EP0892153B1 - Heating or cooling device for carter with a circular section - Google Patents

Heating or cooling device for carter with a circular section Download PDF

Info

Publication number
EP0892153B1
EP0892153B1 EP98401801A EP98401801A EP0892153B1 EP 0892153 B1 EP0892153 B1 EP 0892153B1 EP 98401801 A EP98401801 A EP 98401801A EP 98401801 A EP98401801 A EP 98401801A EP 0892153 B1 EP0892153 B1 EP 0892153B1
Authority
EP
European Patent Office
Prior art keywords
chambers
ribs
gas
heating
distribution network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98401801A
Other languages
German (de)
French (fr)
Other versions
EP0892153A1 (en
Inventor
Jérôme Friedel
Daniel Jean Marey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
SNECMA Moteurs SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SNECMA Moteurs SA filed Critical SNECMA Moteurs SA
Publication of EP0892153A1 publication Critical patent/EP0892153A1/en
Application granted granted Critical
Publication of EP0892153B1 publication Critical patent/EP0892153B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/12Elements constructed in the shape of a hollow panel, e.g. with channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/14Adjusting or regulating tip-clearance, i.e. distance between rotor-blade tips and stator casing
    • F01D11/20Actively adjusting tip-clearance
    • F01D11/24Actively adjusting tip-clearance by selectively cooling-heating stator or rotor components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/10Two-dimensional
    • F05D2250/14Two-dimensional elliptical
    • F05D2250/141Two-dimensional elliptical circular

Definitions

  • the invention relates to a device heating or cooling a housing circular.
  • Cooling, or as appropriate the heating of the turbomachine housings constitutes a usual means of adjusting their diameter by means of thermal expansions or contractions. It is thus possible to precisely adjust the existing clearance between the casing and the rotor it surrounds, in particular in front of the ends of the rotor moving blades, so reduce gas leakage flowing through games and lower the performance of the machine.
  • a other advantage of this provision which does not exist however with the use of fresh gas, is to avoid wear the housing and the equipment it supports or adjacent to it at excessive temperature.
  • the gas is taken under pressure from another part of the machine and is blown on the outer face of the housing at a rate which can be constant or controlled depending on the engine speed.
  • gas is blown directly on the outside of the housing; in others, including French patent 2,688,539 of the same depositor gives an illustration, the casing is stiffened by circular outer ribs and the gas is blown mainly on these ribs, although a part can also be blown directly onto the casing. Blowing on the ribs is advantageous in what it implies a more heat exchange surface important and therefore more thermal deformations crankcase fast.
  • EP-A-0 541 325 also discloses a control device clearance between rotor and turbine housing.
  • a housing provided with ribs is surrounded by gas blowing ramps supplied by conduits from samples in the compressor. a reverse circulation is established in axially ramps spaced and neighboring.
  • blowing gas As an essential goal of these devices blowing gas is to fine-tune the clearances existing between the casing and rotating vanes, the deformation of the housing must be ordered very precisely. We note that the irregularities of blowing on the surface of the housing and the ribs produce variations in deformation which go to against this goal. This is why the objective of the invention is to design a blowing system for gas which produces heating or, as the case may be, a well uniform cooling of the external surface a casing provided with stiffening ribs.
  • Blowing chambers are used segmented with opposite ends located in succession in front of the ribs, elongating parallel to the ribs and provided with holes overlooking the ribs and which are fed by a gas distribution network; in addition, the ribs are framed by two different rooms and the distribution network is connected to the rooms neighbors by opposite ends along these chambers, so as to produce flows in alternating directions in the rooms, and the ribs receive at any point of gas relatively close to the network of distribution on one of their faces, and gas relatively distant on their opposite side.
  • the first of these gas flows saw its temperature vary less strongly than the second because of its shorter route in the room he went through. But as the average path length of the two gas streams is identical regardless of the point considered ribs, heating or cooling resulting is uniform over the entire length of the rib, according to what we wanted.
  • the gas distribution network is composed of conduits having a total length identical, or at least substantially identical, of a common origin in each of the rooms, thanks to ramifications placed in well chosen places. All portions of the gas flow are therefore subject at equal temperature variations before arriving to the bedrooms, which completes the equalizing effect produced by flows in opposite directions in adjoining rooms.
  • the housing illustrated in Figure 1 carries the reference 1. It is provided with ring segments 2 which are connected by spacers 3 and extend slightly distance of moving blades 4 of rotor, with clearance 5 to the free end of these. It's here width of this set 5 which must be adjusted and reduced.
  • the housing 1 is also provided with ribs 6 on its external face, which extend in front of the spacers 3.
  • the part of the gas blower that is visible in this figure includes three chambers 7, 8 and 9 (also called “ramps” in this technique) the first and last of which lie next to a respective ribs 6, in front of their external face 10, and the second bedroom 8 is a bedroom intermediate to the other two and which extends between the two ribs 6, in front of their internal face 11.
  • All chambers 7, 8 and 9 are pierced with orifices 12 overlooking the ribs 6 in front of which they extend.
  • the gas present in rooms 7, 8 and 9 leaves them through these orifices and is blown over the ribs 6 and the adjacent portions of the casing 1. It then flows alongside the succession of chambers 7, 8 and 9 or between them, towards the outside.
  • the heating device is shown in its entirety in FIG. 2, the casing 1 being omitted.
  • the distribution chambers 7, 8 and 9 each extend on a quarter of circumference and are extended by other trios of rooms 107, 108, 109, 207, 208, 209 and 307, 308 and 309 identical, which therefore form a triple ring around housing 1 and ribs 6.
  • this embodiment includes a device same blowing for another portion of the housing 1 also comprising two ribs, located next to those just described, which explains why we still finds four trios of bedrooms 7 ', 8', 9 ', 107 ', 108', 109 ', 207', 208 ', 209', 307 ', 308' and 309 ' identical to the previous ones and arranged in the same way.
  • the distribution network includes first a common pipe 15 which branches several times to serve all rooms. She is first branches into two second lines rank 16 and 17 which each extend over a quarter of casing 1 circle and end halfway down some of the rooms (7, 8, 9, 7 ', 8', 9 'and 207, 208, 209, 207 ', 208' and 209 '); they branch out here each in two third row lines 18 which extend over an eighth of a turn of the casing 1 in front the rooms just mentioned up to one of their ends; they lead into distributors 19 and 20 which extend in front of ends of the chambers and allow passage gas blown into the rooms.
  • One of the distributors 19 is composed of four conduits 21 arranged in X, competing at the end of the third row pipeline 18 and plugging into the external surface of the intermediate chambers 8, 108, 8 'and 108' for one, 208, 208 ', 308 and 308' for the other (invisible in Figure 2 but similar to the first); distributors 20 (also similar) are a little more complicated and understand first of all branching conduits 22 extending from the end of the third row 18 in opposite axial directions and which end in distribution ducts 23 arranged in X like the conduits 21 and which connect to the walls exterior of the extreme chambers 7, 307, 9 and 309; 7 ', 307', 9 'and 309'; 107, 207, 109 and 209; and 107 ', 109 ', 207' and 209 '.
  • the blowing gas circulates in the extreme chambers, 7 and 9 for example, of each of trios in a direction opposite to the direction of flow in the intermediate chamber 8.
  • blown gas is fresh gas with cooling action of a very hot structure, it is subjected to a significant heating during its journey in contact walls of conduits and chambers, and in particular in the latter which are very close to the casing 1.
  • the portion of gas blown through the near orifices 12 distribution ducts 21 or 23 is therefore more fresh and more efficient than the one that comes out the opposite end of chambers 7, 8 and 9.
  • the circulation against the current allows to blow on each of the points of the ribs 6 of the gas all the more fresh on the outer side 10 than the one that is blown in the same place of the internal face 11 is warmer.
  • the cooling is therefore uniform along the ribs 6 as long as the flow rates of the two flows of blowing are the same at all points. Must therefore design the distribution network to respect this condition.
  • One solution is to split the network in conduits of equal sections at each branching and whose directions form the same angle with that of the branching duct. The flow is then symmetrical and is distributed also in branched conduits. In the shown, we see that the ramifications are T-shaped, the gas path being at right angles from one conduit to the next and branched conduits being aligned and opposite.
  • the intermediate chambers 8, which serve two ribs 6, have a cross section twice as large wide than the extreme chambers 7 and 9 and the flow y is proportional, i.e. twice as much important.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

