1 (en) 2007-09-26
    US6107745A (en) 2000-08-22
    FR2765392A1 (en) 1998-12-31
    JP4011742B2 (en) 2007-11-21
    JPH1125889A (en) 1999-01-29
    EP1814136A3 (en) 2007-08-15
    DE69838467D1 (en) 2007-11-08

    Similar Documents

    Publication Publication Date Title
    EP0704877B1 (en) Electric protection of an anode of a plat viewing screen
    FR2708380A1 (en) Image display device and associated control circuit
    EP1814136B1 (en) Ionic pumping of a flat screen with microdots
    FR2662534A1 (en) Plasma display panel and its method of fabrication
    EP1139374A1 (en) Cathode plate of a flat viewing screen
    EP0734042B1 (en) Anode of a flat viewing screen with resistive strips
    EP0806788A1 (en) Anode of a flat display screen with protection ring
    EP0649162B1 (en) Flat cold cathode display with switched anode
    EP0817232B1 (en) Process for regenerating microtips of a flat panel display
    EP1210721B1 (en) Field emission flat screen with modulating electrode
    EP0734043B1 (en) Double-gated flat display screen
    FR2800512A1 (en) FLAT VISUALIZATION SCREEN WITH PROTECTION GRID
    EP0747875B1 (en) Control method for a flat panel display
    EP0844642A1 (en) Flat panel display with focusing gates
    FR2762927A1 (en) FLAT DISPLAY ANODE
    FR2756418A1 (en) FLAT VISUALIZATION SCREEN WITH LATERAL DEVIATION
    EP1500121A1 (en) Plasma display panel with microwave radiation discharge excitation
    EP0806787A1 (en) Fabrication of an anode of a flat viewing screen
    FR2704967A1 (en) Flat, microdot screen with doubly-switched anode
    FR2805663A1 (en) Field effect flat display screen plasma cleaning technique having plasma internal space between base/screen surface outside electrodes generated and following cleaning vacuum/sealing applied.
    FR2800511A1 (en) Flat screen display with cathode field effect transmission and anode/extraction grid together with electronic bombardment permeable ion parasitic reduction filter.
    WO2001031672A1 (en) Method for controlling a structure comprising a source of field emitting electrons
    EP0867908A1 (en) Uniforming the potential electron emission 0f a cathode of a flat screen with microtips
    FR2798507A1 (en) Device for producing electric field between electrodes in field emission flat screen has series of metallic strips forming modulating electrodes, and controller applying potential difference between first and modulating electrodes
    FR2804243A1 (en) REGENERATION OF FLAT DISPLAY ANODES

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): DE FR GB IT

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    17P Request for examination filed

    Effective date: 19990703

    AKX Designation fees paid

    Free format text: DE FR GB IT

    111Z Information provided on other rights and legal means of execution

    Free format text: 20000403 DE FR GB IT

    17Q First examination report despatched

    Effective date: 20030213

    19U Interruption of proceedings before grant

    Effective date: 20020621

    19W Proceedings resumed before grant after interruption of proceedings

    Effective date: 20050502

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: CANON KABUSHIKI KAISHA

    17Q First examination report despatched

    Effective date: 20030213

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE FR GB IT

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20070926

    REF Corresponds to:

    Ref document number: 69838467

    Country of ref document: DE

    Date of ref document: 20071108

    Kind code of ref document: P

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20080627

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20130624

    Year of fee payment: 16

    Ref country code: DE

    Payment date: 20130630

    Year of fee payment: 16

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20130606

    Year of fee payment: 16

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20130718

    Year of fee payment: 16

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 69838467

    Country of ref document: DE

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20140626

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 69838467

    Country of ref document: DE

    Effective date: 20150101

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20150227

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20150101

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20140626

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20140626

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20140630