EP0886721B1 - Protective coating for tubing blades - Google Patents

Protective coating for tubing blades Download PDF

Info

Publication number
EP0886721B1
EP0886721B1 EP97904418A EP97904418A EP0886721B1 EP 0886721 B1 EP0886721 B1 EP 0886721B1 EP 97904418 A EP97904418 A EP 97904418A EP 97904418 A EP97904418 A EP 97904418A EP 0886721 B1 EP0886721 B1 EP 0886721B1
Authority
EP
European Patent Office
Prior art keywords
protective layer
layer
mcraly
turbine blade
surface layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97904418A
Other languages
German (de)
French (fr)
Other versions
EP0886721A1 (en
Inventor
Hans-Henning Hennies
Günther KESSLER
Gerd Krafft
Georg Müller
Gustav Schumacher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Karlsruhe GmbH
Original Assignee
Forschungszentrum Karlsruhe GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Karlsruhe GmbH filed Critical Forschungszentrum Karlsruhe GmbH
Publication of EP0886721A1 publication Critical patent/EP0886721A1/en
Application granted granted Critical
Publication of EP0886721B1 publication Critical patent/EP0886721B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/286Particular treatment of blades, e.g. to increase durability or resistance against corrosion or erosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/90Coating; Surface treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/13Refractory metals, i.e. Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W
    • F05D2300/132Chromium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/611Coating

Definitions

  • the invention relates to a turbine blade according to the preamble of claim 1.
  • MCrAlY protective layers are usually applied by plasma spraying.
  • the alloy solidifies in two phases. This results in an unfavorable basis for the formation of Al 2 O 3 cover layers on the surface.
  • the formation of a homogeneous oxide layer is hindered on the surface of the two-phase alloy.
  • the oxide cover layers that form tend to spall.
  • this two-phase alloy can be converted into a single-phase by means of a remelting process using laser beams.
  • the disadvantages of this method are, on the one hand, the small spatial extent of the laser beam (with the power densities of 10 5 - 10 6 W / cm 2 required here) of ⁇ 10 -2 cm 2 , and on the other hand the low penetration depth of the laser radiation into it Material.
  • the spatially limited energy input leads to strong thermal Tensions, which is characterized by cracking, both in longitudinal as well as in the transverse direction. Cracking reduces the spallation resistance of the oxide layers and thus the corrosion resistance.
  • Another consequence of the small beam diameter is that Caterpillar formation on the surface and phase excretions and Recrystallizations in the surface layer by scanning with the laser beam.
  • the object of the invention is to provide a turbine blade, where the top layer is not prone to spallation.
  • FIG. 1 shows a schematic section through a conventional two-phase MCrAlY turbine blade protection layer before (a) and after Remelting process (b).
  • turbine blade protective layer Another advantage of the turbine blade protective layer is in that the manufacturing-related micro-roughness of the surface eliminated by the process of surface treatment and thus the heat exchange between the gas and the Surface is reduced and thus higher gas inlet temperatures possible are. Higher gas inlet temperatures lead to Increase in efficiency.
  • a uniform spallation-resistant oxide cover layer hampers most effectively the penetration of oxygen and slows down the depletion of the protective layer on Al through new formation the oxide top layer.
  • a pulsed electron beam with a large beam cross section is used to produce the corrosion protection layers.
  • the beam cross section should be between 25 and 100 cm 2 .
  • Cross sections between 50 and 100 cm 2 are optimal.
  • the advantages of the pulsed electron beam are the large beam diameter and the large penetration depth of the electrons into the material, which can be easily controlled via the energy of the electrons.
  • With the pulsed electron beams to high power densities can be generated in an area of 50 cm 2 to homogeneously to 3 * 10 6 W / cm 2. These are four orders of magnitude larger cross-sectional areas than with a laser beam. Due to the homogeneous power density distribution, there is no temperature gradient in the melt layer parallel to the surface, so that the formation of transverse stress cracks does not occur. The formation of a so-called heat-affected zone at the edge of the jet has no consequences because of the very short process time and high cooling rates.
  • the depth of the melted layer is determined by the energy the pulse duration and the power density of the electron beam set.
  • the cooling rates for self-deterrence can be reduced by the Electron energy (this sets the melting depth), be influenced by the power density and the pulse duration. Increase the penetration depth of the electrons (melting depth) and reducing the power density leads to lower cooling rates.
  • the electron beam parameters for producing protective layers according to claims 1 to 3 can be summarized as follows: electron energy 50-150 keV power density 5 ⁇ 10 5 - 3 ⁇ 10 6 W / cm 2 pulse duration 10 - 60 ⁇ sec
  • the stabilizing effect of the alloyed elements is only in the near-surface area, which is strongly exposed to corrosion Layer required, so that is proposed according to claim 3 the additional elements are superficial due to a coating (e.g. PVD) to attach and to alloy over the remelting process. That has the economic advantage of being an essential one Part of the amount to be processed, mostly very expensive Items that could be saved.
  • a coating e.g. PVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Physical Vapour Deposition (AREA)
  • Laser Beam Processing (AREA)