L'invention a trait à un dispositif d'échauffement ou de refroidissement d'un carter circulaire.The invention relates to a device heating or cooling a housing circular.

Le refroidissement, ou selon le cas l'échauffement des carters de turbomachine constitue un moyen usuel de réglage de leur diamètre par des dilatations ou des contractions thermiques. Il est ainsi possible de régler avec précision le jeu existant entre le carter et le rotor qu'il entoure, notamment devant les extrémités des aubes mobiles de rotor, afin de réduire les fuites de gaz qui s'écoulent à travers des jeux et font baisser le rendement de la machine. Un autre intérêt de cette disposition, qui n'existe cependant qu'avec l'emploi de gaz frais, est d'éviter de porter le carter et les équipements qu'il soutient ou qui lui sont adjacents à une température excessive. Quoi qu'il en soit, le gaz est prélevé sous pression d'une autre partie de la machine et est soufflé sur la face extérieure du carter à un débit qui peut être constant ou piloté en fonction du régime du moteur. Dans certaines conceptions, le gaz est soufflé directement sur la face extérieure du carter ; dans d'autres, dont le brevet français 2 688 539 de la même déposante donne une illustration, le carter est raidi par des nervures extérieures circulaires et le gaz est soufflé principalement sur ces nervures, quoiqu'une partie puisse aussi être soufflée directement sur le carter. Le soufflage sur les nervures est avantageux en ce qu'il implique une surface d'échange thermique plus importante et donc des déformations thermiques plus rapides du carter.Cooling, or as appropriate the heating of the turbomachine housings constitutes a usual means of adjusting their diameter by means of thermal expansions or contractions. It is thus possible to precisely adjust the existing clearance between the casing and the rotor it surrounds, in particular in front of the ends of the rotor moving blades, so reduce gas leakage flowing through games and lower the performance of the machine. A other advantage of this provision, which does not exist however with the use of fresh gas, is to avoid wear the housing and the equipment it supports or adjacent to it at excessive temperature. Anyway, the gas is taken under pressure from another part of the machine and is blown on the outer face of the housing at a rate which can be constant or controlled depending on the engine speed. In some designs, gas is blown directly on the outside of the housing; in others, including French patent 2,688,539 of the same depositor gives an illustration, the casing is stiffened by circular outer ribs and the gas is blown mainly on these ribs, although a part can also be blown directly onto the casing. Blowing on the ribs is advantageous in what it implies a more heat exchange surface important and therefore more thermal deformations crankcase fast.

