EP0891617B1 - Systeme de codage et systeme de decodage d'un signal, notamment d'un signal audionumerique - Google Patents

Systeme de codage et systeme de decodage d'un signal, notamment d'un signal audionumerique Download PDF

Info

Publication number
EP0891617B1
EP0891617B1 EP97919457A EP97919457A EP0891617B1 EP 0891617 B1 EP0891617 B1 EP 0891617B1 EP 97919457 A EP97919457 A EP 97919457A EP 97919457 A EP97919457 A EP 97919457A EP 0891617 B1 EP0891617 B1 EP 0891617B1
Authority
EP
European Patent Office
Prior art keywords
primary
flow
bank
encoder
frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97919457A
Other languages
German (de)
English (en)
Other versions
EP0891617A1 (fr
Inventor
Laurent Mainard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Telediffusion de France ets Public de Diffusion
Orange SA
Original Assignee
Telediffusion de France ets Public de Diffusion
France Telecom SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telediffusion de France ets Public de Diffusion, France Telecom SA filed Critical Telediffusion de France ets Public de Diffusion
Publication of EP0891617A1 publication Critical patent/EP0891617A1/fr
Application granted granted Critical
Publication of EP0891617B1 publication Critical patent/EP0891617B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/16Vocoder architecture
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
    • G10L25/03Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the type of extracted parameters
    • G10L25/18Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the type of extracted parameters the extracted parameters being spectral information of each sub-band