Abstract

The invention relates to a turbine blade with a corrosion-resistant protective coating of MCrAlY. The aim of the invention is to provide a turbine blade on which the top coating is not subject to spallation. This aim is attained in that the surface layer of the protective MCrAlY coating consists, to a depth of 5 - 50 mu m, of a single-phase alloy in a large area spread evenly over the entire surface layer, where the single-phase alloy is obtained by remelting with a pulsed electron beam.

Description

Die Erfindung betrifft eine Turbinenschaufel nach dem Oberbegriff des Patentanspruchs 1.The invention relates to a turbine blade according to the preamble of claim 1.

Beim Betrieb von Hochtemperaturgasturbinen werden an der Oberfläche der Turbinenschaufeln Temperaturen von bis zu 900° C erreicht. Bei diesen hohen Temperaturen wird der Hauptkorrosionsmechanismus durch Oxidation (Diffusion von Sauerstoff) hervorgerufen. Deshalb beschichtet man die Schaufeln mit einer Hochtemperatur-Super-Legierung-MCrAlY (M=Metall-Basis z. B. Ni, Co). Siehe hierzu das Dokument FR-A-2 400 568.When operating high temperature gas turbines are on the surface the turbine blades temperatures of up to 900 ° C reached. At these high temperatures, the main corrosion mechanism caused by oxidation (diffusion of oxygen). That's why you coat the blades with a High temperature super alloy MCrAlY (M = metal base e.g. Ni, Co). See document FR-A-2 400 568.

MCrAlY Schutzschichten werden in der Regel durch Plasmaspritzverfahren aufgebracht. Die Legierung erstarrt zweiphasig. Damit ergibt sich für die Ausbildung von Al2O3-Deckschichten an der Oberfläche eine ungünstige Basis. An der Oberfläche der zweiphasigen Legierung wird die Ausbildung einer homogenen Oxidschicht behindert. Die sich bildenden Oxiddeckschichten neigen zur spallation (Abplatzung).MCrAlY protective layers are usually applied by plasma spraying. The alloy solidifies in two phases. This results in an unfavorable basis for the formation of Al 2 O 3 cover layers on the surface. The formation of a homogeneous oxide layer is hindered on the surface of the two-phase alloy. The oxide cover layers that form tend to spall.

Aus R. Sivakumar, Princ. of Solidific. and Mat. Process., Volume 2, p 671-726 ist bekannt, daß mit Laserstrahlen diese zweiphasige Legierung, über einen Umschmelzprozeß, in eine einphasige überführt werden kann. Der Nachteil dieses Verfahrens besteht zum einen in der geringen räumlichen Ausdehnung des Laserstrahls (bei den hier benötigten Leistungsdichten von 105 - 106 W/cm2) von < 10-2 cm2, und zum anderen in der geringen Eindringtiefe der Laserstrahlung in das Material.From R. Sivakumar, Princ. of Solidific. and Mat. Process., Volume 2, p 671-726, it is known that this two-phase alloy can be converted into a single-phase by means of a remelting process using laser beams. The disadvantages of this method are, on the one hand, the small spatial extent of the laser beam (with the power densities of 10 5 - 10 6 W / cm 2 required here) of <10 -2 cm 2 , and on the other hand the low penetration depth of the laser radiation into it Material.

