EP0891297A1 - Metallurgical-grade silicon with a controlled structure for use in halosilane synthesis - Google Patents

Metallurgical-grade silicon with a controlled structure for use in halosilane synthesis

Info

Publication number
EP0891297A1
EP0891297A1 EP97915546A EP97915546A EP0891297A1 EP 0891297 A1 EP0891297 A1 EP 0891297A1 EP 97915546 A EP97915546 A EP 97915546A EP 97915546 A EP97915546 A EP 97915546A EP 0891297 A1 EP0891297 A1 EP 0891297A1
Authority
EP
European Patent Office
Prior art keywords
silicon
aluminum
sihcium
metallurgical
synthesis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP97915546A
Other languages
German (de)
French (fr)
Inventor
Thomas Margaria
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ferropem SAS
Original Assignee
Pechiney Electrometallurgie SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pechiney Electrometallurgie SAS filed Critical Pechiney Electrometallurgie SAS
Publication of EP0891297A1 publication Critical patent/EP0891297A1/en
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/023Preparation by reduction of silica or free silica-containing material
    • C01B33/025Preparation by reduction of silica or free silica-containing material with carbon or a solid carbonaceous material, i.e. carbo-thermal process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/12Organo silicon halides
    • C07F7/16Preparation thereof from silicon and halogenated hydrocarbons direct synthesis

Definitions

  • the invention relates to a particular quality of metallurgical silicon with a controlled structure and containing aluminum, intended more particularly for the synthesis of alkyl or aryl-halosilanes used in the manufacture of silicones.
  • Metallurgical silicon denotes the silicon obtained industrially by carbothermic reduction of silica in an electric furnace. It contains at least 98% silicon and, as main elements, iron, aluminum and calcium. It also contains a certain amount of oxygen and other elements, at a content ⁇ 0.1%, such as P, Ti, V, Ni, etc.
  • the desired product being D
  • selectivity of the reaction It is also important to produce the maximum quantity of silanes per unit of time, the value of the weight flow of silanes produced being called reactivity.
  • Much work has been devoted to improving the reactivity and selectivity of the reaction. We have highlighted, in particular, the role played by metallic compounds present in the structure of metallurgical silicon used as raw material. This is the case for the publication of the plaintiff: T. MARGARIA, JC ANGLEZIO and C.
  • the Applicant has therefore sought a means of improving the reactivity and the selectivity of the reaction by acting on the silicon grains themselves. This can be done by controlling their phosphorus content as described in international application WO 95/01303 filed by BAYER and the applicant.
  • the silicone industry continues to demand silicon capable of further increasing the selectivity and reactivity of the ROCHOW reaction.
  • the subject of the invention is therefore a metallurgical silicon intended for the synthesis of alkyl and aryl halosilanes, the structure of which consists of crystals of primary silicon and of intermetallic compounds essentially based on silicon, iron, aluminum and calcium and characterized in that more than 90% of the primary silicon grains have an aluminum content of between 50 and 1000 ppm.