On connaít également par EP-A-0 541 325 un dispositif de pilotage de jeu entre rotor et carter de turbine. Un carter pourvu de nervures est entouré de rampes de soufflage de gaz alimentées par des conduits à partir de prélèvements dans le compresseur. une circulation inversée est établie dans des rampes axialement espacées et voisines.EP-A-0 541 325 also discloses a control device clearance between rotor and turbine housing. A housing provided with ribs is surrounded by gas blowing ramps supplied by conduits from samples in the compressor. a reverse circulation is established in axially ramps spaced and neighboring.

Comme un but essentiel de ces dispositifs de soufflage de gaz est de régler avec finesse les jeux existants entre le carter et des aubes tournantes, la déformation du carter doit être commandée très précisément. Or on constate que les irrégularités de soufflage sur la surface du carter et les nervures produisent des variations de déformation qui vont à l'encontre de ce but. C'est pourquoi l'objectif de l'invention est de concevoir un système de soufflage de gaz qui produise un échauffement ou, selon le cas, un refroidissement bien uniforme de la surface externe d'un carter pourvu de nervures de raidissage.As an essential goal of these devices blowing gas is to fine-tune the clearances existing between the casing and rotating vanes, the deformation of the housing must be ordered very precisely. We note that the irregularities of blowing on the surface of the housing and the ribs produce variations in deformation which go to against this goal. This is why the objective of the invention is to design a blowing system for gas which produces heating or, as the case may be, a well uniform cooling of the external surface a casing provided with stiffening ribs.

On recourt à des chambres de soufflage segmentées comportant des extrémités opposées situées en succession devant les nervures, s'allongeant parallèlement aux nervures et pourvues d'orifices donnant sur les nervures et qui sont alimentées par un réseau de distribution de gaz ; de plus, les nervures sont encadrées par deux chambres différentes et le réseau de distribution est raccordé aux chambres voisines par les extrémités opposées le long de ces chambres, de manière à produire des écoulements en sens alternés dans les chambres, et les nervures reçoivent en tout point du gaz relativement proche du réseau de distribution sur une de leurs faces, et du gaz relativement éloigné sur leur face opposée. Le premier de ces flux de gaz a vu sa température varier moins fortement que le second à cause de son trajet plus bref dans la chambre par laquelle il est passé. Mais comme la longueur moyenne de trajet des deux flux de gaz est identique quel que soit le point considéré des nervures, l'échauffement ou le refroidissement résultant est uniforme sur toute la longueur de la nervure, conformément à ce que l'on souhaitait.Blowing chambers are used segmented with opposite ends located in succession in front of the ribs, elongating parallel to the ribs and provided with holes overlooking the ribs and which are fed by a gas distribution network; in addition, the ribs are framed by two different rooms and the distribution network is connected to the rooms neighbors by opposite ends along these chambers, so as to produce flows in alternating directions in the rooms, and the ribs receive at any point of gas relatively close to the network of distribution on one of their faces, and gas relatively distant on their opposite side. The first of these gas flows saw its temperature vary less strongly than the second because of its shorter route in the room he went through. But as the average path length of the two gas streams is identical regardless of the point considered ribs, heating or cooling resulting is uniform over the entire length of the rib, according to what we wanted.

Un élément essentiel et caractéristique de l'invention est que le réseau de distribution de gaz est composé de conduits ayant une longueur totale identique, ou du moins sensiblement identique, d'une origine commune à chacune des chambres, grâce à des ramifications placées à des endroits bien choisis. Toutes les portions du débit gazeux sont donc soumises à des variations égales de température avant d'arriver aux chambres, ce qui complète l'effet égalisateur produit par les circulations en sens opposés dans des chambres voisines.An essential and characteristic element of the invention is that the gas distribution network is composed of conduits having a total length identical, or at least substantially identical, of a common origin in each of the rooms, thanks to ramifications placed in well chosen places. All portions of the gas flow are therefore subject at equal temperature variations before arriving to the bedrooms, which completes the equalizing effect produced by flows in opposite directions in adjoining rooms.

L'invention va maintenant être décrite plus en détail à l'aide des figures suivantes, annexées à titre illustratif et non limitatif :

  • la figure 1 est une coupe transversale et locale du carter et du dispositif de soufflage,
  • et la figure 2 est une vue d'ensemble du dispositif de soufflage.
The invention will now be described in more detail with the aid of the following figures, annexed by way of illustration and not limitation:
  • FIG. 1 is a local and cross section of the casing and of the blowing device,
  • and Figure 2 is an overview of the blowing device.

