EP0892048B1 - XAF genes and polypeptides and their use for modulating apoptosis - Google Patents

XAF genes and polypeptides and their use for modulating apoptosis Download PDF

Info

Publication number
EP0892048B1
EP0892048B1 EP98113003A EP98113003A EP0892048B1 EP 0892048 B1 EP0892048 B1 EP 0892048B1 EP 98113003 A EP98113003 A EP 98113003A EP 98113003 A EP98113003 A EP 98113003A EP 0892048 B1 EP0892048 B1 EP 0892048B1
Authority
EP
European Patent Office
Prior art keywords
xaf
polypeptide
cell
seq
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98113003A
Other languages
German (de)
French (fr)
Other versions
EP0892048A2 (en
EP0892048A3 (en
Inventor
Robert Korneluk
Katsuyuki Tamai
Peter Liston
Alexander E. Mackenzie
Stephen Baird
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Ottawa
Original Assignee
University of Ottawa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Ottawa filed Critical University of Ottawa
Publication of EP0892048A2 publication Critical patent/EP0892048A2/en
Publication of EP0892048A3 publication Critical patent/EP0892048A3/en
Application granted granted Critical
Publication of EP0892048B1 publication Critical patent/EP0892048B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/1703Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • A61K38/1709Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4702Regulators; Modulating activity
    • C07K14/4703Inhibitors; Suppressors
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4747Apoptosis related proteins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5011Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing antineoplastic activity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5014Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing toxicity
    • G01N33/5017Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing toxicity for testing neoplastic activity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/05Animals comprising random inserted nucleic acids (transgenic)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/136Screening for pharmacological compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2510/00Detection of programmed cell death, i.e. apoptosis