Definitions

  • the present invention relates to a coding and decoding of a signal, in particular of a digital audio signal.
  • These systems find application in low speed transmission of audio signals, with a coding / decoding delay constraint as low as possible imposed for example by the return of a voice control.
  • the present invention is concerned by the antinomy between, on the one hand, the search for a quality of transmission which generally entails for a fixed speed a delay of relatively long coding and decoding and, on the other hand, the delay of coding / decoding which, in some applications, must be short.
  • the term delay coding / decoding the time between the entry of a sample into the encoder of the sample output corresponding to the decoder.
  • the coding process and / or the structure of the circuits which allow this coding will consider that the calculations made during these processes are infinitely fast both within the encoder and the decoder. Alone are therefore taken into account in the calculation of the coding / decoding delay parameters such as the duration of acquisition of signal frames digital, the delay imposed by a filter bank and / or the duration corresponding to a multiplexing of samples.
  • this delay will be greater than the duration of a coded frame added to the delay generated by the transform.
  • a low delay coder of the LD-CELP type such as that described by JHChen and all in the article entitled "A low delay CELP coder for the CCITT 16kb / s speech coding standard" published in IEEE J. Salt. Areas Commun., Vol 10, pp 830-849
  • the delay is linked to the five samples constituting a basic frame.
  • the quality of coding it is a parameter which is difficult to define, knowing that the final receiver, i.e. the ear of the auditor cannot give precise quantitative results.
  • measurements such as the signal-to-noise ratio do not are irrelevant because they do not take into account the properties of psycho-acoustic masking of the auditory system.
  • Techniques statistics such as those recommended by ITU-R-BS-1116 differentiate between different coding algorithms with regard to the quality of coding.
  • Coding systems for generic digital audio signals that is to say without assumption on the mode of production of these signals, have so far taken as little constraint the time aspect of signal reconstruction.
  • An exception is however illustrated by the process which is described by F. Rumseyi in an article entitled “Hearing both sides-stereo sound for TV in the UK” published in IEE rev, vol 36, No 5, pp173-176.
  • the rates of compression achieved do not allow to compete with coders to classic transforms.
  • the minimum reconstruction times range from 18 ms for the simplest - and therefore least efficient - encoder at more than 100 ms for the most complex coder.
  • Other non-coding methods standardized by ISO such as the so-called AC3 process described by C. Todd and all, such as the process known as ASPEC (Adaptive Spectral Perceptual Entropy Coding) described by K. Brandebug and all, or the method said ATRAC (Adaptive Transform Acoustic Coding) described by K. Tsutsui typically have coding / decoding delays of the order of one hundred milliseconds.
  • the effectiveness of coding systems is linked to the size of the filter banks which are generally used, taking into account long-term redundancies in the signals to be coded, at the optimal distribution of binary allocations over a period higher than the frame, etc. Taking these elements into account when coding time increases the delay system coding / decoding.
  • low delay coders are often linked to coding speech for duplex telephone links, for example, or to be associated with echo cancellers. Most often designed for sampling frequencies from 8 kHz to 16 kHz, their level of quality is insufficient to code in a manner close to the original of the generic digital audio signals.
  • the object of the invention is to propose, in this context, a coding system and the associated decoding system which allows, receiver side, to reconstruct both a digital audio signal from quality and a lower quality digital audio signal but whose encoding / decoding delay is as short as possible.
  • Such coding systems include an encoder for coding a high quality sound signal the output of which is connected to the input of a decoder and a difference circuit which makes the difference between the signal obtained at the output of the decoder and the signal d 'origin.
  • the difference signal is itself subjected, in a second stage, to coding, decoding and analogous difference calculation treatments.
  • the third stage codes the residual difference signal.
  • the signals from the encoders of the three stages are then multiplexed so as to form a hierarchical digital stream.
  • the coder is a low bit rate coder which has a relatively low coding delay.
  • the second stage encoder is a longer delay encoder.
  • each encoder actually consists of a sub-sampled filter bank and an encoder.
  • each decoder is actually consisting of a decoder, a bank of filters associated with the bank of encoder and oversampler filters.
  • the object of the invention is to propose a coding system which has a lower low quality stream coding / decoding delay to the one given by the system described above.
  • a coding system is characterized in that it comprises a filter bank provided for receive said incoming stream to be encoded and to generate signals respectively in different sub-bands, so-called coders primary coders, for respectively coding said signals into sub-bands and thus form primary streams, decoders receiving said primary streams and decoding said streams, subtractors each of which is intended to make the difference between the signals delivered by the filter bank in a sub-band and the signals from the corresponding decoder, an encoder, called an encoder secondary, to code the signals from the subtractors, and thus generate a secondary flow, and a multiplexer to multiplex the streams into a single global stream primary from primary encoders and the secondary stream from secondary encoder.
  • coders primary coders for respectively coding said signals into sub-bands and thus form primary streams
  • decoders receiving said primary streams and decoding said streams
  • subtractors each of which is intended to make the difference between the signals delivered by the filter bank in a sub-band and the signals from the corresponding decoder
  • Said secondary filter bank advantageously comprises, for each sub-band, an entry for receive the primary stream from the primary encoder and decode by the corresponding decoder to determine, using a model psycho-acoustic, maximum levels of injectable noise in each of the sub-bands, said secondary encoder being an encoder perceptual whose coding is based on psycho-acoustic analysis performed by said secondary filter bank.
  • said bench secondary filters includes, for each sub-band, an entry for receive the signal in sub-bands from the primary filter bank in order to determine, using a psycho-acoustic model, the maximum levels of injectable noise in each of the sub-bands, said secondary coder being a perceptual coder whose coding is based on the psycho-acoustic analysis carried out by said bench secondary filters.
  • each primary coder is a coder reconfigurable in debit.
  • the present invention also relates to a method of multiplexing of a primary frame with a secondary frame generated by a coding system of a signal to be coded, of the type delivering a global flow consisting of a primary flow corresponding to coding of an incoming stream, called primary coding, and of a stream secondary corresponding to secondary coding
  • It consists in constituting a frame called global frame constituted by the concatenation of a plurality of primary frames and a plurality of fragments of at least one secondary frame, one frame primary alternating with a secondary frame fragment, the number of bits of a secondary frame fragment being equal to the bit rate allocated to the secondary flow multiplied by the duration of transmission of a frame primary.
  • the transmission of global frames is advantageously done all the durations of the primary frames.
  • the duration of a frame global is equal to the duration of transmission of a primary frame multiplied by the number of primary frames.
  • the present invention also relates to a decoding system a stream encoded by a coding system such as the one described above. It includes a flow demultiplexer delivering a plurality of primary streams and a secondary stream, a plurality of primary decoders for decoding said primary streams, the output of each decoder being connected to a corresponding input of a bench primary filters then delivering a low delay decoded stream, the output of each decoder also being connected to an input from one line to corresponding delay whose output is linked to the first input a summator, a secondary decoder delivering a secondary stream decoded supplied to a second input of each adder, the output of each adder being connected to the input of a second filter bank primary to deliver a high quality decoded stream. It comprises in addition a secondary filter bank.
  • the coding system shown in FIG. 1 consists of a filter bank 10, the input of which receives an incoming digital audio stream FE to be coded.