Der räumlich begrenzte Energieeintrag führt zu starken thermischen Spannungen, was sich durch Rißbildung, sowohl in longitudinaler als auch in transversaler Richtung, bemerkbar macht. Rißbildung vermindert den Spallationswiderstand der Oxidschichten und damit die Korrosionsbeständigkeit. The spatially limited energy input leads to strong thermal Tensions, which is characterized by cracking, both in longitudinal as well as in the transverse direction. Cracking reduces the spallation resistance of the oxide layers and thus the corrosion resistance.

Eine weitere Konsequenz des geringe Strahldurchmesser sind die Raupenbildung an der Oberfläche und Phasenausscheidungen und Rekristallisationen in der Oberflächenschicht hervorgerufen durch das Rastern mit dem Laserstrahl.Another consequence of the small beam diameter is that Caterpillar formation on the surface and phase excretions and Recrystallizations in the surface layer by scanning with the laser beam.

Die relativ lange Bestrahlungszeit von einigen Millisekunden, zum Durchschmelzen von einigen 10 µm Schichtdicke, führt zur Änderung der ursprünglichen Stöchiometrie in der Schicht, d. h. zur Reduktion des Anteils der leichten Elemente (Al, Y), die über Konvektion an die Oberfläche geschwemmt werden und damit für den Prozeß der Erneuerung der Oxiddeckschicht fehlen.The relatively long exposure time of a few milliseconds, for melting through some 10 µm layer thickness, leads to Change in the original stoichiometry in the layer, d. H. to reduce the proportion of light elements (Al, Y), which are swept up to the surface by convection and thus missing for the process of renewing the oxide cover layer.

Aufgabe der Erfindung ist es, eine Turbinenschaufel bereitzustellen, bei der die Deckschicht nicht zur Spallation neigt.The object of the invention is to provide a turbine blade, where the top layer is not prone to spallation.

Gelöst wird diese Aufgabe durch die Merkmale des Patentanspruchs 1.This object is achieved by the features of the patent claim 1.

Die Unteransprüche beschreiben eine vorteilhafte Ausgestaltung der Erfindung.The sub-claims describe an advantageous embodiment the invention.

Die Erfindung wird im folgenden anhand eines Ausführungsbeispiels mit Hilfe der Figur näher erläutert. Die Figur zeigt einen schematischen Schnitt durch eine konventionelle zweiphasige MCrAlY-Turbinenschaufelschutzschicht vor (a) und nach dem Umschmelzvorgang (b).The invention is described below using an exemplary embodiment explained in more detail with the help of the figure. The figure shows a schematic section through a conventional two-phase MCrAlY turbine blade protection layer before (a) and after Remelting process (b).

Schmilzt man die Schutzschicht kurzzeitig auf und kühlt sie sehr schnell ab, und zwar so schnell, daß keine Zeit für Phasenausscheidungen bleibt, erhält man eine einphasige Struktur, die je nach Abkühlgeschwindigkeit nanokristallin oder gar amorph ist und zur Bildung von gleichmäßigen nicht unterbrochenen Oxid-Deckschichten führt. Korrosionstests bis zu einer Dauer von 10000 Stunden bei 1000° C an Luft haben gezeigt, daß sich auf der Oberfläche von Schutzschichten nach Anspruch 1 gleichmäßige, fest haftende, nicht unterbrochene Oxid-Deckschichten bilden, während diese Schichten bei unbehandelten Vergleichsproben eine unterbrochene Struktur mit teilweise Abplatzungen zeigen. Solche Schäden in der Oxiddeckschicht heilen zwar durch Einwanderung von Aluminium aus, dieser Prozeß führt jedoch zu einer Verarmung von Aluminium in der MCrAlY-Schutzschicht und damit zu einer verringerten Standzeit.If you melt the protective layer briefly and cool it very quickly, and so quickly that there is no time for phase excretions remains, you get a single-phase structure, depending on the cooling rate, nanocrystalline or even is amorphous and to form uniform uninterrupted Lead oxide layers. Corrosion tests up to one Duration of 10000 hours at 1000 ° C in air have shown that on the surface of protective layers according to claim 1 uniform, firmly adhering, uninterrupted oxide cover layers form while these layers are untreated Comparative samples of an interrupted structure with partial flaking demonstrate. Such damage in the oxide cover layer heals by immigration from aluminum, this process however leads to a depletion of aluminum in the MCrAlY protective layer and therefore a reduced service life.