Definitions

  • This invention relates to apoptosis, tumor necrosis factor- ⁇ (TNF- ⁇ ) mediated signalling, cell cycle and tumor growth suppression.
  • TNF- ⁇ tumor necrosis factor- ⁇
  • Apoptosis is a morphologically distinct form of programmed cell death that is important in the normal development and maintenance of multicellular organisms. Dysregulation of apoptosis can take the form of inappropriate suppression of cell death, as occurs in the development of cancers, or in a failure to control the extent of cell death, as is believed to occur in acquired immunodeficiency and certain neurodegenerative disorders.
  • baculoviruses encode proteins termed “inhibitors of apoptosis proteins” (IAPs) because they inhibit the apoptosis that would otherwise occur when insect cells are infected by the virus. These proteins are thought to work in a manner that is independent of other viral proteins.
  • the baculovirus IAP genes include sequences encoding a ring zinc finger-like motif (RZF), which may be involved in DNA binding, and two N-terminal domains that consist of a 70 amino acid repeat motif termed a BIR domain (Baculovirus IAP Repeat).
  • IAP polypeptides include the human proteins HIAP-1, HIAP-2, and XIAP and their murine homologs.
  • a related protein, NAIP has also been found.
  • the mammalian IAP levels have been shown to be increased both in cancer cells and cells which survive events known to induce apoptosis (e.g., ischemia).
  • the IAPs have also been shown to block apoptosis triggered by diverse stimuli. These results are consistent with a role for the mammalian IAPs as inhibitors of apoptosis.
  • the IAP family is now known to include at least two Drosophila proteins, in addition to the original four mammalian homologues ( Hay et al., Cell 83: 1253-1262, 1995 ). Although we and others have established that the IAPs can suppress apoptosis in tissue culture model systems their mechanism of action is still under investigation.
  • the invention features a substantially pure nucleic acid encoding the polypeptide of amino acids 173-317 of SEQ ID NO:2 (XAF-1C), wherein said polypeptide augments TRAF6 mediated NF-x3 activation in a cell.
  • the invention features a substantially pure nucleic acid complementary to at least ten nucleotides of a nucleic acid encoding the polypeptide of SEQ ID NO:2 (XAF-1), where the nucleic acid, when administered to a cell, is an antisense nucleic acid that is sufficient to decrease the apoptosis-inducing, activity of XAF-1.
  • the antisense nucleic acid is complementary to at least fifteen nucleotides, at least thirty nucleotides, or at least 100 nucleotides of a nucleic acid encoding the polypeptide of SEQ ID NO:2.
  • the apoptosis-inducing activity is decreased by at least 20%, 40%, 60%, or 80%.
  • the antisense nucleic acid is in a vector where the vector is capable of directing expression of the antisense nucleic acid in a vector-containing cell.
  • the invention features a vector that includes a substantially pure nucleic acid encoding the polypeptide of amino acids 173-317 of SEQ ID NO.2 (XAF1C), where the vector is capable of directing expression of the polypeptide in a vector-containing cell.
  • XAF1C substantially pure nucleic acid encoding the polypeptide of amino acids 173-317 of SEQ ID NO.2
  • the invention features a cell that contains a substantially pure nucleic acid encoding the polypeptide of amino acids 173-317 of SEQ ID NO.2 (XA ⁇ 1C).
  • the nucleic acid is expressed in the cell.
  • the nucleic acid is genomic DNA or cDNA, and is operably linked to regulatory sequences for expression of the polypeptide where the regulatory sequences include a promoter (e.g., a constitutive promoter, a promoter inducible by one or more external agents, or a cell-type specific promoter).
  • a promoter e.g., a constitutive promoter, a promoter inducible by one or more external agents, or a cell-type specific promoter.
  • the invention features a method of identifying a compound that modulates apoptosis.
  • the method includes: (a) providing a cell that has the nucleic acid of SEQ ID NO : 1, ( XAF -1 gene); (b) contacting the cell with a candidate compound; and (c) monitoring expression of the nucleic acid, where an alteration in the level of expression of the nucleic acid indicates the presence of a compound which modulates apoptosis.
  • the alteration that is an increase indicates the compound is increasing apoptosis
  • the alteration that is a decrease indicates the compound is decreasing apoptosis.
  • the cell is transformed and the cell is not able to induce apoptosis by expression of p53.
  • the invention features a method of identifying a compound that is able to inhibit apoptosis that includes: (a) providing a cell expressing the polypeptide of SEQ ID NO:2 (XAF-1) or the polypeptide of amino acids 173-317 of SEQ ID NO:2 (XAF-1C) ; (b) contacting the cell with a candidate compound; and (c) measuring the level of apoptosis in the cell, where a decrease in the level relative to a level in a cell not contacted with the candidate compound indicates a compound that is able to inhibit apoptosis.
  • the cell is transformed and the cell is not able to induce apoptosis by expression of p53.
  • the invention features a method of identifying a compound that is able to induce apoptosis that includes: (a) providing a cell expressing the polypeptide of SEQ ID NO:2 (XAF-1) or the polypeptide of amino acids 173-317 of SEQ ID NO:2 (XAF-1C) ; (b) contacting the cell with a candidate compound; and (c) measuring level of apoptosis in the cell, where an increase in the level relative to a level in a cell not contacted with the candidate compound indicates a compound that is able to induce apoptosis.
  • the cell is transformed and the cell is not able to induce apoptosis by expression of p53.
  • the invention features other methods of identifying a compound that is able to modulate apoptosis
  • One such method includes: (a) providing a cell expressing a polypeptide selected from the polypeptide of SEQ ID NO:2 (XAF-1) and the polypeptide of amino acids 173-317 of SEQ ID NO:2 (XAF-1C), and a reporter gene operably linked to DNA that includes an NF- ⁇ B binding site; (b) contacting the cell with a candidate compound; and (c) measuring expression of the reporter gene, where a change in expression in response to the compound indicates that the compound is able to modulate apoptosis.
  • the cell is transformed and the cell is not able to induce apoptosis by expression of p53.
  • a second such method includes: (a) providing a cell expressing a polypeptide selected from the polypeptide of SEQ ID NO:2 (XAF-1) and the polypeptide of amino acids 173-317 of SEQ ID NO:2 (XAF-1C), and a reporter gene operably linked to DNA that includes an NF- ⁇ B binding site; (b) contacting the cell with a candidate compound; and (c) measuring expression of the reporter gene, where a change in expression in response to the compound indicates that the compound is able to modulate apoptosis.
  • the cell is transformed and the cell is not able to induce apoptosis by expression of p53.
  • a third such method includes: (a) providing a cell having: (i) a reporter gene operably linked to a DNA-binding-protein recognition site; (ii) a first fusion gene capable of expressing a first fusion protein, where the first fusion protein includes the polypeptide of SEQ ID NO:2 (XAF-1) or the polypeptide of amino acids 173-317 of SEQ ID NO:2 (XAF-1C) covalently bonded to a binding moiety capable of specifically binding to the DNA-binding-protein recognition site; (iii) a second fusion gene capable of expressing a second fusion protein, where the second fusion protein includes a polypeptide selected from the polypeptide of SEQ ID NO:2 (XAF-1), the polypeptide of SEQ ID NO:4 (XAF-2), TRAF, and the polypeptide of amino acids 173-317 of SEQ ID NO:2 (XAF-1C) covalently bonded to a gene activating moiety; (b) exposing the cell to the compound; and
  • a fourth method for detecting a compound capable of modulating apoptosis includes: (a) providing a cell having: (i) a reporter gene operably linked to a DNA-binding-protein recognition site; (ii) a first fusion gene capable of expressing a first fusion protein, where the first fusion protein includes the polypeptide of SEQ ID NO:2 (XAF-1) or the polypeptide of amino acids 173-317 of SEQ ID NO:2 (XAF-1C) covalently bonded to a binding moiety capable of specifically binding to the DNA-binding-protein recognition site; (iii) a second fusion gene capable of expressing a second fusion protein, where the second fusion protein includes an IAP polypeptide covalently bonded to a gene activating moiety; (b) exposing the cell to the compound; and (c) measuring reporter gene expression in the cell, where a change in the reporter gene expression indicates that the compound is capable of modulating apoptosis.
  • a reporter gene operably linked to
  • a fifth such method includes: (a) providing a cell having: (i) a reporter gene operably linked to a DNA-binding-protein recognition site; (ii) a first fusion gene capable of expressing a first fusion protein, where the first fusion protein includes an IAP polypeptide covalently bonded to a binding moiety capable of specifically binding to the DNA-binding-protein recognition site; (iii) a second fusion gene capable of expressing a second fusion protein, where the second fusion protein includes the polypeptide of SEQ ID NO:2 (XAF-1) or the polypeptide of amino acids 173-317 of SEQ ID NO:2 (XAF-1C) polypeptide covalently bonded to a gene activating moiety; (b) exposing the cell to the compound; and (c) measuring reporter gene expression in the cell, where a change in the reporter gene expression indicates that the compound is capable of modulating apoptosis.
  • the IAP is XIAP.
  • a sixth such method includes: (a) providing a first polypeptide selected from the polypeptide of SEQ ID NO:2 (XAF-1) and the polypeptide of amino acids 173-317 of SEQ ID NO:2 (XAF-1C), said first polypeptide being immobilized on a solid-phase substrate; (b) contacting the first polypeptide with a second polypeptide selected from the polypeptide of SEQ ID NO:2 (XAF-1), the polypetide of SEQ ID NO:4 (XAF-2), TRAF, and the polypeptide of amino acids 173-317 of SEQ ID NO:2 (XAF-1C), (c) contacting the first and the second polypeptides with a compound; and (d) measuring amount of binding of the first polypeptide to the second polypeptide, where a change in the amount relative to an amount not contacted with the compound indicates that the compound is capable of modulating apoptosis.
  • a seventh method for detecting a compound capable of modulating apoptosis includes: (a) providing a first polypeptide selected from the polypeptide of SEQ ID NO:2 (XAF-1) and the polypeptide of amino acids 173-317 of SEQ ID NO:2 (XAF-1C), said first polypeptide being immobilized on a solid-phase substrate; (b) contacting the first polypeptide with an LAP polypeptide; (c) contacting the first polypeptide and the IAP polypeptide with a compound; and (d) measuring amount of binding of the first polypeptide to the IAP polypeptide, where a change in the amount relative to an amount not contacted with the compound indicates that the compound is capable of modulating apoptosis.
  • the IAP is XIAP.
  • An eighth such method includes: (a) providing an IAP polypeptide immobilized on a solid-phase substrate; (b) contacting the IAP polypeptide with a second polypeptide selected from the polypeptide of SEQ ID NO:2 (XAF-1) and the polypeptide of amino acids 173-317 of SEQ ID NO:2 (XAF-1C); (c) contacting the IAP polypeptide and the second polypeptide with a compound; and (d) measuring amount of binding of the IAP polypeptide to the second polypeptide, where a change in the amount relative to an amount not contacted with the compound indicates that the compound is capable of modulating apoptosis.
  • the IAP is XIAP.
  • the invention features a method of increasing apoptosis in a cell in vitro by administering to the cell an apoptosis-inducing amount of a polypeptide selected from the polypeptide of SEQ ID NO:2 (XAF-1) and the polypeptide of amino acids 173-317 of SEQ ID NO:2 (XAF-1C).
  • the cell is a peripheral blood leukocyte (e.g., a lymphocyte), a muscle cell (e.g., a myocardial cell), an intestinal cell, an ovarian cell, a placental cell, or a thymus cell (e.g., a thymocyte).
  • a peripheral blood leukocyte e.g., a lymphocyte
  • a muscle cell e.g., a myocardial cell
  • an intestinal cell e.g., an ovarian cell
  • a placental cell e.g., a thymocyte
  • XAF XAF protein
  • XAF polypeptide a polypeptide, or fragment thereof, which has at least 30%, more preferably at least 35%, and most preferably 40% amino acid identity to either the amino-terminal 131 amino acids of the human XAF-1 (SEQ ID NO.: 2) or the amino-terminal 135 amino acids of human XAF-2L (SEQ ID NO.: 10) polypeptides. It is understood that polypeptide products from splice variants of XAF gene sequences are also included in this definition.
  • the XAF protein is encoded by nucleic acid having a sequence with hybridizes to a nucleic acid sequences present in either SEQ ID NO.: 1 or SEQ ID NO.: 9 under stringent conditions. Even more preferably the encoded polypeptide also has XAF biological activity.
  • the XAF polypeptide has at least three zinc finger domains. More preferably, the XAF polypeptide has at least six zinc finger domains, at least five of which occur within 150 amino acids of the N-terminus.
  • zinc finger is meant a binding domain capable of associating with zinc.
  • a preferable zinc binding domain has the amino acid sequence 5' C-X 2-5 -C-X 11-18 -C/H-X 2-5 -C/H 3' (SEQ ID NO.: 6), wherein "X” may be any amino acid.
  • a more preferable zinc binding domain has the amino acid sequence 5' C-X 1-2 -C-X 11 -H-X 3-5 -C 3' (SEQ ID NO.: 7), wherein "X” may be any amino acid.
  • a zinc binding domain has the amino acid sequence 5' C-X 2 -H-X 11 -H-X 3 -C 3' (SEQ ID NO.: 8), wherein "X" may be any amino acid.
  • a zinc binding domain is one found in a XAF polypeptide.
  • XAF biological activity is meant any one or more of the biological activities described herein for XAF-1, XAF-2L, or XAF-2S, including, without limitation, the ability to bind an IAP (e.g., a XIAP), or another XAF polypeptide; the ability to cause apoptosis when transfected into a cell (particularly in a HeLa cell); the ability to enhance the NF- ⁇ B inducing activity of a TRAF; and the ability to specifically bind a XAF-1, XAF-2L, or XAF-2S specific antibody.
  • IAP e.g., a XIAP
  • XAF biological activity any one or more of the biological activities described herein for XAF-1, XAF-2L, or XAF-2S, including, without limitation, the ability to bind an IAP (e.g., a XIAP), or another XAF polypeptide; the ability to cause apoptosis when transfected into a cell
  • the cell population is selected from a group including T cells, neuronal cells, fibroblasts, myocardial cells, or any other cell line known to undergo apoptosis in a laboratory setting (e.g., the baculovirus infected insect cells or an in vivo assay).
  • a XAF polypeptide or a modulating compound in a given assay will vary, but that one skilled in the art can determine the statistically significant change or a therapeutically effective change in the level of apoptosis which identifies a XAF polypeptide or a compound which modulates XAF or is a XAF therapeutic.
  • high stringency conditions hybridization in 2X SSC at 40°C with a DNA probe length of at least 40 nucleotides.
  • high stringency conditions see Ausubel, F. et al., 1994, Current Protocols in Molecular Biology, John Wiley & Sons, New York , 6.3.1-6.3.6.
  • IAP an amino acid sequence which has identity to baculovirus inhibitors of apoptosis.
  • Mammalian IAPs include, without limitation, NAIP, HIAP1, HIAP2, and XIAP.
  • such a polypeptide has an amino acid sequence which is at least 45%, preferably 60%, and most preferably 85% or even 95% identical to at least one of the amino acid sequences of a baculovirus IAP.
  • inhibiting apoptosis is meant any decrease in the number of cells which undergo apoptosis relative to an untreated control.
  • the decrease is at least 25%, more preferably the decrease is 50%, and most preferably the decrease is at least one-fold.
  • polypeptide any chain of more than two amino acids, regardless of post-translational modification such as glycosylation or phosphorylation.
  • pharmaceutically acceptable carrier means a carrier which is physiologically acceptable to the treated mammal while retaining the therapeutic properties of the compound with which it is administered.
  • One exemplary pharmaceutically acceptable carrier is physiological saline.
  • physiologically acceptable carriers and their formulations are known to one skilled in the art and described, for example, in Remington's Pharmaceutical Sciences, (18th edition), ed. A. Gennaro, 1990, Mack Publishing Company , Easton, PA.
  • substantially identical is meant a polypeptide or nucleic acid exhibiting at least 50%, preferably 85%, more preferably 90%, and most preferably 95% homology to a reference amino acid or nucleic acid sequence.
  • the length of comparison sequences will generally be at least 16 amino acids, preferably at least 20 amino acids, more preferably at least 25 amino acids, and most preferably 35 amino acids.
  • the length of comparison sequences will generally be at least 50 nucleotides, preferably at least 60 nucleotides, more preferably at least 75 nucleotides, and most preferably 110 nucleotides.
  • Sequence identity is typically measured using sequence analysis software with the default parameters specified therein (e.g., Sequence Analysis Software Package of the Genetics Computer Group, University of Wisconsin Biotechnology Center, 1710 University Avenue, Madison, WI 53705). This software program matches similar sequences by assigning degrees of homology to various substitutions, deletions, and other modifications. Conservative substitutions typically include substitutions within the following groups: glycine, alanine, valine, isoleucine, leucine; aspartic acid, glutamic acid, asparagine, glutamine; serine, threonine; lysine, arginine; and phenylalanine, tyrosine.
  • substantially pure polypeptide is meant a polypeptide that has been separated from the components that naturally accompany it.
  • the polypeptide is substantially pure when it is at least 60%, by weight, free from the proteins and naturally-occurring organic molecules with which it is naturally associated.
  • the polypeptide is a XAF polypeptide that is at least 75%, more preferably at least 90%, and most preferably at least 99%, by weight, pure.
  • a substantially pure XAF polypeptide may be obtained, for example, by extraction from a natural source (e.g., a fibroblast, neuronal cell, or lymphocyte) by expression of a recombinant nucleic acid encoding a XAF polypeptide, or by chemically synthesizing the protein. Purity can be measured by any appropriate method, e.g., by column chromatography, polyacrylamide gel electrophoresis, or HPLC analysis.
  • a natural source e.g., a fibroblast, neuronal cell, or lymphocyte
  • Purity can be measured by any appropriate method, e.g., by column chromatography, polyacrylamide gel electrophoresis, or HPLC analysis.
  • substantially pure polypeptide not only includes those derived from eukaryotic organisms but also those synthesized in E. coli or other prokaryotes.
  • substantially pure DNA is meant DNA that is free of the genes which, in the naturally-occurring genome of the organism from which the DNA of the invention is derived, flank the gene.
  • the term therefore includes, for example, a recombinant DNA which is incorporated into a vector; into an autonomously replicating plasmid or virus; or into the genomic DNA of a prokaryote or eukaryote; or which exists as a separate molecule (e.g., a cDNA or a genomic or cDNA fragment produced by PCR or restriction endonuclease digestion) independent of other sequences. It also includes a recombinant DNA which is part of a hybrid gene encoding additional polypeptide sequence.
  • TRAF is meant a member of the TRAF family of proteins.
  • TRAF family members each possess an amino terminal RING zinc finger and/or additional zinc fingers, a leucine zipper, and a unique, conserved carboxy terminal coiled coil motif, the TRAF-C domain, which defines the family.
  • TRAF1 and TRAF2 were first identified as components of the TNF-R2 signaling complex ( Rothe et al., Cell 78: 681-692, 1994 ).
  • Preferred TRAF polypeptides are TRAF2, TRAF5, and TRAF6.
  • transgene any piece of DNA which is inserted by artifice into a cell, and becomes part of the genome of the organism which develops from that cell.
  • a transgene may include a gene which is partly or entirely heterologous (i.e., foreign) to the transgenic organism, or may represent a gene homologous to an endogenous gene of the organism.
  • transgenic any cell which includes a DNA sequence which is inserted by artifice into a cell and becomes part of the genome of the organism which develops from that cell.
  • the transgenic organisms are generally transgenic mammals (e.g., rodents such as rats or mice) and the DNA (transgene) is inserted by artifice into the nuclear genome.
  • mutant mutation is meant an alteration in the nucleic acid sequence that reduces the biological activity of the polypeptide normally encoded therefrom by at least 80% relative to the unmutated gene.
  • the mutation may, without limitation, be an insertion, deletion, frameshift mutation, or a missense mutation.
  • the mutation is an insertion or deletion, or is a frameshift mutation that creates a stop codon.
  • transformation is meant any method for introducing foreign molecules into a cell. Lipofection, calcium phosphate precipitation, retroviral delivery, electroporation, and biolistic transformation are just a few of the teachings which may be used.
  • biolistic transformation is a method for introducing foreign molecules into a cell using velocity driven microprojectiles such as tungsten or gold particles. Such velocity-driven methods originate from pressure bursts which include, but are not limited to, helium-driven, air-driven, and gunpowder-driven techniques.
  • Biolistic transformation may be applied to the transformation or transfection of a wide variety of cell types and intact tissues including, without limitation, intracellular organelles (e.g., and mitochondria and chloroplasts), bacteria, yeast, fungi, algae, animal tissue, and cultured cells.
  • intracellular organelles e.g., and mitochondria and chloroplasts
  • bacteria e.g., and mitochondria and chloroplasts
  • yeast e.g., and mitochondria and chloroplasts
  • fungi e.g., and algae, animal tissue, and cultured cells.
  • transformed cell is meant a cell into which (or into an ancestor of which) has been introduced, by means of recombinant DNA techniques, a DNA molecule encoding (as used herein) a XAF polypeptide.
  • positioned for expression is meant that the DNA molecule is positioned adjacent to a DNA sequence which directs transcription and translation of the sequence (i.e., facilitates the production of, e.g., a XAF-1 polypeptide, a recombinant protein or a RNA molecule).
  • reporter gene any gene which encodes a product whose expression is detectable.
  • a reporter gene product may have one of the following attributes, without restriction: fluorescence (e.g., green fluorescent protein), enzymatic activity (e.g., luciferase or chloramphenicol acetyl transferase), toxicity (e.g., ricin), or an ability to be specifically bound by a second molecule (e.g., biotin or a detectably labeled antibody).
  • promoter is meant a minimal sequence sufficient to direct transcription. Also included are those promoter elements which are sufficient to render promoter-dependent gene expression controllable for cell type-specific, tissue-specific or inducible by external signals or agents; such elements may be located in the 5' or 3' or intron sequence regions of the native gene.
  • operably linked is meant that a gene and one or more regulatory sequences are connected in such a way as to permit gene expression when the appropriate molecules (e.g., transcriptional activator proteins) are bound to the regulatory sequences.
  • conserved region is meant any stretch of six or more contiguous amino acids exhibiting at least 30%, preferably 50%, and most preferably 70% amino acid sequence identity between two or more of the XAF family members, (e.g., between human XAF-1 and another human XAF).
  • detectably-labeled any means for marking and identifying the presence of a molecule, e.g., an oligonucleotide probe or primer, a gene or fragment thereof, or a cDNA molecule.
  • Methods for detectably-labeling a molecule include, without limitation, radioactive labeling (e.g., with an isotope such as 32 P or 35 S) and nonradioactive labeling (e.g., chemiluminescent labeling, e.g., fluorescein labeling).
  • antisense as used herein in reference to nucleic acids, is meant a nucleic acid sequence that is complementary to the coding strand of a gene, preferably, a XAF gene.
  • purified antibody antibody which is at least 60%, by weight, free from proteins and naturally occurring organic molecules with which it is naturally associated. Preferably, the preparation is at least 75%, more preferably 90%, and most preferably at least 99%, by weight, antibody, e.g., a XAF-1, XAF-2 N-terminus, XAF-2L, or XAF-2S specific antibody.
  • a purified antibody may be obtained, for example, by affinity chromatography using recombinantly-produced protein or conserved motif peptides and standard techniques.
  • telomere sequence a peptide sequence of Fig. 1 (SEQ ID NO.: 2).
  • Another preferred antibody binds to the XAF-2 N-terminus peptide sequence of Fig. 35 (SEQ ID NO.: 4).
  • Yet another preferred antibody binds to the XAF-2L peptide sequence of Fig. 37 (SEQ ID NO.: 10).
  • Still another preferred antibody binds to the XAF-2S peptide sequence of Fig. 38C (SEQ ID NO.: 12).
  • a more preferred antibody binds to two or more of XAF-1 (SEQ ID NO.: 2), XAF-2 N-terminus (SEQ ID NO.: 4), XAF-2L (SEQ ID NO.: 10) and XAF-2S (SEQ ID NO.: 12).
  • neutralizing antibodies antibodies that interfere with any of the biological activities of a XAF polypeptide, particularly the ability of a XAF to participate in apoptosis.
  • the neutralizing antibody may reduce the ability of a XAF polypeptide to participate in apoptosis by, preferably 50%, more preferably by 70%, and most preferably by 90% or more. Any standard assay of apoptosis, including those described herein, may be used to assess potentially neutralizing antibodies.
  • the TNF receptor superfamily includes at least 13 transmembrane type I glycoproteins composed of two identical subunits with variable numbers of a characteristic cysteine rich extracellular repeat. Included among these members are TNF receptor 1 (TNF-R1), TNF receptor 2 (TNF-R2), CD40, Fas, and CD30.
  • TNF-R1 TNF receptor 1
  • TNF-R2 TNF receptor 2
  • CD40 TNF receptor 2
  • Fas a characteristic cysteine rich extracellular repeat
  • CD30 CD30.
  • the corresponding ligands for these receptors are typically type II transmembrane glycoproteins expressed on the surface of interacting cells. In some instances, notably lymphotoxin- ⁇ (also known as TNF ⁇ ) and the majority of tumor necrosis factor- ⁇ (TNF ⁇ ), the ligand is secreted from the cell.
  • TNF ⁇ lymphotoxin- ⁇
  • TNF ⁇ tumor necrosis factor- ⁇
  • the signals generated by ligated members of the TNF receptor superfamily can be stimulatory or inhibitory depending on the nature and activation state of the target cell.
  • TNF-R1, TNF-R2, CD30, and CD40 Kitson et al., Nature 384: 372-275, 1996 ) all result in NF- ⁇ B activation, a transcription factor found latent in the cytoplasm of cells complexed to an inhibitor protein termed I- ⁇ B.
  • Receptor ligation induces the phosphorylation of I- ⁇ B, which renders I- ⁇ B susceptible to ubiquitination and subsequent degradation.
  • I- ⁇ B degradation unveils the nuclear translocation signal in NF- ⁇ B and allows nuclear localization and activation of transcription from NF- ⁇ B dependent promoters (reviewed in Grilli et al., Int. Rev. Cytol. 143: 1-60, 1993 ).
  • TNF ⁇ Tumor necrosis factor- ⁇
  • TNF ⁇ Tumor necrosis factor- ⁇
  • the cytoplasmic domains of TNF-R1 and TNF-R2 are not conserved, which is reflected in both the protein factors associated with the cytoplasmic domains and in the consequences of receptor stimulation.
  • TNF- ⁇ signaling through TNF-R2 can induce either proliferative responses (i.e. thymocyte and mononuclear proliferation; Tartaglia et al., Proc. Natl. Acad. Sci. USA 88: 9292-9296, 1991 ; Tartaglia, et al., J. Immunol.
  • TNF-R2 complexes Immunoprecipitation of TNF-R2 complexes and peptide sequence analysis of the associated proteins identified HIAP-1 and HIAP-2 as components of the unstimulated TNF-R2 signaling complex.
  • Protein-protein interaction analysis has established that the BIR domains of HIAP-1 and HIAP-2 can bind interchangeably to the TRAF-N domains of TRAF1 and TRAF2 ( Rothe et al., Cell 83: 1243-1252, 1995 ). To date, very little is known regarding the distribution and function of the protein components of the TNF-R2 complex following receptor ligation. Likewise, the functional consequences of HIAP-1 and HIAP-2 in the TNF-R2 receptor complex have not been determined.
  • TNF-R1 The intracellular domain of TNF-R1 contains an approximately 80 amino acid protein-protein interaction motif termed a "death domain", which is also found in the low affinity nerve growth factor and Fas receptors.
  • the cytoplasmic death domain of TNF-R1 does not appear to associate with components of the signal transduction pathways prior to ligand binding.
  • the primary effects of TNF-R1 aggregation are NF- ⁇ B activation and apoptosis. These effects are dependent upon interaction of TNF-R1 with TRADD ( T NF- R 1 a ssociated d eath d omain protein; Hsu et al., Cell 81: 495-504, 1995 ), through their respective death domains.
  • TRADD functions as an adapter molecule which can recruit a variety of proteins to the signaling complex. The formation of alternative signaling complexes likely determines the ultimate fate of the cell.
  • TRADD is capable of triggering the formation of a protein complex called the DISC (Death Inducing Signaling Complex).
  • DISC formation occurs when FADD is recruited to the TNF-R1/TRADD complex, again through interaction of death domains ( Chinnaiyan et al., Cell 81: 505-512 1995 ; Chinnaiyan et al., J. Biol. Chem. 271: 4961-4965, 1996 ).
  • FADD possesses an amino terminal "death effector domain" (DED), which triggers apoptosis by recruiting FLICE (caspase-8).
  • DED death effector domain
  • FLICE possesses an unusually long amino terminal pro-domain containing two DED homologous sequences which bind to the FADD DED. Bringing FLICE molecules into close proximity results in proteolytic auto-activation. The cleavage event that activates FLICE also releases the enzyme from the DISC, at which point it proteolytically activates other caspases and ultimately results in apoptosis ( Muzio et al., Cell 85: 817-827, 1996 , Boldin et al., 85: 803-815 1996 ).
  • Dominant-negative mutants of FADD block apoptosis through either Fas or TNF-R1, indicating that the FADD component is responsible for propagating the cell death signal generated through either receptor ( Chinnaiyan et al., J. Biol. Chem. 271: 4961-4965, 1996 ).
  • TNF ⁇ binding to TNF-R1 does not result in apoptosis in all circumstances.
  • the formation of an alternative signaling complex contributes to the pliability of the TNF ⁇ response.
  • the "survival complex" that corresponds to the DISC consists of TRADD bound to TRAF2 (TNF receptor associated factor-2) and HIAP-2 ( Hsu et al., Immunity 4: 387-389, 1996 ; Hsu et al., Cell 84: 299-308, 1996 ).
  • HIAP-2 is complexed to TRAF2 prior to TNF-R1 stimulation ( Hsu et al., Cell 84: 299-308, 1996 ).
  • HIAP-2 may interact with other components of the apoptotic pathway, such as the caspases, in ways which suppress the apoptotic signals that would otherwise be generated.
  • XAF family members interact with IAPs and are clearly involved in apoptotic and NF- ⁇ B inducing signaling pathways in mammalian cells.
  • Overexpression of XAF-1 causes cell death in transformed cells.
  • overexpression in non-transformed cells merely leads to growth (cell cycle) arrest.
  • the distinct functions transformed and merely proliferating cells is surprising and significant.
  • Our Western and Northern blot analyses indicate that XAF-1 is expressed in a variety of tissues and cell types. Since apoptosis is an event non-specific to any particular cell or tissue type, these findings are in keeping with the involvement of the XAF-1 protein in apoptosis in a variety of contexts.
  • XAF-2L XAF-2L
  • XAF-2L like XAF-1, also has seven zinc finger binding domains.
  • a second shorter XAF-2 splice variant, XAF-2S has also been discovered.
  • XAF-1 A yeast 2-hybrid screen of a human placenta cDNA library with XIAP as the 'bait' protein identified a 37 kDa zinc finger protein termed XAF-1 ( X IAP A ssociated F actor 1).
  • XAF-1 displays significant homology to members of the TRAF family, particularly TRAF6, but lacks the TRAF-C and TRAF-N domains.
  • the characteristics of the cloned XAF gene sequences may be analyzed by introducing the sequence into various cell types or using in vitro extracellular systems. The function of XAF proteins may then be examined under different physiological conditions. For example, the XAF-1-encoding DNA sequence may be manipulated in studies to understand the expression of the XAF-1 gene and gene product. Alternatively, cell lines may be produced which over-express the XAF gene product allowing purification of XAF for biochemical characterization, large-scale production, antibody production, and patient therapy.
  • eukaryotic and prokaryotic expression systems may be generated in which XAF gene sequences are introduced into a plasmid or other vector which is then used to transform living cells. Constructs in which the XAF cDNAs containing the entire open reading frames inserted in the correct orientation into an expression plasmid may be used for protein expression. Alternatively, portions of the XAF gene sequences, including wild-type or mutant XAF sequences, may be inserted. Prokaryotic and eukaryotic expression systems allow various important functional domains of the XAF proteins to be recovered as fusion proteins and then used for binding, structural and functional studies and also for the generation of appropriate antibodies.. Since XAF-1 protein expression increases apoptosis in immortalized cells, it may be desirable to express the protein under the control of an inducible promoter.
  • Typical expression vectors contain promoters that direct the synthesis of large amounts of mRNA corresponding to the inserted XAF nucleic acid in the plasmid bearing cells. They may also include eukaryotic or prokaryotic origin of replication sequences allowing for their autonomous replication within the host organism, sequences that encode genetic traits that allow vector-containing cells to be selected for in the presence of otherwise toxic drugs, and sequences that increase the efficiency with which the synthesized mRNA is translated. Stable long-term vectors may be maintained as freely replicating entities by using regulatory elements of, for example, viruses (e.g., the OriP sequences from the Epstein Barr Virus genome). Cell lines may also be produced which have integrated the vector into the genomic DNA, and in this manner the gene product is produced on a continuous basis.
  • viruses e.g., the OriP sequences from the Epstein Barr Virus genome
  • plasmid vector contains several elements required for the propagation of the plasmid in bacteria, and expression of inserted DNA of the plasmid by the plasmid-carrying bacteria. Propagation of only plasmid-bearing bacteria is achieved by introducing into the plasmid selectable marker-encoding sequences that allow plasmid-bearing bacteria to grow in the presence of otherwise toxic drugs.
  • the plasmid also bears a transcriptional promoter capable of producing large amounts of mRNA from the cloned gene.
  • the plasmid also preferably contains a polylinker to simplify insertion of the gene in the correct orientation within the vector.
  • the expression vector plasmid contains a fragment of the E . coli chromosome containing the lac promoter and the neighboring lacZ gene.
  • RNA polymerase normally transcribes the lacZ gene producing lacZ mRNA which is translated into the encoded protein, ⁇ -galactosidase.
  • the lacZ gene can be cut out of the expression vector with restriction endonucleases and replaced by a XAF gene sequence, or fragment, fusion, or mutant thereof.
  • a XAF gene sequence or fragment, fusion, or mutant thereof.
  • the appropriate expression vectors containing a XAF gene, or fragment, fusion, or mutant thereof are constructed they are introduced into an appropriate host cell by transformation techniques including calcium phosphate transfection, DEAE-dextran transfection, electroporation, micro-injection, protoplast fusion and liposome-mediated transfection.
  • the host cell which are transfected with the vectors of this invention may be selected from the group consisting of E . coli, Pseudomonas, Bacillus subtilus, or other bacilli, other bacteria, yeast, fungi, insect (using, for example, baculoviral vectors for expression), mouse or other animal or human tissue cells.
  • Mammalian cells can also be used to express the XAF-1 protein using a vaccinia virus expression system described in Ausubel et al. (Current Protocols in Molecular Biology, John Wiley & Sons, New York, NY, 1994 ).
  • T7 late-promoter expression system In vitro expression of XAF proteins, fusions, polypeptide fragments, or mutants encoded by cloned DNA is also possible using the T7 late-promoter expression system.
  • T7 RNA polymerase which is an enzyme encoded in the DNA of bacteriophage T7.
  • the T7 RNA polymerase transcribes DNA beginning within a specific 23-bp promoter sequence called the T7 late promoter. Copies of the T7 late promoter are located at several sites on the T7 genome, but none is present in E. coli chromosomal DNA.
  • T7 RNA polymerase catalyzes transcription of viral genes but not of E. coli genes.