  • the filter bank 10 delivers several signals located in different sub-bands, called primary sub-bands. These signals are respectively supplied to the inputs of low-speed primary encoders 20 1 to 20 4 , here four in number but may be in any number n greater than two.
  • each decoder 40 i is connected to a first input of a subtractor 50 i , the other input of which receives the signal from the corresponding primary sub-band delivered by the filter bank 10.
  • the difference signal from the subtractor 50 i is supplied to the input of a secondary filter bank 60, the output of which is connected to an encoder 70.
  • the output of the encoder 70 is connected to a corresponding input of the multiplexer 30.
  • Multiplexer 30 interleaves primary flows and secondary respectively from coders 20 and 70.
  • FIG. 2 illustrates the interleaving process.
  • Two time axes have been shown, one of which is expanded relative to the second, dotted lines showing the time correspondence between these axes.
  • On the first axis are represented segments whose length corresponds to the duration of establishment t of a primary frame obtained by association of the four primary streams coming from coders 20 1 to 20 4 .
  • On the other axis there is shown a global frame TG consisting of a header H, four primary frames TP and four fragments of a secondary frame FTS, the fragments of secondary frame FTS alternating with the primary frames TP.
  • the fragments of secondary frame FTS are the result of a fragmentation of the secondary frame TS delivered by the secondary coder 70.
  • the number of bits of a fragment FTS is equal to the bit rate allocated to the secondary stream multiplied by the duration t of transmission primary coders.
  • the duration Tt of the global frame TG is an integer multiple of the duration t of the primary frame mentioned above (here four).
  • the duration Tt of the global frame TG is an integer multiple of the duration T of the secondary frame TS.
  • the duration of the overall frame Tt is equal to the duration T of a secondary frame TS. In this case, only one secondary frame TS is included in the global frame TG, as is the case in FIG. 2.
  • the number of primary frames TP and the number of fragments of secondary frames TS ar global frame could be different from four without fundamentally changing the concept of the invention. In particular, this number is not linked to the number of sub-bands contained in a primary frame.
  • the emission of the global flow is done all the durations of the frames primary TP. More precisely, for each program, the information of a primary frame TP and of the frame fragment secondary FTS consecutive.
  • the bit rate allocated to each primary coder 20 i is variable. This allocation is known to both the coding system and the decoding system. For example, we could decide the allocation according to the energy in each primary sub-band.
  • the header H contains a synchronization word for setting the decoding system and for delivering the allocations of the different primary coders 20 i . These frame header allocations sent by the coding system are then used to initialize the decoding system and to remedy any transmission errors.
  • the filter bank 60 For each sub-band of the filter bank 10, the filter bank 60 has an input for receiving the concerned sub-band delivered by the primary filter bank 10. From this signal, a model suitable psycho-acoustic, for example the first model proposed by ISO / IEC 13818-3, will determine the maximum noise levels inaudible injectable into each of the sub-bands secondary.
  • a model suitable psycho-acoustic for example the first model proposed by ISO / IEC 13818-3, will determine the maximum noise levels inaudible injectable into each of the sub-bands secondary.
  • the encoder 70 is a perceptible encoder whose coding is based on the psycho-acoustic analysis provided by the filter bank 60.
  • the stream of the primary coder 20 i has a sufficient number of bits, for example 2.5 bits per sample, it is preferable to replace the original signal at the input of the filter bank for processing according to the psycho-acoustic model by its coded then decoded version delivered by the decoder 40 i in the primary sub-band considered.
  • the advantage is that the secondary decoder of the decoding system which is associated with the present coding system and which is therefore provided with the same psycho-acoustic model as the filter bank 60 can deduce the fine allocation levels calculated by the secondary coder 70. This saves on transmission costs.
  • the primary filter bank may be a filter bank of the family of QMF (Quadrature Mirror Filterbank) or benches MOT (Modulated Orthogonal Transforms) filters, with a number enough subbands not to produce a delay too late.
  • QMF Quadrature Mirror Filterbank
  • benches MOT Modulated Orthogonal Transforms
  • a bank of filters modulated in sub-bands of uneven widths or a wavelet type cascaded filter bank or others is also possible, provided that this choice is compatible with the deadline.
  • a filter bank with eight sub-bands modulated from a filter of length thirty two such as the one described by H.S.
  • Each low delay coder 20 i can be a coder reconfigurable in bit rate so that the bit rate associated with each sub-band is variable.
  • Each coder 20 i generates a stream over a small number of grouped samples, representing a constant duration independent of the sub-band. This duration will hereinafter be called the primary duration.
  • LD-CELP Low Delay - Code Excited Linear Prediction
  • This LD-CELP coder can contain a choice of dictionaries of different sizes.
  • each decoder 40 i it will be noted that it could be included in the associated coder 20 i .
  • the secondary filter bank 60 its choice is freer than for the primary filter bank 10 since where there is no constraint on the delay it introduced.
  • a filter bank can deliver a variable number of sub-bands by primary sub-band, according to the stationarity of the subband signal.
  • aliasing reduction butterflies such as those described by 8. Tang and all in an article entitled "Spectral analysis of subband filtered signals "published in ICAASP, Vol 2, pp 1324-1327, 1995.
  • a bank of MOT type filters Modulated Orthogonal Transforms
  • WORD type filter bank
  • the bit rate available for the secondary encoder 70 is calculated by subtracting the bit rate used by the low delay primary encoders 20 i from the total bit rate. For example, for a total bit rate of 64 kbits / s, it would be possible to allocate 32 kbits / s to all of the primary coders 20 1 to 20 n and 32 kbits / s to the secondary coder 70.
  • the decoding system shown in FIG. 3 is made up of elements whose references are between 110 and 180. Each element is the dual of an element of the coding system shown in FIG. 1 with the exception of elements 180 i . Its reference is then the same plus a hundred.
  • the demultiplexer 130 is the dual of the multiplexer 30.
  • one element is the dual of another element when intended to perform the reverse function of this first.
  • the decoding system shown in FIG. 3 consists of a demultiplexer 130 whose outputs are respectively connected to the inputs of primary decoders 120 1 to 120 4 and to a secondary coder 170.
  • each primary decoder 120 1 to 120 4 is connected, on the one hand, to an associated delay line 180 1 to 180 4 and, on the other hand, to an input of a first primary filter bank 110.
  • the output of the filter bank 110 delivers the decoded primary flow Fd.
  • the primary stream decoded Fd is the stream of lower quality but of weak coding / decoding delay.
  • each delay line 180 1 to 180 4 is connected to a first input of a corresponding adder 150 1 to 150 4 .
  • the output of the secondary decoder 170 is connected to the input of a filter bank 160 whose outputs are respectively connected to the second inputs of the adders 150 1 to 150 4 .
  • the outputs of the adders 150 1 to 150 4 are respectively connected to the corresponding inputs of a filter bank 110 ′ whose output delivers the high quality decoded stream Fdhq.
  • a link between each delay line 180 i and the decoder 170 is provided so as to transmit to the latter, at the desired time, the allocation information present in the primary stream originating from the corresponding decoder 120j.
  • the demultiplexer 130 of the decoding system realizes the separation of the global frame TG received into primary frames TP and into a secondary frame delivered alternately to the primary decoders 120 1 to 120 4 and to the secondary decoder 170.
  • the low delay output of the decoding system is obtained by decoding, in the primary decoders 120 i , primary frames into sub-bands then passing through the reciprocal filter bank 110 of the low-delay filter bank 10.
  • the primary stream originating from the primary decoder 120 i and the allocation information it contains are sent to the corresponding 180 i delay line to supply the high quality part.
  • the allocation information from the delay lines is transmitted, for each primary stream, to the secondary decoder 170 which then performs a decoding of the secondary frame.
  • the reciprocal aliasing reducing butterflies of the coding butterflies are then applied, then the secondary filter bank 160.
  • the signals received from the primary decoders 120 i are then added via the delay lines 180 i to supply the primary filter bank 110 ' .
  • the high quality Fdhq signal is recovered at the output.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computational Linguistics (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Description