Ein weiterer Vorteil der Turbinenschaufelschutzschicht besteht darin, daß die herstellungsbedingte Mikrorauhigkeit der Oberfläche durch den Prozeß der Oberflächenvergütung beseitigt wird und damit der Wärmeaustausch zwischen dem Gas und der Oberfläche reduziert wird und damit höhere Gaseinlaßtemperaturen möglich sind. Höhere Gaseinlaßtemperaturen führen zur Steigerung des Wirkungsgrades.Another advantage of the turbine blade protective layer is in that the manufacturing-related micro-roughness of the surface eliminated by the process of surface treatment and thus the heat exchange between the gas and the Surface is reduced and thus higher gas inlet temperatures possible are. Higher gas inlet temperatures lead to Increase in efficiency.

Auf einer homogenen einphasigen Legierung, sind die Bedingungen für die Ausbildung einer gleichmäßigen Oxiddeckschicht gegeben. Eine gleichmäßige spallationsfeste Oxiddeckschicht behindert am effektivsten das Eindringen von Sauerstoff und verlangsamt die Verarmung der Schutzschicht an Al durch Neubildung der Oxiddeckschicht.On a homogeneous single phase alloy, the conditions are given for the formation of a uniform oxide cover layer. A uniform spallation-resistant oxide cover layer hampers most effectively the penetration of oxygen and slows down the depletion of the protective layer on Al through new formation the oxide top layer.

Zur Erzeugung der Korrosionsschutzschichten wird ein gepulster Elektronenstrahl mit großem Strahlquerschnitt benutzt. Der Strahlquerschnitt sollte zwischen 25 bis 100 cm2 liegen. Optimal sind Querschnitte zwischen 50 und 100 cm2. Die Vorteile des gepulsten Elektronenstrahls sind der große Strahldurchmesser und die große Eindringtiefe der Elektronen ins Material, die über die Energie der Elektronen leicht gesteuert werden kann. Mit den gepulsten Elektronenstrahlen lassen sich hohe Leistungsdichten mit bis zu 3·106 W/cm2 homogen auf einer Fläche von 50 cm2 erzeugen. Das sind um vier Größenordnungen höhere Querschnittsflächen als beim Laserstrahl. Durch die homogene Leistungsdichteverteilung gibt es in der Schmelzschicht keinen Temperaturgradienten parallel zur Oberfläche, so daß die Ausbildung von transversalen Spannungsrissen unterbleibt. Die Ausbildung einer sogenannten heat effected zone am Strahlrand bleibt wegen der sehr kurzen Prozeßzeit und hoher Kühlraten ohne Konsequenzen.A pulsed electron beam with a large beam cross section is used to produce the corrosion protection layers. The beam cross section should be between 25 and 100 cm 2 . Cross sections between 50 and 100 cm 2 are optimal. The advantages of the pulsed electron beam are the large beam diameter and the large penetration depth of the electrons into the material, which can be easily controlled via the energy of the electrons. With the pulsed electron beams to high power densities can be generated in an area of 50 cm 2 to homogeneously to 3 * 10 6 W / cm 2. These are four orders of magnitude larger cross-sectional areas than with a laser beam. Due to the homogeneous power density distribution, there is no temperature gradient in the melt layer parallel to the surface, so that the formation of transverse stress cracks does not occur. The formation of a so-called heat-affected zone at the edge of the jet has no consequences because of the very short process time and high cooling rates.

Die Tiefe der aufgeschmolzenen Schicht wird über die Energie die Pulsdauer und die Leistungsdichte des Elektronenstrahls eingestellt.The depth of the melted layer is determined by the energy the pulse duration and the power density of the electron beam set.

Entscheidend für das Ausbleiben von Spannungsrissen senkrecht zur Oberfläche und die Umwandlung der zweiphasigen Legierung in die einphasige amorphe bis nanokristalline Struktur, ist die Kühlrate beim Prozeß der Selbstabschreckung.Decisive for the absence of vertical stress cracks to the surface and the transformation of the two-phase alloy into the single-phase amorphous to nanocrystalline structure the cooling rate in the process of self-quenching.