Le carter illustré à la figure 1 porte la référence 1. Il est muni de segments d'anneau 2 qui lui sont reliés par des entretoises 3 et s'étendent à peu de distance d'aubes mobiles 4 de rotor, avec un jeu 5 jusqu'à l'extrémité libre de ces dernières. C'est la largeur de ce jeu 5 qu'il faut régler et réduire. Le carter 1 est par ailleurs muni de nervures 6 sur sa face externe, qui s'étendent devant les entretoises 3. La partie du dispositif de soufflage de gaz qui est visible sur cette figure comprend trois chambres 7, 8 et 9 (appelées aussi « rampes » dans cette technique) dont la première et la dernière s'étendent à côté d'une des nervures respectives 6, devant leur face externe 10, et la deuxième chambre 8 est une chambre intermédiaire aux deux autres et qui s'étend entre les deux nervures 6, devant leur face interne 11. Toutes les chambres 7, 8 et 9 sont percées d'orifices 12 donnant sur les nervures 6 devant lesquelles elles s'étendent. Le gaz présent dans les chambres 7, 8 et 9 les quitte par ces orifices et est soufflé sur les nervures 6 et les portions adjacentes du carter 1. Il s'écoule ensuite à côté de la succession de chambres 7, 8 et 9 ou entre elles, vers l'extérieur.The housing illustrated in Figure 1 carries the reference 1. It is provided with ring segments 2 which are connected by spacers 3 and extend slightly distance of moving blades 4 of rotor, with clearance 5 to the free end of these. It's here width of this set 5 which must be adjusted and reduced. The housing 1 is also provided with ribs 6 on its external face, which extend in front of the spacers 3. The part of the gas blower that is visible in this figure includes three chambers 7, 8 and 9 (also called “ramps” in this technique) the first and last of which lie next to a respective ribs 6, in front of their external face 10, and the second bedroom 8 is a bedroom intermediate to the other two and which extends between the two ribs 6, in front of their internal face 11. All chambers 7, 8 and 9 are pierced with orifices 12 overlooking the ribs 6 in front of which they extend. The gas present in rooms 7, 8 and 9 leaves them through these orifices and is blown over the ribs 6 and the adjacent portions of the casing 1. It then flows alongside the succession of chambers 7, 8 and 9 or between them, towards the outside.

Le dispositif d'échauffement est représenté en entier à la figure 2, le carter 1 étant omis. Les chambres 7, 8 et 9 de distribution s'étendent chacune sur un quart de circonférence et sont prolongées par d'autres trios de chambres 107, 108, 109, 207, 208, 209 et 307, 308 et 309 identiques, qui forment donc un triple anneau autour du carter 1 et des nervures 6. De plus, ce mode de réalisation comprend un dispositif identique de soufflage pour une autre portion du carter 1 comprenant également deux nervures, situées à côté de celles qu'on vient de décrire, ce qui explique qu'on trouve encore quatre trios de chambres 7', 8', 9', 107', 108', 109', 207', 208', 209', 307', 308' et 309' identiques aux précédentes et disposées de la même façon.The heating device is shown in its entirety in FIG. 2, the casing 1 being omitted. The distribution chambers 7, 8 and 9 each extend on a quarter of circumference and are extended by other trios of rooms 107, 108, 109, 207, 208, 209 and 307, 308 and 309 identical, which therefore form a triple ring around housing 1 and ribs 6. From more, this embodiment includes a device same blowing for another portion of the housing 1 also comprising two ribs, located next to those just described, which explains why we still finds four trios of bedrooms 7 ', 8', 9 ', 107 ', 108', 109 ', 207', 208 ', 209', 307 ', 308' and 309 ' identical to the previous ones and arranged in the same way.

Le réseau de distribution comprend d'abord une canalisation 15 commune et qui se ramifie plusieurs fois pour desservir toutes les chambres. Elle se ramifie tout d'abord en deux canalisations de deuxième rang 16 et 17 qui s'étendent chacune sur un quart de cercle du carter 1 et finissent à mi-longueur de certaines des chambres (7, 8, 9, 7', 8', 9' et 207, 208, 209, 207', 208' et 209') ; elles se ramifient ici chacune en deux canalisations de troisième rang 18 qui s'étendent sur un huitième de tour du carter 1 devant les chambres qu'on vient de mentionner jusqu'à une de leurs extrémités ; elles débouchent dans des distributeurs 19 et 20 qui s'étendent devant des extrémités des chambres et permettent de faire passer le gaz soufflé dans les chambres. L'un des distributeurs 19 est composé de quatre conduits 21 disposés en X, concourant à l'extrémité de la canalisation de troisième rang 18 et se branchant sur la surface externe des chambres intermédiaires 8, 108, 8' et 108' pour l'un, 208, 208', 308 et 308' pour l'autre (invisible sur la figure 2 mais semblable au premier) ; les distributeurs 20 (eux aussi semblables) sont un peu plus compliqués et comprennent tout d'abord des conduits de ramification 22 s'étendant de l'extrémité de la canalisation de troisième rang 18 dans des sens axiaux opposés et qui finissent en des conduits de distribution 23 disposés en X comme les conduits 21 et qui se branchent sur les parois extérieures des chambres extrêmes 7, 307, 9 et 309 ; 7', 307', 9' et 309' ; 107, 207, 109 et 209 ; et 107', 109', 207' et 209'.The distribution network includes first a common pipe 15 which branches several times to serve all rooms. She is first branches into two second lines rank 16 and 17 which each extend over a quarter of casing 1 circle and end halfway down some of the rooms (7, 8, 9, 7 ', 8', 9 'and 207, 208, 209, 207 ', 208' and 209 '); they branch out here each in two third row lines 18 which extend over an eighth of a turn of the casing 1 in front the rooms just mentioned up to one of their ends; they lead into distributors 19 and 20 which extend in front of ends of the chambers and allow passage gas blown into the rooms. One of the distributors 19 is composed of four conduits 21 arranged in X, competing at the end of the third row pipeline 18 and plugging into the external surface of the intermediate chambers 8, 108, 8 'and 108' for one, 208, 208 ', 308 and 308' for the other (invisible in Figure 2 but similar to the first); distributors 20 (also similar) are a little more complicated and understand first of all branching conduits 22 extending from the end of the third row 18 in opposite axial directions and which end in distribution ducts 23 arranged in X like the conduits 21 and which connect to the walls exterior of the extreme chambers 7, 307, 9 and 309; 7 ', 307', 9 'and 309'; 107, 207, 109 and 209; and 107 ', 109 ', 207' and 209 '.