La présente invention concerne un système de codage et de décodage d'un signal, notamment d'un signal audionumérique. Ces systèmes trouvent application dans la transmission à faible débit de signaux sonores, avec une contrainte de délai de codage/décodage aussi faible que possible imposée par exemple par le retour d'une voix de contrôle.
Lors de la transmission de signaux numériques, ceux-ci sont codés numériquement dans l'émetteur puis décodés, pour leur restitution, dans un récepteur. La présente invention est concernée par l'antinomie entre, d'une part, la recherche d'une qualité de la transmission qui généralement entraíne pour un débit fixé un délai de codage et de décodage relativement long et, d'autre part, le délai de codage/décodage qui, dans certaines applications, doit être court.
Dans la présente description, on appelle délai de codage/décodage la durée qui sépare l'entrée d'un échantillon dans le codeur de la sortie de l'échantillon correspondant au décodeur. Pour s'affranchir de la mise en oeuvre particulière du processus de codage et/ou de la structure des circuits qui permettent ce codage, on considérera que les calculs effectués lors de ces processus sont infiniment rapides tant au sein du codeur que du décodeur. Seuls rentrent donc en compte dans le calcul du délai de codage/décodage des paramètres tels que la durée d'acquisition des trames de signaux numériques, le délai imposé par un banc de filtres et/ou la durée correspondant à un multiplexage d'échantillons.
Dans le cas d'un codeur à transformée, ce délai sera supérieur à la durée d'une trame codée additionnée au retard engendré par la transformée. Dans le cas d'un codeur bas délai du type LD-CELP tel que celui qui est décrit par J.H.Chen and all dans l'article intitulé "A low delay CELP coder for the CCITT 16kb/s speech coding standard" paru dans IEEE J. Sel. Areas Commun., Vol 10, pp 830-849, le délai est lié aux cinq échantillons constituant une trame de base. On notera qu'un schéma de codage possède un délai exprimé en nombre d'échantillons. Pour en déduire une valeur temporelle, il faut faire intervenir la fréquence d'échantillonnage à laquelle est exploité le codeur, suivant la relation: durée temporelle = délai en échantillons fréquence d'échantillonnage
Quant à la qualité de codage, elle est un paramètre difficile à définir, sachant que le récepteur final, c'est-à-dire l'oreille de l'auditeur ne peut pas donner de résultats quantitatifs précis. Par ailleurs, les mesures telles que celle du rapport signal à bruit ne sont pas pertinentes car elles ne tiennent pas compte des propriétés de masquage psycho-acoustique du système auditif. Des techniques statistiques telles que celles qui sont recommandées par l'avis ITU-R-BS-1116 permettent de départager différents algorithmes de codage au regard de la qualité de codage.
On notera toutefois qu'une amélioration du rapport signal à bruit réalisée sur l'ensemble des fréquences du signal sonore permet d'assurer une amélioration de la qualité perçue.
Les systèmes de codage de signaux audionumériques génériques, c'est-à-dire sans hypothèse sur le mode de production de ces signaux, ont jusqu'à présent peu pris comme contrainte l'aspect délai de reconstruction du signal. Une exception est néanmoins illustrée par le procédé qui est décrit par F.Rumseyi dans un article intitulé "Hearing both sides-stereo sound for TV in the UK" paru dans IEE rev, vol 36, No 5, pp173-176. Cependant, dans ce procédé, les taux de compression atteints ne permettent pas de rivaliser avec les codeurs à transformée classiques.
Parmi les algorithmes qui sont normalisés à l'ISO (ISO/IEC 13818-3), les délais minimums de reconstruction vont de 18 ms pour le codeur le plus simple - et donc le moins efficace - à plus de 100 ms pour le codeur le plus complexe. D'autres procédés de codage non normalisés par l'ISO tels que le procédé dit AC3 décrit par C.Todd and all, tel que le procédé dit ASPEC (Adaptative Spectral Perceptual Entropy Coding) décrit par K.Brandebug and all, ou le procédé dit ATRAC (Adaptative Transform Acoustic Coding) décrit par K.Tsutsui présentent typiquement des délais de codage/décodage de l'ordre d'une centaine de millisecondes.
L'efficacité de systèmes de codage est liée à la taille des bancs de filtres qui sont genéralement utilisés, à la prise en compte des redondances à long terme dans les signaux à coder, à la répartition optimale des allocations binaires sur une durée supérieure à la trame, etc. La prise en compte de ces éléments au moment du codage a pour conséquence d'augmenter le délai de codage/décodage du système.
On notera que les codeurs bas délais sont souvent liés au codage de parole pour des liaisons duplex téléphoniques, par exemple, ou pour être associés à des annulateurs d'écho. Conçus le plus souvent pour des fréquences d'échantillonnage de 8 kHz à 16 kHz, leur niveau de qualité s'avère insuffisant pour coder de manière proche de l'original des signaux audionumériques génériques.
Le but de l'invention est de proposer, dans ce contexte, un système de codage et le système de décodage associé qui permette, côté récepteur, de reconstruire à la fois un signal audionumérique de qualité et un signal audionumérique de moindre qualité mais dont le délai de codage/décodage est le plus faible possible.
On connaít déjà un tel système de codage/décodage et on citera le Préprint 4132 de la 99ème Convention AES d'octobre 1995 à New-York dans lequel Bernhard Grill et al. décrivent des systèmes de codage audionumériques hiérarchiques, c'est-à-dire dont le flux de bits de sortie comprend un sous-ensemble de bits qui peut permettre un décodage et une reconstitution d'un signal sonore signifiant ou pertinent, mais d'une faible qualité comparée à celle qui est obtenue par décodage et reconstitution à partir du flux total de bits. De tels systèmes de codage comprennent un codeur pour coder un signal sonore de haute qualité dont la sortie est reliée à l'entrée d'un décodeur et un circuit de différence qui effectue la différence entre le signal obtenu en sortie du décodeur et le signal d'origine. Le signal de différence est lui-même soumis, dans un second étage, à des traitements de codage, de décodage et de calcul de la différence analogues. Le troisième étage code le signal résiduel de différence. Les signaux issus des codeurs des trois étages sont alors multiplexés de manière à former un flux numérique hiérarchique. Plusieurs modes de réalisation sont présentés dont l'un précise que, dans le premier étage, le codeur est un codeur à faible débit de bits qui présente un délai de codage relativement faible. Le codeur du second étage est par contre un codeur à délai plus long.
Avec un tel système on dispose donc de trois flux multiplexés dans un unique flux de sortie, l'un de ces flux engendré par le codeur bas délai présentant un faible délai et une qualité moindre alors que les deux autres présentent des délais plus élevés mais apportent le flux d'informations nécessaires à une reproduction de bonne qualité.
Cependant, dans les systèmes présentés par Bernhard Grill, chaque codeur est en réalité constitué d'un banc de filtres sous-échantillonné et d'un codeur. De même, chaque décodeur est en réalité constitué d'un décodeur, d'un banc de filtres associé au banc de filtres du codeur et sur-échantillonneur. On a pu constater que l'utilisation de tels codeurs et décodeurs dans cette structure particulière entraíne un délai de codage/décodage encore relativement élevé du flux basse qualité.
Le but de l'invention est de proposer un système de codage qui présente un délai de codage/décodage du flux basse qualité inférieur à celui qui est donné par le système décrit ci-dessus.