  • This structure is preferably obtained with a silicon containing overall between 0.12 and 0.30% by weight of aluminum and with a process for solidifying the silicon after casting making it possible to descend below 1200 ° C. in less than 10 s .
  • the Applicant has found that, for a certain range of aluminum contents and under specific conditions for solidification of liquid silicon, it is possible to increase the aluminum content of the primary silicon crystals beyond the normal saturation threshold. 15 ppm, and to control the level of supersaturation by varying both the aluminum content of the liquid sihcium and its solidification speed, so as to obtain an increase in the reactivity of the sihcium in the ROCHOW reaction.
  • a sensitivity factor RSF is determined for aluminum such that the concentration C (in atoms per cm 3 ) is equal to the product RSF x IAJ / IS I , c is to say the product of the sensitivity factor by the ratio of the intensities measured for aluminum and the silicon matrix.
  • This RSF factor is obtained by averaging at least 5 measurements made on pre-implanted standards of known concentration and it is of the order of 3.3 10 23 .
  • the aluminum supersaturation level of the primary sihcium increases with the aluminum content of the starting hydrous sihcium and with the speed of solidification.
  • the cooling rate in particular between 1400 and 1200 ° C., also plays on the percentage of primary silicon crystals having an aluminum content of more than 50 ppm, very high speeds leading to more than 95% of supersaturated crystals. , or even at percentages close to 100%.
  • a scanning electron microscope and X-ray diffraction examination of the aluminum supersaturated sihcium crystals reveals the existence of deformations in the crystals such as dislocations or shear planes. With a constant intermetallic content and identical phosphorus content in the primary silicon, it is found that the reactivity of the aluminum supersaturated sihcium is higher compared to that of a sihcium whose crystals contain the normal content of about 15 ppm solid solution.
  • each of the samples was subjected to a methylchlorosilane manufacturing test under the following conditions: The tests were carried out in a glass reactor, in stirred ht, with a diameter of 30 mm, equipped with an agitator. The same amount of sihcium with the same particle distribution between 70 and 160 ⁇ m, was used in each test.
  • the reaction mixture consisted of 40 g of sihcium, 3.2 g of partially oxidized copper as catalyst and 0.05 g of ZnO.
  • the methyl chloride was sent to the reaction mixture, through a sintered glass disc under a pressure of 0.2 MPa. After heating the reaction medium and starting the reaction, the temperature of the system was adjusted and maintained at 300 ° C. and the quantity and the composition of the mixture of silanes formed was determined.
  • P denotes the total quantity of silanes produced in g / h; MeH, Mono, T, D, PS, the respective percentages by weight of monomethyldichlorosilane (CH 3 HSiCl 2 ), tomethylchlorosilane ((CH 3 ) 3SiCl), methyltrichlorosilane (CH 3 SiCl 3 ), dimethyldichlorosilane ((CH3) 2 SiCl 2 ) and polysilanes.
  • the desired product is dimethyldichlorosilane
  • the selectivity of the reaction is assessed by D, while the reactivity is measured by P.
  • the values indicated are the means of 4 individual measurements.
  • sample 1 where the primary silicon is supersaturated with aluminum, has an increased reactivity of 6% for a selectivity identical to 0.2%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)