Le gaz de soufflage circule dans les chambres extrêmes, 7 et 9 par exemple, de chacun des trios dans un sens opposé au sens d'écoulement dans la chambre intermédiaire 8. Si par exemple le gaz soufflé est du gaz frais exerçant une action de refroidissement d'une structure très chaude, il est soumis à un échauffement notable au cours de son trajet au contact des parois des conduits et des chambres, et notamment dans ces dernières qui sont très proches du carter 1. La portion de gaz soufflée par les orifices 12 proches des conduits de distribution 21 ou 23 est donc plus fraíche et plus efficace que celle qui sort par l'extrémité opposée des chambres 7, 8 et 9. La circulation à contre-courant permet de souffler sur chacun des points des nervures 6 du gaz d'autant plus frais sur la face externe 10 que celui qui est soufflé au même endroit de la face interne 11 est plus chaud. Le refroidissement est donc uniforme le long des nervures 6 pour peu que les débits des deux flux de soufflage soient les mêmes en tout point. Il faut donc concevoir le réseau de distribution pour respecter cette condition. Une solution consiste à diviser le réseau en conduits de sections égales à chaque ramification et dont les directions forment un même angle avec celle du conduit qui se ramifie. L'écoulement est alors symétrique et se répartit également dans les conduits ramifiés. Dans la réalisation représentée, on constate que les ramifications sont en forme de T, le trajet des gaz étant à angle droit d'un conduit au suivant et les conduits ramifiés étant alignés et opposés. De plus, les chambres intermédiaires 8, qui desservent deux nervures 6, ont une section transversale deux fois plus large que les chambres extrêmes 7 et 9 et le débit y est proportionnel, c'est-à-dire deux fois plus important. Cette dernière condition est réalisée simplement parce que le réseau de distribution est ramifié une fois de moins vers les chambres intermédiaires 8 que vers les chambres extrêmes 7 et 9, les conduits de ramification 22 étant omis. Enfin, les gaz arrivent aux chambres 7, 8, 9, etc. après avoir accompli des trajets de longueur presque semblable dans les conduits du réseau de distribution d'une origine commune, la canalisation 15 par exemple, aux chambres 7, 8, 9, etc., ce qui égalise encore leurs échauffements : le réseau est construit, comme on l'a vu, avec des ramifications conçues pour que tous les conduits aboutissant à une ramification commune, ou une ramification de même rang, aient la même longueur ; seuls les distributeurs 19 et 20 sont un peu différents, mais comme ils sont tous courts, ils ne perturbent guère cette égalité de longueur. Les concepts à la racine de l'invention pourront facilement être appliqués à d'autres nombres et d'autres dispositions de nervures et à des chambres d'extension angulaire différente d'un quart de tour.The blowing gas circulates in the extreme chambers, 7 and 9 for example, of each of trios in a direction opposite to the direction of flow in the intermediate chamber 8. If for example blown gas is fresh gas with cooling action of a very hot structure, it is subjected to a significant heating during its journey in contact walls of conduits and chambers, and in particular in the latter which are very close to the casing 1. The portion of gas blown through the near orifices 12 distribution ducts 21 or 23 is therefore more fresh and more efficient than the one that comes out the opposite end of chambers 7, 8 and 9. The circulation against the current allows to blow on each of the points of the ribs 6 of the gas all the more fresh on the outer side 10 than the one that is blown in the same place of the internal face 11 is warmer. The cooling is therefore uniform along the ribs 6 as long as the flow rates of the two flows of blowing are the same at all points. Must therefore design the distribution network to respect this condition. One solution is to split the network in conduits of equal sections at each branching and whose directions form the same angle with that of the branching duct. The flow is then symmetrical and is distributed also in branched conduits. In the shown, we see that the ramifications are T-shaped, the gas path being at right angles from one conduit to the next and branched conduits being aligned and opposite. Moreover, the intermediate chambers 8, which serve two ribs 6, have a cross section twice as large wide than the extreme chambers 7 and 9 and the flow y is proportional, i.e. twice as much important. This last condition is fulfilled simply because the distribution network is branched once more to the rooms intermediates 8 as towards the extreme chambers 7 and 9, the branching conduits 22 being omitted. Finally, the gases arrive at chambers 7, 8, 9, etc. after having made journeys of almost similar length in distribution network ducts from an origin common, line 15 for example, to the rooms 7, 8, 9, etc., which further equalizes their overheating: the network is built, as we have seen, with ramifications designed so that all conduits leading to a common branch, or a branching of the same rank, have the same length; only distributors 19 and 20 are a bit different, but since they're all short, they don't hardly disturb this equality of length. The concepts at the root of the invention will easily be applied to other numbers and others rib arrangements and extension chambers angular different from a quarter turn.