A cet effet, un système de codage selon l'invention est caractérisé en ce qu'il comporte un banc de filtres prévu pour recevoir ledit flux entrant à coder et pour engendrer des signaux respectivement dans des sous-bandes différentes, des codeurs, dits codeurs primaires, pour respectivement coder lesdits signaux en sous-bandes et ainsi former des flux primaires, des décodeurs recevant lesdits flux primaires et décodant lesdits flux, des soustracteurs dont chacun est prévu pour effectuer la différence entre les signaux délivrés par le banc de filtres dans une sous-bande et les signaux issus du décodeur correspondant, un codeur, dit codeur secondaire, pour effectuer le codage des signaux issus des soustracteurs, et ainsi engendrer un flux secondaire, et un multiplexeur pour multiplexer en un seul flux global les flux primaires issus des codeurs primaires et le flux secondaire issu du codeur secondaire.
Il comporte en outre un second banc de filtres, dit banc de filtres secondaire qui reçoit sur chacune de ses entrées le signal de différence issu d'un soustracteur et qui délivre un flux filtré à l'entrée du codeur secondaire. Ledit banc de filtres secondaire comporte avantageusement, pour chaque sous-bande, une entrée pour recevoir le flux primaire issu du codeur primaire et décoder par le décodeur correspondant afin de déterminer, au moyen d'un modèle psycho-acoustique, les niveaux maximums de bruit injectable dans chacune des sous-bandes, ledit codeur secondaire étant un codeur perceptif dont le codage est basé sur l'analyse psycho-acoustique effectuée par ledit banc de filtres secondaire.
Selon une variante de réalisation de l'invention, ledit banc de filtres secondaire comporte, pour chaque sous-bande, une entrée pour recevoir le signal en sous-bandes issu du banc de filtres primaire afin de déterminer, au moyen d'un modèle psycho-acoustique, les niveaux maximums de bruit injectable dans chacune des sous-bandes, ledit codeur secondaire étant un codeur perceptif dont le codage est basé sur l'analyse psycho-acoustique effectuée par ledit banc de filtres secondaire.
Avantageusement, chaque codeur primaire est un codeur reconfigurable en débit.
La présente invention concerne également un procédé de multiplexage d'une trame primaire avec une trame secondaire engendrées par un système de codage d'un signal à coder, du type délivrant un flux global constitué d'un flux primaire correspondant à un codage d'un flux entrant, dit codage primaire, et d'un flux secondaire correspondant à un codage secondaire
Il consiste à constituer une trame dite trame globale constituée par la concaténation d'une pluralité de trames primaires et d'une pluralité de fragments d'au moins une trame secondaire, une trame primaire alternant avec un fragment de trame secondaire, le nombre de bits d'un fragment de trame secondaire étant égal au débit affecté au flux secondaire multiplié par la durée d'émission d'une trame primaire. L'émission des trames globales se fait avantageusement toutes les durées des trames primaires. De même, la durée d'une trame globale est égale à la durée d'émission d'une trame primaire multipliée par le nombre de trames primaires.
La présente invention concerne également un système de décodage d'un flux codé par un système de codage tel que celui qui est décrit ci-dessus. Il comprend un démultiplexeur de flux délivrant une pluralité de flux primaires et un flux secondaire, une pluralité de décodeurs primaires pour décoder lesdits flux primaires, la sortie de chaque décodeur étant reliée à une entrée correspondante d'un banc de filtres primaires délivrant alors un flux décodé bas délai, la sortie de chaque décodeur étant également reliée à une entrée d'une ligne à retard correspondante dont la sortie est reliée à la première entrée d'un sommateur, un décodeur secondaire délivrant un flux secondaire décodé fourni à une seconde entrée de chaque sommateur, la sortie de chaque sommateur étant reliée à l'entrée d'un second banc de filtres primaire pour délivrer un flux décodé de haute qualité. Il comporte en outre un banc de filtres secondaire.
Les caractéristiques de l'invention mentionnées ci-dessus, ainsi que d'autres, apparaítront plus clairement à la lecture de la description suivante d'un exemple de réalisation, ladite description étant faite en relation avec les dessins joints, parmi lesquels:
  • la Fig. 1 est une vue schématique d'un système de codage selon l'invention,
  • la Fig. 2 illustre le procédé de multiplexage qui est mis en oeuvre dans un système de codage selon l'invention,
  • la Fig. 3 est un vue schématique d'un système de décodage selon l'invention.
  • Le système de codage représenté à la Fig. 1 est constitué d'un banc de filtres 10 dont l'entrée reçoit un flux audionumérique entrant FE à coder. Le banc de filtres 10 délivre plusieurs signaux se trouvant dans des sous-bandes, dites sous-bandes primaires, différentes. Ces signaux sont respectivement fournie aux entrées de codeurs primaires bas débit 201 à 204, ici au nombre de quatre mais pouvant être en nombre n quelconque supérieur à deux. La sortie de chaque codeur primaire 20i (i = 1 à n) est reliée, d'une part, à une entrée correspondante d'un multiplexeur 30 et, d'autre part, à l'entrée d'un décodeur primaire bas délai 40i (i = 1 à n). La sortie de chaque décodeur 40i est reliée à une première entrée d'un soustracteur 50i dont l'autre entrée reçoit le signal de la sous-bande primaire correspondante délivrée par le banc de filtre 10. Le signal de différence issu du soustracteur 50i est fourni à l'entrée d'un banc de filtres secondaire 60 dont la sortie est reliée à un codeur 70. La sortie du codeur 70 est reliée à une entrée correspondante du multiplexeur 30.
    Le multiplexeur 30 effectue l'entrelacement des flux primaires et secondaire respectivement issus des codeurs 20 et 70. La Fig. 2 illustre le procédé d'entrelacement.
    On a représenté deux axes des temps dont l'un est dilaté par rapport au second, des pointillés montrant la correspondance temporelle entre ces axes. Sur le premier axe, sont représentés des segments dont la longueur correspond à la durée d'établissement t d'une trame primaire obtenue par association des quatre flux primaires issus des codeurs 201 à 204. Sur l'autre axe, on a représenté une trame globale TG constituée d'un entête H, de quatre trames primaires TP et de quatre fragments d'une trame secondaire FTS, les fragments de trame secondaire FTS alternant avec les trames primaires TP. Les fragments de trame secondaire FTS sont le résultat d'une fragmentation de la trame secondaire TS délivrée par le codeur secondaire 70. Le nombre de bits d'un fragment FTS est égal au débit affecté au flux secondaire multiplié par la durée t d'émission des codeurs primaires.
    On peut constater que la durée Tt de la trame globale TG est un multiple entier de la durée t de la trame primaire évoquée plus haut (ici quatre). De même, la durée Tt de la trame globale TG est un multiple entier de la durée T de la trame secondaire TS. Avantageusement, la durée de la trame globale Tt est égale à la durée T d'une trame secondaire TS. Dans ce cas, une seule trame secondaire TS se trouve incluse dans la trame globale TG, comme cela est le cas dans la Fig. 2.
    On notera que le nombre de trames primaires TP et le nombre de fragments de trames secondaires TS ar trame globale pourrait être différent de quatre sans changer fondamentalement le concept de l'invention. En particulier, ce nombre n'est pas lié au nombre de sous-bandes contenues dans une trame primaire.
    Afin de diminuer le délai de codage/décodage du flux primaire, l'émission du flux global se fait toutes les durées des trames primaires TP. Plus exactement, à chaque émission, correspondent les informations d'une trame primaire TP et du fragment de trame secondaire FTS consécutif.
    Sur la durée Tt de la trame globale, le débit binaire alloué à chaque codeur primaire 20i est variable. Cette allocation est connue à la fois du système de codage et du système de décodage. Par exemple, on pourra décider l'allocation suivant l'énergie dans chaque sous-bande primaire.