  • E. coli cells are first engineered to carry the gene encoding T7 RNA polymerase next to the lac promoter. In the presence of IPTG, these cells transcribe the T7 polymerase gene at a high rate and synthesize abundant amounts of T7 RNA polymerase. These cells are then transformed with plasmid vectors that carry a copy of the T7 late promoter protein. When IPTG is added to the culture medium containing these transformed E. coli cells, large amounts of T7 RNA polymerase are produced. The polymerase then binds to the T7 late promoter on the plasmid expression vectors, catalyzing transcription of the inserted cDNA at a high rate. Since each E.
  • E. coli contains many copies of the expression vector, large amounts of mRNA corresponding to the cloned cDNA can be produced in this system and the resulting protein can be radioactively labeled.
  • Plasmid vectors containing late promoters and the corresponding RNA polymerases from related bacteriophages such as T3, T5, and SP6 may also be used for in vitro production of proteins from cloned DNA.
  • E. coli can also be used for expression by infection with M13 Phage mGPI-2.
  • E. coli vectors can also be used with phage lambda regulatory sequences, by fusion protein vectors, by maltose-binding protein fusions, and by glutathione-S-transferase fusion proteins.
  • Eukaryotic expression systems permit appropriate post-translational modifications to expressed proteins.
  • Transient transfection of a eukaryotic expression plasmid allows the transient production of a XAF polypeptide by a transfected host cell.
  • XAF proteins may also be produced by a stably-transfected mammalian cell line.
  • a number of vectors suitable for stable transfection of mammalian cells are available to the public (e.g., see Pouwels et al., Cloning Vectors: A Laboratory Manual, 1985 , Supp. 1987), as are methods for constructing such cell lines (see e.g., Ausubel et al., supra).
  • cDNA encoding a XAF-1 protein, fusion, mutant, or polypeptide fragment is cloned into an expression vector that includes the dihydrofolate reductase (DHFR) gene.
  • Integration of the plasmid and, therefore, integration of the XAF-1-encoding gene into the host cell chromosome is selected for by inclusion of 0.01-300 ⁇ M methotrexate in the cell culture medium (as described, Ausubel et al., supra). This dominant selection can be accomplished in most cell types.
  • Recombinant protein expression can be increased by DHFR-mediated amplification of the transfected gene. Methods for selecting cell lines bearing gene amplifications are described in Ausubel et al. (supra).
  • DHFR-containing expression vectors are pCVSEII-DHFR and pAdD26SV(A) (described in Ausubel et al., supra).
  • the host cells described above or, preferably, a DHFR-deficient CHO cell line are among those most preferred for DHFR selection of a stably-transfected cell line or DHFR-mediated gene amplification.
  • Eukaryotic cell expression of XAF proteins allows for studies of the XAF genes and gene products including determination of proper expression and post-translational modifications for biological activity, identifying regulatory elements located in the 5' region of XAF genes and their roles in tissue regulation of XAF protein expression. It also permits the production of large amounts of normal and mutant proteins for isolation and purification, and the use of cells expressing XAF proteins as a functional assay system for antibodies generated against the protein. Eukaryotic cells expressing XAF proteins may also be used to test the effectiveness of pharmacological agents on XAF associated apoptosis, or as means by which to study XAF proteins as components of a signal transduction system.
  • XAF proteins, fusions, mutants, and polypeptide fragments in eukaryotic cells also enables the study of the function of the normal complete protein, specific portions of the protein, or of naturally occurring polymorphisms and artificially produced mutated proteins.
  • the XAF DNA sequences can be altered using procedures known in the art, such as restriction endonuclease digestion, DNA polymerase fill-in, exonuclease deletion, terminal deoxynucleotide transferase extension, ligation of synthetic or cloned DNA sequences and site-directed sequence alteration using specific oligonucleotides together with PCR.
  • Another preferred eukaryotic expression system is the baculovirus system using, for example, the vector pBacPAK9, which is available from Clontech (Palo Alto, CA). If desired, this system may be used in conjunction with other protein expression techniques, for example, the myc tag approach described by Evan et al. (Mol. Cell Biol. 5:3610-3616, 1985 ).
  • the recombinant protein can be isolated from the expressing cells by cell lysis followed by protein purification techniques, such as affinity chromatography.
  • an anti-XAF antibody which may be produced by the methods described herein, can be attached to a column and used to isolate the recombinant XAF proteins. Lysis and fractionation of XAF protein-harboring cells prior to affinity chromatography may be performed by standard methods (see e.g., Ausubel et al., supra ) .
  • the recombinant protein can, if desired, be purified further by e.g., by high performance liquid chromatography (HPLC; e.g., see Fisher, Laboratory Techniques In Biochemistry And Molecular Biology, Work and Burdon, Eds., Elsevier, 1980 ).
  • HPLC high performance liquid chromatography
  • polypeptides described above can also be produced by chemical synthesis (e.g., by the methods described in Solid Phase Peptide Synthesis, 2nd ed., 1984, The Pierce Chemical Co., Rockford, IL ). These general techniques of polypeptide expression and purification can also be used to produce and isolate useful XAF-1 polypeptide fragments or analogs, as described herein:
  • the XAF proteins may be produced in a prokaryotic host (e.g., E. coli) or in a eukaryotic host (e.g., S . cerevisiae, insect cells such as Sf9 cells, or mammalian cells such as COS-1, NIH 3T3, or HeLa cells). These cells are commercially available from, for example, the American Type Culture Collection, Rockville, MD (see also Ausubel et al ., supra).
  • transformation and transfection methods will depend on the host system selected. Transformation and transfection methods are described, e.g., in Ausubel et al. (supra), and expression vehicles may be chosen from those provided, e.g. in Pouwels et al., supra.
  • Identification of XAF-1 and XAF-2 splice variants allow the study of XAF biological activity in apoptosis-associated cellular events.
  • administration of a XAF-1 protein, or polypeptide fragment thereof may have an ability to induce apoptosis, as measured by apoptosis assays known in the art and described herein.
  • An apoptosis-inhibiting amount of a XAF reagent e.g., a compound that reduced the biological function of XAF-1, such as a XAF-1 neutralizing antibody or antisense XAF-1 nucleic acid
  • a XAF reagent e.g., a compound that reduced the biological function of XAF-1, such as a XAF-1 neutralizing antibody or antisense XAF-1 nucleic acid
  • Such assays may be carried out in a cell which either expresses endogenous XAF-1, or a cell to which is introduced a heterologous amount of a XAF-1 polypeptide.
  • the cell is capable of undergoing apoptosis. Apoptosis or inhibition thereof may be assessed in these XAF expressing cells, whereby such apoptosis inducing or inhibiting activity is evaluated based upon the level of expression of the XAF polypeptide.
  • NF- ⁇ B nuclear transcription factor
  • Kunkel et al., Crit. Rev. Immunol. 9: 93-117, 1989 the role of a XAF in NF- ⁇ B activation may be readily elucidated in various assays known in the art, such as the I- ⁇ B degradation assay.
  • Another method of rapidly measuring NF- ⁇ B activity is through the use of a reporter gene whose expression is directed by a NF- ⁇ B binding site containing promoter ( Zeichner et al., J. Virol. 65: 2436-2444, 1991 ).
  • the expression vector is preferably inserted by artifice into a cell capable of undergoing apoptosis or is responsive to TNF-receptor family-mediated signal transduction.
  • an NF- ⁇ B-inducing ability of a XAF may be readily assessed.
  • This method may also be used to detect an NF- ⁇ B-inhibing ability of a XAF wherein NF- ⁇ B activation is stimulated by another component of the TNF-receptor signalling pathway (e.g., TRAF6).
  • XAF-1 mRNA expression was expressed in at least the following adult tissues: heart, brain, placenta, liver, skeletal muscle, kidney, pancreas, spleen, thymus, prostate, testis, ovary, appendix, trachea, small intestine, submucosal lining of the colon, and peripheral blood leukocytes.
  • XAF-1 mRNA was further found to be expressed in fetal tissue, including fetal brain, fetal heart, fetal kidney, fetal liver, fetal spleen, fetal thymus, and fetal lung.
  • XAF protein fragments which incorporate various portions of XAF proteins are useful in identifying the domains important for the biological activities of XAF proteins. Methods for generating such fragments are well known in the art (see, for example, Ausubel et al., supra) using the nucleotide sequences provided herein.
  • a XAF protein fragment may be generated by PCR amplifying the desired fragment using oligonucleotide primers designed based upon the XAF-1 (SEQ ID NO.: 1) nucleic acid sequences.
  • the oligonucleotide primers include unique restriction enzyme site which facilitate insertion of the fragment into the cloning site of a mammalian expression vector. This vector may then be introduced into a mammalian cell by artifice by the various techniques known in the art and described herein, resulting in the production of a XAF gene fragment.
  • XAF-1 polypeptide fragments have been useful in evaluating the portions of the protein involved in NF- ⁇ B regulation.
  • polypeptide fragments of the amino- and carboxyl-termini of XAF-1 protein were used to induce or prevent activity induction by various other components of the TNF-receptor signalling pathway (e.g., TRAF6).
  • polypeptide fragments of various portions of the XAF-1 protein are useful in modulating XAF-1 mediated apoptosis, as may be assessed in the various apoptosis assays known in the art and described herein.
  • XAF-1 polypeptide fragments may be used to alter XAF-1 mediated apoptosis by inhibiting binding of the full length XAF-1 to, for example, itself to form XAF-1 :XAF-1 homodimers, to another XAF protein (e.g., XAF-2) to form XAF-1:XAF-2 heterodimers, or to XIAP to form XAF-1:XIAP heterodimers.
  • such fragments may include the XAF-1:XAF-1 binding domain, the XAF-1:XAF-2 binding domain or the XAF-1:XIAP binding domain.
  • XAF proteins, fragments of XAF proteins, or fusion proteins containing defined portions of XAF proteins can be synthesized in bacteria by expression of corresponding DNA sequences in a suitable cloning vehicle. Fusion proteins are commonly used as a source of antigen for producing antibodies. Two widely used expression systems for E . coli are lacZ fusions using the pUR series of vectors and trpE fusions using the pATH vectors. The proteins can be purified, and then coupled to a carrier protein and mixed with Freund's adjuvant (to help stimulate the antigenic response by the animal of choice) and injected into rabbits or other laboratory animals. Alternatively, protein can be isolated from XAF expressing cultured cells.
  • the rabbits or other laboratory animals are then bled and the sera isolated.
  • the sera can be used directly or can be purified prior to use, by various methods including affinity chromatography employing reagents such as Protein A-Sepharose, Antigen Sepharose, and Anti-mouse-Ig-Sepharose.
  • affinity chromatography employing reagents such as Protein A-Sepharose, Antigen Sepharose, and Anti-mouse-Ig-Sepharose.
  • the sera can then be used to probe protein extracts from XAF expressing tissues run on a polyacrylamide gel to identify XAF proteins.
  • synthetic peptides can be made that correspond to the antigenic portions of the protein and used to innoculate the animals.
  • a XAF-1 coding sequence can be expressed as a C-terminal fusion with glutathione S-transferase (GST; Smith et al., Gene 67: 31-40, 1988 ).
  • GST glutathione S-transferase
  • the fusion protein can be purified on glutathione-Sepharose beads, eluted with glutathione, and cleaved with thrombin (at the engineered cleavage site), and purified to the degree required to successfully immunize rabbits.
  • Primary immunizations can be carried out with Freund's complete adjuvant and subsequent immunizations performed with Freund's incomplete adjuvant.
  • Antibody titers are monitored by Western blot and immunoprecipitation analyses using the thrombin-cleaved XAF-1 fragment of the GST-XAF-1 fusion protein. Immune sera are affinity purified using CNBr-Sepharose-coupled XAF-1 protein. Antiserum specificity is determined using a panel of unrelated GST proteins (including GSTp53, Rb, HPV-16 E6, and E6-AP) and GST-trypsin (which was generated by PCR using known sequences).
  • monoclonal XAF antibodies may be produced by using as antigen XAF protein isolated from XAF expressing cultured cells or XAF protein isolated from tissues.
  • the cell extracts, or recombinant protein extracts, containing XAF protein may for example, be injected with Freund's adjuvant into mice. After being injected, the mice spleens may be removed and resuspended in phosphate buffered saline (PBS).
  • PBS phosphate buffered saline
  • the spleen cells serve as a source of lymphocytes, some of which are producing antibody of the appropriate specificity.
  • tissue culture wells in the presence of a selective agent such as hypoxanthine, aminopterine, and thymidine (HAT).
  • a selective agent such as hypoxanthine, aminopterine, and thymidine (HAT).
  • HAT thymidine
  • the wells are then screened by ELISA to identify those containing cells making antibody capable of binding a XAF protein or polypeptide fragment or mutant thereof.
  • these wells are then re-plated and after a period of growth, these wells are again screened to identify antibody-producing cells.
  • Several cloning procedures are carried out until over 90% of the wells contain single clones which are positive for antibody production. From this procedure a stable line of clones which produce the antibody is established.
  • the monoclonal antibody can then be purified by affinity chromatography using Protein A Sepharose, ion-exchange chromatography, as well as variations and combinations of these techniques.
  • Truncated versions of monoclonal antibodies may also be produced by recombinant methods in which plasmids are generated which express the desired monoclonal antibody fragment(s) in a suitable host.
  • peptides corresponding to relatively unique hydrophilic regions of, for example, XAF-1 may be generated and coupled to keyhole limpet hemocyanin (KLH) through an introduced C-terminal lysine.
  • KLH keyhole limpet hemocyanin
  • Antiserum to each of these peptides is similarly affinity purified on peptides conjugated to BSA, and specificity is tested by ELISA and Western blotting using peptide conjugates, and by Western blotting and immunoprecipitation using XAF-1 expressed as a GST fusion protein.
  • monoclonal antibodies may be prepared using the XAF proteins described above and standard hybridoma technology (see, e.g., Kohler et al., Nature 256: 495, 1975 ; Kohler et al., Eur. J. Immunol. 6:511, 1976 ; Kohler et al., Eur. J. Immunol. 6: 292, 1976 ; Hammerling et al., In Monoclonal Antibodies and T Cell Hybridomas, Elsevier, New York, NY, 1981 ; Ausubel et al., supra). Once produced, monoclonal antibodies are also tested for specific XAF protein recognition by Western blot or immunoprecipitation analysis (by the methods described in Ausubel et al., supra).
  • Monoclonal and polyclonal antibodies that specifically recognize a XAF protein (or fragments thereof), such as those described herein containing a XAF-1 C-terminal domain, are considered useful in the invention. They may, for example, be used in an reporter gene assay to monitor the NF- ⁇ B inducing effects (via TRAF6) of a XAF protein. Antibodies that inhibit XAF-1 described herein may be especially useful in preventing apoptosis in cells undergoing undesirable cell death or growth arrest.
  • the antibodies described above may be produced using XAF amino acid sequences that do not reside within highly conserved regions, and that appear likely to be antigenic, as analyzed by criteria such as those provided by the Peptide Structure Program (Genetics Computer Group Sequence Analysis Package, Program Manual for the GCG Package, Version 7, 1991) using the algorithm of Jameson and Wolf (CABIOS 4:181, 1988 ). These fragments can be generated by standard techniques, e.g., by the PCR, and cloned into the pGEX expression vector (Ausubel et al., supra ). GST fusion proteins are expressed in E. coli and purified using a glutathione agarose affinity matrix as described in Ausubel et al. ( supra ).
  • two or three fusions are generated for each protein, and each fusion is injected into at least two rabbits.
  • Antisera are raised by injections in series, preferably including at least three booster injections.
  • the antibodies described above may be produced using XAF amino acid sequences that do reside within highly conserved regions.
  • amino acid sequences from the N-terminal 150 amino acids of either XAF-1 or XAF-2 may be used as antigen to generate antibodies specific toward both XAF-1 and XAF-2, and possibly specific toward other members of the XAF family of proteins. These antibodies may be screened as described above.
  • antibodies can be humanized by methods known in the art, e.g., monoclonal antibodies with a desired binding specificity can be commercially humanized (Scotgene, Scotland; Oxford Molecular, Palo Alto, CA). Fully human antibodies, such as those expressed in transgenic animals, may also be used ( Green et al., Nature Genetics 7: 13-21, 1994 ).
  • Ladner U.S. Patent 4,946,778 and 4,704,692 describes methods for preparing single polypeptide chain antibodies.
  • Ward et al. (Nature 341: 544-546, 1989 ) describe the preparation of heavy chain variable domains, which they term "single domain antibodies," which have high antigen-binding affinities.
  • McCafferty et al. (Nature 348: 552-554, 1990 ) show that complete antibody V domains can be displayed on the surface of fd bacteriophage, that the phage bind specifically to antigen, and that rare phage (one in a million) can be isolated after affinity chromatography.
  • Boss et al. (U.S.
  • Patent 4,816,397 describe various methods for producing immunoglobulins, and immunologically functional fragments thereof, which include at least the variable domains of the heavy and light chain in a single host cell.
  • Cabilly et al. U.S. Patent 4,816,567 ) describe methods for preparing chimeric antibodies.
  • Antibodies to XAF proteins may be used, as noted above, to detect XAF proteins or to inhibit the biological activities of XAF proteins.
  • the antibodies may be coupled to compounds for diagnostic and/or therapeutic uses such as radionucleotides for imaging and therapy and liposomes for the targeting of compounds to a specific tissue location.
  • in situ hybridization is a method which may be used to detect the expression of XAF genes.
  • In situ hybridization techniques such as fluorescent in situ hybridization (FISH)
  • FISH fluorescent in situ hybridization
  • oligonucleotides or cloned nucleotide (RNA or DNA) fragments corresponding to unique portions of XAF genes are used to detect specific mRNA species, e.g., in the heart.
  • Numerous other gene expression detection techniques are known to those of skill in the art and may be employed here.
  • a number of screening procedures for identifying therapeutic compounds e.g., anti-apoptotic or apoptotic-inducing
  • compounds that down regulate expression of XAF proteins are considered useful for treatment of diseases hallmarked by an excessive amount of apoptosis, such as neurodegenerative disorders.
  • compounds that up regulate or activate XAF proteins are also considered useful as drugs for the treatment of diseases hallmarked by impaired apoptosis, such as cancer.
  • the screening methods of the invention involve screening any number of compounds for therapeutically active agents by employing any number of in vitro or in vivo experimental systems.
  • the methods of the invention simplify the evaluation, identification, and development of active agents for the treatment and prevention of conditions involving an inappropriate amount of apoptosis, which may be excessive or insufficient, depending upon the condition.
  • These screening methods provide a facile means for selecting natural product extracts or compounds of interest from a large population which are further evaluated and condensed to a few active and selective materials. Constituents of this pool are then purified and evaluated in the methods of the invention to determine their anti-apoptotic or apoptotic-inducing activities.
  • novel drugs for the treatment of conditions involving an appropriate level of apoptosis are identified from large libraries of both natural product or synthetic (or semi-synthetic) extracts or chemical libraries according to methods known in the art.
  • test extracts or compounds are not critical to the screening procedure(s) of the invention.
  • chemical extracts or compounds can be screened using the exemplary methods described herein. Examples of such extracts or compounds include, but are not limited to, plant-, fungal-, prokaryotic- or animal-based extracts, fermentation broths, and synthetic compounds, as well as modification of existing compounds.
  • Synthetic compound libraries are commercially available from Brandon Associates (Merrimack, NH) and Aldrich Chemical (Milwaukee, WI).
  • libraries of natural compounds in the form of bacterial, fungal, plant, and animal extracts are commercially available from a number of sources, including Biotics (Sussex, UK), Xenova (Slough, UK), Harbor Branch Oceangraphics Institute (Ft. Pierce, FL), and PharmaMar, U.S.A. (Cambridge, MA).
  • natural and synthetically produced libraries are produced, if desired, according to methods known in the art, e.g., by standard extraction and fractionation methods.
  • any library or compound is readily modified using standard chemical, physical, or biochemical methods.
  • the goal of the extraction, fractionation, and purification process is the careful characterization and identification of a chemical entity within the crude extract having anti-apoptotic or apoptotic-inducing activities.
  • the same in vivo and in vitro assays described herein for the detection of activities in mixtures of compounds can be used to purify the active component and to test derivatives thereof. Methods of fractionation and purification of such heterogenous extracts are known in the art. If desired, compounds shown to be useful agents for the treatment of pathogenicity are chemically modified according to methods known in the art. Compounds identified as being of therapeutic value are subsequently analyzed using any standard animal model of degenerative disease or cancer known in the art.
  • XAF cDNAs may be used to facilitate the identification of compounds that increase or decrease XAF protein expression.
  • candidate compounds are added, in varying concentrations, to the culture medium of cells expressing XAF mRNA.
  • the XAF mRNA expression is then measured, for example, by Northern blot analysis (Ausubel et al., supra) using a XAF DNA, or cDNA or RNA fragment, as a hybridization probe.
  • the level of XAF mRNA expression in the presence of the candidate compound is compared to the level of XAF mRNA expression in the absence of the candidate compound, all other factors (e.g., cell type and culture conditions) being equal.
  • the effect of candidate compounds on XAF-mediated apoptosis may, instead, be measured at the level of translation by using the general approach described above with standard protein detection techniques, such as Western blotting or immunoprecipitation with a XAF-specific antibody (for example, the XAF-1 specific antibody described herein).
  • standard protein detection techniques such as Western blotting or immunoprecipitation with a XAF-specific antibody (for example, the XAF-1 specific antibody described herein).
  • candidate compounds may be tested for an ability to regulate a reporter gene whose expression is directed by a XAF gene promoter.
  • a cell unlikely to undergo apoptosis may be transfected with a expression plasmid that includes a luciferase reporter gene operably linked to the XAF-1 promoter.
  • Candidate compounds may then be added, in varying concentrations, to the culture medium of the cells.
  • Luciferase expression levels may then be measured by subjecting the compound-treated transfected cells to standard luciferase assays known in the art, such as the luciferase assay system kit used herein that is commercially available from Promega, and rapidly assessing the level of luciferase activity on a luminometer.
  • the level of luciferase expression in the presence of the candidate compound is compared to the level of luciferase expression in the absence of the candidate compound, all other factors (e.g., cell type and culture conditions) being equal.
  • Compounds that modulate the level of XAF protein expression may be purified, or substantially purified, or may be one component of a mixture of compounds such as an extract or supernatant obtained from cells, from mammalian serum, or from growth medium in which mammalian cells have been cultured (Ausubel et al., supra).
  • XAF protein expression is tested against progressively smaller subsets of the compound pool (e.g., produced by standard purification techniques such as HPLC or FPLC) until a single compound or minimal number of effective compounds is demonstrated to modulate XAF protein expression.
  • Compounds may also be screened for their ability to modulate, for example, XAF-1 apoptosis inducing activity.
  • the degree of apoptosis in the presence of a candidate compound is compared to the degree of apoptosis in its absence, under equivalent conditions.
  • the screen may begin with a pool of candidate compounds, from which one or more useful modulator compounds are isolated in a step-wise fashion.
  • Apoptosis activity may be measured by any standard assay, for example, those described herein.
  • Another method for detecting compounds that modulate the apoptosis-inducing activity of XAF has been to screen for compounds that interact physically with a given XAF polypeptide, e.g., XAF-1. These compounds were detected by adapting yeast two-hybrid expression systems known in the art. These systems detected protein interactions using a transcriptional activation assay and are generally described by Gyuris et al. (Cell 75:791-803, 1993 ) and Field et al. (Nature 340:245-246, 1989 ), and are commercially available from Clontech (Palo Alto, CA).
  • PCT Publication WO 95/28497 describes a yeast two-hybrid assay in which proteins involved in apoptosis, by virtue of their interaction with BCL-2, were detected.
  • a similar method has been used to identify proteins and other compounds that interacted with XAF-1, and is used to identify XAF-2 splice variant interactors.
  • a compound that promotes an increase in the expression or biological activity of the XAF protein e.g., XAF-1
  • XAF-1 is considered particularly useful in the invention; such a molecule may be used, for example, as a therapeutic to increase cellular levels of XAF-1 and thereby exploit the ability of XAF-1 polypeptides to induce apoptosis. This would be advantageous in the treatment of diseases involving insufficient apoptosis (e.g., cancer).
  • a compound that decreases XAF-1 activity may also be used to increase cellular proliferation.
  • degenerative diseases such as neurodegenerative diseases (e.g., Alzheimer's disease, Huntington's disease) or other tissue-specific degenerative diseases (e.g., cirrhosis of the liver, T-lymphocyte depletion in AIDS, hair loss).
  • Molecules that are found, by the methods described above, to effectively modulate XAF gene expression or polypeptide activity may be tested further in animal models. If they continue to function successfully in an in vivo setting, they may be used as therapeutics to either inhibit or enhance apoptosis, as appropriate.
  • Therapies may be designed to circumvent or overcome a XAF gene defect or inadequate XAF gene expression, and thus modulate and possibly alleviate conditions involving an inappropriate amount of apoptosis.
  • XAF-1 is expressed in the every tissue looked at thus far.
  • therapies may be targeted at any tissues demonstrated to express XAF-1.
  • therapies to enhance X4F-I gene expression are useful in promoting apoptosis in cancerous cells.
  • Apoptosis-inducing XAF-1 reagents may include, without limitation, full length or fragment XAF-1 polypeptides, XAF-1 mRNA, or any compound which increases XAF-1 apoptosis-inducing activity.
  • Treatment or prevention of inappropriate apoptosis can be accomplished by replacing mutant or surplus XAF protein with normal protein, by modulating the function of mutant protein, or by delivering normal XAF protein to the appropriate cells. It is also be possible to modify the pathophysiologic pathway (e.g., a signal transduction pathway) in which the protein participates in order to correct the physiological defect.
  • pathophysiologic pathway e.g., a signal transduction pathway
  • Gene therapy is another potential therapeutic approach in which normal copies of the XAF gene or nucleic acid encoding XAF antisense RNA are introduced into selected tissues to successfully encode for normal and abundant protein or XAF antisense RNA in cells which inappropriately either suppress cell death (e.g., cancerous ovarian cells) or enhance the rate of cell death (e.g., neuronal cell death leading to disease), respectively.
  • the gene must be delivered to those cells in a form in which it can be taken up and encode for sufficient protein to provide effective function.
  • it may be possible to promote apoptosis by introducing another copy of the homologous gene bearing a second mutation in that gene or to alter the mutation, or use another gene to block any negative effect.
  • Transducing retroviral vectors can be used for somatic cell gene therapy especially because of their high efficiency of infection and stable integration and expression.
  • the targeted cells however must be able to divide and the expression levels of normal protein should be high.
  • the full length XAF-1 gene, or portions thereof can be cloned into a retroviral vector and driven from its endogenous promoter or from the retroviral long terminal repeat or from a promoter specific for the target cell type of interest (such as neurons).
  • Other viral vectors which can be used include adenovirus, adeno-associated virus, vaccinia virus, bovine papilloma virus, or a herpes virus such as Epstein-Barr Virus.
  • Gene transfer could also be achieved using non-viral means requiring infection in vitro. This would include calcium phosphate, DEAE dextran, electroporation, and protoplast fusion. Liposomes may also be potentially beneficial for delivery of DNA into a cell. Although these methods are available, many of these are lower efficiency.
  • Transplantation of normal genes into the affected cells of a patient can also be useful therapy.
  • a normal XAF gene is transferred into a cultivatable cell type, either exogenously or endogenously to the patient. These cells are then injected serotologically into the targeted tissue(s).
  • Retroviral vectors may be used as a gene transfer delivery system for a therapeutic XAF gene construct.
  • Numerous vectors useful for this purpose are generally known ( Miller, Human Gene Therapy 15-14, 1990 ; Friedman, Science 244:1275-1281, 1989 ; Eglitis and Anderson, BioTechniques 6: 608-614, 1988 ; Tolstoshev and Anderson, Curr. Opin. Biotech.
  • Retroviral vectors are particularly well developed and have been used in clinical settings ( Rosenberg et al., N. Engl. J.
  • Non-viral approaches may also be employed for the introduction of therapeutic DNA into cells otherwise predicted to undergo apoptosis.
  • XAF may be introduced into a neuron or a T cell by lipofection ( Felgner et al., Proc. Natl. Acad. Sci. USA 84: 7413, 1987 ; Ono et al., Neurosci. Lett. 117: 259, 1990 ; Brigham et al., Am. J. Med. Sci. 298: 278, 1989 ; Staubinger et al., Meth. Enz.
  • a therapeutic XAF DNA construct is preferably applied to the site of the desired apoptosis event (for example, by injection). However, it may also be applied to tissue in the vicinity of the desired apoptosis event or to a blood vessel supplying the cells (e.g., cancerous cells) desired to undergo apoptosis.
  • XAF cDNA expression can be directed from any suitable promoter (e.g., the human cytomegalovirus (CMV), simian virus 40 (SV40), or metallothionein promoters), and regulated by any appropriate mammalian regulatory element.
  • CMV human cytomegalovirus
  • SV40 simian virus 40
  • metallothionein promoters e.g., metallothionein promoters
  • enhancers known to preferentially direct gene expression in neural cells, lymphocytes, or muscle cells may be used to direct XAF expression.
  • the enhancers used could include, without limitation, those that are characterized as tissue- or cell-specific in their expression.
  • regulation may be mediated by the cognate regulatory sequences or, if desired, by regulatory sequences derived from a heterologous source, including any of the promoters or regulatory elements described above.
  • Antisense based strategies have been employed to explore XAF gene function and as a basis for therapeutic drug design. The principle is based on the hypothesis that sequence-specific suppression of gene expression can be achieved by intracellular hybridization between mRNA and a complementary antisense species. The formation of a hybrid RNA duplex may then interfere with the processing/transport/translation and/or stability of the target XAF mRNA.
  • Antisense strategies may use a variety of approaches including the use of antisense oligonucleotides and injection of antisense RNA. For our analysis of XAF-1 gene function, we employed the method of transfection of antisense RNA expression vectors into targeted cells.
  • Antisense effects can be induced by control (sense) sequences, however, the extent of phenotypic changes are highly variable. Phenotypic effects induced by antisense effects are based on changes in criteria such as protein levels, protein activity measurement, and target mRNA levels.
  • XAF-1 gene therapy may also be accomplished by direct administration of antisense XAF-1 mRNA to a cell that is expected to undergo undesired apoptosis.
  • the antisense XAF-1 mRNA may be produced and isolated by any standard technique, but is most readily produced by in vitro transcription using an antisense XAF-1 cDNA under the control of a high efficiency promoter (e.g., the T7 promoter).
  • Administration of antisense XAF-1 mRNA to cells can be carried out by any of the methods for direct nucleic acid administration described above.
  • Another therapeutic approach involves administration of recombinant XAF polypeptide, either directly to the site of a desired apoptosis event (for example, by injection) or systemically (for example, by any conventional recombinant protein administration technique).
  • the dosage of XAF depends on a number of factors, including the size and health of the individual patient, but, generally, between 0.1 mg and 100 mg inclusive are administered per day to an adult in any pharmaceutically acceptable formulation.
  • a XAF protein, gene, or modulator may be administered within a pharmaceutically-acceptable diluent, carrier, or excipient, in unit dosage form.
  • Conventional pharmaceutical practice may be employed to provide suitable formulations or compositions to administer neutralizing XAF antibodies or XAF-inhibiting compounds (e.g., antisense XAF-1 or a XAF-1 dominant negative mutant) to patients suffering from a disease (e.g., a degenerative disease) that is caused by excessive apoptosis. Administration may begin before the patient is symptomatic.
  • administration may be parenteral, intravenous, intra-arterial, subcutaneous, intramuscular, intracranial, intraorbital, ophthalmic intraventricular, intracapsular, intraspinal, intracisternal, intraperitoneal, intranasal, by aerosol, by suppositories, or oral administration.
  • Therapeutic formulations may be in the form of liquid solutions or suspensions; for oral administration, formulations may be in the form of tablets or capsules; and for intranasal formulations, in the form of powders, nasal drops, or aerosols.
  • Formulations for parenteral administration may, for example, contain excipients, sterile water, or saline, polyalkylene glycols such as polyethylene glycol, oils of vegetable origin, or hydrogenated napthalenes.
  • Biocompatible, biodegradable lactide polymer, lactide/glycolide copolymer, or polyoxyethylene-polyoxypropylene copolymers may be used to control the release of the compounds.
  • XAF modulatory compounds include ethylenevinyl acetate copolymer particles, osmotic pumps, implantable infusion systems, and liposomes.
  • Formulations for inhalation may contain excipients, for example, lactose, or may be aqueous solutions containing, for example, polyoxyethylene-9-lauryl ether, glycocholate and deoxycholate, or may be oily solutions for administration in the form of nasal drops, or as a gel.
  • treatment with a XAF protein, gene, or modulatory compound may be combined with more traditional therapies for the disease involving excessive apoptosis, such as surgery, steroid therapy, or chemotherapy for autoimmune disease; antiviral therapy for AIDS; and tissue plasminogen activator (TPA) for ischemic injury.
  • treatment with a XAF protein, gene, or modulatory compound may be combined with more traditional therapies for the disease involving insufficient apoptosis, such as surgery, radiation therapy, and chemotherapy for cancer.
  • XAF polypeptides and nucleic acid sequences find diagnostic use in the detection or monitoring of conditions involving aberrant levels of apoptosis. For example, decreased expression of XAF-1 may be correlated with decreased apoptosis in humans. Accordingly, a decrease or increase in the level of XAF-1 production may provide an indication of a deleterious condition.
  • Levels of XAF expression may be assayed by any standard technique. For example, XAF expression in a biological sample (e.g., a biopsy) may be monitored by standard Northern blot analysis or may be aided by PCR (see, e.g., Ausubel et al., supra; PCR Technology: Principles and Applications for DNA Amplification, H.A. Ehrlich, Ed. Stockton Press, NY ; Yap et al. Nucl. Acids. Res. 19: 4294, 1991 ).