Claims (3)

  1. Device for heating or cooling a circular casing (1) with external circular ribs (6) comprising chambers (7, 8, 9) which are segmented, having opposed ends, situated in succession in front of the ribs, stretching parallel to the ribs and provided with orifices (12) opening onto the ribs, and a network for distributing gas into the chambers, the ribs (6) being flanked by two different chambers (7 and 8, 8 and 9) and the distribution network being connected to adjacent chambers by the opposed ends along the chambers, so as to ensure an opposite direction of flow on each side of each rib, in which the gas distribution network divides towards the chambers from a single origin (15) and is made up of ducts having cross sections designed to lead towards each of the chambers a gas flow rate proportional to an unvarying cross section of each of the chambers, and in which the gas distribution network is made up of ducts (16, 17, 18, 19, 20) having a total length which is identical from the common origin (15) to each of the chambers.
  2. Device for heating or cooling a casing according to Claim 1, in which the gas distribution network divides towards the chambers in branches at right angles in the shape of a T.
  3. Device for heating or cooling a casing according to Claim 1, in which the chambers are made up of chambers (8) situated between two of the ribs (6) and provided with orifices opening onto the said two ribs and of two end chambers (7, 9) situated beside just one of the ribs (6) and having a cross section smaller by half than that of the chambers situated between two of the ribs.
EP98401801A 1997-07-18 1998-07-17 Heating or cooling device for carter with a circular section Expired - Lifetime EP0892153B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9709136A FR2766231B1 (en) 1997-07-18 1997-07-18 CIRCULAR HOUSING HEATING OR COOLING DEVICE
FR9709136 1997-07-18

Publications (2)

Publication Number Publication Date
EP0892153A1 EP0892153A1 (en) 1999-01-20
EP0892153B1 true EP0892153B1 (en) 2004-05-06

Family

ID=9509362

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98401801A Expired - Lifetime EP0892153B1 (en) 1997-07-18 1998-07-17 Heating or cooling device for carter with a circular section

Country Status (6)

Country Link
US (1) US6035929A (en)
EP (1) EP0892153B1 (en)
JP (1) JP3592533B2 (en)
CA (1) CA2243032C (en)
DE (1) DE69823590T2 (en)
FR (1) FR2766231B1 (en)