Abstract

A metallurgical-grade silicon for use in alkyl or aryl halosilane synthesis, and having a structure consisting of primary silicon crystals and intermetallic compounds, particularly of silicon, aluminium and calcium, wherein at least 90 % of the primary silicon crystals have an aluminium content of 50-1000 ppm, is disclosed. Said structure substantially enhances the reactivity of the silicon in the synthesis reaction.

Description

Silicium métallurgique à structure contrôlée destiné à la synthèse des halogénosilanes Metallurgical silicon with controlled structure intended for the synthesis of halosilanes
Domaine techniqueTechnical area
L'invention concerne une qualité particulière de silicium métallurgique à structure contrôlée et contenant de l'aluminium, destiné plus particulièrement à la synthèse des alkyl ou aryl-halogénosilanes utilisés dans la fabrication des silicones. On désigne par silicium métallurgique le silicium obtenu industriellement par réduction carbothermique de la silice au four électrique. H contient au moins 98 % de silicium et, comme éléments principaux, le fer, l' aluminium et le calcium. Il contient également une certaine quantité d'oxygène et d'autres éléments, à une teneur < 0,1%, tels que P, Ti, V, Ni, etc..The invention relates to a particular quality of metallurgical silicon with a controlled structure and containing aluminum, intended more particularly for the synthesis of alkyl or aryl-halosilanes used in the manufacture of silicones. Metallurgical silicon denotes the silicon obtained industrially by carbothermic reduction of silica in an electric furnace. It contains at least 98% silicon and, as main elements, iron, aluminum and calcium. It also contains a certain amount of oxygen and other elements, at a content <0.1%, such as P, Ti, V, Ni, etc.
Etat de la techniqueState of the art
La synthèse des alkyl ou aryl halogénosilanes par réaction à une température comprise entre 250 et 350°C d'un hydrocarbure halogène sur du silicium en présence d'un catalyseur est connue depuis le brevet US 2380995 délivré en 1945 à Rochow. La réaction de Rochow a atteint un développement industriel important puisqu'elle est à la base de l'industrie des silicones. Elle se pratique en général avec le chlorure de méthyle CH3C1, et conduit à un mélange de différents méthyl chlorosilanes, en particulier le monométhyl-trichlorosilane (désigné par la lettre T) et le diméthyl¬ dichlorosilane (désigné par D). Le produit recherché étant D, il importe de pouvoir conduire la réaction de façon à obtenir la proportion maximale de D dans le mélange de silanes obtenu, cette proportion étant appelée sélectivité de la réaction. Il importe également de produire la quantité maximale de silanes par unité de temps, la valeur du flux pondéral de silanes produits étant appelée réactivité. De nombreux travaux ont été consacrés à améliorer la réactivité et la sélectivité de la réaction. On a mis en évidence, en particulier, le rôle joué par les composés mteπnétalliques présents dans la structure du silicium métallurgique utilisé comme matière première. C'est le cas de la publication de la demanderesse: T. MARGARIA, J.C. ANGLEZIO et C. SERVANT « Intermetallic Compounds in Metallurgical Silicon » au congrès INFACON 6, Proceedings of the 6th International Ferroalloys Congress, Cape Town, voL 1, 1992, édité par SAJMM, Johannesburg, pages 209- 214, qui indique les différents intermétalliques présents dans le silicium et la manière de les contrôler. Le brevet DE 4037021 d'ELKEM recommande la présence de certaines phases ternaires ou quaternaires contenant Si, Fe, Al et Ca.The synthesis of alkyl or aryl halosilanes by reaction at a temperature between 250 and 350 ° C of a halogenated hydrocarbon on silicon in the presence of a catalyst has been known since US Pat. No. 2,380,995 issued in 1945 to Rochow. The Rochow reaction has reached an important industrial development since it is the basis of the silicone industry. It is generally carried out with methyl chloride CH 3 C1, and leads to a mixture of different methyl chlorosilanes, in particular monomethyl-trichlorosilane (designated by the letter T) and dimethyl¬ dichlorosilane (designated by D). The desired product being D, it is important to be able to conduct the reaction so as to obtain the maximum proportion of D in the mixture of silanes obtained, this proportion being called selectivity of the reaction. It is also important to produce the maximum quantity of silanes per unit of