    L'entête H contient un mot de synchronisation pour caler le système de décodage et pour délivrer les allocations des différents codeurs primaires 20i. Ces allocations d'en-tête de trame émises par le système de codage servent alors à initialiser le système de décodage et à pallier les éventuelles erreurs de transmission.
    Pour chaque sous-bande du banc de filtres 10, le banc de filtres 60 comporte une entrée pour recevoir la sous-bande concernée délivrée par le banc de filtres primaire 10. A partir de ce signal, un modèle psycho-acoustique idoine, par exemple le premier modèle proposé par la norme ISO/IEC 13818-3, va déterminer les niveaux maximums de bruit injectable de manière inaudible dans chacune des sous-bandes secondaires.
    Le codeur 70 est un codeur perceptible dont le codage est basé sur l'analyse psycho-acoustique fournie par le banc de filtres 60.
    Lorsque le flux du codeur primaire 20i dispose d'un nombre de bits suffisant, par exemple 2,5 bits par échantillon, on préfère remplacer le signal original à l'entrée du banc de filtres pour traitement selon le modèle psycho-acoustique par sa version codée puis décodée délivrée par le décodeur 40i dans la sous-bande primaire considérée. L'avantage est que le décodeur secondaire du système de décodage qui est associé au présent système de codage et qui est donc muni du même modèle psycho-acoustique que le banc de filtres 60 peut déduire les niveaux d'allocation fins calculés par le codeur secondaire 70. On fait alors l'économie de frais de transmission.
    Le banc de filtres primaire peut être un banc de filtres de la famille des QMF (Quadrature Mirror Filterbank) ou des bancs de filtres du type MOT (Modulated Orthogonal Transforms), avec un nombre de sous-bandes suffisamment faible pour ne pas produire un délai de retard trop important. Un banc de filtres modulés en sous-bandes de largeurs inégales ou un banc de filtres cascadés du type à ondelettes ou autres est aussi envisageable, à condition que ce choix soit compatible avec le délai imposé. Un banc de filtres à huit sous-bandes modulées à partir d'un filtre de longueur trente deux tel que celui qui est décrit par H.S. Malvar dans un article intitulé "Extended Lapped Transforms: Properties, Applications, and Fast Algorithms" paru dans IEEE Transactions on signal processing, Vol 40, No 11, pp2703-2714 de novembre 1992 est un bon exemple de banc de filtres adapté au système de l'invention.
    Chaque codeur bas délai 20i peut être un codeur reconfigurable en débit afin que le débit associé à chaque sous-bande soit variable. Chaque codeur 20i génère un flux sur un faible nombre d'échantillons groupés, représentant une durée constante indépendante de la sous-bande. Cette durée sera appelée par la suite durée primaire.
    Par exemple, on pourra choisir un codeur de type LD-CELP (Low Delay - Code Excited Linear Prediction), tel que celui qui est décrit par J.H. Chen and all dans un article intitulé "A low delay CELP coder for the CCITT 16kb/s speech coding standard" paru dans IEEE J.Sel.Areas Commun., Vol 10, pp830-849 de juin 1992. Ce codeur LD-CELP peut contenir un choix de dictionnaires de tailles différentes.
    En ce qui concerne chaque décodeur 40i, on notera qu'il pourrait être inclus dans le codeur 20i associé.
    En ce qui concerne le banc de filtres secondaire 60, son choix est plus libre que pour le banc de filtres primaire 10 dans la mesure où on ne fait intervenir aucune contrainte sur le retard qu'il introduit. Un tel banc de filtres peut délivrer un nombre variable de sous-bandes par sous-bande primaire, et ce selon la stationnarité du signal en sous-bande. De plus, pour s'affranchir des recouvrements de spectre du banc de filtres primaire, on a intérêt à utiliser des papillons de réduction d'aliasing, tels que ceux qui sont décrits par 8. Tang and all dans un article intitulé "Spectral analysis of subband filtered signals" paru dans ICAASP, Vol 2, pp 1324-1327, 1995.
    Par exemple, dans le cas d'un banc de filtres primaire 10 à huit sous-bandes, on peut choisir, pour chacune des quatre premières sous-bandes primaires, un banc de filtres de type MOT (Modulated Orthogonal Transforms) avec des moyens permettant, selon la stationnarité du signal, la commutation d'une fenêtre de longueurs 128 ou 32, produisant respectivement 64 ou 16 sous-bandes, et, pour les quatre autres sous-bandes primaires, un banc de filtre de type MOT en 32 sous-bandes de longueur 64.
    Le débit disponible pour le codeur secondaire 70 est calculé en soustrayant le débit utilisé par les codeurs primaires bas délai 20i au débit total. Par exemple, pour un débit total de 64 kbits/s, on pourra allouer 32 kbits/s à l'ensemble des codeurs primaires 201 à 20n et 32 kbits/s au codeur secondaire 70.
    Le système de décodage représenté à la Fig. 3 est constitué d'éléments dont les références sont comprises entre 110 et 180. Chaque élément est le dual d'un élément du système de codage représenté à la Fig. 1 à l'exception des éléments 180i. Sa référence est alors la même additionnée de cent. A titre d'exemple, le démultiplexeur 130 est le dual du multiplexeur 30.
    Dans la présente description, un élément est le dual d'un autre élément lorsqu'il est prévu pour accomplir la fonction inverse de ce premier.
    Le système de décodage représenté à la Fig. 3 est constitué d'un démultiplexeur 130 dont les sorties sont respectivement reliées aux entrées de décodeurs primaires 1201 à 1204 et à un codeur secondaire 170.
    La sortie de chaque décodeur primaire 1201 à 1204 est reliée, d'une part, à une ligne à retard 1801 à 1804 associée et, d'autre part, à une entrée d'un premier banc de filtres primaire 110. La sortie du banc de filtres 110 délivre le flux primaire décodé Fd. le flux primaire décodé Fd est le flux de qualité moindre mais de délai de codage/décodage faible.
    La sortie de chaque ligne à retard 1801 à 1804 est reliée à une première entrée d'un additionneur 1501 à 1504 correspondant.
    La sortie du décodeur secondaire 170 est reliée à l'entrée d'un banc de filtres 160 dont les sorties sont respectivement reliées aux secondes entrées des additionneurs 1501 à 1504.
    Enfin, les sorties des additionneurs 1501 à 1504 sont respectivement reliées aux entrées correspondantes d'un banc de filtres 110' dont la sortie délivre le flux décodé haute qualité Fdhq.
    Une liaison entre chaque ligne à retard 180i et le décodeur 170 est prévue de manière à transmettre à ce dernier, au moment voulu, les informations d'allocations présentes dans le flux primaire issu du décodeur 120j correspondant.
    Le démultiplexeur 130 du système de décodage réalise la séparation de la trame globale TG reçue en trames primaires TP et en une trame secondaire délivrées alternativement aux décodeurs primaires 1201 à 1204 et au décodeur secondaire 170. La sortie bas délai du système de décodage est obtenue par décodage, dans les décodeurs primaires 120i, des trames primaires en sous-bandes puis passage dans le banc de filtres 110 réciproque du banc de filtres à faible délai 10. Dans chacune des sous-bandes, le flux primaire issu du décodeur primaire 120i ainsi que les informations d'allocation qu'il contient sont envoyés dans la ligne à retard 180i correspondante pour alimenter la partie haute qualité. Les informations d'allocation issues des lignes à retard sont transmises, pour chaque flux primaire, au décodeur secondaire 170 qui réalise alors un décodage de la trame secondaire. On applique ensuite les papillons réducteurs d'aliasing réciproques des papillons de codage, puis le banc de filtres secondaire 160. On ajoute alors les signaux reçus des décodeurs primaires 120i via les lignes à retard 180i pour alimenter le banc de filtres primaire 110'. On récupère en sortie le signal haute qualité Fdhq.