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2766232B1 (en) * 1997-07-18 1999-08-20 Snecma CIRCULAR HOUSING COOLING OR HEATING DEVICE
US6185925B1 (en) * 1999-02-12 2001-02-13 General Electric Company External cooling system for turbine frame
US6439842B1 (en) * 2000-03-29 2002-08-27 General Electric Company Gas turbine engine stator case
US6454529B1 (en) * 2001-03-23 2002-09-24 General Electric Company Methods and apparatus for maintaining rotor assembly tip clearances
FR2858652B1 (en) * 2003-08-06 2006-02-10 Snecma Moteurs DEVICE FOR CONTROLLING PLAY IN A GAS TURBINE
FR2865237B1 (en) * 2004-01-16 2006-03-10 Snecma Moteurs IMPROVEMENTS IN GAME CONTROL DEVICES IN A GAS TURBINE
FR2867805A1 (en) * 2004-03-18 2005-09-23 Snecma Moteurs TURBOMACHINE HIGH-PRESSURE TURBINE STATOR AND METHOD OF ASSEMBLY
FR2867806B1 (en) 2004-03-18 2006-06-02 Snecma Moteurs DEVICE FOR CONTROLLING GAS TURBINE SET WITH AIR FLOW BALANCING
FR2871513B1 (en) * 2004-06-15 2006-09-22 Snecma Moteurs Sa SYSTEM AND METHOD FOR CONTROLLING AN AIR FLOW IN A GAS TURBINE
FR2882573B1 (en) * 2005-02-25 2007-04-13 Snecma Moteurs Sa INTERNAL HOUSING OF TURBOMACHINE EQUIPPED WITH A THERMAL SHIELD
US8065022B2 (en) * 2005-09-06 2011-11-22 General Electric Company Methods and systems for neural network modeling of turbine components
US7491029B2 (en) * 2005-10-14 2009-02-17 United Technologies Corporation Active clearance control system for gas turbine engines
US7503179B2 (en) * 2005-12-16 2009-03-17 General Electric Company System and method to exhaust spent cooling air of gas turbine engine active clearance control
US7597537B2 (en) * 2005-12-16 2009-10-06 General Electric Company Thermal control of gas turbine engine rings for active clearance control
US7823374B2 (en) 2006-08-31 2010-11-02 General Electric Company Heat transfer system and method for turbine engine using heat pipes
US7914254B2 (en) * 2007-02-13 2011-03-29 General Electric Company Integrated support/thermocouple housing for impingement cooling manifolds and cooling method
FR2925109B1 (en) * 2007-12-14 2015-05-15 Snecma TURBOMACHINE MODULE PROVIDED WITH A DEVICE FOR IMPROVING RADIAL GAMES
US8616827B2 (en) 2008-02-20 2013-12-31 Rolls-Royce Corporation Turbine blade tip clearance system
US8256228B2 (en) * 2008-04-29 2012-09-04 Rolls Royce Corporation Turbine blade tip clearance apparatus and method
FR2931872B1 (en) * 2008-05-28 2010-08-20 Snecma HIGH PRESSURE TURBINE OF A TURBOMACHINE WITH IMPROVED MOUNTING OF THE PILOTAGE HOUSING OF THE MOBILE RADIAL GAMES.
KR101346566B1 (en) 2008-10-08 2014-01-02 미츠비시 쥬고교 가부시키가이샤 Gas turbine and operating method therefor
DE102009010647A1 (en) * 2009-02-26 2010-09-02 Rolls-Royce Deutschland Ltd & Co Kg Running column adjustment system of an aircraft gas turbine
GB0906059D0 (en) * 2009-04-08 2009-05-20 Rolls Royce Plc Thermal control system for turbines
GB2469490B (en) * 2009-04-16 2012-03-07 Rolls Royce Plc Turbine casing cooling
FR2965583B1 (en) * 2010-10-04 2012-09-14 Snecma DEVICE FOR CONTROLLING PLAY IN A TURBOMACHINE TURBINE
FR2977276B1 (en) * 2011-06-30 2016-12-09 Snecma ARRANGEMENT FOR CONNECTING A DUCT TO AN AIR DISTRIBUTION HOUSING
US8894359B2 (en) * 2011-12-08 2014-11-25 Siemens Aktiengesellschaft Gas turbine engine with outer case ambient external cooling system
US20130149107A1 (en) * 2011-12-08 2013-06-13 Mrinal Munshi Gas turbine outer case active ambient cooling including air exhaust into a sub-ambient region of exhaust flow
US10094285B2 (en) * 2011-12-08 2018-10-09 Siemens Aktiengesellschaft Gas turbine outer case active ambient cooling including air exhaust into sub-ambient cavity
US9664062B2 (en) * 2011-12-08 2017-05-30 Siemens Energy, Inc. Gas turbine engine with multiple component exhaust diffuser operating in conjunction with an outer case ambient external cooling system
US9085982B2 (en) * 2012-03-19 2015-07-21 Mitsubishi Hitachi Power Systems, Ltd. Gas turbine
ITTO20120519A1 (en) 2012-06-14 2013-12-15 Avio Spa GAS TURBINE FOR AERONAUTICAL MOTORS
US9341074B2 (en) 2012-07-25 2016-05-17 General Electric Company Active clearance control manifold system
US20140027097A1 (en) * 2012-07-30 2014-01-30 Ian Alexandre Araujo De Barros Heat Exchanger for an Intercooler and Water Extraction Apparatus
US9091171B2 (en) 2012-10-30 2015-07-28 Siemens Aktiengesellschaft Temperature control within a cavity of a turbine engine
US9587507B2 (en) 2013-02-23 2017-03-07 Rolls-Royce North American Technologies, Inc. Blade clearance control for gas turbine engine
US9494081B2 (en) 2013-05-09 2016-11-15 Siemens Aktiengesellschaft Turbine engine shutdown temperature control system with an elongated ejector
BR112017021584B1 (en) * 2015-04-24 2023-01-17 Nuovo Pignone Tecnologie Srl GAS TURBINE ENGINE
US20160326915A1 (en) * 2015-05-08 2016-11-10 General Electric Company System and method for waste heat powered active clearance control
US10780447B2 (en) * 2016-04-26 2020-09-22 Applied Materials, Inc. Apparatus for controlling temperature uniformity of a showerhead
CN107795383B (en) * 2016-08-29 2019-08-06 中国航发商用航空发动机有限责任公司 A kind of gas turbine cooling air distribution system
FR3058459B1 (en) * 2016-11-04 2018-11-09 Safran Aircraft Engines COOLING DEVICE FOR TURBINE OF A TURBOMACHINE
CN106382136B (en) * 2016-11-18 2017-07-25 中国科学院工程热物理研究所 A kind of transonic speed tip active control device
US10544803B2 (en) * 2017-04-17 2020-01-28 General Electric Company Method and system for cooling fluid distribution
FR3085719B1 (en) * 2018-09-06 2021-04-16 Safran Aircraft Engines PRESSURIZED AIR SUPPLY BOX OF AN AIR JET COOLING DEVICE
FR3109406B1 (en) * 2020-04-17 2022-10-07 Safran Aircraft Engines TURBINE CASE COOLING DEVICE
US11788425B2 (en) * 2021-11-05 2023-10-17 General Electric Company Gas turbine engine with clearance control system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH425341A (en) * 1965-07-23 1966-11-30 Bbc Brown Boveri & Cie Gas turbine with cooling of the blade carriers
GB2108586B (en) * 1981-11-02 1985-08-07 United Technologies Corp Gas turbine engine active clearance control
GB2136508B (en) * 1983-03-11 1987-12-31 United Technologies Corp Coolable stator assembly for a gas turbine engine
JPS63154806A (en) * 1986-12-19 1988-06-28 Mitsubishi Heavy Ind Ltd Blade tip clearance adjuster for rotary machine
US5100291A (en) * 1990-03-28 1992-03-31 General Electric Company Impingement manifold
US5281085A (en) * 1990-12-21 1994-01-25 General Electric Company Clearance control system for separately expanding or contracting individual portions of an annular shroud
US5205115A (en) * 1991-11-04 1993-04-27 General Electric Company Gas turbine engine case counterflow thermal control
US5219268A (en) * 1992-03-06 1993-06-15 General Electric Company Gas turbine engine case thermal control flange