time, the value of the weight flow of silanes produced being called reactivity. Much work has been devoted to improving the reactivity and selectivity of the reaction. We have highlighted, in particular, the role played by metallic compounds present in the structure of metallurgical silicon used as raw material. This is the case for the publication of the plaintiff: T. MARGARIA, JC ANGLEZIO and C. SERVANT “Intermetallic Compounds in Metallurgical Silicon ”at the INFACON 6 congress, Proceedings of the 6th International Ferroalloys Congress, Cape Town, vol 1, 1992, published by SAJMM, Johannesburg, pages 209-214, which indicates the different intermetallics present in silicon and how to control them. Patent DE 4037021 by ELKEM recommends the presence of certain ternary or quaternary phases containing Si, Fe, Al and Ca.
H est connu également qu'en modifiant la structure des composés intermétalliques localisés aux joints de grains du silicium, on peut améliorer la réactrvité et la sélectivité de la réaction de ROCHOW. De telles structures ont été proposées dans les brevets EP 0610807 de WACKER CHEMIE ou EP 0673880 de la demanderesse. Toutefois, quel que soit le soin apporté à former, doser et structurer ces intermétalliques, ils restent toujours localisés à la surface des grains de silicium de sorte que leur effet est limité au démarrage de la réaction.It is also known that by modifying the structure of the intermetallic compounds located at the grain boundaries of the silicon, it is possible to improve the reactivity and the selectivity of the ROCHOW reaction. Such structures have been proposed in patents EP 0610807 of WACKER CHEMIE or EP 0673880 of the applicant. However, whatever care is taken to form, dose and structure these intermetallics, they always remain localized on the surface of the silicon grains so that their effect is limited at the start of the reaction.
La demanderesse a donc recherché un moyen d'améliorer la réactivité et la sélectivité de la réaction en agissant sur les grains de silicium eux-mêmes. On peut le faire en contrôlant leur teneur en phosphore comme décrit dans la demande internationale WO 95/01303 déposée par BAYER et la demanderesse. L'industrie des silicones continue cependant de demander du silicium susceptible d'augmenter encore la sélectivité et la réactivité de la réaction de ROCHOW.The Applicant has therefore sought a means of improving the reactivity and the selectivity of the reaction by acting on the silicon grains themselves. This can be done by controlling their phosphorus content as described in international application WO 95/01303 filed by BAYER and the applicant. However, the silicone industry continues to demand silicon capable of further increasing the selectivity and reactivity of the ROCHOW reaction.
Objet de l'inventionSubject of the invention
L'invention a ainsi pour objet un silicium métallurgique destiné à la synthèse des alkyl et aryl halogénosilanes dont la structure est constituée de cristaux de silicium primaire et de composés intermétalliques essentiellement à base de silicium, de fer, d'aluminium et de calcium et se caractérise en ce que plus de 90% des grains de silicium primaire présentent une teneur en aluminium comprise entre 50 et 1000 ppm. Cette structure est obtenue de manière préférentielle avec un silicium contenant globalement entre 0,12 et 0,30% en poids d'aluminium et avec un procédé de solidification du silicium après coulée permettant de descendre en dessous de 1200°C en moins de 10 s.The subject of the invention is therefore a metallurgical silicon intended for the synthesis of alkyl and aryl halosilanes, the structure of which consists of crystals of primary silicon and of intermetallic compounds essentially based on silicon, iron, aluminum and calcium and characterized in that more than 90% of the primary silicon grains have an aluminum content of between 50 and 1000 ppm. This structure is preferably obtained with a silicon containing overall between 0.12 and 0.30% by weight of aluminum and with a process for solidifying the silicon after casting making it possible to descend below 1200 ° C. in less than 10 s .