Zu geringe Kühlraten < 105 K/s führen nicht zu der gewünschten Phasenbildung.Too low cooling rates <10 5 K / s do not lead to the desired phase formation.

Zu hohe Kühlraten > 107 K/s führen zu thermischen Spannungsrissen.Excessively high cooling rates> 10 7 K / s lead to thermal stress cracks.

Die Kühlraten bei der Selbstabschreckung können durch die Elektronennergie (dadurch wird die Schmelztiefe eingestellt), durch die Leistungsdichte und die Pulsdauer beeinflußt werden. Vergrößern der Eindringtiefe der Elektronen (Schmelztiefe) und verkleinern der Leistungsdichte führen zu kleineren Kühlraten.The cooling rates for self-deterrence can be reduced by the Electron energy (this sets the melting depth), be influenced by the power density and the pulse duration. Increase the penetration depth of the electrons (melting depth) and reducing the power density leads to lower cooling rates.

Die Elektronenstrahlparameter zur Erzeugung von Schutzschichten gemäß den Ansprüchen 1 bis 3 lassen sich wie folgt zusammenfassen: Elektronenenergie 50 - 150 keV Leistungsdichte 5·105 - 3·106 W/cm2 Pulsdauer 10 - 60 µsec The electron beam parameters for producing protective layers according to claims 1 to 3 can be summarized as follows: electron energy 50-150 keV power density 5 · 10 5 - 3 · 10 6 W / cm 2 pulse duration 10 - 60 µsec

Aus J. G. Smeggil, Mat. Sci. and Eng., 87 (1987) p 261/65 und A. M. Huntz :Mat. Sci. and Eng., 87 (1987) p 251/60 ist bekannt, daß durch Zulegierung von Elementen gemäß Anspruch 2 der Spallationswiderstand, die Rißbildung und die Hochtemperaturstabilität der Schichtstruktur positiv beeinflußt werden. From J.G. Smeggil, Mat. Sci. and Eng., 87 (1987) p 261/65 and A. M. Huntz: Mat. Sci. and Eng., 87 (1987) p 251/60 is known that by alloying elements according to claim 2 the spallation resistance, cracking and high temperature stability the layer structure can be influenced positively.

Diese Zulegierung wird zusammen mit dem MCrAlY-Pulver über das Plasmaspritzverfahren aufgebracht. Speziell die Hochtemperaturmetalle (Ta, Re, Mo, W) werden dabei, wegen ihrer hohen Schmelzpunkte, nur ungenügend geschmolzen und kondensieren in der Regel in der ursprünglichen Pulverform. Damit bilden sich ungelöste Inseln aus Hochtemperaturmetallen, die in dieser Form nur lokal wirksam sind. Durch den erfindungsgemäßen Umschmelzvorgang gehen diese Metalle mit der MCrAlY-Schutzschicht in Lösung und können erst so ihre stabilisierende Wirkung im gesamten legierten Schichtbereich entfalten.This addition is made together with the MCrAlY powder Plasma spraying applied. Especially the high temperature metals (Ta, Re, Mo, W) are there because of their high Melting points, insufficiently melted and condense in usually in the original powder form. With that form undissolved islands of high temperature metals in this Form are only effective locally. Through the remelting process according to the invention these metals go with the MCrAlY protective layer in solution and only then can their stabilizing effect unfold in the entire alloyed layer area.

Der stabilisierende Effekt der zulegierten Elemente wird nur in der der Korrosion stark ausgesetzten oberflächennahen Schicht benötigt, so daß gemäß Anspruch 3 vorgeschlagen wird die Zusatzelemente durch eine Beschichtung (z. B. PVD) oberflächlich anzubringen und über den Umschmelzprozeß einzulegieren. Das hat den wirtschaftlichen Vorteil, daß ein wesentlicher Teil der zu verarbeitende Menge der, zumeist sehr teuren Elemente, eingespart werden könnte.The stabilizing effect of the alloyed elements is only in the near-surface area, which is strongly exposed to corrosion Layer required, so that is proposed according to claim 3 the additional elements are superficial due to a coating (e.g. PVD) to attach and to alloy over the remelting process. That has the economic advantage of being an essential one Part of the amount to be processed, mostly very expensive Items that could be saved.