  • a biological sample obtained from a patient may be analyzed for one or more mutations in XAF nucleic acid sequences using a mismatch detection approach.
  • these techniques involve PCR amplification of nucleic acid from the patient sample, followed by identification of the mutation (i.e., mismatch) by either altered hybridization, aberrant electrophoretic gel migration, binding or cleavage mediated by mismatch binding proteins, or direct nucleic acid sequencing. Any of these techniques may be used to facilitate mutant XAF detection, and each is well known in the art; examples of particular techniques are described, without limitation, in Orita et al. (Proc. Natl. Acad. Sci. USA 86: 2766-2770, 1989 ) and Sheffield et al. (Proc. Natl. Acad. Sci. USA 86: 232-236, 1989 ).
  • immunoassays are used to detect or monitor XAF protein expression in a biological sample.
  • XAF-specific polyclonal or monoclonal antibodies produced as described above may be used in any standard immunoassay format (e.g., ELISA, Western blot, or RIA) to measure XAF polypeptide levels. These levels would be compared to wild-type XAF levels. For example, a decrease in XAF-1 production may indicate a condition involving insufficient apoptosis. Examples of immunoassays are described, e.g., in Ausubel et al., supra. Immunohistochemical techniques may also be utilized for XAF detection.
  • a tissue sample may be obtained from a patient, sectioned, and stained for the presence of XAF using an anti-XAF antibody and any standard detection system (e.g., one which includes a secondary antibody conjugated to horseradish peroxidase).
  • any standard detection system e.g., one which includes a secondary antibody conjugated to horseradish peroxidase.
  • a combined diagnostic method may be employed that begins with an evaluation of XAF protein production (for example, by immunological techniques or the protein truncation test ( Hogervorst et al., Nature Genetics 10: 208-212, 1995 ) and also includes a nucleic acid-based detection technique designed to identify more subtle XAF mutations (for example, point mutations). As described above, a number of mismatch detection assays are available to those skilled in the art, and any preferred technique may be used. Mutations in XAF may be detected that either result in loss of XAF expression or loss of normal XAF biological activity. In a variation of this combined diagnostic method, XAF-1 biological activity is measured as apoptotic-inducing activity using any appropriate apoptosis assay system (for example, those described herein).
  • Mismatch detection assays also provide an opportunity to diagnose a XAF-mediated predisposition to diseases caused by inappropriate apoptosis.
  • a patient heterozygous for a XAF-1 mutation that induces a XAF-1 overexpression may show no clinical symptoms and yet possess a higher than normal probability of developing one or more types of neurodegenerative, myelodysplastic or having severe sequelae to an ischemic event.
  • patients may take precautions to minimize their exposure to adverse environmental factors (for example, UV exposure or chemical mutagens) and to carefully monitor their medical condition (for example, through frequent physical examinations).
  • This type of XAF-1 diagnostic approach may also be used to detect XAF-1 mutations in prenatal screens.
  • the XAF-1 diagnostic assays described above may be carried out using any biological sample (for example, any biopsy sample or other tissue) in which XAF-1 is normally expressed. Identification of a mutant XAF-1 gene may also be assayed using these sources for test samples.
  • a XAF mutation particularly as part of a diagnosis for predisposition to XAF-associated degenerative disease, may be tested using a DNA sample from any cell, for example, by mismatch detection techniques.
  • the DNA sample is subjected to PCR amplification prior to analysis.
  • any of the above therapies may be administered before the occurrence of the disease phenotype.
  • the therapies may be provided to a patient who is HIV positive but does not yet show a diminished T cell count or other overt signs of AIDS.
  • compounds shown to decrease XAF-1 expression or XAF-1 biological activity may be administered to patients diagnosed with degenerative diseases by any standard dosage and route of administration (see above).
  • gene therapy using a antisense XAF-1 mRNA expression construct may be undertaken to reverse or prevent the cell defect prior to the development of the degenerative disease.
  • the methods described herein may be used to reduce or diagnose the disorders described herein in any mammal, for example, humans, domestic pets, or livestock. Where a non-human mammal is treated or diagnosed, the XAF polypeptide, nucleic acid, or antibody employed is preferably specific for that species.
  • Standard techniques such as the polymerase chain reaction (PCR) and DNA hybridization, may be used to clone additional XAF homologues in other species.
  • Southern blots of murine genomic DNA hybridized at low stringency with probes specific for human XAF reveal bands that correspond to XAF and/or related family members.
  • additional XAF sequences may be readily identified using low stringency hybridization.
  • murine and human XAF-specific primers may be used to clone additional XAF related genes by RT-PCR.
  • XAF proteins to modulate apoptosis can be defined in in vitro systems in which alterations of apoptosis can be detected.
  • Mammalian expression constructs carrying XAF cDNAs which are either full-length or truncated, can be introduced into cell lines such as CHO, NIH 3T3, HL60, Rat-1, or Jurkat cells.
  • SF9 insect cells may be used, in which case the XAF gene is preferentially expressed using an insect baculovirus expression system.
  • apoptosis can be induced by standard methods, which include serum withdrawal, or application of staurosporine, menadione (which induces apoptosis via free radical formation), or anti-Fas or anti-TNF-R1 antibodies.
  • cells are cultured under the same conditions as those induced to undergo apoptosis, but either not transfected, or transfected with a vector that lacks a XAF insert.
  • the ability of each XAF construct to induce or inhibit apoptosis upon expression can be quantified by calculating the survival index of the cells, i.e., the ratio of surviving transfected cells to surviving control cells.
  • apoptosis assays are also provided in the following references.
  • Assays for apoptosis in lymphocytes are disclosed by: Li et al., "Induction of apoptosis in uninfected lymphocytes by HIV-1 Tat protein", Science 268: 429-431, 1995 ; Gibellini et al., "Tat-expressing Jurkat cells show an increased resistance to different apoptotic stimuli, including acute human immunodeficiency virus-type 1 (HIV-1) infection", Br. J. Haematol. 89: 24-33, 1995 ; Martin et al., "HIV-1 infection of human CD4+ T cells in vitro. Differential induction of apoptosis in these cells.” J.
  • Characterization of XAF genes provides information that is necessary for XAF knockout animal models to be developed by homologous recombination.
  • the model is a mammalian animal, most preferably a mouse.
  • an animal model of XAF overproduction may be generated by integrating one or more XAF sequences into the genome, according to standard transgenic techniques.
  • a replacement-type targeting vector which would be used to create a knockout model, can be constructed using an isogenic genomic clone, for example, from a mouse strain such as 129/Sv (Stratagene Inc., LaJolla, CA).
  • the targeting vector will be introduced into a suitably-derived line of embryonic stem (ES) cells by electroporation to generate ES cell lines that carry a profoundly truncated form of a XAF gene.
  • ES embryonic stem
  • the targeted cell lines will be injected into a mouse blastula stage embryo. Heterozygous offspring will be interbred to homozygosity.
  • Knockout mice would provide the means, in vivo, to screen for therapeutic compounds that modulate apoptosis via a XAF-dependent pathway. Making such mice may require use of loxP sites if there are multiple copies of XAF genes (i.e., genes encoding XAF-1 and another XAF polypeptide) on the chromosome (see Sauer and Henderson, Nucleic Aids Res. 17: 147-61, 1989 ).
  • XAF genes i.e., genes encoding XAF-1 and another XAF polypeptide
  • Yeast 2-hybrid analysis (see USSN's 08/511,485 and related applications) with XIAP as the 'bait' protein identified a 37 kDa, RING zinc finger protein termed XAF-1 (XIAP associated factor 1).
  • the plasmid pAS2-XIAP which encodes the GAL4 DNA-binding domain fused to full-length XIAP, was constructed by inserting the coding region of full length XIAP into the pAS2 plasmid which is commercially available from Clontech. PAS2-XIAP was then used as bait (DNA-binding domain hybrid) in yeast two-hybrid screens of the human placenta cDNA library commercially available from Clontech. The yeast two-hybrid assay and isolation of positive clones and subsequent interaction analyses were carried out as described ( PCT Publication WO 95/28497 ). DNA sequence was performed on an Applied Biosytems model 373A automated DNA sequencer.
  • Fig. 1 Shown in Fig. 1 is the complete nucleotide sequence of XAF-1 cDNA determined for the coding strand (SEQ ID NO: 1; EMBL accession number X99699) and is shown with its encoded protein below in single letter code (SEQ ID NO.: 2). The asterisk indicates the stop codon.
  • the entire XAF-1 protein is predicted to have seven zinc finger binding domains, six of which are located in the N-terminal 178 amino acids.
  • XAF-1 displays significant homology to members of the TRAF family, particularly TRAF6, but lacks the TRAF-C and TRAF-N domains.
  • FIG. 2 Shown in Fig. 2 is a schematic of the six predicted zinc finger binding domains corresponding to the N-terminal 178 amino acids of XAF-1 (SEQ ID NO.: 6).
  • mRNA was collected from tissues from heart, brain, placenta, lunch, liver, skeletal muscle, kidney, pancreas, spleen, thymus, prostate, testis, ovary, small intestine, mucosal lining of the colon, and peripheral blood leukocytes. mRNA was also collected from the following cell lines:
  • mRNA samples were electrophoretically resolved and transferred to a nitrocellulose membrane, which was then subjected to Northern blot analysis for the presence and expression levels of XAF-1 mRNA using radioisotope labeled XAF-1 cDNA as a probe (as described in Ausubel, et al., supra).
  • RNA from yeast and E . coli bacteria was also collected. This RNA, as well as DNA collected from human, E . coli bacteria, and yeast, was dot-blotted on a dot-blot apparatus, electrophoretically transferred to a nitrocellulose membrane, and probed with radioisotope labeled XAF-1 cDNA for the presence and expression levels of XAF-1 mRNA.
  • mRNA encoding XAF-1 is clearly expressed in normal cells in various tissues.
  • Fig. 3 shows a Northern blotting analysis reveals XAF-1 mRNA to be widely distributed among the various tissues tested, with expression levels highest in the heart, placenta, spleen, thymus, ovary, small intestine, mucosal lining of the colon, and peripheral blood leukocytes.
  • XAF-1 mRNA is also present in K-562 and MOLT-4 leukemic cell lines.
  • XAF-1 mRNA is widely distributed among the various indicated regions of the brain, heart, testes, kidney, lung, trachea, placenta, and fetal tissue. XAF-1 mRNA is not found, however, in yeast or the E. coli strain of bacteria.
  • Genomic DNA was prepared from HEC38-0 human endometrial adenocarcinoma cells available from the ATCC (Bethesda, Maryland) and Raji cells, digested with BamHl, EcoR1 and HindIII restriction endonucleases, electrophoretically resolved and transferred to a nitrocellulose membrane. Membrane bound DNA was subjected to Southern blot analysis using radioisotope labeled XAF-1 cDNA as a probe.
  • the gene encoding XAF-1 appears to be limited in copy number in the human genome and is the same in both HEC38-0 and Raji cells, indicating that there is most likely only one gene encoding XAF-1, and that this gene is the same in the two cell lines assayed.
  • a number of transformed, immortalized and a primary cell line were tested by Western blot analysis for the presence and expression levels of XAF-1 protein using mouse polyclonal anti-XAF-1 antisera, which were obtained by providing GST-fusion proteins of XAF-1 and XIAP to the MBL Co., Ltd. (Japan) for use as immunogens.
  • Cells were lysed, and lysates SDS-PAGE resolved, electrophoretically transferred to a nylon membrane, and immunoblotted with anti-XAF-1 polyclonal antisera.
  • the membrane-bound proteins were then blotted with commercially available horseradish peroxidase conjugated anti-mouse secondary antibody and visualized with a chemiluminescent substrate.
  • the cell lines used in Western blotting analysis were:
  • 293Tcells transiently expressing a myc-tagged XAF-1 protein were generated by the following method:
  • Fig. 6 Shown in Fig. 6 is the Western blotting analysis of the various cell lines for XAF-1 expression.
  • XAF-1 expression appears to be ubiquitous, with low levels seen in a number of transformed cell lines.
  • a 720 bp fragment of XAF-1 corresponding to 723-1 nucleotides (non-coding orientation) was cloned into the pcDNA3 expression vector (Invitrogen).
  • 293T cells (2 x 10 5 ) were transiently transfected with 4 ⁇ g of plasmid DNA encoding XAF-1, XAF-1N, or XAF-1C by standard lipofection methods using Trans-IT lipofection reagent commercially available from Mirus. About 48 hours following transfection, the cells were lysed, and 10 6 cell equivalents were resolved by SDS-PAGE and electrophoretically transferred to a nylon membrane. The membrane-bound proteins were then immunoblotted with an anti-myc monoclonal antibody (9E10) (commercially available from Amersham Life Sciences), followed by a commercially available horseradish peroxidase conjugated secondary anti-mouse antibody. Immunoreactive proteins were visualized by chemiluminescence following addition of substrate.
  • an anti-myc monoclonal antibody (9E10) (commercially available from Amersham Life Sciences)
  • Fig. 7 Shown in Fig. 7 are schematic diagrams of the polypeptides encoded for by the various XAF-1 constructs. Although XAF-1 antisense is shown here in the "coding" orientation, in the vector, it inserted and expressed in the "non-coding" orientation.
  • Fig. 8 Shown in Fig. 8 is the Western blot analysis of 293T cells transiently transfected with XAF-1, XAF-1N and XAF-1C probed with anti-c-myc antibody.
  • the expressed proteins show correct electrophoretic mobility predicted from the amino acid sequences.
  • Recombinant adenoviruses were constructed that overexpress either the LacZ protein (negative control), p53 (positive control for cell cycle arrest), or the XAF-1 protein.
  • HeLa cervical carcinoma, available from the ATCC, Bethesda, MD
  • HEL human embryonic lung epithelial cells, available from the ATCC, Bethesda, MD
  • MOI multiplicity of infection
  • the media was removed from the well and replaced with 1/10 volume of MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazoleum bromide, available from Sigma) in phosphate buffered saline and incubated at 37°C for 4 hours.
  • Converted dye was then extracted using acidic isopropanol (0.1 N HCl in 100% isopropanol) and absorbance determined at 570 nm in a spectrophotometer. Conversion of the substrate to the 570 nm absorbing dye is carried out by mitochondrial enzymes active in living, but not dead cells.
  • adenovirus-LacZ had no effect on cell viability (compare to the control, CON, which were not infected).
  • p53 induced a profound decrease in the number of viable cells when primary HEL cells are used ( Fig. 9 ), but not in the HeLa cancer cell line ( Fig. 10 ).
  • the XAF-1 expressing adenovirus resulted in a similar decrease in the number of viable cells in both HEL and HeLa cell lines. The decrease in viability in the HeLa cell lines would therefore seem to be p53a independent.
  • Photographs of adeno-LacZ infected, adeno-p53 infected and adeno-XAF-1 infected HEL (Figs. 11A, 11B , 11C ) and HeLa cells ( Figs. 12A, 12B , 12C ) are included.
  • the morphology of the XAF-1 overexpressing HEL cells is consistent with cell cycle arrest.
  • the XAF-1 overexpressing HeLa cells demonstrate classical features of apoptosis, including pyknotic nuclei and extensive blebbing. Photographs were taken four days post-infection using a standard phase-contrast, inverted tissue culture microscope.
  • HeLa or HEL cells were infected at an MOI of 10 with recombinant adenoviruses expressing either LacZ (negative control), p53 (positive control for cell cycle arrest) or XAF-1.
  • Cells were harvested at 96 hours post-infection, rinsed with PBS and fixed with 100% ethanol. Fixed cells were centrifuged 5 min at 1000 rpm; the ethanol removed, and the cells resuspended in 1 ml PBS. 100 ⁇ l of 0.1 mg/ml RNAse was added and the cells incubated at 37°C for 30 minutes. 100 ⁇ l of 1 mg/ml propidium iodide was added to stain for DNA content. Cells were then analyzed on a FACS machine and cell cycle effects examined.
  • FISH fluorescent in situ hybridization
  • FISH FISH was performed on freshly isolated mouse spleen lymphocytes cultured in RPMI 1640 media containing 15% fetal calf serum, 3 ⁇ g/ml concanavalin A, 10 ⁇ g/ml lipopolysaccharide, and 50 nM mercaptoethanol. Lymphocytes were synchronized with 180 ⁇ g/ml BrdU for 14 hours followed by 4 hr growth in ⁇ -MEM containing 2.5 ⁇ g/ml thymidine. Chromosome spreads were prepared on slides using hypotonic lysis, after which the chromosomes were fixed and air dried.
  • Biotin labeled DNA was amplified and detected using fluorescein isothiocyanate conjugated avidin and anti-avidin antibodies ( Fig. 15A ). Chromosomes were counterstained with Giemsa and photographed ( Fig. 15B ).
  • the XAF-1 gene was found to map to the extreme end of chromosome 17, in the p13.3 region. This region is known to encode an as yet unidentified tumor suppressor gene(s). This tumor suppressor gene is believed to be involved in a large number of tumor types, including uterine cervical carcinoma ( Park et al., Cancer Genet. Cytogenet. 79: 74-78, 1995 ), breast tumors ( Cornelis et al., Cancer Res. 54: 4200-4206, 1994 , Merlo et al., Cancer Genet. Cytogenet. 76: 106-111, 1994 ), gastric carcinoma ( Kim et al., Lab. Invest.
  • XAF. maybe a tumor suppressor and therapies designed to over-express XAF-1 in cancer cells may be effective (i.e., gene therapy, compounds that up-regulate endogenous XAF-1 or compounds that activate the XAF-1 pathway).
  • the XAF-1 gene may provide an important staging/prognostic indicator in cancer diagnostics through the development of a LOH type assay using PCR based detection of microsatellites in the XAF-1 locus.
  • Fig. 16A demonstrates that the vast majority of the adenovirus expressed XAF-1 protein fractionates in the nuclear compartment. A very small fraction of the protein was observed in the membrane fraction, likely as a result of incomplete separation of the nuclear and membrane fractions. None of the protein was observed in the cytoplasmic fraction.
  • Fig. 16B demonstrates that overexpression of the XAF-1 protein resulted in a re-distribution of >1/2 of the endogenous XIAP protein from the cytoplasmic fraction to the nuclear fraction.
  • the function of XAF-1 is to relocate the XIAP protein to its 'real' site of action, in the nucleus.
  • XIAP may be interfering with the function of XAF-1 in the nucleus.
  • XAF-1 protein is found in the nucleus by GFP staining.
  • pGFP-XAF-1 An expression vector called pGFP-XAF-1 was constructed that generates a fusion protein between green fluorescent protein (GFP) and XAF-1 (Clontech). The coding region of GFP was fused to the amino terminus of the full length XAF-1 coding region.
  • CHO-K1 cells or 3Y1 primary rat embryo fibroblast cells from Fischer rat fetus available from the Riken gene bank, Tsukuba, Japan
  • FIGs. 17A, 17B , and 17C are photographs of transfected CHO-K1 cells.
  • Figs. 17A and 17B show that in CHO-K1 cells transiently transfected with pGFP-XAF-1, the GFP-labeled XAF-1 protein was localized to the nucleus. This is in contrast to the GFP homogenously distributed throughout the cytoplasm and nucleus in the CHO-K1 cells transiently transfected with pGFP shown in Fig. 17C .
  • Figs. 18A and 18B show that GFP is homogenously distributed throughout the cytoplasm and nucleus in 3Y1 cells transiently transfected with pGFP.
  • Figs. 19A and 19B show that GFP-labeled XAF-1 protein is localized to the nucleus in 3Y1 cells transiently transfected with pGFP-XAF-1.
  • XAF-1 nor mammalian IAPs over-expression can induce NF- ⁇ B activation in 293 T cells.
  • TRAF1 and TRAF2 were first identified as components of the TNF-R2 signaling complex ( Rothe et al., Cell 78: 681-692, 1994 ). The interaction of the TRAF proteins are complex, reflecting their putative role as adapter molecules that exhibit no apparent enzymatic activity themselves.
  • Mammalian expression vectors encoding XAF-1, HIAP-1, HIAP-2, XIAP, TRAF1, TRAF2, TRAF3, TRAF4, TRAF5, TRAF6, RIP, and TRADD were constructed by insertion of each coding region into the pcDNA3-myc expression vector which-contains an N-terminal c-myc epitope sequence (similar vectors are commercially available from Invitrogen).
  • the NF- ⁇ B firefly luciferase reporter plasmid pELAM-Lu was constructed by insertion of PCR-amplified E-selectin promoter sequences from position -730 to position 52 into the pGL3-Basic vector which is commercially available from Promega.
  • 293T cells were seeded into collagen-coated six-well plates at 2 x 10 5 cells per well 24 hrs before transfection. Cells were then transfected with 0.5 ⁇ g of pELAM-Lu reporter plasmid, 0.05 ⁇ g of pRL-CMV, 1 ⁇ g of indicated expression plasmid and enough pCMV-myc control plasmid to give 4 ⁇ g of total DNA by standard lipofection methods using Trans-IT lipofection reagent commercially available from Mirus. Twenty-four hours after transfection, cells were washed with PBS and lysed in 400 ⁇ l of Passive Lysis Buffer commercially available from Promega.
  • Lysate (20 ⁇ l) from each sample was used to measure firefly luciferase activity. Firefly luciferase activity was determined and normalized on the basis of Renilla luciferase expression level. Luciferase activity was measured in a model TD20/20 luminometer using the Dual luciferase assay system according to the manufacture's protocol (Promega). Values shown are averages for an experiment in which each transfection was performed in duplicate.
  • XAF-1, HIAP-1, HIAP-2, and XIAP do not induce NF- ⁇ B activation in 293 T cells.
  • Fig. 20 when expressed singly in 293T cells, none of the IAPs or XAF-1 resulted in measurable activation of NF- ⁇ B, as measured by luciferase activity.
  • TRAF2, TRAF5, TRAF6, RIP, and TRADD expression plasmids however, all strongly transactivated the reporter gene.
  • TRAF1, TRAF3, and TRAF4 failed to transactivate the reporter.
  • 293T cells were seeded into collagen-coated six-well plates at 2 x 10 5 cells per well 24 hrs before transfection. Cells were then transfected with 0.5 ⁇ g of pELAM-Lu reporter plasmid, 0.05 ⁇ g ofpRL-CMV, 4 ⁇ g of indicated expression plasmid(s) and enough pCMV-myc control plasmid to give 5 ⁇ g of total DNA by standard lipofection methods using Trans-IT lipofection reagent commercially available from Mirus. Twenty-four hours after transfection, cells were washed with PBS and lysed in 400 ⁇ l of Passive Lysis Buffer commercially available from Promega.
  • Lysate (20 ⁇ l) from each sample was used to measure firefly luciferase activity. Firefly luciferase activity was determined and normalized on the basis of Renilla luciferase expression level. Luciferase activity was measured in a model TD20/20 luminometer using the Dual luciferase assay system according to the manufacture's protocol (Promega). Values shown are averages for an experiment in which each transfection was performed in duplicate.
  • 293T cells were seeded into collagen-coated six-well plates at 2 x 10 5 cells per well 24 hrs before transfection.
  • Cells were then transfected with 0.5 ⁇ g of pELAM-Lu reporter plasmid, 0.1 ⁇ g of pRL-CMV, 0.5 ⁇ g of pCMV-TRAF6, indicated amounts of pCMV-XAF-1 and enough pCMV-myc control plasmid to give 4 ⁇ g of total DNA by standard lipofection methods using Trans-IT lipofection reagent commercially available from Mirus. Twenty-four hours after transfection, cells were washed with PBS and lysed in 400 ⁇ l of Passive Lysis Buffer commercially available from Promega.
  • Lysate (20 ⁇ l) from each sample was used to measure firefly luciferase activity. Firefly luciferase activity was determined and normalized on the basis of Renilla luciferase expression level. Luciferase activity was measured in a model TD20/20 luminometer using the Dual luciferase assay system according to the manufacture's protocol (Promega). Values shown are averages for an experiment in which each transfection was performed in duplicate.
  • 293T cells were seeded into collagen-coated six-well plates at 2 x 10 5 cells per well 24 hrs before transfection.
  • Cells were then transfected with 0.5 ⁇ g of pELAM-Lu reporter plasmid, 0.1 ⁇ g of pRL-CMV, 0.5 ⁇ g of pCMV-TRAF6, indicated amounts of pCMV-XIAP and enough pCMV-myc control plasmid to give 4 ⁇ g of total DNA by standard lipofection methods using Trans-IT lipofection reagent commercially available from Mirus. Twenty-four hours after transfection, cells were washed with PBS and lysed in 400 ⁇ l of Passive Lysis Buffer commercially available from Promega.
  • Lysate (20 ⁇ l) from each sample was used to measure firefly luciferase activity. Firefly luciferase activity was determined and normalized on the basis of Renilla luciferase expression level. Luciferase activity was measured in a model TD20/20 luminometer using the Dual luciferase assay system according to the manufacture's protocol (Promega). Values shown are averages for an experiment in which each transfection was performed in duplicate.
  • Fig. 23 demonstrate that although expression of TRAF6 was by itself capable of inducing NF- ⁇ B activity, co-expression of TRAF6 with XIAP resulted in an increased level of NF- ⁇ B activation which increased as the amount of XIAP expression increased. Hence, XIAP was able to enhance the NF- ⁇ B inducing abilities of TRAF6.
  • 293T cells were seeded into collagen-coated six-well plates at 2 x10 5 cells per well 24 hrs before transfection. Cells were then transfected with 0.5 ⁇ g of pELAM-Lu (pGL3-E-selectin promoter) and 0.05 ⁇ g of pRL-CMV, 1 ⁇ g of pCMV-TRAF6 or 1 ⁇ g of pCMV-TRAF2, 1 ⁇ g of pCMV-XAF-1 and/or pCMV-XIAP, and enough pCMV-myc control plasmid to give 4 ⁇ g of total DNA by standard lipofection methods using Trans-IT lipofection reagent (Mirus).
  • pELAM-Lu pGL3-E-selectin promoter
  • pRL-CMV 1 ⁇ g of pCMV-TRAF6 or 1 ⁇ g of pCMV-TRAF2
  • XIAP and XAF-1 were additive in their effects on TRAF6 mediated NF- ⁇ B transactivation, as shown on Fig. 24 .
  • Fig. 25 indicates that XIAP and XAF-1 were also able to assist in TRAF2 mediated NF- ⁇ B transactivation, although to a lesser extent than their assistance in TRAF6 mediated NF- ⁇ B transactivation.
  • XIAP and XAF-1 work synergistically in their signal transducing capabilities.
  • Expression plasmids that express either the amino terminal domain of XAF-1 containing six potential zinc fingers, including the region with significant homology to TRAF4 and TRAF6 (XAF-1N) or the carboxy terminus containing a single potential zinc finger domain (XAF-1C) were tested for their capacity to augment TRAF6 mediated NF- ⁇ B activity.
  • 293T cells (2 x 10 5 ) were transfected with 0.5 ⁇ g of pELAM-Lu reporter plasmid, 0.1 ⁇ g of pRL-TK commercially available from Promega, 0.5 ⁇ g of pCMV-TRAF6, 1 ⁇ g of indicated expression plasmid and enough pCMV-myc control plasmid to give 4 ⁇ g of total DNA.
  • Firefly luciferase activity was determined 24 hrs after transfection and normalized on the basis of Renilla luciferase expression level. Values shown are averages for an experiment in which each transfection was performed in duplicate.
  • Fig. 26 demonstrates that the carboxy terminus ofXAF-1 protein mediates the additive effect of XAF-1 on TRAF6 induction of NF- ⁇ B.
  • XAF-1N expression did not augment the ability to TRAF6 to induce NF- ⁇ B, whereas XAF-1C augmented NF- ⁇ B induction by TRAF6 substantially.
  • Full length XAF-1 as we showed previously in Fig. 21 , clearly enhanced TRAF6 induction of NF- ⁇ B.
  • 293T cells (2 x 10 5 ) were transfected with 0.5 ⁇ g of pELAM-Lu reporter plasmid, 0.1 ⁇ g of pRL-TK commercially available from Promega, 0.5 ⁇ g of pCMV-TRAF5 or pCMV-TRAF6, 3 ⁇ g of indicated antisense plasmid:antisense XAF-1 (240-1) or antisense bcl-2 (450-23), and enough pCMV-myc control plasmid to give 5 ⁇ g of total DNA. Firefly luciferase activity was determined 24 hrs after transfection and normalized on the basis of Renilla luciferase expression level. Values shown are averages for an experiment in which each transfection was performed in duplicate.
  • Fig. 27 demonstrates that expression of antisense XAF-1 significantly inhibited TRAF6 induced activation of NF- ⁇ B and, to a lesser extent, TRAF5 induced activation of NF- ⁇ B. This inhibition was specific to XAF-1 since antisense bcl-2 did not have the same effect.
  • 293T cells (2 x 10 5 ) were transfected with 0.5 ⁇ g of pELAM-Lu reporter plasmid, 0.1 ⁇ g of pRL-TK commercially available from Promega, indicated amounts of antisense plasmid:antisense XAF-1 (240-1) or antisense bcl-2 (1486-23), and enough pCMV-myc control plasmid to give 5 ⁇ g of total DNA.
  • 24 hrs after transfection cells were treated for 6 hrs with 20 ng/ml of interleukin-1 ⁇ (IL-1 ⁇ ). Firefly luciferase activity was determined after IL-1 ⁇ treatment and normalized on the basis of Renilla luciferase expression level. Values shown are averages for an experiment in which each transfection was performed in duplicate.
  • 293T cells (2 x 10 5 ) were transfected with 0.5 ⁇ g of pELAM-Lu reporter plasmid, 0.1 ⁇ g of pRL-TK commercially available from Promega, indicated amounts of pCMV-XAF-1 and enough pCMV-myc control plasmid to give 5 ⁇ g of total DNA. 24 hrs after transfection, cells were treated for 6 hrs with 20 ng/ml of interleukin-1 ⁇ (IL-1 ⁇ ). Firefly luciferase activity was determined after IL-1 ⁇ treatment and normalized on the basis of Renilla luciferase expression level. Values shown are averages for an experiment in which each transfection was performed in duplicate.
  • IL-1 ⁇ interleukin-1 ⁇
  • the A20 protein is induced by NF- ⁇ B and binds to both TRAF1 and TRAF2, again via the TRAF-C domain. Binding of A20 to TRAF2 interferes with NF- ⁇ B activation in a negative feed-back loop ( Song et al., Proc. Natl. Acad. Sci. USA 93: 6721-6725,1996 ). It has previously been established that over-expression of A20 can render cells resistant to the apoptotic effects of TNF ⁇ ( Opipari et al., J. Biol. Chem. 267: 12424-12427, 1992 ), and may also participate in rendering B cells resistant to apoptosis following CD40 signaling ( Sarma et al., 270: 12353-12346, 1995 ).
  • 293T cells (2 x 10 5 ) were transfected with 0.5 ⁇ g of pELAM-Lu reporter plasmid, 0.1 ⁇ g of pRL-TK commercially available from Promega, 0.5 ⁇ g of pCMV-TRAF2, pCMV-TRAF5 or pCMV-TRAF6, 0.3 ⁇ g of pCMV-A20 and enough pCMV-myc control plasmid to give 4 ⁇ g of total DNA. Firefly luciferase activity was determined 24 hrs after transfection and normalized on the basis of Renilla luciferase expression level. Values shown are averages for an experiment in which each transfection was performed in duplicate
  • 293T cells (2 x 10 5 ) were transfected with 0.5 ⁇ g of pELAM-Lu reporter plasmid, 0.1 ⁇ g of PRL-TK commercially available from Promega, 0.5 ⁇ g of pCMV-TRAF6, 2 ⁇ g of pCMV-XAF-1, indicated amounts of pCMV-A20 and enough pCMV-myc control plasmid to give 5 ⁇ g of total DNA. Firefly luciferase activity was determined 24 hrs after transfection and normalized on the basis of Renilla luciferase expression level. Values shown are averages for an experiment in which each transfection was performed in duplicate.
  • XAF-1 expression had a partial neutralizing effect on the A20-mediated inhibitory function of TRAF6-mediated NF- ⁇ B activation.
  • XIAP and XAF-1 coding regions were cloned in frame into the pGEX-4T-1 expression vector which is commercially available from Pharmacia. Expression and purification of GST-fusion proteins were performed essentially according to the manufacturer's protocol (Pharmacia).
  • 293T cells were transiently transfected with myc-epitope tagged TRAFs and mammalian IAPs expression vectors (5 ⁇ g). After 36 hrs, cells were lysed and cell lysates were incubated with GST-XAF-1 fusion protein or GST-control protein (Glutathione-S-transferase from Schistosoma Japonicum) immobilized on 10 ⁇ l of glutathione beads. Protein adsorbed to beads were analyzed by SDS-PAGE, followed by Western blotting using anti-c-myc monoclonal antibody (9E10). Lanes were loaded as follows:
  • XAF-1 can form complexes with a variety of cellular proteins, including HIAP-2, TRAF1, TRAF2, and A20, as is shown on Fig. 32 .
  • indirect interactions cannot be distinguished from direct binding.
  • XAF-1 may bind TRAF2 directly (as shown by two-hybrid analysis) which in turn can interact with either TRAF1 or A20.
  • 35 S-labeled in vitro translated proteins were generated by using the various TRAF2 and HIAP-1 expression constructs in pCDNA3-myc with the TNT T7 Coupled Reticulocyte Lysate System, according to the manufacturer's descriptions (Promega) and 35 S labeled methionine, commercially available from DuPont/NEN.
  • both in vitro translated HIAP-1 and TRAF2 bound the GST-XAF-1 fusion protein, but do not bind the GST control protein. Since this experiment was done in a cell-free system, we have demonstrated that the HIAP-1:XAF-1 and the TRAF2:XAF-1 interactions are direct.
  • XAF-1 directly interacts with XIAP, HIAP-1, HIAP-2, and TRAF2
  • the plasmids pAS2-XIAP, pAS2-HIAP-1, pAS2-HIAP-2, pAS2-TRAF2, pAS2-TRAF4, pAS2-XAF-1, and pAS2 (vector only) which encode the GAL4 DNA-binding domains fused to indicated full-length proteins, were used as baits (DNA-binding domain hybrids) in two-hybrid screens ofpGAD GH plasmids (commercially available from Clontech) encoding XIAP, HIAP-1, HIAP-2, TRAF2, TRAF4, and XAF-1 as preys (activation domain hybrids).
  • the yeast two-hybrid assay and isolation of positive clones and subsequent interaction analyses were carried out as described elsewhere ( PCT Publication WO 95/28497 ). DNA sequence was performed on an Applied Biosytems model 373A automated DNA sequencer.
  • Fig. 34 Shown in Fig. 34 is a listing of the XAF-1 interactions with mammalian IAPs and TRAFs found in the yeast two-hybrid assay. Our results indicated that XAF-1 directly interacts with XIAP, HIAP-1, HIAP-2, and TRAF2 (but not TRAF4). As has been established in the literature, TRAF2 can interact with TRAF 1 or A20. Since we have shown here in yeast two-hybrid analysis that XAF-1 binds TRAF2 directly, it may be through this interaction that XAF-1 is able to form a complex with TRAF1 and A20, as we showed in Fig. 32 .
  • Fig. 35 shows the partial 5' nucleic acid (SEQ ID NO.: 3) and N-terminal amino acid (SEQ ID NO.: 4) sequences of the long splice variant of XAF-2.
  • the N-terminus of XAF-2 protein has five zinc fingers in the N-terminal 150 amino acids which show 38% amino acid identity to XAF-1 (SEQ ID NO.: 2).
  • XAF-2 also has a unique C-terminus that has two RING zinc fingers, so that the entire XAF-2 protein, like XAF-1, has seven zinc finger binding domains.
  • Fig. 36 shows the sequence of the 3' untranslated region (UTR) located approximately 250 nucleic acid residues C-terminally to the nucleic acid sequence of Fig. 35 .
  • UTR 3' untranslated region
  • Fig. 37A shows the full length 5' nucleotide (above; SEQ ID NO.: 9) and amino acid (below; SEQ ID NO.: 10) sequences of the long (XAF-2L) splice variant of XAF-2.
  • the shorter splice form of XAF-2 (XAF-2S) is spliced as indicated in Fig. 37A , with the nucleic acid encoding XAF-2S indicated in Fig. 37B , lower sequence (SEQ ID NO.: 11).
  • 38A , 38B, and 38C show the indicated zinc finger binding domains in the amino acid sequence listings of XAF-1, XAF-2L, and XAF-2S, respectively.
  • XAF-2L and XAF-1 show pan overall amino acid sequence identity of 27%, although the first 135 amino acids of XAF-2L and the first 131 amino acids of XAF-1 share a 40% amino acid sequence identity ( Fig. 39 ).
  • the alignment of the zinc finger binding domains in XAF-1 and XAF-2L is not equivalent: the sixth zinc domain of XAF-2L aligns with the seventh zinc domain of XAF-1.
  • the two XAF molecules both have seven zinc finger binding domains overall.
  • Compounds are screened for an ability to modulate XAF-1 expression by looking at the ability of the compounds to modulate the expression of a luciferase reporter gene operably linked to the XAF-1 promoter.
  • the xAF-1 promoter firefly luciferase reporter plasmid pXAF-1 prom-Lu is constructed by insertion of PCR-amplified XAF-1 promoter sequences into a vector such as the pGL3-Basic vector which is commercially available from Promega.
  • COS cells are seeded into six-well plates at 2 x 10 5 cells per well 24 hrs before transfection.
  • Cells are then transfected with 1.0 ⁇ g of pXAF-1prom-Lu reporter plasmid, and 3.0 ⁇ g pCMV-myc control plasmid by standard lipofection methods using Trans-IT lipofection reagent commercially available from Mirus.
  • Twenty-four hours after transfection varying concentrations of different compounds are added to the culture supernatant of transfected cells, such that there is one compound, or combination thereof, per well. Twelve hours following treatment with the compound, the cells are washed with PBS and lysed in 400 ⁇ l of Passive Lysis Buffer commercially available from Promega.
  • Lysate (20 ⁇ l) from each sample is used to measure firefly luciferase activity.
  • Firefly luciferase activity is determined and normalized on the basis of Renilla luciferase expression level.
  • Luciferase activity is measured in a model TD20/20 luminometer using the Dual luciferase assay system according to the manufacture's protocol (Promega).
  • Compound-treated cells which show an increased firefly luciferase activity as compared to untreated control cells indicate a compound with an ability to increase XAF-1 activity.
  • Compound-treated cells which show a decreased firefly luciferase activity as compared to untreated control cells indicate a compound with an ability to decrease XAF-1 activity.