Description de l'invention Il est connu, en particulier par le choix du silicium comme semi-conducteur dans les applications électroniques, que la solubilité de la plupart des éléments dans le silicium solide est très faible; celle de raluminium est de l'ordre de 15 ppm. Lors de la solidification d'un silicium métallurgique obtenu à l'état liquide, la quantité d'aluminium excédentaire qui ne peut pas passer en solution solide dans le silicium primaire se rassemble aux joints de grains sous la forme de composés intermétalliques secondaires à forte teneur en aluminium.Description of the invention It is known, in particular by the choice of silicon as a semiconductor in electronic applications, that the solubility of most of the elements in solid silicon is very low; that of aluminum is around 15 ppm. During the solidification of a metallurgical silicon obtained in the liquid state, the quantity of excess aluminum which cannot pass into solid solution in the primary silicon collects at the grain boundaries in the form of secondary intermetallic compounds with high content. in aluminium.
Or, la demanderesse a trouvé que, pour un certain domaine de teneurs en aluminium et dans des conditions particulières de solidification du silicium liquide, il est possible d'augmenter la teneur en aluminium des cristaux de silicium primaire au-delà du seuil normal de saturation de 15 ppm, et de contrôler le niveau de sursaturation en jouant à la fois sur la teneur en aluminium du sihcium hquide et sur sa vitesse de solidification, de manière à obtenir une augmentation de la réactivité du sihcium dans la réaction de ROCHOW. La teneur de l'aluminium en solution solide dans le silicium primaire peut être mesurée par exemple à l'aide d'une sonde ionique (SBMS = Secondary Ion Mass Spectrometry). Selon une méthode habituelle lorsqu'on utilise la SEMS pour une analyse quantitative, on détermine, pour raluminium, un facteur de sensibilité RSF tel que la concentration C (en atomes par cm3) soit égale au produit RSF x IAJ/ISI, c'est à dire le produit du facteur de sensibilité par le rapport des intensités mesurées pour raluminium et la matrice de sihcium.However, the Applicant has found that, for a certain range of aluminum contents and under specific conditions for solidification of liquid silicon, it is possible to increase the aluminum content of the primary silicon crystals beyond the normal saturation threshold. 15 ppm, and to control the level of supersaturation by varying both the aluminum content of the liquid sihcium and its solidification speed, so as to obtain an increase in the reactivity of the sihcium in the ROCHOW reaction. The content of aluminum in solid solution in primary silicon can be measured for example using an ion probe (SBMS = Secondary Ion Mass Spectrometry). According to a usual method when using SEMS for a quantitative analysis, a sensitivity factor RSF is determined for aluminum such that the concentration C (in atoms per cm 3 ) is equal to the product RSF x IAJ / IS I , c is to say the product of the sensitivity factor by the ratio of the intensities measured for aluminum and the silicon matrix.
Ce facteur RSF est obtenu en faisant la moyenne d'au moins 5 mesures faites sur des étalons préimplantés de concentration connue et il est de l'ordre de 3,3 1023. Le niveau de sursaturation en aluminium du sihcium primaire augmente avec la teneur en aluminium du sihcium hquide de départ et avec la vitesse de solidification. Ainsi, en coulant du sihcium en épaisseur de 4 mm sur une plaque de cuivre refroidie à l'eau, ce qui provoque la solidification complète en moins de 10 s, on obtient les valeurs suivantes (en poids):This RSF factor is obtained by averaging at least 5 measurements made on pre-implanted standards of known concentration and it is of the order of 3.3 10 23 . The aluminum supersaturation level of the primary sihcium increases with the aluminum content of the starting hydrous sihcium and with the speed of solidification. Thus, by pouring sihcium in a thickness of 4 mm on a copper plate cooled with water, which causes complete solidification in less than 10 s, the following values are obtained (by weight):
En diminuant l'épaisseur de coulée à 2 mm, ce qui provoque la solidification complète en moins de 2,5 s, on obtient les valeurs suivantes: By reducing the casting thickness to 2 mm, which causes complete solidification in less than 2.5 s, the following values are obtained:
L'expérience montre également que les résultats obtenus dépendent principalement de la vitesse de refroidissement entre l'état hquide (1415°C environ) et 1200°C, la vitesse de refroidissement entre 1200°C et la température ambiante ayant assez peu d'influence. Ces conditions opératoires diffèrent complètement de celles mentionnées dans la demande de brevet EP 0617039 de BAYER, qui préconise un refroidissement rapide entre 700°C et 120°C. Ainsi, le fait de démouler du sihcium solide encore rouge après coulée sur une plaque de cuivre refroidie à l'eau, ne modifie pas sensiblement le niveau de sursaturation en aluminium des cristaux de sihcium par rapport au sihcium démoulé à température ambiante. Par ailleurs, la vitesse de refroidissement, en particuher entre 1400 et 1200°C, joue également sur le pourcentage de cristaux de silicium primaire présentant une teneur en aluminium supérieure à 50 ppm, des vitesses très élevées conduisant à plus de 95% de cristaux sursaturés, voire à des pourcentages proches de 100%. Un examen au microscope électronique à balayage et en diffraction de rayons X des cristaux de sihcium sursaturés en aluminium fait apparaître l'existence de déformations dans les cristaux telles que des dislocations ou des plans de cisaillement. A teneur en intermétalliques constante et à teneur identique en phosphore dans le silicium primaire, on constate que la réactivité du sihcium sursaturé en aluminium est plus élevée par rapport à celle d'un sihcium dont les cristaux contiennent la teneur normale d'environ 15 ppm en solution solide. En dessous d'une teneur de 50 ppm d'aluminium dans le cristal, l'amélioration de la réactivité n'est guère sensible. On peut difficilement dépasser un taux de sursaturation de 1000 ppm, car alors l'alunώuum cristallise à part. Dans des conditions industrielles de solidification permettant de passer de l'état hquide à moins de 1200°C en moins de 10 s, ces limites correspondent à une teneur totale en aluminium du sihcium hquide comprise entre 0,12 et 0,30% en poids.Experience also shows that the results obtained depend mainly on the cooling rate between the dry state (about 1415 ° C) and 1200 ° C, the cooling rate between 1200 ° C and the ambient temperature having quite little influence. . These operating conditions differ completely from those mentioned in patent application EP 0617039 to BAYER, which recommends rapid cooling between 700 ° C. and 120 ° C. Thus, the fact of demolding solid sihcium still red after casting on a copper plate cooled with water, does not appreciably modify the level of aluminum supersaturation of the sihcium crystals compared to the demoulded sihcium at ambient temperature. Furthermore, the cooling rate, in particular between 1400 and 1200 ° C., also plays on the percentage of primary silicon crystals having an aluminum content of more than 50 ppm, very high speeds leading to more than 95% of supersaturated crystals. , or even at percentages close to 100%. A scanning electron microscope and X-ray diffraction examination of the aluminum supersaturated sihcium crystals reveals the existence of deformations in the crystals such as dislocations or shear planes. With a constant intermetallic content and identical phosphorus content in the primary silicon, it is found that the reactivity of the aluminum supersaturated sihcium is higher compared to that of a sihcium whose crystals contain the normal content of about 15 ppm solid solution. Below a content of 50 ppm of aluminum in the crystal, the improvement in reactivity is hardly noticeable. It is difficult to exceed a supersaturation rate of 1000 ppm, because then the alunώuum crystallizes apart. Under industrial solidification conditions making it possible to pass from the dry state to less than 1200 ° C. in less than 10 s, these limits correspond to a total aluminum content of the dry sihcium of between 0.12 and 0.30% by weight. .
ExempleExample
On a élaboré par carbothermie au four électrique, à partir de sihce et d'un réducteur carboné, un sihcium hquide présentant la composition suivante (en poids): Fe = 0,35% Ca = 0,70% Al = 0,60% Ti = 0,022% P = 90 ppm Ce sihcium a été ensuite affiné en poche par addition de sihce et injection d'oxygène pour abaisser les teneurs en Ca et Ai L'analyse du sihcium affiné était la suivante: Fe = 0,38% Ca = 0,056% Al = 0,15% Ti = 0,022% P = 90 ppm Cette poche a ensuite été coulée: a) pour partie sur une installation de coulée constituée de deux cylindres en cuivre refroidis à l'eau tournant en sens inverse, telle que décrite dans le brevet EP 0057651 de la demanderesse, dont la vitesse de rotation des cylindres a été réglée pour obtenir une épaisseur de bande de 4 mmA liquid sihcium having the following composition (by weight) was produced by electric furnace carbothermy, using sihce and a carbonaceous reducer: Fe = 0.35% Ca = 0.70% Al = 0.60% Ti = 0.022% P = 90 ppm This sihcium was then refined in the ladle by adding sihce and injecting oxygen to lower the Ca and Ai contents. The analysis of the refined sihcium was as follows: Fe = 0.38% Ca = 0.056% Al = 0.15% Ti = 0.022% P = 90 ppm This ladle was then cast: a) partly on a casting installation made up of two copper cylinders cooled with water turning in opposite directions, such as as described in patent EP 0057651 of the applicant, whose speed of rotation of the cylinders has been adjusted to obtain a strip thickness of 4 mm