    Claims (10)

    1. Système de codage d'un signal à coder, du type délivrant un flux global constitué d'un flux primaire correspondant à un codage d'un flux entrant, dit codage primaire, et d'un flux secondaire correspondant à un codage secondaire, le délai de codage dudit codage primaire étant inférieur à celui du codage secondaire, caractérisé en ce qu'il comporte un banc de filtres (10) prévu pour recevoir ledit flux entrant (FE) à coder et pour engendrer des signaux respectivement dans des sous-bandes différentes, des codeurs, dits codeurs primaires (201 à 204), pour respectivement coder lesdits signaux en sous-bandes et ainsi former des flux primaires (TP), des décodeurs (401 à 404) recevant lesdits flux primaires (TP) et décodant lesdits flux, des soustracteurs (501 à 504) dont chacun est prévu pour effectuer la différence entre les signaux délivrés par le banc de filtres (10) dans chaque sous-bande et les signaux délivrés par le décodeur (401 à 404) correspondant, un codeur (70), dit codeur secondaire, pour effectuer le codage des signaux issus des soustracteurs (501 à 504), et ainsi engendrer un flux secondaire (TS), et un multiplexeur (30) pour multiplexer en un seul flux global (TG) les flux primaires (TP) issus des codeurs primaires (201 à 204) et le flux secondaire (TS) issu du codeur secondaire (70).
    2. Système de codage selon la revendication 1, caractérisé en ce qu'il comporte un second banc de filtres (60), dit banc de filtres secondaire qui reçoit sur chacune de ses entrées le signal de différence issu de chaque soustracteur (501 à 504) et qui délivre un flux filtré à l'entrée du codeur secondaire (70).
    3. Système de codage selon la revendication 2, caractérisé en ce que ledit banc de filtres secondaire (60) comportant, pour chaque sous-bande, une entrée pour recevoir le flux primaire (TP) issu du codeur primaire (201 à 204) et décodé par le décodeur (401 à 404) correspondant afin de déterminer, au moyen d'un modèle psycho-acoustique, les niveaux maximums de bruit injectable dans chacune des sous-bandes, ledit codeur secondaire (70) étant un codeur perceptif dont le codage est basé sur l'analyse psycho-acoustique effectuée par ledit banc de filtres secondaire (60).
    4. Système de codage selon la revendication 2, caractérisé en ce que ledit banc de filtres secondaire (60) comportant, pour chaque sous-bande, une entrée pour recevoir le signal en sous-bandes issu du banc de filtres primaire (10) afin de déterminer, au moyen d'un modèle psycho-acoustique, les niveaux maximums de bruit injectable dans chacune des sous-bandes, ledit codeur secondaire (70) étant un codeur perceptif dont le codage est basé sur l'analyse psycho-acoustique effectuée par ledit banc de filtres secondaire (60).
    5. Système de codage selon une des revendications précédentes, caractérisé en ce que chaque codeur primaire (201 à 204) est un codeur reconfigurable en débit.
    6. Procédé de multiplexage d'une trame primaire (TP) avec une trame secondaire (TS) engendrées par un système de codage d'un signal à coder, du type délivrant un flux global constitué d'un flux primaire correspondant à un codage d'un flux entrant, dit codage primaire, et d'un flux secondaire correspondant à un codage secondaire, caractérisé en ce qu'il consiste à constituer une trame dite trame globale (TG) constituée par la concaténation d'une pluralité de trames primaires (TP) et d'une pluralité de fragments (FTS) d'au moins une trame secondaire (TS), une trame primaire (TP) alternant avec un fragment de trame secondaire (FTS), le nombre de bits d'un fragment de trame secondaire (FTS) étant égal au débit affecté au flux secondaire (TS) multiplié par la durée d'émission d'une trame primaire (TP).
    7. Procédé de multiplexage selon la revendication 6, caractérisé en ce que l'émission des trames globales (TG) se fait toutes les durées des trames primaires (TP).
    8. Procédé de multiplexage selon la revendication 6 ou 7, caractérisé en ce que la durée d'une trame globale (TG) est égale à la durée d'émission d'une trame primaire (TP) multipliée par le nombre de trames primaires (TP).
    9. Système de décodage d'un flux codé par un système de codage selon une des revendications 1 à 5, caractérisé en ce qu'il comprend un démultiplexeur de flux (130) délivrant une pluralité de flux primaires et un flux secondaire, une pluralité de décodeurs primaires (1201 à 1204) pour décoder lesdits flux primaires, la sortie de chaque décodeur (1201 à 1204) étant reliée à une entrée correspondante d'un banc de filtres primaire (110) délivrant alors un flux décodé bas délai (Fd), la sortie de chaque décodeur (1201 à 1204) étant également reliée à une entrée d'une ligne à retard correspondante (1801 à 1804) dont la sortie est reliée à la première entrée d'un sommateur (1501 à 1504), un décodeur secondaire (170) délivrant un flux secondaire décodé fourni à une seconde entrée de chaque sommateur (1501 à 1504), la sortie de chaque sommateur (1501 à 1504) étant reliée à l'entrée d'un second banc de filtres primaire (110') pour délivrer un flux décodé de haute qualité (Fdqh).
    10. Système de décodage selon la revendication 9, caractérisé en ce qu'il comporte en outre un banc de filtres secondaire (160).
    EP97919457A 1996-04-03 1997-04-02 Systeme de codage et systeme de decodage d'un signal, notamment d'un signal audionumerique Expired - Lifetime EP0891617B1 (fr)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    FR9604483A FR2747225B1 (fr) 1996-04-03 1996-04-03 Systeme de codage et systeme de decodage d'un signal, notamment d'un signal audionumerique
    FR9604483 1996-04-03
    PCT/FR1997/000582 WO1997038417A1 (fr) 1996-04-03 1997-04-02 Systeme de codage et systeme de decodage d'un signal, notamment d'un signal audionumerique