Claims (3)

  1. Turbine blade, having a corrosion-resistant MCrAlY protective layer, characterised in that the surface layer of the MCrAlY protective layer comprises a single-phase alloy in a large area up to a depth of 5 - 50 µm, spread uniformly over the entire surface layer, the single-phase alloy being produced by remelting with a pulsed electron beam.
  2. Turbine blade according to claim 1, characterised in that, in the corrosion-resistant MCrAlY protective layer, one or more components from the strong oxide formers, such as La, Al or Ce, and from the high-temperature metals, having a melting point higher than 2500° C, is or are homogeneously distributed over the entire surface layer of the MCrAlY protective layer.
  3. Turbine blade according to claim 1 or 2, characterised in that one or more components from the strong oxide formers, such as La, Al or Ce, and from the high-temperature metals, having a melting point higher than 2500° C, is or are homogeneously applied to the MCrAlY protective layer as an additional thin layer and remelted together with said protective layer.
EP97904418A 1996-03-13 1997-02-12 Protective coating for tubing blades Expired - Lifetime EP0886721B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19609690 1996-03-13
DE19609690A DE19609690C2 (en) 1996-03-13 1996-03-13 Turbine blade
PCT/EP1997/000630 WO1997034076A1 (en) 1996-03-13 1997-02-12 Protective coating for tubing blades

Publications (2)

Publication Number Publication Date
EP0886721A1 EP0886721A1 (en) 1998-12-30
EP0886721B1 true EP0886721B1 (en) 2002-06-05

Family

ID=7788051

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97904418A Expired - Lifetime EP0886721B1 (en) 1996-03-13 1997-02-12 Protective coating for tubing blades

Country Status (5)

Country Link
EP (1) EP0886721B1 (en)
JP (1) JP3320739B2 (en)
AT (1) ATE218670T1 (en)
DE (2) DE19609690C2 (en)
WO (1) WO1997034076A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1082216B1 (en) 1998-04-29 2001-11-21 Siemens Aktiengesellschaft Product with an anticorrosion protective layer and a method for producing an anticorrosion protective layer
DE19934418A1 (en) * 1999-07-22 2001-01-25 Abb Alstom Power Ch Ag Process for coating a locally differently stressed component
DE19934856A1 (en) * 1999-07-24 2001-01-25 Abb Research Ltd Turbine blade and method for its manufacture
DE10001516B4 (en) 2000-01-15 2014-05-08 Alstom Technology Ltd. Non-destructive method for determining the layer thickness of a metallic protective layer on a metallic base material
DE10126896A1 (en) * 2000-12-23 2002-07-11 Alstom Switzerland Ltd Protective coating used for turbines comprises a mono- or multi-layer sealing layer made from an amorphous material
RU2302534C2 (en) 2001-12-11 2007-07-10 Альстом (Свитзерлэнд) Лтд. Gas-turbine device
US6746783B2 (en) * 2002-06-27 2004-06-08 General Electric Company High-temperature articles and method for making
DE102004001575A1 (en) 2004-01-10 2005-08-04 Mtu Aero Engines Gmbh Method for producing hollow blades and a rotor with hollow blades
DE102004045049A1 (en) * 2004-09-15 2006-03-16 Man Turbo Ag Protection layer application, involves applying undercoating with heat insulating layer, and subjecting diffusion layer to abrasive treatment, so that outer structure layer of diffusion layer is removed by abrasive treatment
DE102005030231B4 (en) 2005-06-29 2007-05-31 Forschungszentrum Karlsruhe Gmbh Method for applying a high-temperature suitable FeCrAl protective layer, cladding tube with such a protective layer applied and use of such a cladding tube
CN111487272B (en) * 2020-04-21 2023-06-02 中国航发沈阳发动机研究所 Analysis method for product layer on surface of turbine blade of aero-engine
CN111560584A (en) * 2020-05-22 2020-08-21 江苏大学 High-performance thermal barrier coating of aero-engine blade and multi-process combined preparation method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4152223A (en) * 1977-07-13 1979-05-01 United Technologies Corporation Plasma sprayed MCrAlY coating and coating method
DE3310650C1 (en) * 1983-03-24 1984-03-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 8000 München Method of improving thermally sprayed-on alpha -Al2O3 layers
DE3325251A1 (en) * 1983-07-13 1985-01-24 Brown, Boveri & Cie Ag, 6800 Mannheim Process for testing and reconditioning protective layers applied to building elements
DD220457A1 (en) * 1983-12-14 1985-03-27 Adw Ddr ARRANGEMENT FOR IMPULSE HEATING DUENNER SURFACE LAYERS
JPH0661911B2 (en) * 1984-06-05 1994-08-17 株式会社ノダ Coating material and manufacturing method thereof
DE3568065D1 (en) * 1984-07-16 1989-03-09 Bbc Brown Boveri & Cie Process for the deposition of a corrosion-inhibiting layer, comprising protective oxide-forming elements at the base of a gas turbine blade, and a corrosion-inhibiting layer
EP0190378B1 (en) * 1985-02-05 1990-05-23 Nippon Steel Corporation Method for surface-alloying metal with a high-density energy beam and an alloy steel
JPS61204372A (en) * 1985-03-06 1986-09-10 Univ Osaka Method for making material amorphous by use of implantation of heterogeneous atom into solid by electron beam
DD247924A1 (en) * 1986-04-10 1987-07-22 Schmalkalden Werkzeug METHOD FOR TREATING COATED OBJECTS
DE271426T1 (en) * 1986-11-07 1989-01-05 United Technologies Corp., Hartford, Conn. METHOD FOR PRODUCING A MULTIMETALLIC OBJECT.
DD276210A3 (en) * 1987-05-11 1990-02-21 Bergmann Borsig Veb PROCESS FOR PREPARING AN EROSION PROTECTION FOR TURBINE SHOVELS