Sur le sihcium ainsi coulé, on a prélevé un échantillon n° 1. b) pour partie dans une lingotière en fonte classique de profondeur 10 mm. Sur ce sihcium, on a prélevé un échantillon n° 2.From the sihcium thus poured, a sample n ° 1 was taken. B) partly in a conventional cast iron ingot mold 10 mm deep. A sample no. 2 was taken from this sihcium.
L'analyse des 2 échantillons a donné les résultats suivants:Analysis of the 2 samples gave the following results:
Chacun des échantillons a été soumis à un test de fabrication de méthylchlorosilanes dans les conditions suivantes: Les tests ont été réalisés dans un réacteur en verre, en ht agité, d'un diamètre de 30 mm, équipé d'un agitateur. La même quantité de sihcium avec la même distribution de particules entre 70 et 160 μm, a été utilisée dans chaque test. Le mélange réactionnel consistait en 40 g de sihcium, 3,2 g de cuivre partiellement oxydé comme catalyseur et 0,05 g de ZnO.Each of the samples was subjected to a methylchlorosilane manufacturing test under the following conditions: The tests were carried out in a glass reactor, in stirred ht, with a diameter of 30 mm, equipped with an agitator. The same amount of sihcium with the same particle distribution between 70 and 160 μm, was used in each test. The reaction mixture consisted of 40 g of sihcium, 3.2 g of partially oxidized copper as catalyst and 0.05 g of ZnO.
Le chlorure de méthyle était envoyé dans le mélange réactionnel, au travers d'un disque de verre fritte sous une pression de 0,2 MPa. Après chauffage du milieu réactionnel et démarrage de la réaction, la température du système a été ajustée et maintenue à 300°C et la quantité et la composition du mélange de silanes formé a été déterminée.The methyl chloride was sent to the reaction mixture, through a sintered glass disc under a pressure of 0.2 MPa. After heating the reaction medium and starting the reaction, the temperature of the system was adjusted and maintained at 300 ° C. and the quantity and the composition of the mixture of silanes formed was determined.
Les valeurs sont reprises dans le tableau suivant, dans lequel P désigne la quantité totale de silanes produite en g/h; MeH, Mono, T, D, PS, les pourcentages respectifs en poids de monométhyldichlorosilane (CH3HSiCl2), de tométhylchlorosilane ((CH3)3SiCl), de méthyltrichlorosilane (CH3SiCl3), de diméthyldichlorosilane ((CH3)2SiCl2) et de polysilanes. Le produit recherché étant le diméthyldichlorosilane, la sélectivité de la réaction est appréciée par D, tandis que la réactivité est mesurée par P. Les valeurs indiquées sont les moyennes de 4 mesures individuelles.The values are given in the following table, in which P denotes the total quantity of silanes produced in g / h; MeH, Mono, T, D, PS, the respective percentages by weight of monomethyldichlorosilane (CH 3 HSiCl 2 ), tomethylchlorosilane ((CH 3 ) 3SiCl), methyltrichlorosilane (CH 3 SiCl 3 ), dimethyldichlorosilane ((CH3) 2 SiCl 2 ) and polysilanes. As the desired product is dimethyldichlorosilane, the selectivity of the reaction is assessed by D, while the reactivity is measured by P. The values indicated are the means of 4 individual measurements.
On constate que l'échantillon 1 où le sihcium primaire est sursaturé en aluminium, présente une réactivité accrue de 6% pour une sélectivité identique à 0,2% près. It can be seen that sample 1, where the primary silicon is supersaturated with aluminum, has an increased reactivity of 6% for a selectivity identical to 0.2%.
EP97915546A 1996-04-02 1997-03-24 Metallurgical-grade silicon with a controlled structure for use in halosilane synthesis Ceased EP0891297A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9604378A FR2746785B1 (en) 1996-04-02 1996-04-02 METALLURGICAL SILICON WITH CONTROLLED STRUCTURE FOR SYNTHESIS OF HALOGENOSILANES
FR9604378 1996-04-02
PCT/FR1997/000514 WO1997036821A1 (en) 1996-04-02 1997-03-24 Metallurgical-grade silicon with a controlled structure for use in halosilane synthesis