    Publications (2)

    Publication Number Publication Date
    EP0891617A1 EP0891617A1 (fr) 1999-01-20
    EP0891617B1 true EP0891617B1 (fr) 1999-11-24

    Family

    ID=9491074

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP97919457A Expired - Lifetime EP0891617B1 (fr) 1996-04-03 1997-04-02 Systeme de codage et systeme de decodage d'un signal, notamment d'un signal audionumerique

    Country Status (5)

    Country Link
    US (1) US6058361A (fr)
    EP (1) EP0891617B1 (fr)
    DE (1) DE69700837T2 (fr)
    FR (1) FR2747225B1 (fr)
    WO (1) WO1997038417A1 (fr)

    Families Citing this family (6)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US6728344B1 (en) * 1999-07-16 2004-04-27 Agere Systems Inc. Efficient compression of VROM messages for telephone answering devices
    DE60209888T2 (de) * 2001-05-08 2006-11-23 Koninklijke Philips Electronics N.V. Kodieren eines audiosignals
    JP3855827B2 (ja) * 2002-04-05 2006-12-13 ソニー株式会社 2次元サブバンド符号化装置
    US8352248B2 (en) * 2003-01-03 2013-01-08 Marvell International Ltd. Speech compression method and apparatus
    US7548853B2 (en) * 2005-06-17 2009-06-16 Shmunk Dmitry V Scalable compressed audio bit stream and codec using a hierarchical filterbank and multichannel joint coding
    FI20065010A0 (fi) * 2006-01-09 2006-01-09 Nokia Corp Häiriönvaimennuksen yhdistäminen tietoliikennejärjestelmässä

    Family Cites Families (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US4956871A (en) * 1988-09-30 1990-09-11 At&T Bell Laboratories Improving sub-band coding of speech at low bit rates by adding residual speech energy signals to sub-bands
    US5495552A (en) * 1992-04-20 1996-02-27 Mitsubishi Denki Kabushiki Kaisha Methods of efficiently recording an audio signal in semiconductor memory

    Also Published As

    Publication number Publication date
    EP0891617A1 (fr) 1999-01-20
    US6058361A (en) 2000-05-02
    DE69700837D1 (de) 1999-12-30
    FR2747225B1 (fr) 1998-04-30
    WO1997038417A1 (fr) 1997-10-16
    FR2747225A1 (fr) 1997-10-10
    DE69700837T2 (de) 2000-07-20

    Similar Documents

    Publication Publication Date Title
    EP1107230B1 (fr) Procédé de traitement de plusieurs flux binaires de données audio
    EP2002428B1 (fr) Procede de discrimination et d'attenuation fiabilisees des echos d'un signal numerique dans un decodeur et dispositif correspondant
    EP0093219B1 (fr) Procédé de codage numérique et dispositif de mise en oeuvre dudit procédé
    CA2512179C (fr) Procede de codage et de decodage audio a debit variable
    FR2929466A1 (fr) Dissimulation d'erreur de transmission dans un signal numerique dans une structure de decodage hierarchique
    EP0085820B1 (fr) Procédé de transmission numérique multi-vitesses et dispositif de mise en oeuvre dudit procédé
    EP2005420A1 (fr) Dispositif et procede de codage par analyse en composante principale d'un signal audio multi-canal
    EP1356455B1 (fr) Methode et dispositif de traitement d'une pluralite de flux binaires audio
    EP2979266B1 (fr) Mixage partiel optimisé de flux audio codés selon un codage par sous-bandes
    EP2452336A1 (fr) Codage/décodage perfectionne de signaux audionumériques
    EP0059294A1 (fr) Perfectionnement aux procédés de transmission et dispositif de mise en oeuvre du procédé perfectionné
    FR2762464A1 (fr) Procede et dispositif de codage d'un signal audiofrequence par analyse lpc "avant" et "arriere"
    EP1037196B1 (fr) Procédé de codage, de décodage et de transcodage audio
    EP0891617B1 (fr) Systeme de codage et systeme de decodage d'un signal, notamment d'un signal audionumerique
    WO2009081003A1 (fr) Codage/decodage par transformee, a fenetres adaptatives
    FR2739481A1 (fr) Appareil et procede d'elimination du bruit
    EP2979437B1 (fr) Mixage optimisé de flux audio codés selon un codage par sous-bandes
    EP2203915B1 (fr) Dissimulation d'erreur de transmission dans un signal numerique avec repartition de la complexite
    WO2023165946A1 (fr) Codage et décodage optimisé d'un signal audio utilisant un auto-encodeur à base de réseau de neurones
    FR2888704A1 (fr)
    EP0989544A1 (fr) Dispositif et procédé de filtrage d'un signal de parole, récepteur et système de communications téléphonique
    EP1362344A1 (fr) Procede et dispositif de reconstruction spectrale de signaux a plusieurs voies

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 19980923

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): DE GB IT

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    17Q First examination report despatched

    Effective date: 19990428

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE GB IT

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

    Effective date: 19991124

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 19991206

    REF Corresponds to:

    Ref document number: 69700837

    Country of ref document: DE

    Date of ref document: 19991230

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20140327

    Year of fee payment: 18

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20140321

    Year of fee payment: 18

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 69700837

    Country of ref document: DE

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20150402

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20151103

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20150402