Description

    Background of the Invention
  • This invention relates to apoptosis, tumor necrosis factor-α (TNF-α) mediated signalling, cell cycle and tumor growth suppression.
  • Apoptosis is a morphologically distinct form of programmed cell death that is important in the normal development and maintenance of multicellular organisms. Dysregulation of apoptosis can take the form of inappropriate suppression of cell death, as occurs in the development of cancers, or in a failure to control the extent of cell death, as is believed to occur in acquired immunodeficiency and certain neurodegenerative disorders.
  • Some baculoviruses encode proteins termed "inhibitors of apoptosis proteins" (IAPs) because they inhibit the apoptosis that would otherwise occur when insect cells are infected by the virus. These proteins are thought to work in a manner that is independent of other viral proteins. The baculovirus IAP genes include sequences encoding a ring zinc finger-like motif (RZF), which may be involved in DNA binding, and two N-terminal domains that consist of a 70 amino acid repeat motif termed a BIR domain (Baculovirus IAP Repeat).
  • We have recently discovered a mammalian family of IAP polypeptides. These polypeptides include the human proteins HIAP-1, HIAP-2, and XIAP and their murine homologs. A related protein, NAIP, has also been found. The mammalian IAP levels have been shown to be increased both in cancer cells and cells which survive events known to induce apoptosis (e.g., ischemia). The IAPs have also been shown to block apoptosis triggered by diverse stimuli. These results are consistent with a role for the mammalian IAPs as inhibitors of apoptosis.
  • The IAP family is now known to include at least two Drosophila proteins, in addition to the original four mammalian homologues (Hay et al., Cell 83: 1253-1262, 1995). Although we and others have established that the IAPs can suppress apoptosis in tissue culture model systems their mechanism of action is still under investigation.
  • Summary of the Invention
  • We have discovered a family of genes, the XAFs. Members of the XAF gene family encode proteins that interact with IAPs and are associated with apoptosis. Our discovery allows the development of diagnostic, prognostic, and therapeutic compounds and methods for the detection and treatment of diseases involving apoptosis.
  • In a first aspect, the invention features a substantially pure nucleic acid encoding the polypeptide of amino acids 173-317 of SEQ ID NO:2 (XAF-1C), wherein said polypeptide augments TRAF6 mediated NF-x3 activation in a cell.
  • In a second aspect, the invention features a substantially pure nucleic acid complementary to at least ten nucleotides of a nucleic acid encoding the polypeptide of SEQ ID NO:2 (XAF-1), where the nucleic acid, when administered to a cell, is an antisense nucleic acid that is sufficient to decrease the apoptosis-inducing, activity of XAF-1. In various embodiments of this aspect, the antisense nucleic acid is complementary to at least fifteen nucleotides, at least thirty nucleotides, or at least 100 nucleotides of a nucleic acid encoding the polypeptide of SEQ ID NO:2. In other embodiments, the apoptosis-inducing activity is decreased by at least 20%, 40%, 60%, or 80%. In yet another embodiment of this aspect of the invention, the antisense nucleic acid is in a vector where the vector is capable of directing expression of the antisense nucleic acid in a vector-containing cell.
  • In a third aspect, the invention features a vector that includes a substantially pure nucleic acid encoding the polypeptide of amino acids 173-317 of SEQ ID NO.2 (XAF1C), where the vector is capable of directing expression of the polypeptide in a vector-containing cell.
  • In another related aspect, the invention features a cell that contains a substantially pure nucleic acid encoding the polypeptide of amino acids 173-317 of SEQ ID NO.2 (XA∓1C). In a preferred embodiment of this aspect, the nucleic acid is expressed in the cell.
  • In another embodiment, the nucleic acid is genomic DNA or cDNA, and is operably linked to regulatory sequences for expression of the polypeptide where the regulatory sequences include a promoter (e.g., a constitutive promoter, a promoter inducible by one or more external agents, or a cell-type specific promoter).
  • In a fifth aspect, the invention features a method of identifying a compound that modulates apoptosis. The method includes: (a) providing a cell that has the nucleic acid of SEQ ID NO : 1, (XAF-1 gene); (b) contacting the cell with a candidate compound; and (c) monitoring expression of the nucleic acid, where an alteration in the level of expression of the nucleic acid indicates the presence of a compound which modulates apoptosis. In one preferred embodiment of this aspect, the alteration that is an increase indicates the compound is increasing apoptosis, and the alteration that is a decrease indicates the compound is decreasing apoptosis. In various embodiments of this aspect, the cell is transformed and the cell is not able to induce apoptosis by expression of p53.
  • In a sixth aspect, the invention features a method of identifying a compound that is able to inhibit apoptosis that includes: (a) providing a cell expressing the polypeptide of SEQ ID NO:2 (XAF-1) or the polypeptide of amino acids 173-317 of SEQ ID NO:2 (XAF-1C) ; (b) contacting the cell with a candidate compound; and (c) measuring the level of apoptosis in the cell, where a decrease in the level relative to a level in a cell not contacted with the candidate compound indicates a compound that is able to inhibit apoptosis. In various embodiments of this aspect, the cell is transformed and the cell is not able to induce apoptosis by expression of p53.
  • In a seventh aspect, the invention features a method of identifying a compound that is able to induce apoptosis that includes: (a) providing a cell expressing the polypeptide of SEQ ID NO:2 (XAF-1) or the polypeptide of amino acids 173-317 of SEQ ID NO:2 (XAF-1C) ; (b) contacting the cell with a candidate compound; and (c) measuring level of apoptosis in the cell, where an increase in the level relative to a level in a cell not contacted with the candidate compound indicates a compound that is able to induce apoptosis. In various embodiments of this aspect, the cell is transformed and the cell is not able to induce apoptosis by expression of p53.
  • In related aspects, the invention features other methods of identifying a compound that is able to modulate apoptosis
  • One such method includes: (a) providing a cell expressing a polypeptide selected from the polypeptide of SEQ ID NO:2 (XAF-1) and the polypeptide of amino acids 173-317 of SEQ ID NO:2 (XAF-1C), and a reporter gene operably linked to DNA that includes an NF-κB binding site; (b) contacting the cell with a candidate compound; and (c) measuring expression of the reporter gene, where a change in expression in response to the compound indicates that the compound is able to modulate apoptosis. In various embodiments of this aspect, the cell is transformed and the cell is not able to induce apoptosis by expression of p53.
  • A second such method includes: (a) providing a cell expressing a polypeptide selected from the polypeptide of SEQ ID NO:2 (XAF-1) and the polypeptide of amino acids 173-317 of SEQ ID NO:2 (XAF-1C), and a reporter gene operably linked to DNA that includes an NF-κB binding site; (b) contacting the cell with a candidate compound; and (c) measuring expression of the reporter gene, where a change in expression in response to the compound indicates that the compound is able to modulate apoptosis. In various embodiments of this aspect, the cell is transformed and the cell is not able to induce apoptosis by expression of p53.
  • A third such method includes: (a) providing a cell having: (i) a reporter gene operably linked to a DNA-binding-protein recognition site; (ii) a first fusion gene capable of expressing a first fusion protein, where the first fusion protein includes the polypeptide of SEQ ID NO:2 (XAF-1) or the polypeptide of amino acids 173-317 of SEQ ID NO:2 (XAF-1C) covalently bonded to a binding moiety capable of specifically binding to the DNA-binding-protein recognition site; (iii) a second fusion gene capable of expressing a second fusion protein, where the second fusion protein includes a polypeptide selected from the polypeptide of SEQ ID NO:2 (XAF-1), the polypeptide of SEQ ID NO:4 (XAF-2), TRAF, and the polypeptide of amino acids 173-317 of SEQ ID NO:2 (XAF-1C) covalently bonded to a gene activating moiety; (b) exposing the cell to the compound; and (c) measuring reporter gene expression in the cell, where a change in the reporter gene expression indicates that the compound is capable of modulating apoptosis. In a preferred embodiment of this aspect of the invention, the cell is a yeast cell.
  • A fourth method for detecting a compound capable of modulating apoptosis includes: (a) providing a cell having: (i) a reporter gene operably linked to a DNA-binding-protein recognition site; (ii) a first fusion gene capable of expressing a first fusion protein, where the first fusion protein includes the polypeptide of SEQ ID NO:2 (XAF-1) or the polypeptide of amino acids 173-317 of SEQ ID NO:2 (XAF-1C) covalently bonded to a binding moiety capable of specifically binding to the DNA-binding-protein recognition site; (iii) a second fusion gene capable of expressing a second fusion protein, where the second fusion protein includes an IAP polypeptide covalently bonded to a gene activating moiety; (b) exposing the cell to the compound; and (c) measuring reporter gene expression in the cell, where a change in the reporter gene expression indicates that the compound is capable of modulating apoptosis. In a preferred embodiment of this aspect of the invention, the IAP is XIAP. In another preferred embodiment, the cell is a yeast cell.
  • A fifth such method includes: (a) providing a cell having: (i) a reporter gene operably linked to a DNA-binding-protein recognition site; (ii) a first fusion gene capable of expressing a first fusion protein, where the first fusion protein includes an IAP polypeptide covalently bonded to a binding moiety capable of specifically binding to the DNA-binding-protein recognition site; (iii) a second fusion gene capable of expressing a second fusion protein, where the second fusion protein includes the polypeptide of SEQ ID NO:2 (XAF-1) or the polypeptide of amino acids 173-317 of SEQ ID NO:2 (XAF-1C) polypeptide covalently bonded to a gene activating moiety; (b) exposing the cell to the compound; and (c) measuring reporter gene expression in the cell, where a change in the reporter gene expression indicates that the compound is capable of modulating apoptosis. In a preferred embodiment of this aspect of the invention, the IAP is XIAP. In another preferred embodiment, the cell is a yeast cell.
  • A sixth such method includes: (a) providing a first polypeptide selected from the polypeptide of SEQ ID NO:2 (XAF-1) and the polypeptide of amino acids 173-317 of SEQ ID NO:2 (XAF-1C), said first polypeptide being immobilized on a solid-phase substrate; (b) contacting the first polypeptide with a second polypeptide selected from the polypeptide of SEQ ID NO:2 (XAF-1), the polypetide of SEQ ID NO:4 (XAF-2), TRAF, and the polypeptide of amino acids 173-317 of SEQ ID NO:2 (XAF-1C), (c) contacting the first and the second polypeptides with a compound; and (d) measuring amount of binding of the first polypeptide to the second polypeptide, where a change in the amount relative to an amount not contacted with the compound indicates that the compound is capable of modulating apoptosis.
  • A seventh method for detecting a compound capable of modulating apoptosis includes: (a) providing a first polypeptide selected from the polypeptide of SEQ ID NO:2 (XAF-1) and the polypeptide of amino acids 173-317 of SEQ ID NO:2 (XAF-1C), said first polypeptide being immobilized on a solid-phase substrate; (b) contacting the first polypeptide with an LAP polypeptide; (c) contacting the first polypeptide and the IAP polypeptide with a compound; and (d) measuring amount of binding of the first polypeptide to the IAP polypeptide, where a change in the amount relative to an amount not contacted with the compound indicates that the compound is capable of modulating apoptosis. In a preferred embodiment of this aspect of the invention, the IAP is XIAP.
  • An eighth such method includes: (a) providing an IAP polypeptide immobilized on a solid-phase substrate; (b) contacting the IAP polypeptide with a second polypeptide selected from the polypeptide of SEQ ID NO:2 (XAF-1) and the polypeptide of amino acids 173-317 of SEQ ID NO:2 (XAF-1C); (c) contacting the IAP polypeptide and the second polypeptide with a compound; and (d) measuring amount of binding of the IAP polypeptide to the second polypeptide, where a change in the amount relative to an amount not contacted with the compound indicates that the compound is capable of modulating apoptosis. In a preferred embodiment of this aspect of the invention, the IAP is XIAP.
  • In a sixteenth aspect, the invention features a method of increasing apoptosis in a cell in vitro by administering to the cell an apoptosis-inducing amount of a polypeptide selected from the polypeptide of SEQ ID NO:2 (XAF-1) and the polypeptide of amino acids 173-317 of SEQ ID NO:2 (XAF-1C).
  • In various preferred embodiments, the cell is a peripheral blood leukocyte (e.g., a lymphocyte), a muscle cell (e.g., a myocardial cell), an intestinal cell, an ovarian cell, a placental cell, or a thymus cell (e.g., a thymocyte).
  • By "XAF", "XAF protein", or "XAF polypeptide" is meant a polypeptide, or fragment thereof, which has at least 30%, more preferably at least 35%, and most preferably 40% amino acid identity to either the amino-terminal 131 amino acids of the human XAF-1 (SEQ ID NO.: 2) or the amino-terminal 135 amino acids of human XAF-2L (SEQ ID NO.: 10) polypeptides. It is understood that polypeptide products from splice variants of XAF gene sequences are also included in this definition. Preferably, the XAF protein is encoded by nucleic acid having a sequence with hybridizes to a nucleic acid sequences present in either SEQ ID NO.: 1 or SEQ ID NO.: 9 under stringent conditions. Even more preferably the encoded polypeptide also has XAF biological activity. Preferably, the XAF polypeptide has at least three zinc finger domains. More preferably, the XAF polypeptide has at least six zinc finger domains, at least five of which occur within 150 amino acids of the N-terminus.
  • By "zinc finger" is meant a binding domain capable of associating with zinc. A preferable zinc binding domain has the amino acid sequence 5' C-X2-5-C-X11-18-C/H-X2-5-C/H 3' (SEQ ID NO.: 6), wherein "X" may be any amino acid. A more preferable zinc binding domain has the amino acid sequence 5' C-X1-2-C-X11-H-X3-5-C 3' (SEQ ID NO.: 7), wherein "X" may be any amino acid. Even more preferably, a zinc binding domain has the amino acid sequence 5' C-X2-H-X11-H-X3-C 3' (SEQ ID NO.: 8), wherein "X" may be any amino acid. Most preferably, a zinc binding domain is one found in a XAF polypeptide.
  • By "XAF biological activity" is meant any one or more of the biological activities described herein for XAF-1, XAF-2L, or XAF-2S, including, without limitation, the ability to bind an IAP (e.g., a XIAP), or another XAF polypeptide; the ability to cause apoptosis when transfected into a cell (particularly in a HeLa cell); the ability to enhance the NF-κB inducing activity of a TRAF; and the ability to specifically bind a XAF-1, XAF-2L, or XAF-2S specific antibody.
  • By "modulating apoptosis" or "altering apoptosis" is meant increasing or decreasing the number of cells that undergo apoptosis (than would otherwise be the case) in a given cell population. Preferably, the cell population is selected from a group including T cells, neuronal cells, fibroblasts, myocardial cells, or any other cell line known to undergo apoptosis in a laboratory setting (e.g., the baculovirus infected insect cells or an in vivo assay). It will be appreciated that the degree of modulation provided by a XAF polypeptide or a modulating compound in a given assay will vary, but that one skilled in the art can determine the statistically significant change or a therapeutically effective change in the level of apoptosis which identifies a XAF polypeptide or a compound which modulates XAF or is a XAF therapeutic.
  • By "high stringency conditions" is meant hybridization in 2X SSC at 40°C with a DNA probe length of at least 40 nucleotides. For other definitions of high stringency conditions, see Ausubel, F. et al., 1994, Current Protocols in Molecular Biology, John Wiley & Sons, New York, 6.3.1-6.3.6.
  • By "IAP" is meant an amino acid sequence which has identity to baculovirus inhibitors of apoptosis. Mammalian IAPs include, without limitation, NAIP, HIAP1, HIAP2, and XIAP. Preferably, such a polypeptide has an amino acid sequence which is at least 45%, preferably 60%, and most preferably 85% or even 95% identical to at least one of the amino acid sequences of a baculovirus IAP.
  • By "inhibiting apoptosis" is meant any decrease in the number of cells which undergo apoptosis relative to an untreated control. Preferably, the decrease is at least 25%, more preferably the decrease is 50%, and most preferably the decrease is at least one-fold.
  • By "polypeptide" is meant any chain of more than two amino acids, regardless of post-translational modification such as glycosylation or phosphorylation.
  • By "pharmaceutically acceptable carrier" means a carrier which is physiologically acceptable to the treated mammal while retaining the therapeutic properties of the compound with which it is administered. One exemplary pharmaceutically acceptable carrier is physiological saline. Other physiologically acceptable carriers and their formulations are known to one skilled in the art and described, for example, in Remington's Pharmaceutical Sciences, (18th edition), ed. A. Gennaro, 1990, Mack Publishing Company, Easton, PA.
  • By "substantially identical" is meant a polypeptide or nucleic acid exhibiting at least 50%, preferably 85%, more preferably 90%, and most preferably 95% homology to a reference amino acid or nucleic acid sequence. For polypeptides, the length of comparison sequences will generally be at least 16 amino acids, preferably at least 20 amino acids, more preferably at least 25 amino acids, and most preferably 35 amino acids. For nucleic acids, the length of comparison sequences will generally be at least 50 nucleotides, preferably at least 60 nucleotides, more preferably at least 75 nucleotides, and most preferably 110 nucleotides.
  • Sequence identity is typically measured using sequence analysis software with the default parameters specified therein (e.g., Sequence Analysis Software Package of the Genetics Computer Group, University of Wisconsin Biotechnology Center, 1710 University Avenue, Madison, WI 53705). This software program matches similar sequences by assigning degrees of homology to various substitutions, deletions, and other modifications. Conservative substitutions typically include substitutions within the following groups: glycine, alanine, valine, isoleucine, leucine; aspartic acid, glutamic acid, asparagine, glutamine; serine, threonine; lysine, arginine; and phenylalanine, tyrosine.
  • By "substantially pure polypeptide" is meant a polypeptide that has been separated from the components that naturally accompany it. Typically, the polypeptide is substantially pure when it is at least 60%, by weight, free from the proteins and naturally-occurring organic molecules with which it is naturally associated. Preferably, the polypeptide is a XAF polypeptide that is at least 75%, more preferably at least 90%, and most preferably at least 99%, by weight, pure. A substantially pure XAF polypeptide may be obtained, for example, by extraction from a natural source (e.g., a fibroblast, neuronal cell, or lymphocyte) by expression of a recombinant nucleic acid encoding a XAF polypeptide, or by chemically synthesizing the protein. Purity can be measured by any appropriate method, e.g., by column chromatography, polyacrylamide gel electrophoresis, or HPLC analysis.
  • A protein is substantially free of naturally associated components when it is separated from those contaminants which accompany it in its natural state. Thus, a protein which is chemically synthesized or produced in a cellular system different from the cell from which it naturally originates will be substantially free from its naturally associated components. Accordingly, substantially pure polypeptide not only includes those derived from eukaryotic organisms but also those synthesized in E. coli or other prokaryotes. By "substantially pure DNA" is meant DNA that is free of the genes which, in the naturally-occurring genome of the organism from which the DNA of the invention is derived, flank the gene. The term therefore includes, for example, a recombinant DNA which is incorporated into a vector; into an autonomously replicating plasmid or virus; or into the genomic DNA of a prokaryote or eukaryote; or which exists as a separate molecule (e.g., a cDNA or a genomic or cDNA fragment produced by PCR or restriction endonuclease digestion) independent of other sequences. It also includes a recombinant DNA which is part of a hybrid gene encoding additional polypeptide sequence.
  • By "TRAF" is meant a member of the TRAF family of proteins. TRAF family members each possess an amino terminal RING zinc finger and/or additional zinc fingers, a leucine zipper, and a unique, conserved carboxy terminal coiled coil motif, the TRAF-C domain, which defines the family. TRAF1 and TRAF2 were first identified as components of the TNF-R2 signaling complex (Rothe et al., Cell 78: 681-692, 1994). Preferred TRAF polypeptides are TRAF2, TRAF5, and TRAF6.
  • By "transgene" is meant any piece of DNA which is inserted by artifice into a cell, and becomes part of the genome of the organism which develops from that cell. Such a transgene may include a gene which is partly or entirely heterologous (i.e., foreign) to the transgenic organism, or may represent a gene homologous to an endogenous gene of the organism.
  • By "transgenic" is meant any cell which includes a DNA sequence which is inserted by artifice into a cell and becomes part of the genome of the organism which develops from that cell. As used herein, the transgenic organisms are generally transgenic mammals (e.g., rodents such as rats or mice) and the DNA (transgene) is inserted by artifice into the nuclear genome.
  • By "knockout mutation" is meant an alteration in the nucleic acid sequence that reduces the biological activity of the polypeptide normally encoded therefrom by at least 80% relative to the unmutated gene. The mutation may, without limitation, be an insertion, deletion, frameshift mutation, or a missense mutation. Preferably, the mutation is an insertion or deletion, or is a frameshift mutation that creates a stop codon.
  • By "transformation" is meant any method for introducing foreign molecules into a cell. Lipofection, calcium phosphate precipitation, retroviral delivery, electroporation, and biolistic transformation are just a few of the teachings which may be used. For example, biolistic transformation is a method for introducing foreign molecules into a cell using velocity driven microprojectiles such as tungsten or gold particles. Such velocity-driven methods originate from pressure bursts which include, but are not limited to, helium-driven, air-driven, and gunpowder-driven techniques. Biolistic transformation may be applied to the transformation or transfection of a wide variety of cell types and intact tissues including, without limitation, intracellular organelles (e.g., and mitochondria and chloroplasts), bacteria, yeast, fungi, algae, animal tissue, and cultured cells.
  • By "transformed cell" is meant a cell into which (or into an ancestor of which) has been introduced, by means of recombinant DNA techniques, a DNA molecule encoding (as used herein) a XAF polypeptide.
  • By "positioned for expression" is meant that the DNA molecule is positioned adjacent to a DNA sequence which directs transcription and translation of the sequence (i.e., facilitates the production of, e.g., a XAF-1 polypeptide, a recombinant protein or a RNA molecule).
  • By "reporter gene" is meant any gene which encodes a product whose expression is detectable. A reporter gene product may have one of the following attributes, without restriction: fluorescence (e.g., green fluorescent protein), enzymatic activity (e.g., luciferase or chloramphenicol acetyl transferase), toxicity (e.g., ricin), or an ability to be specifically bound by a second molecule (e.g., biotin or a detectably labeled antibody).
  • By "promoter" is meant a minimal sequence sufficient to direct transcription. Also included are those promoter elements which are sufficient to render promoter-dependent gene expression controllable for cell type-specific, tissue-specific or inducible by external signals or agents; such elements may be located in the 5' or 3' or intron sequence regions of the native gene.
  • By "operably linked" is meant that a gene and one or more regulatory sequences are connected in such a way as to permit gene expression when the appropriate molecules (e.g., transcriptional activator proteins) are bound to the regulatory sequences.
  • By "conserved region" is meant any stretch of six or more contiguous amino acids exhibiting at least 30%, preferably 50%, and most preferably 70% amino acid sequence identity between two or more of the XAF family members, (e.g., between human XAF-1 and another human XAF).
  • By "detectably-labeled" is meant any means for marking and identifying the presence of a molecule, e.g., an oligonucleotide probe or primer, a gene or fragment thereof, or a cDNA molecule. Methods for detectably-labeling a molecule are well known in the art and include, without limitation, radioactive labeling (e.g., with an isotope such as 32P or 35S) and nonradioactive labeling (e.g., chemiluminescent labeling, e.g., fluorescein labeling).
  • By "antisense," as used herein in reference to nucleic acids, is meant a nucleic acid sequence that is complementary to the coding strand of a gene, preferably, a XAF gene.
  • By "purified antibody" is meant antibody which is at least 60%, by weight, free from proteins and naturally occurring organic molecules with which it is naturally associated. Preferably, the preparation is at least 75%, more preferably 90%, and most preferably at least 99%, by weight, antibody, e.g., a XAF-1, XAF-2 N-terminus, XAF-2L, or XAF-2S specific antibody. A purified antibody may be obtained, for example, by affinity chromatography using recombinantly-produced protein or conserved motif peptides and standard techniques.
  • By "specifically binds" is meant an antibody that recognizes and binds a XAF polypeptide but that does not substantially recognize and bind other non-XAF molecules in a sample, e.g., a biological sample, that naturally includes protein. A preferred antibody binds to the XAF-1 peptide sequence of Fig. 1 (SEQ ID NO.: 2). Another preferred antibody binds to the XAF-2 N-terminus peptide sequence of Fig. 35 (SEQ ID NO.: 4). Yet another preferred antibody binds to the XAF-2L peptide sequence of Fig. 37 (SEQ ID NO.: 10). Still another preferred antibody binds to the XAF-2S peptide sequence of Fig. 38C (SEQ ID NO.: 12). A more preferred antibody binds to two or more of XAF-1 (SEQ ID NO.: 2), XAF-2 N-terminus (SEQ ID NO.: 4), XAF-2L (SEQ ID NO.: 10) and XAF-2S (SEQ ID NO.: 12).
  • By "neutralizing antibodies" is meant antibodies that interfere with any of the biological activities of a XAF polypeptide, particularly the ability of a XAF to participate in apoptosis. The neutralizing antibody may reduce the ability of a XAF polypeptide to participate in apoptosis by, preferably 50%, more preferably by 70%, and most preferably by 90% or more. Any standard assay of apoptosis, including those described herein, may be used to assess potentially neutralizing antibodies.
  • Other features and advantages of the invention will be apparent from the following description of the preferred embodiments thereof, and from the claims.
  • Brief Description of the Drawings
    • Fig. 1 is a listing of the cDNA (above; SEQ ID NO.: 1) and predicted amino acid (below; SEQ ID NO.: 2) sequences of human XAF-1.
    • Fig. 2 is a schematic diagram of the six predicted Zn finger binding domains corresponding to the N-terminal 178 amino acids of XAF-1 (SEQ ID NO.: 6).
    • Fig. 3 is a Northern blot analysis of XAF-1 mRNA in multiple human tissues and various cell lines.
    • Fig. 4 is a Northern dot-blot analysis of XAF-1 mRNA in multiple adult and fetal human tissues.
    • Fig. 5 is a genomic Southern blot analysis of XAF-1.
    • Fig. 6 is a Western blotting analysis of XAF- protein expression level in various cell lines.
    • Fig. 7 are schematic diagrams of XAF-1 constructs.
    • Fig. 8 is a Western blotting analysis of XAF-1, XAF-1N (SEQ ID NO.: 7) and XAF-1C (SEQ ID NO.: 8) protein expression levels when transiently expressed in 293T cells.
    • Fig. 9 is a graph of showing the effect of p53 and XAF overexpression on survival of HEL cells.
    • Fig. 10 shows the effect of p53 and XAF overexpression on survival of HeLa cells.
    • Figs. 11A, 11B, and 11C show photographs of HEL cells infected with adeno-LacZ, adeno-p53 and adeno-XAF-1, respectively.
    • Figs. 12A, 12B, and 12C show photographs of HeLa cells infected with adeno-LacZ, adeno-p53 and adeno-XAF-1, respectively.
    • Figs. 13A, 13B, 13C, and 13D are graphs showing cell cycle profiles of HEL cells transfected with nothing, adeno-LacZ, adeno-p53, and adeno-xAF-1, respectively.
    • Figs. 14A, 14B, 14C, and 14D are graphs showing cell cycle profiles of HeLa cells transfected with nothing, adeno-LacZ, adeno-p53, and adeno-XAF-1, respectively.
    • Figs. 15A and 15B show localization of human XAF-1 by FISH. Fig. 15A shows metaphase spread hybridized with XAF-1 genomic probe. Fig. 15B shows metaphase spread after G banding with Giemsa stain. Specific fluorescent signals on 17p13.3 are indicated by arrows.
    • Figs. 16A and 16B show subcellular localization of the XAF-1 protein.
    • Figs. 17A, 17B, and 17C are photographs of CHO-K1 cells expressing green fluorescent protein (GFP)-labeled XAF-1 visualized with a fluorescent microscope.
    • Figs. 18A and 18B are photographs of 3Y1 cells expressing GFP visualized with a fluorescent microscope.
    • Figs. 19A and 19B are photographs of 3Y1 cells expressing GFP-labeled XAF-1 visualized with a fluorescent microscope.
    • Fig. 20 is a graph of relative luciferase activity induced by NF-κB activation by expression of indicated proteins.
    • Fig. 21 is a graph of relative luciferase activity induced by NF-κB activation by co-expression of indicated proteins.
    • Fig. 22 is a graph of relative luciferase activity induced by NF-κB activation by TRAF6 co-expressed with indicated amounts of XAF-1 protein.
    • Fig. 23 is a graph of relative luciferase activity induced by NF-κB activation by TRAF6 co-expressed with indicated amounts of XIAP protein.
    • Fig. 24 is a graph of relative luciferase activity induced by NF-κB activation by TRAF6 co-expressed with XIAP and XAF-1 proteins.
    • Fig. 25 is a graph of relative luciferase activity induced by NF-κB activation by TRAF2 co-expressed with XIAP and XAF-1 proteins.
    • Fig. 26 is a graph of relative luciferase activity induced by NF-κB activation by TRAF6 co-expressed with either full-length XAF-1 protein, a fragment representing the N-terminus of XAF-1 protein, or a fragment representing the C-terminus of XAF-1 protein.
    • Fig. 27 is a graph of relative luciferase activity induced by NF-κB activation by either TRAF5 or TRAF6 when co-expressed with either XAF-1 antisense DNA or Bcl-2 antisense DNA.
    • Fig. 28 is a graph of relative luciferase activity induced by NF-κB activation by interleukin-1β (IL-1β) in the presence of either XAF-1 antisense RNA or Bcl-2 antisense RNA expression.
    • Fig. 29 is a graph of relative luciferase activity induced by NF-κB activation by interleukin- 1β (IL-1β) in the presence of DNA encoding for XAF-1 protein.
    • Fig. 30 is a graph of relative luciferase activity induced by NF-κB activation by TRAF2, TRAF5, or TRAF6 co-expressed with A20 protein.
    • Fig. 31 is a graph of relative luciferase activity induced by NF-κB activation by increasing amounts of A20 protein co-expressed with TRAF6 alone, or in combination with XAF-1.
    • Fig. 32 is a Western blot analysis of myc-tagged proteins from affinity-purifications with GST-control and GST-XAF-1 fusion proteins.
    • Fig. 33 is an autoradiograph of an in vitro binding assay of in vitro translated HIAP-1 and TRAF2 proteins with GST-control and GST-XAF-1 fusion proteins.
    • Fig. 34 is a table listing the interaction results of a yeast two-hybrid assay.
    • Fig. 35 is a listing of the cDNA (above; SEQ ID NO.: 3) and the predicted amino acid (below; SEQ ID NO.: 4) sequences of the N-terminus of human XAF-2. The seven zinc finger motifs are boxed and labeled in Roman numerals.
    • Fig. 36 is a listing of the 3' untranslated region (UTR) DNA sequence (SEQ ID NO.: 5) of human XAF-2 which is located about 250 base pairs C-terminally of SEQ ID NO.:3.
    • Fig. 37A is a listing of the full length 5' nucleotide (above; SEQ ID NO.: 9) and amino acid (below; SEQ ID NO.: 10) sequences of the long (XAF-2L) splice variant of XAF-2. The shorter splice variant of XAF-2 (XAF-2S) is spliced as indicated.
    • Fig. 37B is an alignment comparing the nucleic acid sequence of XAF-2L (above) with the entire nucleic acid sequence of XAF-2S (below; SEQ ID NO.: 11).
    • Figs. 38A, 38B, and 38C are the amino acid sequence listings of XAF-1, XAF-2L, and XAF-2S (SEQ ID NO.: 12), respectively, with the zinc finger binding domains indicated.
    • Fig. 39 is an alignment comparing the sequence of the first 396 amino acids of XAF-2L (above) with the entire amino acid sequence of XAF-1 (below).
    • Fig. 40 is a set of two schematic drawings indicating the alignment of the zinc finger binding domains in XAF-1 (above) and XAF-2L (below).
    Detailed Description of the Preferred Embodiment
  • We have discovered a family of proteins, the XAFs, which interact with IAPs and are involved the TNFα signal transduction pathway which regulates apoptosis.
  • The TNF receptor superfamily includes at least 13 transmembrane type I glycoproteins composed of two identical subunits with variable numbers of a characteristic cysteine rich extracellular repeat. Included among these members are TNF receptor 1 (TNF-R1), TNF receptor 2 (TNF-R2), CD40, Fas, and CD30. The corresponding ligands for these receptors are typically type II transmembrane glycoproteins expressed on the surface of interacting cells. In some instances, notably lymphotoxin-α (also known as TNFβ) and the majority of tumor necrosis factor-α (TNFα), the ligand is secreted from the cell.
  • The signals generated by ligated members of the TNF receptor superfamily can be stimulatory or inhibitory depending on the nature and activation state of the target cell. However, there is considerable overlap in the signal transduction pathways; for instance, ligation of TNF-R1, TNF-R2, CD30, and CD40 (Kitson et al., Nature 384: 372-275, 1996) all result in NF-κB activation, a transcription factor found latent in the cytoplasm of cells complexed to an inhibitor protein termed I-κB. Receptor ligation induces the phosphorylation of I-κB, which renders I-κB susceptible to ubiquitination and subsequent degradation. I-κB degradation unveils the nuclear translocation signal in NF-κB and allows nuclear localization and activation of transcription from NF-κB dependent promoters (reviewed in Grilli et al., Int. Rev. Cytol. 143: 1-60, 1993).
  • Tumor necrosis factor-α (TNFα), mediates its diverse effects through both the 55-60 kDa TNF-R1 and 75-80 kDa TNF-R2 receptors. The cytoplasmic domains of TNF-R1 and TNF-R2 are not conserved, which is reflected in both the protein factors associated with the cytoplasmic domains and in the consequences of receptor stimulation. TNF-α signaling through TNF-R2 can induce either proliferative responses (i.e. thymocyte and mononuclear proliferation; Tartaglia et al., Proc. Natl. Acad. Sci. USA 88: 9292-9296, 1991; Tartaglia, et al., J. Immunol. 151: 4637-4641, 1993; Gehr et al., J. Immunol. 149: 911-917,1992), or cytolytic responses (Heller et al., Cell 70: 47-52, 1992; Grell et al., Lymphokine Cytokine Res. 12: 143-148, 1993) depending upon the cell type and activation state.
  • Immunoprecipitation of TNF-R2 complexes and peptide sequence analysis of the associated proteins identified HIAP-1 and HIAP-2 as components of the unstimulated TNF-R2 signaling complex. Protein-protein interaction analysis has established that the BIR domains of HIAP-1 and HIAP-2 can bind interchangeably to the TRAF-N domains of TRAF1 and TRAF2 (Rothe et al., Cell 83: 1243-1252, 1995). To date, very little is known regarding the distribution and function of the protein components of the TNF-R2 complex following receptor ligation. Likewise, the functional consequences of HIAP-1 and HIAP-2 in the TNF-R2 receptor complex have not been determined.
  • The role of HIAP-2 in the TNF-R1 receptor signaling complex has, in contrast, been more clearly defined.
  • The intracellular domain of TNF-R1 contains an approximately 80 amino acid protein-protein interaction motif termed a "death domain", which is also found in the low affinity nerve growth factor and Fas receptors. The cytoplasmic death domain of TNF-R1 does not appear to associate with components of the signal transduction pathways prior to ligand binding. The primary effects of TNF-R1 aggregation are NF-κB activation and apoptosis. These effects are dependent upon interaction of TNF-R1 with TRADD (TNF-R1 associated death domain protein; Hsu et al., Cell 81: 495-504, 1995), through their respective death domains. TRADD functions as an adapter molecule which can recruit a variety of proteins to the signaling complex. The formation of alternative signaling complexes likely determines the ultimate fate of the cell.
  • In certain circumstances, TRADD is capable of triggering the formation of a protein complex called the DISC (Death Inducing Signaling Complex). DISC formation occurs when FADD is recruited to the TNF-R1/TRADD complex, again through interaction of death domains (Chinnaiyan et al., Cell 81: 505-512 1995; Chinnaiyan et al., J. Biol. Chem. 271: 4961-4965, 1996). In addition to a carboxy terminal death domain, FADD possesses an amino terminal "death effector domain" (DED), which triggers apoptosis by recruiting FLICE (caspase-8). FLICE possesses an unusually long amino terminal pro-domain containing two DED homologous sequences which bind to the FADD DED. Bringing FLICE molecules into close proximity results in proteolytic auto-activation. The cleavage event that activates FLICE also releases the enzyme from the DISC, at which point it proteolytically activates other caspases and ultimately results in apoptosis (Muzio et al., Cell 85: 817-827, 1996, Boldin et al., 85: 803-815 1996). Dominant-negative mutants of FADD block apoptosis through either Fas or TNF-R1, indicating that the FADD component is responsible for propagating the cell death signal generated through either receptor (Chinnaiyan et al., J. Biol. Chem. 271: 4961-4965, 1996).
  • However, TNFα binding to TNF-R1 does not result in apoptosis in all circumstances. The formation of an alternative signaling complex contributes to the pliability of the TNFα response. The "survival complex" that corresponds to the DISC consists of TRADD bound to TRAF2 (TNF receptor associated factor-2) and HIAP-2 (Hsu et al., Immunity 4: 387-389, 1996; Hsu et al., Cell 84: 299-308, 1996). HIAP-2 is complexed to TRAF2 prior to TNF-R1 stimulation (Hsu et al., Cell 84: 299-308, 1996). This protein interaction may enhance the affinity of TRAF2 for binding to TRADD, thereby favoring the formation of TRADD/TRAF2 complexes rather than the TRADD/FADD/FLICE DISC. Alternatively, HIAP-2 may interact with other components of the apoptotic pathway, such as the caspases, in ways which suppress the apoptotic signals that would otherwise be generated.
  • We have now demonstrated that XAF family members interact with IAPs and are clearly involved in apoptotic and NF-κB inducing signaling pathways in mammalian cells. Overexpression of XAF-1 causes cell death in transformed cells. Interestingly, overexpression in non-transformed cells merely leads to growth (cell cycle) arrest. The distinct functions transformed and merely proliferating cells is surprising and significant. Our Western and Northern blot analyses indicate that XAF-1 is expressed in a variety of tissues and cell types. Since apoptosis is an event non-specific to any particular cell or tissue type, these findings are in keeping with the involvement of the XAF-1 protein in apoptosis in a variety of contexts.
  • We have also discovered a second XAF family member, XAF-2L. XAF-2L, like XAF-1, also has seven zinc finger binding domains. A second shorter XAF-2 splice variant, XAF-2S, has also been discovered.
  • I. The XAF-1 gene
  • A yeast 2-hybrid screen of a human placenta cDNA library with XIAP as the 'bait' protein identified a 37 kDa zinc finger protein termed XAF-1 (XIAP Associated Factor 1). XAF-1 displays significant homology to members of the TRAF family, particularly TRAF6, but lacks the TRAF-C and TRAF-N domains.
  • II. Synthesis of XAF proteins
  • The characteristics of the cloned XAF gene sequences may be analyzed by introducing the sequence into various cell types or using in vitro extracellular systems. The function of XAF proteins may then be examined under different physiological conditions. For example, the XAF-1-encoding DNA sequence may be manipulated in studies to understand the expression of the XAF-1 gene and gene product. Alternatively, cell lines may be produced which over-express the XAF gene product allowing purification of XAF for biochemical characterization, large-scale production, antibody production, and patient therapy.
  • For protein expression, eukaryotic and prokaryotic expression systems may be generated in which XAF gene sequences are introduced into a plasmid or other vector which is then used to transform living cells. Constructs in which the XAF cDNAs containing the entire open reading frames inserted in the correct orientation into an expression plasmid may be used for protein expression. Alternatively, portions of the XAF gene sequences, including wild-type or mutant XAF sequences, may be inserted. Prokaryotic and eukaryotic expression systems allow various important functional domains of the XAF proteins to be recovered as fusion proteins and then used for binding, structural and functional studies and also for the generation of appropriate antibodies.. Since XAF-1 protein expression increases apoptosis in immortalized cells, it may be desirable to express the protein under the control of an inducible promoter.
  • Typical expression vectors contain promoters that direct the synthesis of large amounts of mRNA corresponding to the inserted XAF nucleic acid in the plasmid bearing cells. They may also include eukaryotic or prokaryotic origin of replication sequences allowing for their autonomous replication within the host organism, sequences that encode genetic traits that allow vector-containing cells to be selected for in the presence of otherwise toxic drugs, and sequences that increase the efficiency with which the synthesized mRNA is translated. Stable long-term vectors may be maintained as freely replicating entities by using regulatory elements of, for example, viruses (e.g., the OriP sequences from the Epstein Barr Virus genome). Cell lines may also be produced which have integrated the vector into the genomic DNA, and in this manner the gene product is produced on a continuous basis.
  • Expression of foreign sequences in bacteria such as Escherichia coli requires the insertion of the XAF nucleic acid sequence into a bacterial expression vector. This plasmid vector contains several elements required for the propagation of the plasmid in bacteria, and expression of inserted DNA of the plasmid by the plasmid-carrying bacteria. Propagation of only plasmid-bearing bacteria is achieved by introducing into the plasmid selectable marker-encoding sequences that allow plasmid-bearing bacteria to grow in the presence of otherwise toxic drugs. The plasmid also bears a transcriptional promoter capable of producing large amounts of mRNA from the cloned gene. Such promoters may or may not be inducible promoters which initiate transcription upon induction. The plasmid also preferably contains a polylinker to simplify insertion of the gene in the correct orientation within the vector. In a simple E. coli expression vector utilizing the lac promoter, the expression vector plasmid contains a fragment of the E. coli chromosome containing the lac promoter and the neighboring lacZ gene. In the presence of the lactose analog IPTG, RNA polymerase normally transcribes the lacZ gene producing lacZ mRNA which is translated into the encoded protein, β-galactosidase. The lacZ gene can be cut out of the expression vector with restriction endonucleases and replaced by a XAF gene sequence, or fragment, fusion, or mutant thereof. When this resulting plasmid is transfected into E. coli, addition of IPTG and subsequent transcription from the lac promoter produces XAF mRNA, which is translated into a XAF polypeptide.
  • Once the appropriate expression vectors containing a XAF gene, or fragment, fusion, or mutant thereof, are constructed they are introduced into an appropriate host cell by transformation techniques including calcium phosphate transfection, DEAE-dextran transfection, electroporation, micro-injection, protoplast fusion and liposome-mediated transfection. The host cell which are transfected with the vectors of this invention may be selected from the group consisting of E. coli, Pseudomonas, Bacillus subtilus, or other bacilli, other bacteria, yeast, fungi, insect (using, for example, baculoviral vectors for expression), mouse or other animal or human tissue cells. Mammalian cells can also be used to express the XAF-1 protein using a vaccinia virus expression system described in Ausubel et al. (Current Protocols in Molecular Biology, John Wiley & Sons, New York, NY, 1994).
  • In vitro expression of XAF proteins, fusions, polypeptide fragments, or mutants encoded by cloned DNA is also possible using the T7 late-promoter expression system. This system depends on the regulated expression of T7 RNA polymerase which is an enzyme encoded in the DNA of bacteriophage T7. The T7 RNA polymerase transcribes DNA beginning within a specific 23-bp promoter sequence called the T7 late promoter. Copies of the T7 late promoter are located at several sites on the T7 genome, but none is present in E. coli chromosomal DNA. As a result, in T7 infected cells, T7 RNA polymerase catalyzes transcription of viral genes but not of E. coli genes. In this expression system recombinant E. coli cells are first engineered to carry the gene encoding T7 RNA polymerase next to the lac promoter. In the presence of IPTG, these cells transcribe the T7 polymerase gene at a high rate and synthesize abundant amounts of T7 RNA polymerase. These cells are then transformed with plasmid vectors that carry a copy of the T7 late promoter protein. When IPTG is added to the culture medium containing these transformed E. coli cells, large amounts of T7 RNA polymerase are produced. The polymerase then binds to the T7 late promoter on the plasmid expression vectors, catalyzing transcription of the inserted cDNA at a high rate. Since each E. coli cell contains many copies of the expression vector, large amounts of mRNA corresponding to the cloned cDNA can be produced in this system and the resulting protein can be radioactively labeled. Plasmid vectors containing late promoters and the corresponding RNA polymerases from related bacteriophages such as T3, T5, and SP6 may also be used for in vitro production of proteins from cloned DNA. E. coli can also be used for expression by infection with M13 Phage mGPI-2. E. coli vectors can also be used with phage lambda regulatory sequences, by fusion protein vectors, by maltose-binding protein fusions, and by glutathione-S-transferase fusion proteins.
  • Eukaryotic expression systems permit appropriate post-translational modifications to expressed proteins. Transient transfection of a eukaryotic expression plasmid allows the transient production of a XAF polypeptide by a transfected host cell. XAF proteins may also be produced by a stably-transfected mammalian cell line. A number of vectors suitable for stable transfection of mammalian cells are available to the public (e.g., see Pouwels et al., Cloning Vectors: A Laboratory Manual, 1985, Supp. 1987), as are methods for constructing such cell lines (see e.g., Ausubel et al., supra). In one example, cDNA encoding a XAF-1 protein, fusion, mutant, or polypeptide fragment is cloned into an expression vector that includes the dihydrofolate reductase (DHFR) gene. Integration of the plasmid and, therefore, integration of the XAF-1-encoding gene into the host cell chromosome is selected for by inclusion of 0.01-300 µM methotrexate in the cell culture medium (as described, Ausubel et al., supra). This dominant selection can be accomplished in most cell types. Recombinant protein expression can be increased by DHFR-mediated amplification of the transfected gene. Methods for selecting cell lines bearing gene amplifications are described in Ausubel et al. (supra). These methods generally involve extended culture in medium containing gradually increasing levels of methotrexate. The most commonly used DHFR-containing expression vectors are pCVSEII-DHFR and pAdD26SV(A) (described in Ausubel et al., supra). The host cells described above or, preferably, a DHFR-deficient CHO cell line (e.g., CHO DHFR- cells, ATCC Accession No. CRL 9096) are among those most preferred for DHFR selection of a stably-transfected cell line or DHFR-mediated gene amplification.