Also Published As

Publication number Publication date
JP3592533B2 (en) 2004-11-24
FR2766231B1 (en) 1999-08-20
FR2766231A1 (en) 1999-01-22
US6035929A (en) 2000-03-14
EP0892153A1 (en) 1999-01-20
CA2243032A1 (en) 1999-01-18
JPH1172007A (en) 1999-03-16
DE69823590T2 (en) 2005-04-28
DE69823590D1 (en) 2004-06-09
CA2243032C (en) 2008-01-22

Similar Documents

Publication Publication Date Title
EP0892153B1 (en) Heating or cooling device for carter with a circular section
EP0892152B1 (en) Heating or cooling device for a carter with circular section
EP3728793B1 (en) Guide vane of a turbomachine fan
CA2366363C (en) Array for regulating the diameter of a stator of a gas turbine
EP0651137B1 (en) Turbomachine with heating of the rotor discs during engine acceleration
EP0077265B1 (en) Device for controlling the dilatations and thermal stresses in a rotor of a gas turbine
FR2481742A1 (en) AIR COOLING CASE AND STRAIN RING, FOR TURBINE ROTOR
EP1653047B1 (en) Gas turbine rotor blade
CA2585920C (en) Exhaust assembly forming a horizontal elbow for propulsion gases in an aircraft
FR3060057B1 (en) FLUIDIC CIRCUIT IN A TURBOMACHINE
EP0592305A1 (en) Post-combustor for bypass gas turbine
FR2743394A1 (en) DUCTED BLOWER GAS TURBINE ENGINE WITH A VARIABLE SECTION BLOWER DUCT TIP
FR2564896A1 (en) GAS TURBINE ENGINE BLADE.
FR2690482A1 (en) Fan circuit for compressor and turbine disks.
FR2849113A1 (en) Power deflection grilles for turbojet are located side by side on external periphery of annular power flow circulation channel, each grille consisting of intersected internal transverse and longitudinal blades
CA1137533A (en) Electric machine rotor cooled by gas circulation
FR2630534A1 (en) HEAT EXCHANGER FOR TWO SEPARATE FLUIDS IN THE SPACE AND HAVING DIFFERENT TEMPERATURES
FR2761119A1 (en) Stator for axial=flow compressor, e.g. for aircraft
FR2506837A1 (en) EXHAUST GAS CONDUIT TO BE MOUNTED BETWEEN AN INTERNAL COMBUSTION ENGINE AND AN EXHAUST GAS TURBO-COMPRESSOR
EP3074711A1 (en) Dual-flow air/air exchanger, apparatus for processing air and method for protecting such an exchanger against ice and for cleaning same
FR3029242A1 (en) TURBOMACHINE TURBINE, COMPRISING INTERCROSSED PARTITIONS FOR AIR CIRCULATION IN DIRECTION OF THE LEAK EDGE
FR2688539A1 (en) Turbomachine stator including devices for adjusting the clearance between the stator and the blades of the rotor
EP3906359B1 (en) Turbomachine vane
FR3028494A1 (en) TURBOMACHINE BLADE, COMPRISING PONTETS EXTENDING FROM THE WALL OF INTRADOS TO THE WALL OF EXTRADOS
FR3095234A1 (en) TURBOMACHINE ASSEMBLY INCLUDING A TEMPERATURE LIMITATION DEVICE FOR UNCOOLED ALVEOLE BOTTOM

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980731

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

AKX Designation fees paid

Free format text: DE FR GB

17Q First examination report despatched

Effective date: 20020716

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SNECMA MOTEURS

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 69823590

Country of ref document: DE

Date of ref document: 20040609

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040630

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050208

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20170427

Year of fee payment: 20

Ref country code: GB

Payment date: 20170620

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170620

Year of fee payment: 20

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: SAFRAN AIRCRAFT ENGINES

Effective date: 20170717

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69823590

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20180716

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20180716