Publications (1)

Publication Number Publication Date
EP0891297A1 true EP0891297A1 (en) 1999-01-20

Family

ID=9491012

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97915546A Ceased EP0891297A1 (en) 1996-04-02 1997-03-24 Metallurgical-grade silicon with a controlled structure for use in halosilane synthesis

Country Status (5)

Country Link
US (1) US6391255B1 (en)
EP (1) EP0891297A1 (en)
AU (1) AU2298397A (en)
FR (1) FR2746785B1 (en)
WO (1) WO1997036821A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2827592B1 (en) * 2001-07-23 2003-08-22 Invensil HIGH PURITY METALLURGICAL SILICON AND PROCESS FOR PRODUCING THE SAME
JP5959006B2 (en) * 2009-10-16 2016-08-02 ダウ コーニング コーポレーションDow Corning Corporation Method for producing organohalosilane

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2380995A (en) * 1941-09-26 1945-08-07 Gen Electric Preparation of organosilicon halides
DE3929865A1 (en) * 1989-09-08 1991-03-14 Bayer Ag METHOD FOR PRODUCING ALKYL HALOGENSILANES
NO169831C (en) * 1989-11-22 1993-06-08 Elkem As SILICONE PRODUCT FOR USE IN THE MANUFACTURE OF ORGANOSILANES AND CHLORESILANES AND PROCEDURES FOR THE MANUFACTURE OF SILICONE PRODUCT.
JP3205352B2 (en) * 1990-05-30 2001-09-04 川崎製鉄株式会社 Silicon purification method and apparatus
DE4303766A1 (en) * 1993-02-09 1994-08-11 Wacker Chemie Gmbh Process for the preparation of methylchlorosilanes
AU669255B2 (en) * 1993-03-24 1996-05-30 Ge Bayer Silicones Gmbh & Co. Kg Process for the preparation of organochlorosilanes
FR2707619B1 (en) * 1993-07-01 1995-09-01 Pechiney Electrometallurgie Metallurgical silicon containing phosphorus and intended for the preparation of alkyl or aryl halosilanes.
FR2716675B1 (en) * 1994-02-25 1996-04-12 Pechiney Electrometallurgie Metallurgical silicon with controlled microstructure for the preparation of halosilanes.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9736821A1 *

Also Published As

Publication number Publication date
WO1997036821A1 (en) 1997-10-09
US6391255B1 (en) 2002-05-21
AU2298397A (en) 1997-10-22
FR2746785B1 (en) 1998-05-22
FR2746785A1 (en) 1997-10-03

Similar Documents

Publication Publication Date Title
US6057469A (en) Process for manufacturing active silicon powder for the preparation of alkyl- or aryl-halosilanes
KR100752810B1 (en) Method for production of trichlorosilane and silicon for use in the production of trichlorosilane
EP0494837B1 (en) Metallurgic silicon powder with a small superficial oxidation
RU2062779C1 (en) Method for production of methylchlorosilanes
CA2166317C (en) Metallurgical silicon containing phosphorus for the preparation of alkyl or aryl halogenosilanes
CN87107398A (en) Improve a kind of method of direct processing performance by the manufacturing of control silicon
WO1997036821A1 (en) Metallurgical-grade silicon with a controlled structure for use in halosilane synthesis
US5500399A (en) Silicon alloy containing aluminum, calcium and copper for the synthesis of alkyl or aryl halogenosilanes
WO1997036821A9 (en) Metallurgical-grade silicon with a controlled structure for use in halosilane synthesis
EP0893408B1 (en) Process for manufacturing active silicon powder for the preparation of alkyl or aryle halogenosilanes
EP1020472B1 (en) Method for producing active silicon powder used for the preparation of alkyl- or aryl-halogenosilanes
EP0673880B1 (en) Controlled microstructure metallurgical silicon for the preparation of halosilanes
US5880307A (en) Process for the preparation of alkylhalosilanes
US5281739A (en) Process for manufacture of alkylhalosilanes
FR2525222A1 (en) PROCESS FOR THE PRODUCTION OF METHYLCHLOROSILANES
US6218562B1 (en) Process for preparing organohalosilanes
FR2486099A1 (en) PROCESSING AGENT AND METHOD FOR MANUFACTURING VERMICULAR GRAPHITE CAST IRON
AU2005235568B2 (en) Method of selecting silicon having improved performance
FR2848124A1 (en) Use of a catalyst comprising copper and a tin/alkali metal promoter to produce alkyl halosilanes by reacting an alkyl halide with a contact material comprising silicon and the catalyst
EP1211223A1 (en) Preparation of phosphorus-doped silicon used for preparing alkyl- or aryl-halogenosilanes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19981020

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 19990209

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MARGARIA, THOMAS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20021121