  • Eukaryotic cell expression of XAF proteins allows for studies of the XAF genes and gene products including determination of proper expression and post-translational modifications for biological activity, identifying regulatory elements located in the 5' region of XAF genes and their roles in tissue regulation of XAF protein expression. It also permits the production of large amounts of normal and mutant proteins for isolation and purification, and the use of cells expressing XAF proteins as a functional assay system for antibodies generated against the protein. Eukaryotic cells expressing XAF proteins may also be used to test the effectiveness of pharmacological agents on XAF associated apoptosis, or as means by which to study XAF proteins as components of a signal transduction system. Expression of XAF proteins, fusions, mutants, and polypeptide fragments in eukaryotic cells also enables the study of the function of the normal complete protein, specific portions of the protein, or of naturally occurring polymorphisms and artificially produced mutated proteins. The XAF DNA sequences can be altered using procedures known in the art, such as restriction endonuclease digestion, DNA polymerase fill-in, exonuclease deletion, terminal deoxynucleotide transferase extension, ligation of synthetic or cloned DNA sequences and site-directed sequence alteration using specific oligonucleotides together with PCR.
  • Another preferred eukaryotic expression system is the baculovirus system using, for example, the vector pBacPAK9, which is available from Clontech (Palo Alto, CA). If desired, this system may be used in conjunction with other protein expression techniques, for example, the myc tag approach described by Evan et al. (Mol. Cell Biol. 5:3610-3616, 1985).
  • Once the recombinant protein is expressed, it can be isolated from the expressing cells by cell lysis followed by protein purification techniques, such as affinity chromatography. In this example, an anti-XAF antibody, which may be produced by the methods described herein, can be attached to a column and used to isolate the recombinant XAF proteins. Lysis and fractionation of XAF protein-harboring cells prior to affinity chromatography may be performed by standard methods (see e.g., Ausubel et al., supra). Once isolated, the recombinant protein can, if desired, be purified further by e.g., by high performance liquid chromatography (HPLC; e.g., see Fisher, Laboratory Techniques In Biochemistry And Molecular Biology, Work and Burdon, Eds., Elsevier, 1980).
  • The polypeptides described above, particularly short XAF-1 fragments and longer fragments of the N-terminus and C-terminus of the XAF-1 protein, can also be produced by chemical synthesis (e.g., by the methods described in Solid Phase Peptide Synthesis, 2nd ed., 1984, The Pierce Chemical Co., Rockford, IL). These general techniques of polypeptide expression and purification can also be used to produce and isolate useful XAF-1 polypeptide fragments or analogs, as described herein:
  • Those skilled in the art of molecular biology will understand that a wide variety of expression systems may be used to produce the recombinant XAF proteins. The precise host cell used is not critical to the invention. The XAF proteins may be produced in a prokaryotic host (e.g., E. coli) or in a eukaryotic host (e.g., S. cerevisiae, insect cells such as Sf9 cells, or mammalian cells such as COS-1, NIH 3T3, or HeLa cells). These cells are commercially available from, for example, the American Type Culture Collection, Rockville, MD (see also Ausubel et al., supra). The method of transformation and the choice of expression vehicle (e.g., expression vector) will depend on the host system selected. Transformation and transfection methods are described, e.g., in Ausubel et al. (supra), and expression vehicles may be chosen from those provided, e.g. in Pouwels et al., supra.
  • III. Testing for the presence of XAF biological activity
  • Identification of XAF-1 and XAF-2 splice variants allow the study of XAF biological activity in apoptosis-associated cellular events. For example, administration of a XAF-1 protein, or polypeptide fragment thereof, may have an ability to induce apoptosis, as measured by apoptosis assays known in the art and described herein. An apoptosis-inhibiting amount of a XAF reagent (e.g., a compound that reduced the biological function of XAF-1, such as a XAF-1 neutralizing antibody or antisense XAF-1 nucleic acid) may be similarly assessed. Such assays may be carried out in a cell which either expresses endogenous XAF-1, or a cell to which is introduced a heterologous amount of a XAF-1 polypeptide. Preferably, the cell is capable of undergoing apoptosis. Apoptosis or inhibition thereof may be assessed in these XAF expressing cells, whereby such apoptosis inducing or inhibiting activity is evaluated based upon the level of expression of the XAF polypeptide.
  • Another approach, which utilizes the activation of the nuclear transcription factor, NF-κB (Kunkel et al., Crit. Rev. Immunol. 9: 93-117, 1989) in TNF-mediated signal transduction. In this system the role of a XAF in NF-κB activation may be readily elucidated in various assays known in the art, such as the I-κB degradation assay. Another method of rapidly measuring NF-κB activity is through the use of a reporter gene whose expression is directed by a NF-κB binding site containing promoter (Zeichner et al., J. Virol. 65: 2436-2444, 1991). The expression vector is preferably inserted by artifice into a cell capable of undergoing apoptosis or is responsive to TNF-receptor family-mediated signal transduction. By detecting a change in the level of expression of the reporter gene, an NF-κB-inducing ability of a XAF may be readily assessed. This method may also be used to detect an NF-κB-inhibing ability of a XAF wherein NF-κB activation is stimulated by another component of the TNF-receptor signalling pathway (e.g., TRAF6).
  • It will be understood that these analyses may be undertaken with XAF-1 or other XAF proteins (e.g., XAF-2L).
  • IV. Cellular Distribution of XAF-1
  • We have looked at the distribution of XAF-1 mRNA expression using radiolabeled antisense XAF-1 DNA and have found that XAF-1 mRNA is expressed in at least the following adult tissues: heart, brain, placenta, liver, skeletal muscle, kidney, pancreas, spleen, thymus, prostate, testis, ovary, appendix, trachea, small intestine, submucosal lining of the colon, and peripheral blood leukocytes. XAF-1 mRNA was further found to be expressed in fetal tissue, including fetal brain, fetal heart, fetal kidney, fetal liver, fetal spleen, fetal thymus, and fetal lung.
  • V. XAF Fragments
  • Polypeptide fragments which incorporate various portions of XAF proteins are useful in identifying the domains important for the biological activities of XAF proteins. Methods for generating such fragments are well known in the art (see, for example, Ausubel et al., supra) using the nucleotide sequences provided herein. For example, a XAF protein fragment may be generated by PCR amplifying the desired fragment using oligonucleotide primers designed based upon the XAF-1 (SEQ ID NO.: 1) nucleic acid sequences. Preferably the oligonucleotide primers include unique restriction enzyme site which facilitate insertion of the fragment into the cloning site of a mammalian expression vector. This vector may then be introduced into a mammalian cell by artifice by the various techniques known in the art and described herein, resulting in the production of a XAF gene fragment.
  • In one approach, XAF-1 polypeptide fragments have been useful in evaluating the portions of the protein involved in NF-κB regulation. In particular, polypeptide fragments of the amino- and carboxyl-termini of XAF-1 protein were used to induce or prevent activity induction by various other components of the TNF-receptor signalling pathway (e.g., TRAF6).
  • In an alternative approach, polypeptide fragments of various portions of the XAF-1 protein are useful in modulating XAF-1 mediated apoptosis, as may be assessed in the various apoptosis assays known in the art and described herein. XAF-1 polypeptide fragments may be used to alter XAF-1 mediated apoptosis by inhibiting binding of the full length XAF-1 to, for example, itself to form XAF-1 :XAF-1 homodimers, to another XAF protein (e.g., XAF-2) to form XAF-1:XAF-2 heterodimers, or to XIAP to form XAF-1:XIAP heterodimers. Preferably, such fragments may include the XAF-1:XAF-1 binding domain, the XAF-1:XAF-2 binding domain or the XAF-1:XIAP binding domain.
  • VI. XAF Antibodies
  • In order to prepare polyclonal antibodies, XAF proteins, fragments of XAF proteins, or fusion proteins containing defined portions of XAF proteins can be synthesized in bacteria by expression of corresponding DNA sequences in a suitable cloning vehicle. Fusion proteins are commonly used as a source of antigen for producing antibodies. Two widely used expression systems for E. coli are lacZ fusions using the pUR series of vectors and trpE fusions using the pATH vectors. The proteins can be purified, and then coupled to a carrier protein and mixed with Freund's adjuvant (to help stimulate the antigenic response by the animal of choice) and injected into rabbits or other laboratory animals. Alternatively, protein can be isolated from XAF expressing cultured cells. Following booster injections at bi-weekly intervals, the rabbits or other laboratory animals are then bled and the sera isolated. The sera can be used directly or can be purified prior to use, by various methods including affinity chromatography employing reagents such as Protein A-Sepharose, Antigen Sepharose, and Anti-mouse-Ig-Sepharose. The sera can then be used to probe protein extracts from XAF expressing tissues run on a polyacrylamide gel to identify XAF proteins. Alternatively, synthetic peptides can be made that correspond to the antigenic portions of the protein and used to innoculate the animals.
  • In order to generate peptide or full-length protein for use in making, for example, XAF-1-specific antibodies, a XAF-1 coding sequence can be expressed as a C-terminal fusion with glutathione S-transferase (GST; Smith et al., Gene 67: 31-40, 1988). The fusion protein can be purified on glutathione-Sepharose beads, eluted with glutathione, and cleaved with thrombin (at the engineered cleavage site), and purified to the degree required to successfully immunize rabbits. Primary immunizations can be carried out with Freund's complete adjuvant and subsequent immunizations performed with Freund's incomplete adjuvant. Antibody titers are monitored by Western blot and immunoprecipitation analyses using the thrombin-cleaved XAF-1 fragment of the GST-XAF-1 fusion protein. Immune sera are affinity purified using CNBr-Sepharose-coupled XAF-1 protein. Antiserum specificity is determined using a panel of unrelated GST proteins (including GSTp53, Rb, HPV-16 E6, and E6-AP) and GST-trypsin (which was generated by PCR using known sequences).
  • It is also understood by those skilled in the art that monoclonal XAF antibodies may be produced by using as antigen XAF protein isolated from XAF expressing cultured cells or XAF protein isolated from tissues. The cell extracts, or recombinant protein extracts, containing XAF protein, may for example, be injected with Freund's adjuvant into mice. After being injected, the mice spleens may be removed and resuspended in phosphate buffered saline (PBS). The spleen cells serve as a source of lymphocytes, some of which are producing antibody of the appropriate specificity. These are then fused with a permanently growing myeloma partner cells, and the products of the fusion are plated into a number of tissue culture wells in the presence of a selective agent such as hypoxanthine, aminopterine, and thymidine (HAT). The wells are then screened by ELISA to identify those containing cells making antibody capable of binding a XAF protein or polypeptide fragment or mutant thereof. These are then re-plated and after a period of growth, these wells are again screened to identify antibody-producing cells. Several cloning procedures are carried out until over 90% of the wells contain single clones which are positive for antibody production. From this procedure a stable line of clones which produce the antibody is established. The monoclonal antibody can then be purified by affinity chromatography using Protein A Sepharose, ion-exchange chromatography, as well as variations and combinations of these techniques. Truncated versions of monoclonal antibodies may also be produced by recombinant methods in which plasmids are generated which express the desired monoclonal antibody fragment(s) in a suitable host.
  • As an alternate or adjunct immunogen to GST fusion proteins, peptides corresponding to relatively unique hydrophilic regions of, for example, XAF-1 may be generated and coupled to keyhole limpet hemocyanin (KLH) through an introduced C-terminal lysine. Antiserum to each of these peptides is similarly affinity purified on peptides conjugated to BSA, and specificity is tested by ELISA and Western blotting using peptide conjugates, and by Western blotting and immunoprecipitation using XAF-1 expressed as a GST fusion protein.
  • Alternatively, monoclonal antibodies may be prepared using the XAF proteins described above and standard hybridoma technology (see, e.g., Kohler et al., Nature 256: 495, 1975; Kohler et al., Eur. J. Immunol. 6:511, 1976; Kohler et al., Eur. J. Immunol. 6: 292, 1976; Hammerling et al., In Monoclonal Antibodies and T Cell Hybridomas, Elsevier, New York, NY, 1981; Ausubel et al., supra). Once produced, monoclonal antibodies are also tested for specific XAF protein recognition by Western blot or immunoprecipitation analysis (by the methods described in Ausubel et al., supra).
  • Monoclonal and polyclonal antibodies that specifically recognize a XAF protein (or fragments thereof), such as those described herein containing a XAF-1 C-terminal domain, are considered useful in the invention. They may, for example, be used in an reporter gene assay to monitor the NF-κB inducing effects (via TRAF6) of a XAF protein. Antibodies that inhibit XAF-1 described herein may be especially useful in preventing apoptosis in cells undergoing undesirable cell death or growth arrest.
  • The antibodies described above may be produced using XAF amino acid sequences that do not reside within highly conserved regions, and that appear likely to be antigenic, as analyzed by criteria such as those provided by the Peptide Structure Program (Genetics Computer Group Sequence Analysis Package, Program Manual for the GCG Package, Version 7, 1991) using the algorithm of Jameson and Wolf (CABIOS 4:181, 1988). These fragments can be generated by standard techniques, e.g., by the PCR, and cloned into the pGEX expression vector (Ausubel et al., supra). GST fusion proteins are expressed in E. coli and purified using a glutathione agarose affinity matrix as described in Ausubel et al. (supra). To generate rabbit polyclonal antibodies, and to minimize the potential for obtaining antisera that is non-specific, or exhibits low-affinity binding to a XAF, two or three fusions are generated for each protein, and each fusion is injected into at least two rabbits. Antisera are raised by injections in series, preferably including at least three booster injections.
  • In addition, the antibodies described above may be produced using XAF amino acid sequences that do reside within highly conserved regions. For example, amino acid sequences from the N-terminal 150 amino acids of either XAF-1 or XAF-2 may be used as antigen to generate antibodies specific toward both XAF-1 and XAF-2, and possibly specific toward other members of the XAF family of proteins. These antibodies may be screened as described above.
  • In addition to intact monoclonal and polyclonal anti-XAF-1 antibodies, various genetically engineered antibodies, humanized antibodies, and antibody fragments, including F(ab')2, Fab', Fab, Fv and sFv fragments can be und Antibodies can be humanized by methods known in the art, e.g., monoclonal antibodies with a desired binding specificity can be commercially humanized (Scotgene, Scotland; Oxford Molecular, Palo Alto, CA). Fully human antibodies, such as those expressed in transgenic animals, may also be used (Green et al., Nature Genetics 7: 13-21, 1994).
  • Ladner (U.S. Patent 4,946,778 and 4,704,692 ) describes methods for preparing single polypeptide chain antibodies. Ward et al. (Nature 341: 544-546, 1989) describe the preparation of heavy chain variable domains, which they term "single domain antibodies," which have high antigen-binding affinities. McCafferty et al. (Nature 348: 552-554, 1990) show that complete antibody V domains can be displayed on the surface of fd bacteriophage, that the phage bind specifically to antigen, and that rare phage (one in a million) can be isolated after affinity chromatography. Boss et al. (U.S. Patent 4,816,397 ) describe various methods for producing immunoglobulins, and immunologically functional fragments thereof, which include at least the variable domains of the heavy and light chain in a single host cell. Cabilly et al. (U.S. Patent 4,816,567 ) describe methods for preparing chimeric antibodies.
  • VII. Use of XAF Antibodies
  • Antibodies to XAF proteins may be used, as noted above, to detect XAF proteins or to inhibit the biological activities of XAF proteins. In addition, the antibodies may be coupled to compounds for diagnostic and/or therapeutic uses such as radionucleotides for imaging and therapy and liposomes for the targeting of compounds to a specific tissue location.
  • VIII. Detection of XAF gene expression
  • As noted, the antibodies described above may be used to monitor XAF protein expression. In addition, in situ hybridization is a method which may be used to detect the expression of XAF genes. In situ hybridization techniques, such as fluorescent in situ hybridization (FISH), rely upon the hybridization of a specifically labeled nucleic acid probe to the cellular RNA in individual cells or tissues. Therefore, it allows the identification of mRNA within intact tissues, such as the heart. In this method, oligonucleotides or cloned nucleotide (RNA or DNA) fragments corresponding to unique portions of XAF genes are used to detect specific mRNA species, e.g., in the heart. Numerous other gene expression detection techniques are known to those of skill in the art and may be employed here.
  • IX. Identification of Compounds that Modulate XAF Protein Expression
  • Based on our experimental results, we have developed a number of screening procedures for identifying therapeutic compounds (e.g., anti-apoptotic or apoptotic-inducing) which can be used in human patients. In particular examples, compounds that down regulate expression of XAF proteins are considered useful for treatment of diseases hallmarked by an excessive amount of apoptosis, such as neurodegenerative disorders. Similarly, compounds that up regulate or activate XAF proteins are also considered useful as drugs for the treatment of diseases hallmarked by impaired apoptosis, such as cancer. In general, the screening methods of the invention involve screening any number of compounds for therapeutically active agents by employing any number of in vitro or in vivo experimental systems.
  • The methods of the invention simplify the evaluation, identification, and development of active agents for the treatment and prevention of conditions involving an inappropriate amount of apoptosis, which may be excessive or insufficient, depending upon the condition. These screening methods provide a facile means for selecting natural product extracts or compounds of interest from a large population which are further evaluated and condensed to a few active and selective materials. Constituents of this pool are then purified and evaluated in the methods of the invention to determine their anti-apoptotic or apoptotic-inducing activities.
  • In general, novel drugs for the treatment of conditions involving an appropriate level of apoptosis are identified from large libraries of both natural product or synthetic (or semi-synthetic) extracts or chemical libraries according to methods known in the art. Those skilled in the field of drug discovery and development will understand that the precise source of test extracts or compounds is not critical to the screening procedure(s) of the invention. Accordingly, virtually any number of chemical extracts or compounds can be screened using the exemplary methods described herein. Examples of such extracts or compounds include, but are not limited to, plant-, fungal-, prokaryotic- or animal-based extracts, fermentation broths, and synthetic compounds, as well as modification of existing compounds. Numerous methods are also available for generating random or directed synthesis (e.g., semi-synthesis or total synthesis) of any number of chemical compounds, including, but not limited to, saccharide-, lipid-, peptide-, and nucleic acid-based compounds. Synthetic compound libraries are commercially available from Brandon Associates (Merrimack, NH) and Aldrich Chemical (Milwaukee, WI). Alternatively, libraries of natural compounds in the form of bacterial, fungal, plant, and animal extracts are commercially available from a number of sources, including Biotics (Sussex, UK), Xenova (Slough, UK), Harbor Branch Oceangraphics Institute (Ft. Pierce, FL), and PharmaMar, U.S.A. (Cambridge, MA). In addition, natural and synthetically produced libraries are produced, if desired, according to methods known in the art, e.g., by standard extraction and fractionation methods. Furthermore, if desired, any library or compound is readily modified using standard chemical, physical, or biochemical methods.
  • In addition, those skilled in the art of drug discovery and development readily understand that methods for dereplication (e.g., taxonomic dereplication, biological dereplication, and chemical dereplication, or any combination thereof) or the elimination of replicates or repeats of materials already known for their anti-apoptotic or apoptotic-inducing activities should be employed whenever possible.
  • When a crude extract is found to have anti-apoptotic or apoptotic-inducing activities or both, further fractionation of the positive lead extract is necessary to isolate chemical constituents responsible for the observed effect. Thus, the goal of the extraction, fractionation, and purification process is the careful characterization and identification of a chemical entity within the crude extract having anti-apoptotic or apoptotic-inducing activities. The same in vivo and in vitro assays described herein for the detection of activities in mixtures of compounds can be used to purify the active component and to test derivatives thereof. Methods of fractionation and purification of such heterogenous extracts are known in the art. If desired, compounds shown to be useful agents for the treatment of pathogenicity are chemically modified according to methods known in the art. Compounds identified as being of therapeutic value are subsequently analyzed using any standard animal model of degenerative disease or cancer known in the art.
  • Below we describe screening methods for identifying and evaluating the efficacy of a compound as an anti-apoptotic or apoptotic-inducing agent. These methods are intended to illustrate, not limit, the scope of the claimed invention.
  • a) Screens for compounds affecting XAF protein expression
  • XAF cDNAs may be used to facilitate the identification of compounds that increase or decrease XAF protein expression. In one approach, candidate compounds are added, in varying concentrations, to the culture medium of cells expressing XAF mRNA. The XAF mRNA expression is then measured, for example, by Northern blot analysis (Ausubel et al., supra) using a XAF DNA, or cDNA or RNA fragment, as a hybridization probe. The level of XAF mRNA expression in the presence of the candidate compound is compared to the level of XAF mRNA expression in the absence of the candidate compound, all other factors (e.g., cell type and culture conditions) being equal.
  • The effect of candidate compounds on XAF-mediated apoptosis may, instead, be measured at the level of translation by using the general approach described above with standard protein detection techniques, such as Western blotting or immunoprecipitation with a XAF-specific antibody (for example, the XAF-1 specific antibody described herein).
  • In an alternative approach to detecting compounds which regulate XAF at the level of transcription, candidate compounds may be tested for an ability to regulate a reporter gene whose expression is directed by a XAF gene promoter. For example, a cell unlikely to undergo apoptosis may be transfected with a expression plasmid that includes a luciferase reporter gene operably linked to the XAF-1 promoter. Candidate compounds may then be added, in varying concentrations, to the culture medium of the cells. Luciferase expression levels may then be measured by subjecting the compound-treated transfected cells to standard luciferase assays known in the art, such as the luciferase assay system kit used herein that is commercially available from Promega, and rapidly assessing the level of luciferase activity on a luminometer. The level of luciferase expression in the presence of the candidate compound is compared to the level of luciferase expression in the absence of the candidate compound, all other factors (e.g., cell type and culture conditions) being equal.
  • Compounds that modulate the level of XAF protein expression may be purified, or substantially purified, or may be one component of a mixture of compounds such as an extract or supernatant obtained from cells, from mammalian serum, or from growth medium in which mammalian cells have been cultured (Ausubel et al., supra). In an assay of a mixture of compounds, XAF protein expression is tested against progressively smaller subsets of the compound pool (e.g., produced by standard purification techniques such as HPLC or FPLC) until a single compound or minimal number of effective compounds is demonstrated to modulate XAF protein expression.
  • b) Screens for compounds affecting XAF biological activity
  • Compounds may also be screened for their ability to modulate, for example, XAF-1 apoptosis inducing activity. In this approach, the degree of apoptosis in the presence of a candidate compound is compared to the degree of apoptosis in its absence, under equivalent conditions. Again, the screen may begin with a pool of candidate compounds, from which one or more useful modulator compounds are isolated in a step-wise fashion. Apoptosis activity may be measured by any standard assay, for example, those described herein.
  • Another method for detecting compounds that modulate the apoptosis-inducing activity of XAF has been to screen for compounds that interact physically with a given XAF polypeptide, e.g., XAF-1. These compounds were detected by adapting yeast two-hybrid expression systems known in the art. These systems detected protein interactions using a transcriptional activation assay and are generally described by Gyuris et al. (Cell 75:791-803, 1993) and Field et al. (Nature 340:245-246, 1989), and are commercially available from Clontech (Palo Alto, CA). In addition, PCT Publication WO 95/28497 describes a yeast two-hybrid assay in which proteins involved in apoptosis, by virtue of their interaction with BCL-2, were detected. A similar method has been used to identify proteins and other compounds that interacted with XAF-1, and is used to identify XAF-2 splice variant interactors.
  • A compound that promotes an increase in the expression or biological activity of the XAF protein, e.g., XAF-1, is considered particularly useful in the invention; such a molecule may be used, for example, as a therapeutic to increase cellular levels of XAF-1 and thereby exploit the ability of XAF-1 polypeptides to induce apoptosis. This would be advantageous in the treatment of diseases involving insufficient apoptosis (e.g., cancer).
  • A compound that decreases XAF-1 activity (e.g., by decreasing XAF-1 gene expression or biological activity) may also be used to increase cellular proliferation. This would be advantageous in the treatment of degenerative diseases, such as neurodegenerative diseases (e.g., Alzheimer's disease, Huntington's disease) or other tissue-specific degenerative diseases (e.g., cirrhosis of the liver, T-lymphocyte depletion in AIDS, hair loss).
  • Molecules that are found, by the methods described above, to effectively modulate XAF gene expression or polypeptide activity may be tested further in animal models. If they continue to function successfully in an in vivo setting, they may be used as therapeutics to either inhibit or enhance apoptosis, as appropriate.
  • X. Therapies
  • Therapies may be designed to circumvent or overcome a XAF gene defect or inadequate XAF gene expression, and thus modulate and possibly alleviate conditions involving an inappropriate amount of apoptosis. XAF-1 is expressed in the every tissue looked at thus far. Hence, in considering various therapies, it is understood that such therapies may be targeted at any tissues demonstrated to express XAF-1. In particular, therapies to enhance X4F-I gene expression are useful in promoting apoptosis in cancerous cells. Apoptosis-inducing XAF-1 reagents may include, without limitation, full length or fragment XAF-1 polypeptides, XAF-1 mRNA, or any compound which increases XAF-1 apoptosis-inducing activity.
  • a) Protein Therapy
  • Treatment or prevention of inappropriate apoptosis can be accomplished by replacing mutant or surplus XAF protein with normal protein, by modulating the function of mutant protein, or by delivering normal XAF protein to the appropriate cells. It is also be possible to modify the pathophysiologic pathway (e.g., a signal transduction pathway) in which the protein participates in order to correct the physiological defect.
  • To replace a mutant protein with normal protein, or to add protein to cells which no longer express sufficient XAF, it is necessary to obtain large amounts of pure XAF protein from cultured cell systems which can express the protein. Delivery of the protein to the affected tissues (e.g., cancerous tissues) can then be accomplished using appropriate packaging or administrating systems. Alternatively, small molecule analogs may be used and administered to act as XAF agonists and in this manner produce a desired physiological effect. Methods for finding such molecules are provided herein.
  • b) Gene Therapy
  • Gene therapy is another potential therapeutic approach in which normal copies of the XAF gene or nucleic acid encoding XAF antisense RNA are introduced into selected tissues to successfully encode for normal and abundant protein or XAF antisense RNA in cells which inappropriately either suppress cell death (e.g., cancerous ovarian cells) or enhance the rate of cell death (e.g., neuronal cell death leading to disease), respectively. The gene must be delivered to those cells in a form in which it can be taken up and encode for sufficient protein to provide effective function. Alternatively, in some mutants it may be possible to promote apoptosis by introducing another copy of the homologous gene bearing a second mutation in that gene or to alter the mutation, or use another gene to block any negative effect.
  • Transducing retroviral vectors can be used for somatic cell gene therapy especially because of their high efficiency of infection and stable integration and expression. The targeted cells however must be able to divide and the expression levels of normal protein should be high. For example, the full length XAF-1 gene, or portions thereof, can be cloned into a retroviral vector and driven from its endogenous promoter or from the retroviral long terminal repeat or from a promoter specific for the target cell type of interest (such as neurons). Other viral vectors which can be used include adenovirus, adeno-associated virus, vaccinia virus, bovine papilloma virus, or a herpes virus such as Epstein-Barr Virus.
  • Gene transfer could also be achieved using non-viral means requiring infection in vitro. This would include calcium phosphate, DEAE dextran, electroporation, and protoplast fusion. Liposomes may also be potentially beneficial for delivery of DNA into a cell. Although these methods are available, many of these are lower efficiency.
  • Transplantation of normal genes into the affected cells of a patient can also be useful therapy. In this procedure, a normal XAF gene is transferred into a cultivatable cell type, either exogenously or endogenously to the patient. These cells are then injected serotologically into the targeted tissue(s).
  • Retroviral vectors, adenoviral vectors, adenovirus-associated viral vectors, or other viral vectors with the appropriate tropism for cells likely to be involved in apoptosis (for example, epithelial cells) may be used as a gene transfer delivery system for a therapeutic XAF gene construct. Numerous vectors useful for this purpose are generally known (Miller, Human Gene Therapy 15-14, 1990; Friedman, Science 244:1275-1281, 1989; Eglitis and Anderson, BioTechniques 6: 608-614, 1988; Tolstoshev and Anderson, Curr. Opin. Biotech. 1: 55-61, 1990; Sharp, The Lancet 337: 1277-1278, 1991; Cornetta et al., Nucl. Acid Res. and Mol. Biol. 36: 311-322, 1987; Anderson, Science 226: 401-409, 1984; Moen, Blood Cells 17: 407-416, 1991; Miller et al., Biotech. 7: 980-990, 1989; Le Gal La Salle et al., Science 259: 988-990, 1993; and Johnson, Chest 107: 77S-83S,1995). Retroviral vectors are particularly well developed and have been used in clinical settings (Rosenberg et al., N. Engl. J. Med 323: 370, 1990; Anderson et al., U.S. Patent No. 5,399,346 ). Non-viral approaches may also be employed for the introduction of therapeutic DNA into cells otherwise predicted to undergo apoptosis. For example, XAF may be introduced into a neuron or a T cell by lipofection (Felgner et al., Proc. Natl. Acad. Sci. USA 84: 7413, 1987; Ono et al., Neurosci. Lett. 117: 259, 1990; Brigham et al., Am. J. Med. Sci. 298: 278, 1989; Staubinger et al., Meth. Enz. 101:512, 1983), asialorosonucoid-polylysine conjugation (Wu et al., J. Biol. Chem. 263: 14621, 1988; Wu et al., J. Biol. Chem. 264: 16985, 1989); or, less preferably, micro-injection under surgical conditions (Wolff et al., Science 247: 1465, 1990).
  • In another approach that may be utilized with all of the above methods, a therapeutic XAF DNA construct is preferably applied to the site of the desired apoptosis event (for example, by injection). However, it may also be applied to tissue in the vicinity of the desired apoptosis event or to a blood vessel supplying the cells (e.g., cancerous cells) desired to undergo apoptosis.
  • In the constructs described, XAF cDNA expression can be directed from any suitable promoter (e.g., the human cytomegalovirus (CMV), simian virus 40 (SV40), or metallothionein promoters), and regulated by any appropriate mammalian regulatory element. For example, if desired, enhancers known to preferentially direct gene expression in neural cells, lymphocytes, or muscle cells may be used to direct XAF expression. The enhancers used could include, without limitation, those that are characterized as tissue- or cell-specific in their expression. Alternatively, if a XAF genomic clone is used as a therapeutic construct (for example, following isolation by hybridization with the XAF cDNA described above), regulation may be mediated by the cognate regulatory sequences or, if desired, by regulatory sequences derived from a heterologous source, including any of the promoters or regulatory elements described above.
  • Antisense based strategies have been employed to explore XAF gene function and as a basis for therapeutic drug design. The principle is based on the hypothesis that sequence-specific suppression of gene expression can be achieved by intracellular hybridization between mRNA and a complementary antisense species. The formation of a hybrid RNA duplex may then interfere with the processing/transport/translation and/or stability of the target XAF mRNA. Antisense strategies may use a variety of approaches including the use of antisense oligonucleotides and injection of antisense RNA. For our analysis of XAF-1 gene function, we employed the method of transfection of antisense RNA expression vectors into targeted cells. Antisense effects can be induced by control (sense) sequences, however, the extent of phenotypic changes are highly variable. Phenotypic effects induced by antisense effects are based on changes in criteria such as protein levels, protein activity measurement, and target mRNA levels.
  • For example, XAF-1 gene therapy may also be accomplished by direct administration of antisense XAF-1 mRNA to a cell that is expected to undergo undesired apoptosis. The antisense XAF-1 mRNA may be produced and isolated by any standard technique, but is most readily produced by in vitro transcription using an antisense XAF-1 cDNA under the control of a high efficiency promoter (e.g., the T7 promoter). Administration of antisense XAF-1 mRNA to cells can be carried out by any of the methods for direct nucleic acid administration described above.
  • Another therapeutic approach involves administration of recombinant XAF polypeptide, either directly to the site of a desired apoptosis event (for example, by injection) or systemically (for example, by any conventional recombinant protein administration technique). The dosage of XAF depends on a number of factors, including the size and health of the individual patient, but, generally, between 0.1 mg and 100 mg inclusive are administered per day to an adult in any pharmaceutically acceptable formulation.
  • XI. Administration of XAF Polypeptides. XAF Genes, or Modulators of XAF Synthesis or Function
  • A XAF protein, gene, or modulator may be administered within a pharmaceutically-acceptable diluent, carrier, or excipient, in unit dosage form. Conventional pharmaceutical practice may be employed to provide suitable formulations or compositions to administer neutralizing XAF antibodies or XAF-inhibiting compounds (e.g., antisense XAF-1 or a XAF-1 dominant negative mutant) to patients suffering from a disease (e.g., a degenerative disease) that is caused by excessive apoptosis. Administration may begin before the patient is symptomatic. Any appropriate route of administration may be employed, for example, administration may be parenteral, intravenous, intra-arterial, subcutaneous, intramuscular, intracranial, intraorbital, ophthalmic intraventricular, intracapsular, intraspinal, intracisternal, intraperitoneal, intranasal, by aerosol, by suppositories, or oral administration. Therapeutic formulations may be in the form of liquid solutions or suspensions; for oral administration, formulations may be in the form of tablets or capsules; and for intranasal formulations, in the form of powders, nasal drops, or aerosols.
  • Methods well known in the art for making formulations are found, for example, in Remington's Pharmaceutical Sciences, (18th edition), ed. A. Gennaro, 1990, Mack Publishing Company, Easton, PA. Formulations for parenteral administration may, for example, contain excipients, sterile water, or saline, polyalkylene glycols such as polyethylene glycol, oils of vegetable origin, or hydrogenated napthalenes. Biocompatible, biodegradable lactide polymer, lactide/glycolide copolymer, or polyoxyethylene-polyoxypropylene copolymers may be used to control the release of the compounds. Other potentially useful parenteral delivery systems for XAF modulatory compounds include ethylenevinyl acetate copolymer particles, osmotic pumps, implantable infusion systems, and liposomes. Formulations for inhalation may contain excipients, for example, lactose, or may be aqueous solutions containing, for example, polyoxyethylene-9-lauryl ether, glycocholate and deoxycholate, or may be oily solutions for administration in the form of nasal drops, or as a gel.
  • If desired, treatment with a XAF protein, gene, or modulatory compound may be combined with more traditional therapies for the disease involving excessive apoptosis, such as surgery, steroid therapy, or chemotherapy for autoimmune disease; antiviral therapy for AIDS; and tissue plasminogen activator (TPA) for ischemic injury. Likewise, treatment with a XAF protein, gene, or modulatory compound may be combined with more traditional therapies for the disease involving insufficient apoptosis, such as surgery, radiation therapy, and chemotherapy for cancer.
  • XII. Detection of Conditions Involving Altered Apoptosis
  • XAF polypeptides and nucleic acid sequences find diagnostic use in the detection or monitoring of conditions involving aberrant levels of apoptosis. For example, decreased expression of XAF-1 may be correlated with decreased apoptosis in humans. Accordingly, a decrease or increase in the level of XAF-1 production may provide an indication of a deleterious condition. Levels of XAF expression may be assayed by any standard technique. For example, XAF expression in a biological sample (e.g., a biopsy) may be monitored by standard Northern blot analysis or may be aided by PCR (see, e.g., Ausubel et al., supra; PCR Technology: Principles and Applications for DNA Amplification, H.A. Ehrlich, Ed. Stockton Press, NY; Yap et al. Nucl. Acids. Res. 19: 4294, 1991).
  • Alternatively, a biological sample obtained from a patient may be analyzed for one or more mutations in XAF nucleic acid sequences using a mismatch detection approach. Generally, these techniques involve PCR amplification of nucleic acid from the patient sample, followed by identification of the mutation (i.e., mismatch) by either altered hybridization, aberrant electrophoretic gel migration, binding or cleavage mediated by mismatch binding proteins, or direct nucleic acid sequencing. Any of these techniques may be used to facilitate mutant XAF detection, and each is well known in the art; examples of particular techniques are described, without limitation, in Orita et al. (Proc. Natl. Acad. Sci. USA 86: 2766-2770, 1989) and Sheffield et al. (Proc. Natl. Acad. Sci. USA 86: 232-236, 1989).
  • In yet another approach, immunoassays are used to detect or monitor XAF protein expression in a biological sample. XAF-specific polyclonal or monoclonal antibodies (produced as described above) may be used in any standard immunoassay format (e.g., ELISA, Western blot, or RIA) to measure XAF polypeptide levels. These levels would be compared to wild-type XAF levels. For example, a decrease in XAF-1 production may indicate a condition involving insufficient apoptosis. Examples of immunoassays are described, e.g., in Ausubel et al., supra. Immunohistochemical techniques may also be utilized for XAF detection. For example, a tissue sample may be obtained from a patient, sectioned, and stained for the presence of XAF using an anti-XAF antibody and any standard detection system (e.g., one which includes a secondary antibody conjugated to horseradish peroxidase). General guidance regarding such techniques can be found in, e.g., Bancroft and Stevens (Theory and Practice of Histological Techniques, Churchill Livingstone, 1982) and Ausubel et al. (supra).
  • In one preferred example, a combined diagnostic method may be employed that begins with an evaluation of XAF protein production (for example, by immunological techniques or the protein truncation test (Hogervorst et al., Nature Genetics 10: 208-212, 1995) and also includes a nucleic acid-based detection technique designed to identify more subtle XAF mutations (for example, point mutations). As described above, a number of mismatch detection assays are available to those skilled in the art, and any preferred technique may be used. Mutations in XAF may be detected that either result in loss of XAF expression or loss of normal XAF biological activity. In a variation of this combined diagnostic method, XAF-1 biological activity is measured as apoptotic-inducing activity using any appropriate apoptosis assay system (for example, those described herein).
  • Mismatch detection assays also provide an opportunity to diagnose a XAF-mediated predisposition to diseases caused by inappropriate apoptosis. For example, a patient heterozygous for a XAF-1 mutation that induces a XAF-1 overexpression may show no clinical symptoms and yet possess a higher than normal probability of developing one or more types of neurodegenerative, myelodysplastic or having severe sequelae to an ischemic event. Given this diagnosis, patients may take precautions to minimize their exposure to adverse environmental factors (for example, UV exposure or chemical mutagens) and to carefully monitor their medical condition (for example, through frequent physical examinations). This type of XAF-1 diagnostic approach may also be used to detect XAF-1 mutations in prenatal screens. The XAF-1 diagnostic assays described above may be carried out using any biological sample (for example, any biopsy sample or other tissue) in which XAF-1 is normally expressed. Identification of a mutant XAF-1 gene may also be assayed using these sources for test samples.
  • Alternatively, a XAF mutation, particularly as part of a diagnosis for predisposition to XAF-associated degenerative disease, may be tested using a DNA sample from any cell, for example, by mismatch detection techniques. Preferably, the DNA sample is subjected to PCR amplification prior to analysis.
  • XIII. Preventative Anti-Apoptotic Therapy
  • In a patient diagnosed to be heterozygous for a XAF mutation or to be susceptible to XAF mutations or aberrant XAF expression (even if those mutations or expression patterns do not yet result in XAF overexpression or increased XAF biological activity), or a patient diagnosed with a degenerative disease (e.g., motor neuron degenerative diseases such as SMA or ALS diseases), or diagnosed as HIV positive, any of the above therapies may be administered before the occurrence of the disease phenotype. For example, the therapies may be provided to a patient who is HIV positive but does not yet show a diminished T cell count or other overt signs of AIDS. In particular, compounds shown to decrease XAF-1 expression or XAF-1 biological activity may be administered to patients diagnosed with degenerative diseases by any standard dosage and route of administration (see above). Alternatively, gene therapy using a antisense XAF-1 mRNA expression construct may be undertaken to reverse or prevent the cell defect prior to the development of the degenerative disease.
  • The methods described herein may be used to reduce or diagnose the disorders described herein in any mammal, for example, humans, domestic pets, or livestock. Where a non-human mammal is treated or diagnosed, the XAF polypeptide, nucleic acid, or antibody employed is preferably specific for that species.
  • XIV. Identification of Additional XAF Genes
  • Standard techniques, such as the polymerase chain reaction (PCR) and DNA hybridization, may be used to clone additional XAF homologues in other species. Southern blots of murine genomic DNA hybridized at low stringency with probes specific for human XAF reveal bands that correspond to XAF and/or related family members. Thus, additional XAF sequences may be readily identified using low stringency hybridization. Furthermore, murine and human XAF-specific primers may be used to clone additional XAF related genes by RT-PCR.
  • Thus far, we have identified multiple ESTs in the data base that have significant homology to XAF-1. From the EST sequences, we have made oligo primers and PCR cloned "XAF-2." The N terminus of the XAF-2 protein has five of the amino-terminal zinc fingers of XAF-1, with a unique carboxy terminus that has two additional RING zinc fingers, so that the entire XAF-2 protein, like XAF-1, has seven Zinc finger binding domains.
  • XV. Characterization of XAF Activity and Intracellular Localization Studies
  • The ability of XAF proteins to modulate apoptosis can be defined in in vitro systems in which alterations of apoptosis can be detected. Mammalian expression constructs carrying XAF cDNAs, which are either full-length or truncated, can be introduced into cell lines such as CHO, NIH 3T3, HL60, Rat-1, or Jurkat cells. In addition, SF9 insect cells may be used, in which case the XAF gene is preferentially expressed using an insect baculovirus expression system. Following transfection, apoptosis can be induced by standard methods, which include serum withdrawal, or application of staurosporine, menadione (which induces apoptosis via free radical formation), or anti-Fas or anti-TNF-R1 antibodies. As a control, cells are cultured under the same conditions as those induced to undergo apoptosis, but either not transfected, or transfected with a vector that lacks a XAF insert. The ability of each XAF construct to induce or inhibit apoptosis upon expression can be quantified by calculating the survival index of the cells, i.e., the ratio of surviving transfected cells to surviving control cells. These experiments can confirm the presence of apoptosis inducing activity of the full length XAF-1 protein and, as discussed below, can also be used to determine the functional region(s) of XAF-1 protein. These assays may also be performed in combination with the application of additional compounds in order to identify compounds that modulate apoptosis via XAF expression.
  • XVI. Examples of Additional Apoptosis Assays
  • Specific examples of apoptosis assays are also provided in the following references. Assays for apoptosis in lymphocytes are disclosed by: Li et al., "Induction of apoptosis in uninfected lymphocytes by HIV-1 Tat protein", Science 268: 429-431, 1995; Gibellini et al., "Tat-expressing Jurkat cells show an increased resistance to different apoptotic stimuli, including acute human immunodeficiency virus-type 1 (HIV-1) infection", Br. J. Haematol. 89: 24-33, 1995; Martin et al., "HIV-1 infection of human CD4+ T cells in vitro. Differential induction of apoptosis in these cells." J. Immunol. 152:330-342, 1994; Terai et al., "Apoptosis as a mechanism of cell death in cultured T lymphoblasts acutely infected with HIV-1", J. Clin Invest. 87: 1710-1715, 1991; Dhein et al., "Autocrine T-cell suicide mediated by APO-1/(Fas/CD95)", Nature 373: 438-441, 1995; Katsikis et al., "Fas antigen stimulation induces marked apoptosis ofT lymphocytes in human immunodeficiency virus-infected individuals", J. Exp. Med. 1815:2029-2036, 1995; Westendorp et al., "Sensitization of T cells to CD95-mediated apoptosis by HIV-1 Tat and gp120", Nature 375:497, 1995; DeRossi et al., Virology 198:234-244, 1994.
  • Assays for apoptosis in insect cells are disclosed by: Clem et al., "Prevention of apoptosis by a baculovirus gene during infection of insect cells", Science 254:1388-1390, 1991; Crook et al., "An apoptosis-inhibiting baculovirus gene with a zinc finger-like motif", J. Virol. 67:2168-2174, 1993; Rabizadeh et al., "Expression of the baculovirus p35 gene inhibits mammalian neural cell death", J. Neurochem. 61:2318-2321, 1993; Birnbaum et al., "An apoptosis inhibiting gene from a nuclear polyhedrosis virus encoding a polypeptide with Cys/His sequence motifs", J. Virol. 68:2521-2528, 1994; Clem et al., Mol. Cell. Biol. 14:5212-5222, 1994.
  • XVII. Construction of a Transgenic Animal
  • Characterization of XAF genes provides information that is necessary for XAF knockout animal models to be developed by homologous recombination. Preferably, the model is a mammalian animal, most preferably a mouse. Similarly, an animal model of XAF overproduction may be generated by integrating one or more XAF sequences into the genome, according to standard transgenic techniques.
  • A replacement-type targeting vector, which would be used to create a knockout model, can be constructed using an isogenic genomic clone, for example, from a mouse strain such as 129/Sv (Stratagene Inc., LaJolla, CA). The targeting vector will be introduced into a suitably-derived line of embryonic stem (ES) cells by electroporation to generate ES cell lines that carry a profoundly truncated form of a XAF gene. To generate chimeric founder mice, the targeted cell lines will be injected into a mouse blastula stage embryo. Heterozygous offspring will be interbred to homozygosity. Knockout mice would provide the means, in vivo, to screen for therapeutic compounds that modulate apoptosis via a XAF-dependent pathway. Making such mice may require use of loxP sites if there are multiple copies of XAF genes (i.e., genes encoding XAF-1 and another XAF polypeptide) on the chromosome (see Sauer and Henderson, Nucleic Aids Res. 17: 147-61, 1989).
  • The following examples are to illustrate the invention. They are not meant to limit the invention in any way.
  • EXAMPLE I cDNA and predicted amino acid sequences of cloned human XAF-1
  • Yeast 2-hybrid analysis (see USSN's 08/511,485 and related applications) with XIAP as the 'bait' protein identified a 37 kDa, RING zinc finger protein termed XAF-1 (XIAP associated factor 1). Methods
  • The plasmid pAS2-XIAP, which encodes the GAL4 DNA-binding domain fused to full-length XIAP, was constructed by inserting the coding region of full length XIAP into the pAS2 plasmid which is commercially available from Clontech. PAS2-XIAP was then used as bait (DNA-binding domain hybrid) in yeast two-hybrid screens of the human placenta cDNA library commercially available from Clontech. The yeast two-hybrid assay and isolation of positive clones and subsequent interaction analyses were carried out as described ( PCT Publication WO 95/28497 ). DNA sequence was performed on an Applied Biosytems model 373A automated DNA sequencer.
  • Results
  • Shown in Fig. 1 is the complete nucleotide sequence of XAF-1 cDNA determined for the coding strand (SEQ ID NO: 1; EMBL accession number X99699) and is shown with its encoded protein below in single letter code (SEQ ID NO.: 2). The asterisk indicates the stop codon. The entire XAF-1 protein is predicted to have seven zinc finger binding domains, six of which are located in the N-terminal 178 amino acids. XAF-1 displays significant homology to members of the TRAF family, particularly TRAF6, but lacks the TRAF-C and TRAF-N domains.
  • EXAMPLE II Predicted zinc fingers of XAF-1 amino-terminus Results
  • Shown in Fig. 2 is a schematic of the six predicted zinc finger binding domains corresponding to the N-terminal 178 amino acids of XAF-1 (SEQ ID NO.: 6).
  • EXAMPLE III Northern blot analysis of XAF-1 mRNA in multiple human tissues Methods
  • Using methods described in the art (see, for example, Ausubel, et al., supra), mRNA was collected from tissues from heart, brain, placenta, lunch, liver, skeletal muscle, kidney, pancreas, spleen, thymus, prostate, testis, ovary, small intestine, mucosal lining of the colon, and peripheral blood leukocytes. mRNA was also collected from the following cell lines:
    • HL-60, a promyelocytic leukemia;
    • HeLa/S3, a cervix epitheliod carcinoma;
    • K-562, a chronic myelogenous leukemia;
    • MOLT-4, a lymphobastic leukemia;
    • Raji, a Burkitt's lymphoma;
    • SW480, a colorectal adenocarcinoma;
    • A549, a lung carcinoma; and
    • G361, a melanoma.
  • The mRNA samples were electrophoretically resolved and transferred to a nitrocellulose membrane, which was then subjected to Northern blot analysis for the presence and expression levels of XAF-1 mRNA using radioisotope labeled XAF-1 cDNA as a probe (as described in Ausubel, et al., supra).
  • Additional mRNA was also collected from lung, trachea, and placenta, as well as various subunits of the brain, heart, testis, kidney, and fetal tissue. RNA from yeast and E. coli bacteria was also collected. This RNA, as well as DNA collected from human, E. coli bacteria, and yeast, was dot-blotted on a dot-blot apparatus, electrophoretically transferred to a nitrocellulose membrane, and probed with radioisotope labeled XAF-1 cDNA for the presence and expression levels of XAF-1 mRNA.
  • Results
  • mRNA encoding XAF-1 is clearly expressed in normal cells in various tissues. Fig. 3 shows a Northern blotting analysis reveals XAF-1 mRNA to be widely distributed among the various tissues tested, with expression levels highest in the heart, placenta, spleen, thymus, ovary, small intestine, mucosal lining of the colon, and peripheral blood leukocytes. XAF-1 mRNA is also present in K-562 and MOLT-4 leukemic cell lines.
  • The dot-blot analysis of various tissues shown in Fig. 4 reveals that XAF-1 mRNA is widely distributed among the various indicated regions of the brain, heart, testes, kidney, lung, trachea, placenta, and fetal tissue. XAF-1 mRNA is not found, however, in yeast or the E. coli strain of bacteria.
  • EXAMPLE IV Genomic southern blot analysis of XAF-1 Methods
  • Genomic DNA was prepared from HEC38-0 human endometrial adenocarcinoma cells available from the ATCC (Bethesda, Maryland) and Raji cells, digested with BamHl, EcoR1 and HindIII restriction endonucleases, electrophoretically resolved and transferred to a nitrocellulose membrane. Membrane bound DNA was subjected to Southern blot analysis using radioisotope labeled XAF-1 cDNA as a probe.
  • Results
  • As shown in Fig. 5, the gene encoding XAF-1 appears to be limited in copy number in the human genome and is the same in both HEC38-0 and Raji cells, indicating that there is most likely only one gene encoding XAF-1, and that this gene is the same in the two cell lines assayed.
  • EXAMPLE V Western blot analysis of XAF-1 protein in various cell lines Methods
  • A number of transformed, immortalized and a primary cell line were tested by Western blot analysis for the presence and expression levels of XAF-1 protein using mouse polyclonal anti-XAF-1 antisera, which were obtained by providing GST-fusion proteins of XAF-1 and XIAP to the MBL Co., Ltd. (Japan) for use as immunogens. Cells were lysed, and lysates SDS-PAGE resolved, electrophoretically transferred to a nylon membrane, and immunoblotted with anti-XAF-1 polyclonal antisera. The membrane-bound proteins were then blotted with commercially available horseradish peroxidase conjugated anti-mouse secondary antibody and visualized with a chemiluminescent substrate.
    The cell lines used in Western blotting analysis were:
    • HeLa: Epitheliod carcinoma, cervix, human;
    • A431: Epidermoid carcinoma, human;
    • SUDHL6: Hodgekin's lymphoma, human;
    • P 19: Embryonal carcinoma, mouse;
    • cos-7: Kidney fibroblast, SV40 transformed, African green monkey;
    • 293T: Adenovirus type 5 transformed primary embryonal kidney, human;
    • CHO: Chinese hamster ovary;
  • For use as a positive control for Western blotting analysis, 293Tcells transiently expressing a myc-tagged XAF-1 protein were generated by the following method:
  • 293 T cells (2 x 105) were transfected with 4 µg of plasmid DNA encoding XAF-1 by standard lipofection methods using Trans-IT lipofection reagent commercially available from Mirus.
  • Results
  • Shown in Fig. 6 is the Western blotting analysis of the various cell lines for XAF-1 expression. By this type of analysis, XAF-1 expression appears to be ubiquitous, with low levels seen in a number of transformed cell lines.
  • EXAMPLE VI XAF-1 constructs and expression Methods
  • Mammalian expression vectors encoding full length XAF-1, the N-terminal 173 amino acids of XAF-1 containing six potential zinc fingers, including the region with significant homology to TRAF4 and TRAF6 (XAF-1N; SEQ ID NO.: 7), the C-terminal 173-317 amino acids of XAF-1 containing a single potential zinc finger domain (XAF-1C; SEQ ID NO.: 8) were constructed by insertion of each coding region into the pcDNA3-myc expression vector which contains an N-terminal c-myc epitope sequence (similar vectors are commercially available from Invitrogen). To generate the XAF-1 antisense construct, a 720 bp fragment of XAF-1 corresponding to 723-1 nucleotides (non-coding orientation) was cloned into the pcDNA3 expression vector (Invitrogen).
  • 293T cells (2 x 105) were transiently transfected with 4 µg of plasmid DNA encoding XAF-1, XAF-1N, or XAF-1C by standard lipofection methods using Trans-IT lipofection reagent commercially available from Mirus. About 48 hours following transfection, the cells were lysed, and 106 cell equivalents were resolved by SDS-PAGE and electrophoretically transferred to a nylon membrane. The membrane-bound proteins were then immunoblotted with an anti-myc monoclonal antibody (9E10) (commercially available from Amersham Life Sciences), followed by a commercially available horseradish peroxidase conjugated secondary anti-mouse antibody. Immunoreactive proteins were visualized by chemiluminescence following addition of substrate.
  • Results
  • Shown in Fig. 7 are schematic diagrams of the polypeptides encoded for by the various XAF-1 constructs. Although XAF-1 antisense is shown here in the "coding" orientation, in the vector, it inserted and expressed in the "non-coding" orientation.
  • Shown in Fig. 8 is the Western blot analysis of 293T cells transiently transfected with XAF-1, XAF-1N and XAF-1C probed with anti-c-myc antibody. The expressed proteins show correct electrophoretic mobility predicted from the amino acid sequences.
  • EXAMPLE VII Effect of XAF-1 overexpression on cell survival. Methods
  • Recombinant adenoviruses were constructed that overexpress either the LacZ protein (negative control), p53 (positive control for cell cycle arrest), or the XAF-1 protein. HeLa (cervical carcinoma, available from the ATCC, Bethesda, MD) and HEL (human embryonic lung epithelial cells, available from the ATCC, Bethesda, MD) were infected with recombinant adenovirus at a multiplicity of infection (MOI) of 10. Triplicate samples of infected cells were harvested at t=0, 24, 48, 72, and 96 hours post infection. Cell viability was assessed using standard MTT assays. Briefly, the media was removed from the well and replaced with 1/10 volume of MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazoleum bromide, available from Sigma) in phosphate buffered saline and incubated at 37°C for 4 hours. Converted dye was then extracted using acidic isopropanol (0.1 N HCl in 100% isopropanol) and absorbance determined at 570 nm in a spectrophotometer. Conversion of the substrate to the 570 nm absorbing dye is carried out by mitochondrial enzymes active in living, but not dead cells.
  • The methods are further described in: Carmichael, J. et al., (1987) Cancer Res. 47:936-942 and Miyake, S et al., (1996) Proc. Natl. Acad. Sci. USA 93:1320-1324.
  • Results
  • As seen in Figs. 9 and 10, adenovirus-LacZ had no effect on cell viability (compare to the control, CON, which were not infected). In contrast, p53 induced a profound decrease in the number of viable cells when primary HEL cells are used (Fig. 9), but not in the HeLa cancer cell line (Fig. 10). The XAF-1 expressing adenovirus resulted in a similar decrease in the number of viable cells in both HEL and HeLa cell lines. The decrease in viability in the HeLa cell lines would therefore seem to be p53a independent. Photographs of adeno-LacZ infected, adeno-p53 infected and adeno-XAF-1 infected HEL (Figs. 11A, 11B, 11C) and HeLa cells (Figs. 12A, 12B, 12C) are included. The morphology of the XAF-1 overexpressing HEL cells is consistent with cell cycle arrest. In contrast, the XAF-1 overexpressing HeLa cells demonstrate classical features of apoptosis, including pyknotic nuclei and extensive blebbing. Photographs were taken four days post-infection using a standard phase-contrast, inverted tissue culture microscope.
  • EXAMPLE VIII Cell cycle analysis on XAF-1 overexpressing HEL and HeLa cells Methods
  • 1 × 105 HeLa or HEL cells were infected at an MOI of 10 with recombinant adenoviruses expressing either LacZ (negative control), p53 (positive control for cell cycle arrest) or XAF-1. Cells were harvested at 96 hours post-infection, rinsed with PBS and fixed with 100% ethanol. Fixed cells were centrifuged 5 min at 1000 rpm; the ethanol removed, and the cells resuspended in 1 ml PBS. 100 µl of 0.1 mg/ml RNAse was added and the cells incubated at 37°C for 30 minutes. 100 µl of 1 mg/ml propidium iodide was added to stain for DNA content. Cells were then analyzed on a FACS machine and cell cycle effects examined.
  • Results
  • In HEL cells, adeno-LacZ infection had no effect on the cell cycle profiles (compare Fig. 13A [uninfected] with Fig. 13B [LacZ infected]). In contrast, both p53 (Fig. 13C) and XAF-1 (Fig. 13D) expressing adenoviruses caused a virtually complete cessation of cell cycle and a G1 arrest (note absence of S phase cells and accumulation of G1 arrested cells). The effects of p53 and XAF-1 were identical. Infection of HeLa cells with the LacZ virus had no effect, as seen in Figs. 14A and 14B). In contrast to the HEL cells, HeLa cells did not arrest when infected with the adeno-p53 virus (Fig. 14C). With the adeno-XAF-1 virus, HeLa cells did not arrest in G1, but instead underwent apoptosis (Fig. 14D). (Note: the changing scales on the FACS outputs give the impression of a G2 arrest [i.e., cell with 2n DNA]. In fact, the numbers of cells in S and G2 did not change significantly). There is a loss of G 1 cells and an increase in the number of cells with less than In DNA content, indicating apoptosis.
  • EXAMPLE IX Chromosomal localization of the XAF-1 gene by fluorescent in situ hybridization (FISH). Methods
  • FISH was performed on freshly isolated mouse spleen lymphocytes cultured in RPMI 1640 media containing 15% fetal calf serum, 3 µg/ml concanavalin A, 10 µg/ml lipopolysaccharide, and 50 nM mercaptoethanol. Lymphocytes were synchronized with 180 µg/ml BrdU for 14 hours followed by 4 hr growth in α-MEM containing 2.5 µg/ml thymidine. Chromosome spreads were prepared on slides using hypotonic lysis, after which the chromosomes were fixed and air dried. 1 µg of DNA probe derived from a XAF-1 specific genomic phage clone was labeled with biotinylated dATP using the BRL BioNick labeling kit at 15°C for 1 hr (Gibco BRL). Slides were baked at 55°C for 1 hr, RNAse A treated, and the chromosomes denatured in 70% formamide in 2xSSC for 2 min at 70°C, followed by ethanol dehydration. Probe hybridization to the denatured chromosomes was performed overnight in 50% formamide, 10% dextran sulphate, 1 µg/ml mouse cot I DNA. Slides were washed with 2xSSC/50% formamide followed by 2xSSC at 42°C. Biotin labeled DNA was amplified and detected using fluorescein isothiocyanate conjugated avidin and anti-avidin antibodies (Fig. 15A). Chromosomes were counterstained with Giemsa and photographed (Fig. 15B).
  • Results
  • The XAF-1 gene was found to map to the extreme end of chromosome 17, in the p13.3 region. This region is known to encode an as yet unidentified tumor suppressor gene(s). This tumor suppressor gene is believed to be involved in a large number of tumor types, including uterine cervical carcinoma (Park et al., Cancer Genet. Cytogenet. 79: 74-78, 1995), breast tumors (Cornelis et al., Cancer Res. 54: 4200-4206, 1994 , Merlo et al., Cancer Genet. Cytogenet. 76: 106-111, 1994), gastric carcinoma (Kim et al., Lab. Invest. 72: 232-236, 1995), ovarian epithelial cancer (Wertheim et al., Oncogene 12: 2147-2153, 1996), pediatric medulloblastoma (McDonald et al., Genomics 23: 229-232, 1994, reviewed in Cogan and McDonald, J. of Neuro-Oncology 29: 103-112, 1996) and lung carcinoma (White et al., Br. J. Cancer 74: 863-870, 1996). Thus XAF. maybe a tumor suppressor and therapies designed to over-express XAF-1 in cancer cells may be effective (i.e., gene therapy, compounds that up-regulate endogenous XAF-1 or compounds that activate the XAF-1 pathway). Furthermore, the XAF-1 gene may provide an important staging/prognostic indicator in cancer diagnostics through the development of a LOH type assay using PCR based detection of microsatellites in the XAF-1 locus.
  • EXAMPLE X Sub-cellular localization of the XAF-1 Protein. Methods
  • Triplicate plates of HeLa cells (ATCC, Bethesda, MD) were infected with a recombinant adenovirus expressing the XAF-1 open reading frame under the control of the chicken β-actin promoter at a multiplicity of infection of 10. At 48 hrs post infection, the cells were harvested in 5 ml of phosphate buffered saline, pelleted by low speed centrifugation (5 min, 1000 rpm in a Beckman JA-10 rotor at 4°C), and cell extracts prepared as follows:
    • cells were washed with isotonic Tris buffered saline (pH 7.0)
    • cells were lysed by freeze/thawing 5 times in Cell Extraction Buffer (50 mM PIPES, 50 mM KCℓ, 5 mM EGTA, 2 mM MgCl2, 1 mM DTT, and 20 µM cytochalasin B)
    • nuclei were pelleted by centrifugation at 5000 rpm in a JA-17 rotor for 5 minutes. Nuclear pellet was resuspended in isotonic Tris pH7.0, and frozen at - 80°C.
    • cytoplasmic extract was further processed by centrifugation at 60,000 rpm in a TA 100.3 rotor for 30 minutes. Supernatant (cytoplasmic extract) was frozen at -80°C. Pelleted material (membrane fraction) was resuspended in isotonic Tris pH 7.0, and frozen.
    • nuclear, membrane, and cytoplasmic fractions were electrophoresed on a 12.5% SDS polyacrylamide gel, and electroblotted onto PVDF membranes.
    • Western blotting was first performed using rabbit polyclonal anti-XAF-1 antibody at a concentration of 1:1,500 in Tris buffered saline containing 0.5% NP-40 and 3% skim milk powder. The secondary antibody was a horseradish peroxidase coupled goat anti-rabbit IgG (Amersham) used at 1:2000 dilution in the same buffer system. Chemiluminescent detection of bound antibody was performed using Amersham's ECL kit according to the manufacturer's directions. The membrane was then re-probed with polyclonal anti-XIAP antibody at 1:2000 dilution and processed as above.
    Results
  • Fig. 16A demonstrates that the vast majority of the adenovirus expressed XAF-1 protein fractionates in the nuclear compartment. A very small fraction of the protein was observed in the membrane fraction, likely as a result of incomplete separation of the nuclear and membrane fractions. None of the protein was observed in the cytoplasmic fraction. Fig. 16B demonstrates that overexpression of the XAF-1 protein resulted in a re-distribution of >1/2 of the endogenous XIAP protein from the cytoplasmic fraction to the nuclear fraction. One explanation for this is that the function of XAF-1 is to relocate the XIAP protein to its 'real' site of action, in the nucleus. Alternatively, XIAP may be interfering with the function of XAF-1 in the nucleus.
  • EXAMPLE XI XAF-1 protein is found in the nucleus by GFP staining. Methods
  • An expression vector called pGFP-XAF-1 was constructed that generates a fusion protein between green fluorescent protein (GFP) and XAF-1 (Clontech). The coding region of GFP was fused to the amino terminus of the full length XAF-1 coding region.
    CHO-K1 cells or 3Y1 primary rat embryo fibroblast cells from Fischer rat fetus (available from the Riken gene bank, Tsukuba, Japan) were transiently transfected by standard lipofection methods using the Trans-IT lipofection reagent commercially available from Mirus with pGFP or pGFP-XAF-1. 24 hours following transfection, the cells were visualized on a fluorescent microscope with a blue filter.
  • All cells were counter stained with evans blue.
  • Results
  • Figs. 17A, 17B, and 17C are photographs of transfected CHO-K1 cells. Figs. 17A and 17B show that in CHO-K1 cells transiently transfected with pGFP-XAF-1, the GFP-labeled XAF-1 protein was localized to the nucleus. This is in contrast to the GFP homogenously distributed throughout the cytoplasm and nucleus in the CHO-K1 cells transiently transfected with pGFP shown in Fig. 17C.
  • Figs. 18A and 18B show that GFP is homogenously distributed throughout the cytoplasm and nucleus in 3Y1 cells transiently transfected with pGFP.
  • Figs. 19A and 19B show that GFP-labeled XAF-1 protein is localized to the nucleus in 3Y1 cells transiently transfected with pGFP-XAF-1.
  • We have furthermore found that XAF-1 expression resulted in a re-distribution of XIAP protein from the cytoplasm to the nucleus.
  • EXAMPLE XII Neither XAF-1 nor mammalian IAPs over-expression can induce NF-κB activation in 293 T cells.
  • The members of the growing family of TRAF proteins each possesses an amino terminal RING zinc finger and/or additional zinc fingers, a leucine zipper, and a unique, conserved carboxy terminal coiled coil motif, the TRAF-C domain, which defines the family. TRAF1 and TRAF2 were first identified as components of the TNF-R2 signaling complex (Rothe et al., Cell 78: 681-692, 1994). The interaction of the TRAF proteins are complex, reflecting their putative role as adapter molecules that exhibit no apparent enzymatic activity themselves.
  • Methods
  • Mammalian expression vectors encoding XAF-1, HIAP-1, HIAP-2, XIAP, TRAF1, TRAF2, TRAF3, TRAF4, TRAF5, TRAF6, RIP, and TRADD were constructed by insertion of each coding region into the pcDNA3-myc expression vector which-contains an N-terminal c-myc epitope sequence (similar vectors are commercially available from Invitrogen). The NF-κB firefly luciferase reporter plasmid pELAM-Lu was constructed by insertion of PCR-amplified E-selectin promoter sequences from position -730 to position 52 into the pGL3-Basic vector which is commercially available from Promega.
  • 293T cells were seeded into collagen-coated six-well plates at 2 x 105 cells per well 24 hrs before transfection. Cells were then transfected with 0.5 µg of pELAM-Lu reporter plasmid, 0.05 µg of pRL-CMV, 1 µg of indicated expression plasmid and enough pCMV-myc control plasmid to give 4 µg of total DNA by standard lipofection methods using Trans-IT lipofection reagent commercially available from Mirus. Twenty-four hours after transfection, cells were washed with PBS and lysed in 400 µl of Passive Lysis Buffer commercially available from Promega. Lysate (20µl) from each sample was used to measure firefly luciferase activity. Firefly luciferase activity was determined and normalized on the basis of Renilla luciferase expression level. Luciferase activity was measured in a model TD20/20 luminometer using the Dual luciferase assay system according to the manufacture's protocol (Promega). Values shown are averages for an experiment in which each transfection was performed in duplicate.
  • Results
  • XAF-1, HIAP-1, HIAP-2, and XIAP do not induce NF-κB activation in 293 T cells. As shown in Fig. 20, when expressed singly in 293T cells, none of the IAPs or XAF-1 resulted in measurable activation of NF-κB, as measured by luciferase activity. TRAF2, TRAF5, TRAF6, RIP, and TRADD expression plasmids, however, all strongly transactivated the reporter gene. TRAF1, TRAF3, and TRAF4 failed to transactivate the reporter.
  • We have also obtained data showing that XIAP can activate NF-κB in HeLa cells.
  • EXAMPLE XIII Co-expression of XAF-1 and mammalian IAPs do not induce NF-κB activation in 293 T cells. Methods
  • 293T cells were seeded into collagen-coated six-well plates at 2 x 105 cells per well 24 hrs before transfection. Cells were then transfected with 0.5 µg of pELAM-Lu reporter plasmid, 0.05 µg ofpRL-CMV, 4 µg of indicated expression plasmid(s) and enough pCMV-myc control plasmid to give 5 µg of total DNA by standard lipofection methods using Trans-IT lipofection reagent commercially available from Mirus. Twenty-four hours after transfection, cells were washed with PBS and lysed in 400 µl of Passive Lysis Buffer commercially available from Promega. Lysate (20 µl) from each sample was used to measure firefly luciferase activity. Firefly luciferase activity was determined and normalized on the basis of Renilla luciferase expression level. Luciferase activity was measured in a model TD20/20 luminometer using the Dual luciferase assay system according to the manufacture's protocol (Promega). Values shown are averages for an experiment in which each transfection was performed in duplicate.
  • Results
  • As shown in Fig. 21, none of the IAPs, alone, or in combination with XAF-1, resulted in measurable activation of NF-κB when expressed in 293T cells. Expression of TRAF6, shown here as a positive control, did induce NF-κB activation.
  • EXAMPLE XIV Dose response effect of XAF-1 expression on TRAF6-mediated NF-κB activation Methods
  • 293T cells were seeded into collagen-coated six-well plates at 2 x 105 cells per well 24 hrs before transfection. Cells were then transfected with 0.5 µg of pELAM-Lu reporter plasmid, 0.1 µg of pRL-CMV, 0.5 µg of pCMV-TRAF6, indicated amounts of pCMV-XAF-1 and enough pCMV-myc control plasmid to give 4 µg of total DNA by standard lipofection methods using Trans-IT lipofection reagent commercially available from Mirus. Twenty-four hours after transfection, cells were washed with PBS and lysed in 400 µl of Passive Lysis Buffer commercially available from Promega. Lysate (20 µl) from each sample was used to measure firefly luciferase activity. Firefly luciferase activity was determined and normalized on the basis of Renilla luciferase expression level. Luciferase activity was measured in a model TD20/20 luminometer using the Dual luciferase assay system according to the manufacture's protocol (Promega). Values shown are averages for an experiment in which each transfection was performed in duplicate.
  • Results
  • As the results shown in Fig. 22 demonstrate, although expression of TRAF6 was by itself capable of inducing NF-κB activity, co-expression of TRAF6 with XAF-1 resulted in an increased level of NF-κB activation which increased as the amount of XAF-1 expression increased. Hence, XAF-1 was able to enhance the NF-κB inducing abilities of TRAF6.
  • EXAMPLE XV Dose response effect of XIAP expression on TRAF6-mediated NF-κB activation Methods
  • 293T cells were seeded into collagen-coated six-well plates at 2 x 105 cells per well 24 hrs before transfection. Cells were then transfected with 0.5 µg of pELAM-Lu reporter plasmid, 0.1 µg of pRL-CMV, 0.5 µg of pCMV-TRAF6, indicated amounts of pCMV-XIAP and enough pCMV-myc control plasmid to give 4 µg of total DNA by standard lipofection methods using Trans-IT lipofection reagent commercially available from Mirus. Twenty-four hours after transfection, cells were washed with PBS and lysed in 400 µl of Passive Lysis Buffer commercially available from Promega. Lysate (20 µl) from each sample was used to measure firefly luciferase activity. Firefly luciferase activity was determined and normalized on the basis of Renilla luciferase expression level. Luciferase activity was measured in a model TD20/20 luminometer using the Dual luciferase assay system according to the manufacture's protocol (Promega). Values shown are averages for an experiment in which each transfection was performed in duplicate.
  • Results
  • The results shown in Fig. 23 demonstrate that although expression of TRAF6 was by itself capable of inducing NF-κB activity, co-expression of TRAF6 with XIAP resulted in an increased level of NF-κB activation which increased as the amount of XIAP expression increased. Hence, XIAP was able to enhance the NF-κB inducing abilities of TRAF6.
  • EXAMPLE XVI Synergistic effect of XAF-1 and XIAP expression on TRAF6- and TRAF2 mediated NF-κB activation Methods
  • 293T cells were seeded into collagen-coated six-well plates at 2 x105 cells per well 24 hrs before transfection. Cells were then transfected with 0.5 µg of pELAM-Lu (pGL3-E-selectin promoter) and 0.05 µg of pRL-CMV, 1 µg of pCMV-TRAF6 or 1 µg of pCMV-TRAF2, 1 µg of pCMV-XAF-1 and/or pCMV-XIAP, and enough pCMV-myc control plasmid to give 4 µg of total DNA by standard lipofection methods using Trans-IT lipofection reagent (Mirus). Twenty-four hours after transfection, cells were washed with PBS and lysed in 400 µl of Passive Lysis Buffer (Promega). Lysate (20 µl) from each sample was used to measure firefly luciferase activity. Firefly luciferase activity was determined and normalized on the basis of Renilla luciferase expression level. Luciferase activity was measured in a model TD20/20 luminometer (Promega) using Dual luciferase assay system according to the manufacture's protocol (Promega). Values shown are averages for an experiment in which each transfection was performed in duplicate.
  • Results
  • XIAP and XAF-1 were additive in their effects on TRAF6 mediated NF-κB transactivation, as shown on Fig. 24. Fig. 25 indicates that XIAP and XAF-1 were also able to assist in TRAF2 mediated NF-κB transactivation, although to a lesser extent than their assistance in TRAF6 mediated NF-κB transactivation. Hence, XIAP and XAF-1 work synergistically in their signal transducing capabilities.
  • EXAMPLE XVII C-terminus of XAF-1 enhances TRAF6-mediated NF-κB activation Methods
  • Expression plasmids that express either the amino terminal domain of XAF-1 containing six potential zinc fingers, including the region with significant homology to TRAF4 and TRAF6 (XAF-1N) or the carboxy terminus containing a single potential zinc finger domain (XAF-1C) were tested for their capacity to augment TRAF6 mediated NF-κB activity.
  • 293T cells (2 x 105) were transfected with 0.5 µg of pELAM-Lu reporter plasmid, 0.1 µg of pRL-TK commercially available from Promega, 0.5 µg of pCMV-TRAF6, 1 µg of indicated expression plasmid and enough pCMV-myc control plasmid to give 4 µg of total DNA. Firefly luciferase activity was determined 24 hrs after transfection and normalized on the basis of Renilla luciferase expression level. Values shown are averages for an experiment in which each transfection was performed in duplicate.
  • Results
  • As Fig. 26 demonstrates, we have found that the carboxy terminus ofXAF-1 protein mediates the additive effect of XAF-1 on TRAF6 induction of NF-κB. XAF-1N expression did not augment the ability to TRAF6 to induce NF-κB, whereas XAF-1C augmented NF-κB induction by TRAF6 substantially. Full length XAF-1, as we showed previously in Fig. 21, clearly enhanced TRAF6 induction of NF-κB.
  • EXAMPLE XVIII Inhibitory effect of antisense XAF-1 expression on TRAFS-and TRAF6-mediated NF-κB activation in 293 T cells. Methods
  • To generate the bcl-2 antisense construct, a 1.5 kb EcoRI fragment of bcl-2 was cloned in a non-coding orientation into the pcDNA3 plasmid commercially available from Invitrogen.
  • 293T cells (2 x 105) were transfected with 0.5 µg of pELAM-Lu reporter plasmid, 0.1 µg of pRL-TK commercially available from Promega, 0.5µg of pCMV-TRAF5 or pCMV-TRAF6, 3 µg of indicated antisense plasmid:antisense XAF-1 (240-1) or antisense bcl-2 (450-23), and enough pCMV-myc control plasmid to give 5 µg of total DNA. Firefly luciferase activity was determined 24 hrs after transfection and normalized on the basis of Renilla luciferase expression level. Values shown are averages for an experiment in which each transfection was performed in duplicate.
  • Results
  • Fig. 27 demonstrates that expression of antisense XAF-1 significantly inhibited TRAF6 induced activation of NF-κB and, to a lesser extent, TRAF5 induced activation of NF-κB. This inhibition was specific to XAF-1 since antisense bcl-2 did not have the same effect.
  • EXAMPLE XIX Inhibitory effect of antisense XAF-1 expression on IL- 1β-induced NF-κB activation Methods
  • 293T cells (2 x 105) were transfected with 0.5 µg of pELAM-Lu reporter plasmid, 0.1 µg of pRL-TK commercially available from Promega, indicated amounts of antisense plasmid:antisense XAF-1 (240-1) or antisense bcl-2 (1486-23), and enough pCMV-myc control plasmid to give 5 µg of total DNA. 24 hrs after transfection, cells were treated for 6 hrs with 20 ng/ml of interleukin-1β (IL-1β). Firefly luciferase activity was determined after IL-1β treatment and normalized on the basis of Renilla luciferase expression level. Values shown are averages for an experiment in which each transfection was performed in duplicate.
  • Results
  • As shown on Fig. 28, expression of antisense XAF-1 inhibited interleukin-1β induced activation of NF-κB. This inhibition was specific to XAF-1 since antisense bcl-2 does not have the same effect
  • EXAMPLE XX Dose response effect of XAF-1 expression on IL-1β-induced NF-κB activation Methods
  • 293T cells (2 x 105) were transfected with 0.5 µg of pELAM-Lu reporter plasmid, 0.1 µg of pRL-TK commercially available from Promega, indicated amounts of pCMV-XAF-1 and enough pCMV-myc control plasmid to give 5 µg of total DNA. 24 hrs after transfection, cells were treated for 6 hrs with 20 ng/ml of interleukin-1 β (IL-1β). Firefly luciferase activity was determined after IL-1β treatment and normalized on the basis of Renilla luciferase expression level. Values shown are averages for an experiment in which each transfection was performed in duplicate.
  • Results
  • Expression of full length XAF-1 augmented interleukin-1β mediated induction of NF-κB in a dose-dependent manner, as is demonstrated in Fig. 29.
  • EXAMPLE XXI Inhibitory effect of A20 expression on TRAF2- TRAF5- and TRAF6-mediated NF-κB activation
  • The A20 protein is induced by NF-κB and binds to both TRAF1 and TRAF2, again via the TRAF-C domain. Binding of A20 to TRAF2 interferes with NF-κB activation in a negative feed-back loop (Song et al., Proc. Natl. Acad. Sci. USA 93: 6721-6725,1996). It has previously been established that over-expression of A20 can render cells resistant to the apoptotic effects of TNFα (Opipari et al., J. Biol. Chem. 267: 12424-12427, 1992), and may also participate in rendering B cells resistant to apoptosis following CD40 signaling (Sarma et al., 270: 12353-12346, 1995).
  • Methods
  • 293T cells (2 x 105) were transfected with 0.5 µg of pELAM-Lu reporter plasmid, 0.1 µg of pRL-TK commercially available from Promega, 0.5 µg of pCMV-TRAF2, pCMV-TRAF5 or pCMV-TRAF6, 0.3 µg of pCMV-A20 and enough pCMV-myc control plasmid to give 4 µg of total DNA. Firefly luciferase activity was determined 24 hrs after transfection and normalized on the basis of Renilla luciferase expression level. Values shown are averages for an experiment in which each transfection was performed in duplicate
  • Results
  • In the experiments shown in Fig. 30, co-transfection of an A20 expression vector with either TRAF2, TRAF5 or TRAF6 resulted in virtually complete inhibition of NF-κB transactivation.
  • EXAMPLE XXII XAF-1 counters the effect of A20 expression on TRAF6 mediated induction of NF-κB Methods
  • 293T cells (2 x 105) were transfected with 0.5 µg of pELAM-Lu reporter plasmid, 0.1 µg of PRL-TK commercially available from Promega, 0.5 µg of pCMV-TRAF6, 2 µg of pCMV-XAF-1, indicated amounts of pCMV-A20 and enough pCMV-myc control plasmid to give 5 µg of total DNA. Firefly luciferase activity was determined 24 hrs after transfection and normalized on the basis of Renilla luciferase expression level. Values shown are averages for an experiment in which each transfection was performed in duplicate.
  • Results
  • As shown in Fig. 31, XAF-1 expression had a partial neutralizing effect on the A20-mediated inhibitory function of TRAF6-mediated NF-κB activation.
  • EXAMPLE XXIII Interaction of XAF-1 with the various TRAFs and mammalian IAPs Methods
  • XIAP and XAF-1 coding regions were cloned in frame into the pGEX-4T-1 expression vector which is commercially available from Pharmacia. Expression and purification of GST-fusion proteins were performed essentially according to the manufacturer's protocol (Pharmacia).
  • 293T cells were transiently transfected with myc-epitope tagged TRAFs and mammalian IAPs expression vectors (5 µg). After 36 hrs, cells were lysed and cell lysates were incubated with GST-XAF-1 fusion protein or GST-control protein (Glutathione-S-transferase from Schistosoma Japonicum) immobilized on 10 µl of glutathione beads. Protein adsorbed to beads were analyzed by SDS-PAGE, followed by Western blotting using anti-c-myc monoclonal antibody (9E10).
    Lanes were loaded as follows:
    • lane 1: HIAP-2,
    • lane 2: TRAF1,
    • lane 3: TRAF2,
    • lane 4: TRAF3,
    • lane 5: A20.
    Proteins in a lanes were affinity-purified with the GST-XAF-1 fusion protein. Proteins in b lanes were affinity-purified with the GST-control protein. Results
  • GST interaction analysis indicated that XAF-1 can form complexes with a variety of cellular proteins, including HIAP-2, TRAF1, TRAF2, and A20, as is shown on Fig. 32. In this type of analysis, indirect interactions cannot be distinguished from direct binding. For instance, XAF-1 may bind TRAF2 directly (as shown by two-hybrid analysis) which in turn can interact with either TRAF1 or A20.
  • EXAMPLE XXIV In vitro translated TRAF2 and HIAP-1 bind XAF- 1 Methods
  • 35S-labeled in vitro translated proteins were generated by using the various TRAF2 and HIAP-1 expression constructs in pCDNA3-myc with the TNT T7 Coupled Reticulocyte Lysate System, according to the manufacturer's descriptions (Promega) and 35S labeled methionine, commercially available from DuPont/NEN.
  • 35S-labeled in vitro translated proteins were incubated with GST-XAF-1 fusion protein or GST-control protein immobilized on 10 µl of glutathione beads. Protein adsorbed to beads were analyzed by SDS-PAGE. The protein bearing gel was then dried, and adsorbed proteins were detected by autoradiography of the gel. The lanes were loaded as follows:
    • lane 1: HIAP1,
    • lane 2: TRAF2.
    Proteins in a lanes were affinity-purified with the GST-XAF-1 fusion protein. Proteins in b lanes were affinity-purified with the GST-control protein. Results
  • As shown in Fig. 33, both in vitro translated HIAP-1 and TRAF2 bound the GST-XAF-1 fusion protein, but do not bind the GST control protein. Since this experiment was done in a cell-free system, we have demonstrated that the HIAP-1:XAF-1 and the TRAF2:XAF-1 interactions are direct.
  • EXAMPLE XXV XAF-1 directly interacts with XIAP, HIAP-1, HIAP-2, and TRAF2 Methods
  • The plasmids pAS2-XIAP, pAS2-HIAP-1, pAS2-HIAP-2, pAS2-TRAF2, pAS2-TRAF4, pAS2-XAF-1, and pAS2 (vector only) which encode the GAL4 DNA-binding domains fused to indicated full-length proteins, were used as baits (DNA-binding domain hybrids) in two-hybrid screens ofpGAD GH plasmids (commercially available from Clontech) encoding XIAP, HIAP-1, HIAP-2, TRAF2, TRAF4, and XAF-1 as preys (activation domain hybrids). The yeast two-hybrid assay and isolation of positive clones and subsequent interaction analyses were carried out as described elsewhere ( PCT Publication WO 95/28497 ). DNA sequence was performed on an Applied Biosytems model 373A automated DNA sequencer.
  • Results
  • Shown in Fig. 34 is a listing of the XAF-1 interactions with mammalian IAPs and TRAFs found in the yeast two-hybrid assay. Our results indicated that XAF-1 directly interacts with XIAP, HIAP-1, HIAP-2, and TRAF2 (but not TRAF4). As has been established in the literature, TRAF2 can interact with TRAF 1 or A20. Since we have shown here in yeast two-hybrid analysis that XAF-1 binds TRAF2 directly, it may be through this interaction that XAF-1 is able to form a complex with TRAF1 and A20, as we showed in Fig. 32.
  • EXAMPLE XXVI Identification and Cloning of human XAF-2 Methods
  • We screened the database for ESTs that have significant homology to XAF-1. A number of such ESTs were identified. From the EST sequences, we have made oligonucleotide primers and PCR cloned a cDNA encoding a protein which we have named "XAF-2."
  • Results
  • Fig. 35 shows the partial 5' nucleic acid (SEQ ID NO.: 3) and N-terminal amino acid (SEQ ID NO.: 4) sequences of the long splice variant of XAF-2. The N-terminus of XAF-2 protein has five zinc fingers in the N-terminal 150 amino acids which show 38% amino acid identity to XAF-1 (SEQ ID NO.: 2). XAF-2 also has a unique C-terminus that has two RING zinc fingers, so that the entire XAF-2 protein, like XAF-1, has seven zinc finger binding domains. Fig. 36 shows the sequence of the 3' untranslated region (UTR) located approximately 250 nucleic acid residues C-terminally to the nucleic acid sequence of Fig. 35. There are at least two splice variants of XAF-2. Fig. 37A shows the full length 5' nucleotide (above; SEQ ID NO.: 9) and amino acid (below; SEQ ID NO.: 10) sequences of the long (XAF-2L) splice variant of XAF-2. The shorter splice form of XAF-2 (XAF-2S) is spliced as indicated in Fig. 37A, with the nucleic acid encoding XAF-2S indicated in Fig. 37B, lower sequence (SEQ ID NO.: 11). Figs. 38A, 38B, and 38C show the indicated zinc finger binding domains in the amino acid sequence listings of XAF-1, XAF-2L, and XAF-2S, respectively. XAF-2L and XAF-1 show pan overall amino acid sequence identity of 27%, although the first 135 amino acids of XAF-2L and the first 131 amino acids of XAF-1 share a 40% amino acid sequence identity (Fig. 39). As indicated in Fig. 40, the alignment of the zinc finger binding domains in XAF-1 and XAF-2L is not equivalent: the sixth zinc domain of XAF-2L aligns with the seventh zinc domain of XAF-1. However, the two XAF molecules both have seven zinc finger binding domains overall.
  • EXAMPLE XXVII A screen for candidate compounds which modulate XAF-1 expression
  • Compounds are screened for an ability to modulate XAF-1 expression by looking at the ability of the compounds to modulate the expression of a luciferase reporter gene operably linked to the XAF-1 promoter.
  • Methods
  • The xAF-1 promoter firefly luciferase reporter plasmid pXAF-1 prom-Lu is constructed by insertion of PCR-amplified XAF-1 promoter sequences into a vector such as the pGL3-Basic vector which is commercially available from Promega.
  • COS cells are seeded into six-well plates at 2 x 105 cells per well 24 hrs before transfection. Cells are then transfected with 1.0 µg of pXAF-1prom-Lu reporter plasmid, and 3.0 µg pCMV-myc control plasmid by standard lipofection methods using Trans-IT lipofection reagent commercially available from Mirus. Twenty-four hours after transfection, varying concentrations of different compounds are added to the culture supernatant of transfected cells, such that there is one compound, or combination thereof, per well. Twelve hours following treatment with the compound, the cells are washed with PBS and lysed in 400 µl of Passive Lysis Buffer commercially available from Promega. Lysate (20 µl) from each sample is used to measure firefly luciferase activity. Firefly luciferase activity is determined and normalized on the basis of Renilla luciferase expression level. Luciferase activity is measured in a model TD20/20 luminometer using the Dual luciferase assay system according to the manufacture's protocol (Promega).
  • Results
  • Compound-treated cells which show an increased firefly luciferase activity as compared to untreated control cells indicate a compound with an ability to increase XAF-1 activity. Compound-treated cells which show a decreased firefly luciferase activity as compared to untreated control cells indicate a compound with an ability to decrease XAF-1 activity.
  • SEQUENCE LISTING
    • (1) GENERAL INFORMATION
      • (i) APPLICANT: University of Ottawa
      • (ii) TITLE OF THE INVENTION: XAF GENES AND POLYPEPTIDES: METHODS AND REAGENTS FOR MODULATING APOPTOSIS
      • (iii) NUMBER OF SEQUENCES: 12
      • (iv) CORRESPONDENCE ADDRESS:
        • (A) ADDRESSEE: Clark & Elbing LLP
        • (B) STREET: 176 Federal Street
        • (C) CITY: Boston
        • (D) STATE: MA
        • (E) COUNTRY: USA
        • (F) ZIP: 02110
      • (v) COMPUTER READABLE FORM:
        1. (A) MEDIUM TYPE: Diskette
        2. (B) COMPUTER: IBM Compatible
        3. (C) OPERATING SYSTEM: DOS
        4. (D) SOFTWARE: FastSEQ for Windows Version 2.0
      • (vi) CURRENT APPLICATION DATA:
        • (A) APPLICATION NUMBER:
        • (B) FILING DATE:
        • (C) CLASSIFICATION:
      • (vii) PRIOR APPLICATION DATA:
        • (A) APPLICATION NUMBER: 60/052,402
        • (B) FILING DATE: 14-JUL-1997
      • (viii) ATTORNEY/AGENT INFORMATION:
        1. (A) NAME: Bieker-Brady, Kristina
        2. (B) REGISTRATION NUMBER:
        3. (C) REFERENCE/DOCKET NUMBER: 07891/010EP4
      • (ix) TELECOMMUNICATION INFORMATION:
        • (A) TELEPHONE: 617-428-0200
        • (B) TELEFAX: 617-428-7045
        • (C) TELEX:
    • (2) INFORMATION FOR SEQ ID NO:1:
      • (i) SEQUENCE CHARACTERISTICS:
        1. (A) LENGTH: 1326 base pairs
        2. (B) TYPE: nucleic acid
        3. (C) STRANDEDNESS: single
        4. (D) TOPOLOGY: linear
      • (ii) MOLECULE TYPE: cDNA
      • (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:
        Figure imgb0001
    • (2) INFORMATION FOR SEQ ID NO:2:
      • (i) SEQUENCE CHARACTERISTICS:
        • (A) LENGTH: 317 amino acids
        • (B) TYPE: amino acid
        • (C) STRANDEDNESS: single
        • (D) TOPOLOGY: linear
      • (ii) MOLECULE TYPE: protein
      • (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:
        Figure imgb0002
        Figure imgb0003
    • (2) INFORMATION FOR SEQ ID NO:3:
      • (i) SEQUENCE CHARACTERISTICS:
        • (A) LENGTH: 1311 base pairs
        • (B) TYPE: nucleic acid
        • (C) STRANDEDNESS: single
        • (D) TOPOLOGY: linear
      • (ii) MOLECULE TYPE: cDNA
      • (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:
        Figure imgb0004
        Figure imgb0005
    • (2) INFORMATION FOR SEQ ID NO:4:
      • (i) SEQUENCE CHARACTERISTICS:
        1. (A) LENGTH: 419 amino acids
        2. (B) TYPE: amino acid
        3. (C) STRANDEDNESS: single
        4. (D) TOPOLOGY: linear
      • (ii) MOLECULE TYPE: protein
      • (v) FRAGMENT TYPE: N-terminal
      • (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:
        Figure imgb0006
        Figure imgb0007
    • (2) INFORMATION FOR SEQ ID NO:5:
      • (i) SEQUENCE CHARACTERISTICS:
        1. (A) LENGTH: 1169 base pairs
        2. (B) TYPE: nucleic acid
        3. (C) STRANDEDNESS: single
        4. (D) TOPOLOGY: linear
      • (ii) MOLECULE TYPE: cDNA
      • (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:
        Figure imgb0008
        Figure imgb0009
    • (2) INFORMATION FOR SEQ ID NO:6:
      • (i) SEQUENCE CHARACTERISTICS:
        1. (A) LENGTH: 7 amino acids
        2. (B) TYPE: amino acid
        3. (C) STRANDEDNESS: single
        4. (D) TOPOLOGY: linear
      • (ii) MOLECULE TYPE: protein
      • (v) FRAGMENT TYPE: internal
      • (ix) FEATURE:Other ist, 4th Xaa is 2-5; 2nd Xaa is 11-18; 3rd, 5th Xaa is Cys or His
      • (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:
        Figure imgb0010
    • (2) INFORMATION FOR SEQ ID NO: 7:
      • (i) SEQUENCE CHARACTERISTICS:
        1. (A) LENGTH: 7 amino acids
        2. (B) TYPE: amino acid
        3. (C) STRANDEDNESS: single
        4. (D) TOPOLOGY: linear
      • (ii) MOLECULE TYPE: protein
      • (v) FRAGMENT TYPE: internal
      • (ix) FEATURE: Other 1st Xaa is 1-2; 2nd Xaa is 11; 3rd Xaa is 3-5
      • (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:
        Figure imgb0011
    • (2) INFORMATION FOR SEQ ID NO:8:
      • (i) SEQUENCE CHARACTERISTICS:
        1. (A) LENGTH: 20 amino acids
        2. (B) TYPE: amino acid
        3. (C) STRANDEDNESS: single
        4. (D) TOPOLOGY: linear
      • (ii) MOLECULE TYPE: protein
      • (v) FRAGMENT TYPE: internal
      • (ix) FEATURE:
      • (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:
        Figure imgb0012
    • (2) INFORMATION FOR SEQ ID NO:9:
      • (i) SEQUENCE CHARACTERISTICS:
        1. (A) LENGTH: 2643 base pairs
        2. (B) TYPE: nucleic acid
        3. (C) STRANDEDNESS: single
        4. (D) TOPOLOGY: linear
      • (ii) MOLECULE TYPE: cDNA
      • (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:
        Figure imgb0013
        Figure imgb0014
    • (2) INFORMATION FOR SEQ ID NO: 10:
      • (i) SEQUENCE CHARACTERISTICS:
        1. (A) LENGTH: 582 amino acids
        2. (B) TYPE: amino acid
        3. (C) STRANDEDNESS: single
        4. (D) TOPOLOGY: linear
      • (ii) MOLECULE TYPE: protein
      • (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:
        Figure imgb0015
        Figure imgb0016
    • (2) INFORMATION FOR SEQ ID NO:11:
      • (i) SEQUENCE CHARACTERISTICS:
        1. (A) LENGTH: 1302 base pairs
        2. (B) TYPE: nucleic acid
        3. (C) STRANDEDNESS: single
        4. (D) TOPOLOGY: linear
      • (ii) MOLECULE TYPE: cDNA
      • (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:
        Figure imgb0017
    • (2) INFORMATION FOR SEQ ID NO:12:
      • (i) SEQUENCE CHARACTERISTICS:
        1. (A) LENGTH: 135 amino acids
        2. (B) TYPE: amino acid
        3. (C) STRANDEDNESS: single
        4. (D) TOPOLOGY: linear
      • (ii) MOLECULE TYPE: protein
      • (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:
        Figure imgb0018
        Figure imgb0019

Claims (20)

  1. A substantially pure nucleic acid encoding the polypeptide of amino acids 173-317 of SEQ ID NO:2 (XAF-1C), wherein said polypeptide augments TRAF6 mediated NF-κB activation in a cell.
  2. A substantially pure nucleic acid complementary to at least ten nucleotides of a nucleic acid encoding the polypeptide of SEQ ID NO:2 (XAF-1), wherein said nucleic acid, when administered to a cell, is an antisense nucleic acid that is sufficient to decrease the apoptosis-inducing activity of XAF-1.
  3. The antisense nucleic acid of claim 2, wherein said antisense nucleic acid is complementary to at least fifteen nucleotides of a nucleic acid encoding the polypeptide specified in claim 1.
  4. The antisense nucleic acid of claim 2, wherein said apoptosis-inducing activity is decreased by at least 20%.
  5. The antisense nucleic acid of claim 2, wherein said antisense nucleic acid is encoded by a vector capable of directing expression of said antisense nucleic acid in a vector-containing cell.
  6. A vector comprising a substantially pure nucleic acid encoding the polypeptide specified in claim 1, said vector being capable of directing expression of said polypeptide in a vector-containing cell.
  7. A cell that contains a substantially pure nucleic acid encoding the polypeptide specified in claim 1.
  8. The nucleic acid of claim 1, wherein said nucleic acid is genomic DNA or cDNA.
  9. The nucleic acid of claim 1, wherein said nucleic acid is operably linked to regulatory sequences for expression of said polypeptide and wherein said regulatory sequences comprise a promoter.
  10. A method of identifying a compound that modulates apoptosis, said method comprising:
    (a) providing a cell comprising the nucleic acid of SEQ ID NO: (XAF-1 gene);
    (b) contacting said cell with a candidate compound; and
    (c) monitoring expression of said nucleic acid, an alteration in the level of expression of said nucleic acid indicating a compound which modulates apoptosis.
  11. A method of identifying a compound that is able to inhibit apoptosis, said method comprising the steps of:
    (a) providing a cell expressing the polypeptide of SEQ ID NO:2 (XAF-1) or the polypeptide of amino acids 173-317 of SEQ ID NO:2 (XAF-1C);
    (b) contacting said cell with a candidate compound; and
    (c) measuring level of apoptosis in said cell, a decrease in said level relative to a level in a cell not contacted with said candidate compound indicating a compound that is able to inhibit apoptosis.
  12. A method of identifying a compound that is able to induce apoptosis, said method comprising the steps of:
    (a) providing a cell expressing the polypeptide of SEQ ID NO:2 (XAF-1) or the polypeptide of amino acids 173-317 of SEQ ID NO:2 (XAF-1C);
    (b) contacting said cell with a candidate compound; and
    (c) measuring level of apoptosis in said cell, an increase in said level relative to a level in a cell not contacted with said candidate compound indicating a compound that is able to induce apoptosis.
  13. A method of identifying a compound that modulates apoptosis, said method comprising:
    (a) providing a cell expressing a polypeptide selected from the polypeptide of SEQ ID NO:2 (XAF-1) and the polypeptide of amino acids 173-317 of SEQ ID NO:2 (XAF-1C), and a reporter gene operably linked to DNA comprising an NF-κB binding site;
    (b) contacting said cell with a candidate compound; and
    (c) measuring expression of said reporter gene, a change in expression in response to said compound indicating said compound is able to modulate apoptosis.
  14. A method for detecting a compound capable of modulating apoptosis, said method comprising:
    (a) providing a cell having:
    (i) a reporter gene operably linked to a DNA-binding-protein recognition site;
    (ii) a first fusion gene capable of expressing a first fusion protein, said first fusion protein comprising the polypeptide of SEQ ID NO:2 (XAF-1) or the polypeptide of amino acids 173-317 of SEQ ID NO:2 (XAF-1 C) covalently bonded to a binding moiety, said binding moiety being capable of specifically binding to said DNA-binding-protein recognition site;
    (iii) a second fusion gene capable of expressing a second fusion protein, said second fusion protein comprising a polypeptide selected from the polypeptide of SEQ ID NO:2 (XAF-1), the polypeptide of SEQ ID NO:4 (XAF-2), TRAF, and the polypeptide of amino acids 173-317 of SEQ ID NO:2 (XAF-1C) covalently bonded to a gene activating moiety;
    (b) exposing said cell to said compound; and
    (c) measuring reporter gene expression in said cell, a change in said reporter gene expression indicating said compound is capable of modulating apoptosis.
  15. A method for detecting a compound capable of modulating apoptosis, said method comprising:
    (a) providing a cell having:
    (i) a reporter gene operably linked to a DNA-binding-protein recognition site;
    (ii) a first fusion gene capable of expressing a first fusion protein, said first fusion protein comprising the polypeptide of SEQ ID NO:2 (XAF-1) or the polypeptide of amino acids 173-317 of SEQ ID NO:2 (XAF-1 C) covalently bonded to a binding moiety, said binding moiety being capable of specifically binding to said DNA-binding-protein recognition site;
    (iii) a second fusion gene capable of expressing a second fusion protein, said second fusion protein comprising an IAP polypeptide covalently bonded to a gene activating moiety;
    (b) exposing said cell to said compound; and
    (c) measuring reporter gene expression in said cell, a change in said reporter gene expression indicating said compound is capable of modulating apoptosis.
  16. A method for detecting a compound capable of modulating apoptosis, said method comprising:
    (a) providing a cell having:
    (i) a reporter gene operably linked to a DNA-binding-protein recognition site;
    (ii) a first fusion gene capable of expressing a first fusion protein, said first fusion protein comprising an IAP polypeptide covalently bonded to a binding moiety, said binding moiety being capable of specifically binding to said DNA-binding-protein recognition site;
    (iii) a second fusion gene capable of expressing a second fusion protein, said second fusion protein comprising the polypeptide of SEQ ID NO:2 (XAF-1) or the polypeptide of amino acids 173-317 of SEQ ID NO:2 (XAF-1C) covalently bonded to a gene activating moiety;
    (b) exposing said cell to said compound; and
    (c) measuring reporter gene expression in said cell, a change in said reporter gene expression indicating said compound is capable of modulating apoptosis.
  17. A method for detecting a compound capable of modulating apoptosis, said method comprising:
    (a) providing a first polypeptide selected from the polypeptide of SEQ ID NO:2 (XAF-1) and the polypeptide of amino acids 173-317 of SEQ ID NO:2 (XAF-1C), said first polypeptide being immobilized on a solid-phase substrate;
    (b) contacting said first polypeptide with a second polypeptide selected from the polypeptide of SEQ ID NO:2 (XAF-1), the polypeptide of SEQ ID NO:4 (XAF-2), TRAF, and the polypeptide of amino acids 173-317 of SEQ ID NO:2 (XAF-1C);
    (c) contacting said first and said second polypeptides with a compound; and
    (d) measuring amount of binding of said first polypeptide to said second polypeptide, a change in said amount relative to an amount not contacted with said compound indicating said compound is capable of modulating apoptosis.
  18. A method for detecting a compound capable of modulating apoptosis, said method comprising:
    (a) providing a first polypeptide selected from the polypeptide of SEQ ID NO:2 (XAF-1) and the polypeptide of amino acids 173-317 of SEQ ID NO:2 (XAF-1C), said first polypeptide being immobilized on a solid-phase substrate;
    (b) contacting said first polypeptide with an IAP polypeptide;
    (c) contacting said first polypeptide and said IAP polypeptide with a compound; and
    (d) measuring amount of binding of said first polypeptide to said IAP polypeptide, a change in said amount relative to an amount not contacted with said compound indicating said compound is capable of modulating apoptosis.
  19. A method for detecting a compound capable of modulating apoptosis, said method comprising:
    (a) providing an IAP polypeptide, said IAP polypeptide being immobilized on a solid-phase substrate;
    (b) contacting said IAP polypeptide with a second polypeptide selected from the polypeptide of SEQ ID NO:2 (XAF-1) and the polypeptide of amino acids 173-317 of SEQ ID NO:2 (XAF-1C);
    (c) contacting said IAP polypeptide and said second polypeptide with a compound; and
    (d) measuring amount of binding of said IAP polypeptide to said second polypeptide, a change in said amount relative to an amount not contacted with said compound indicating said compound is capable of modulating apoptosis.
  20. A method of increasing apoptosis in a cell in vitro, said method comprising administering to said cell an apoptosis-inducing amount of a polypeptide selected from the polypeptide of SEQ ID NO:2 (XAF-1) and the polypeptide of amino acids 173-317 of SEQ ID NO:2 (XAF-1C).
EP98113003A 1997-07-14 1998-07-13 XAF genes and polypeptides and their use for modulating apoptosis Expired - Lifetime EP0892048B1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US5240297P 1997-07-14 1997-07-14
US52402P 1997-07-14
US5449197P 1997-08-01 1997-08-01
US54491P 1997-08-01
US5633897P 1997-08-18 1997-08-18
US56338P 1997-08-18

Publications (3)

Publication Number Publication Date
EP0892048A2 EP0892048A2 (en) 1999-01-20
EP0892048A3 EP0892048A3 (en) 2002-01-09
EP0892048B1 true EP0892048B1 (en) 2008-02-13

Family

ID=27368127

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98113003A Expired - Lifetime EP0892048B1 (en) 1997-07-14 1998-07-13 XAF genes and polypeptides and their use for modulating apoptosis

Country Status (4)

Country Link
US (6) US6107088A (en)
EP (1) EP0892048B1 (en)
CA (1) CA2225187A1 (en)
DE (1) DE69839105T2 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6156535A (en) * 1995-08-04 2000-12-05 University Of Ottawa Mammalian IAP gene family, primers, probes, and detection methods
US6881571B1 (en) * 1998-03-11 2005-04-19 Exonhit Therapeutics S.A. Qualitative differential screening
US6133437A (en) * 1997-02-13 2000-10-17 Apoptogen, Inc. Modulation of IAPs for the treatment of proliferative diseases
US6511828B1 (en) 1996-05-31 2003-01-28 Arch Development Corporation Human and drosophila inhibitors of apoptosis proteins (IAPs)
CA2225187A1 (en) * 1997-07-14 1999-01-14 Universite D'ottawa/ University Of Ottawa Xaf genes and polypeptides: methods and reagents for modulating apoptosis
WO1999047689A2 (en) 1998-03-16 1999-09-23 E.I. Du Pont De Nemours And Company Inhibitors of apoptosis proteins in plants
DK1207905T3 (en) 1999-09-03 2011-01-03 Brigham & Womens Hospital Methods and compositions for the treatment of inflammatory disease using cadherin-II modulating agents
FR2798392B1 (en) * 1999-09-13 2005-07-15 Exonhit Therapeutics Sa GENETIC MARKERS OF TOXICITY, PREPARATION AND USES
FR2798673B1 (en) * 1999-09-16 2004-05-28 Exonhit Therapeutics Sa METHODS AND COMPOSITIONS FOR DETECTION OF PATHOLOGICAL EVENTS
US6372444B1 (en) * 1999-10-13 2002-04-16 Tularik Inc. SODD gene expression in cancer
DE60120656T2 (en) 2000-03-08 2006-11-09 Akzo Nobel N.V. SYNERGISTIC ACTIVATION OF REGULATORY ELEMENTS BY REL PROTEINS AND STEROID RECEPTORS
DE10013990C2 (en) * 2000-03-22 2003-12-04 Invitek Biotechnik & Biodesign Polyfunctional carrier material for complex nucleic acid analysis
US6608026B1 (en) * 2000-08-23 2003-08-19 Board Of Regents, The University Of Texas System Apoptotic compounds
US20020073441A1 (en) 2000-12-13 2002-06-13 Ross Brian D. Compositions and methods for detecting proteolytic activity
WO2002052013A2 (en) * 2000-12-22 2002-07-04 Eidgenössische Technische Hochschule Zürich The flu gene: a tool for the identification of genes involved in stress responses and apoptosis and a target for herbicides specific for angiosperms
NZ546806A (en) 2002-03-27 2007-03-30 Aegera Therapeutics Inc Antisense IAP nucleobase oligomers and uses thereof
US20030219871A1 (en) * 2002-03-28 2003-11-27 Boehringer Ingelheim Pharma Gmbh & Co. Kg Host cells having improved cell survival properties and methods to generate such cells
US8012944B2 (en) * 2003-10-30 2011-09-06 Pharmascience Inc. Method for treating cancer using IAP antisense oligomer and chemotherapeutic agent
CA2580299A1 (en) * 2006-03-06 2007-09-06 Aegera Therapeutics Inc. Diagnostic marker for interferon responsiveness in multiple sclerosis
WO2008107201A1 (en) * 2007-03-08 2008-09-12 Roche Diagnostics Gmbh Use of slim-1 in the assessment of heart failure
US20190234874A1 (en) * 2016-07-19 2019-08-01 Altius Institute For Biomedical Sciences Methods for fluorescence imaging microscopy

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5585479A (en) * 1992-07-24 1996-12-17 The United States Of America As Represented By The Secretary Of The Navy Antisense oligonucleotides directed against human ELAM-I RNA
AU6692996A (en) * 1995-08-08 1997-03-05 Tularik Inc. Inhibitors of apoptosis
CA2225187A1 (en) * 1997-07-14 1999-01-14 Universite D'ottawa/ University Of Ottawa Xaf genes and polypeptides: methods and reagents for modulating apoptosis
US6187667B1 (en) 1998-06-17 2001-02-13 Cypress Semiconductor Corp. Method of forming metal layer(s) and/or antireflective coating layer(s) on an integrated circuit

Also Published As

Publication number Publication date
US6495339B1 (en) 2002-12-17
US20070202096A1 (en) 2007-08-30
EP0892048A2 (en) 1999-01-20
DE69839105D1 (en) 2008-03-27
US20060040862A1 (en) 2006-02-23
DE69839105T2 (en) 2009-03-05
US20070072217A1 (en) 2007-03-29
CA2225187A1 (en) 1999-01-14
US6107088A (en) 2000-08-22
US20030215824A1 (en) 2003-11-20
US6946544B2 (en) 2005-09-20
EP0892048A3 (en) 2002-01-09

Similar Documents

Publication Publication Date Title
US20070072217A1 (en) XAF genes and polypeptides: methods and reagents for modulating apoptosis
US6977158B1 (en) Mammalian IAP gene family, primers, probes, and detection methods
US5919912A (en) Mammalian IAP antibodies and diagnostic kits
US7235372B2 (en) Use of neuronal apoptosis inhibitor protein (NAIP)
US6331412B1 (en) Methods and compounds for modulating male fertility
JPH1132780A (en) Xaf gene and polypeptide: regulation of apoptosis and reagent therefor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Kind code of ref document: A2

Designated state(s): CH DE FR GB LI SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BAIRD, STEPHEN

Inventor name: MACKENZIE, ALEXANDER E.

Inventor name: LISTON, PETER

Inventor name: TAMAI, KATSUYUKI

Inventor name: KORNELUK, ROBERT

17P Request for examination filed

Effective date: 20020417

AKX Designation fees paid

Free format text: CH DE FR GB LI SE

17Q First examination report despatched

Effective date: 20021021

17Q First examination report despatched

Effective date: 20021021

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SERVOPATENT GMBH

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 69839105

Country of ref document: DE

Date of ref document: 20080327

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080731

Year of fee payment: 11

Ref country code: CH

Payment date: 20080730

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080711

Year of fee payment: 11

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20081114

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20080729

Year of fee payment: 11

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090714

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20110926

Year of fee payment: 14

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120713