Also Published As

Publication number Publication date
JP3320739B2 (en) 2002-09-03
DE59707422D1 (en) 2002-07-11
WO1997034076A1 (en) 1997-09-18
EP0886721A1 (en) 1998-12-30
DE19609690C2 (en) 2000-12-28
DE19609690A1 (en) 1997-10-09
ATE218670T1 (en) 2002-06-15
JPH11506186A (en) 1999-06-02

Similar Documents

Publication Publication Date Title
EP0886721B1 (en) Protective coating for tubing blades
EP1029103B1 (en) Coating method and device
DE3839775C2 (en) Cathode sputtering target and process for its manufacture
DE19918900B4 (en) High temperature component for a gas turbine and process for its production
DE3504031C2 (en)
EP0697503B1 (en) Method for the construction of a turbine blade from an (alpha-beta)-Titanium-base alloy
DE2801016A1 (en) ITEM MADE OF A SUPER ALLOY THAT IS PROVIDED WITH AN OXIDATION AND CORROSION-RESISTANT COATING BY FLAME SPRAYING, AND THE PROCESS FOR THE PRODUCTION OF IT
CH651070A5 (en) ALLOY USED AS A COATING COATING OF NICKEL-BASED FABRICS.
DE2418879A1 (en) IMPROVED COATING SYSTEM FOR SUPER ALLOYS
DE2827667A1 (en) METHOD FOR APPLYING A SURFACE DOUBLE LAYER BY FUSION WELDING
DE2852748A1 (en) PROCESS FOR DEPOSITING AN ALUMINUM CONTAINING ALLOY COATING LAYER FROM A METAL VAPOR ON A SUBSTRATE
DE3030961A1 (en) COMPONENTS OF SUPER ALLOYS WITH AN OXIDATION AND / OR SULFIDATION RESISTANT COATING AND COMPOSITION OF SUCH A COATING.
DE2655617A1 (en) OXYDATION-RESISTANT COBALT-BASED ALLOY
EP1759806A1 (en) Brazing process for repairing a crack
EP1896627B1 (en) Cladding tubes made of ferritic/martensitic or austenitic steel for nuclear fuel elements/fuels and method for subsequently treating a fecra protective layer thereon that is suited for high temperatures
DE60022300T2 (en) Articles with corrosion-resistant coatings
DE3104581A1 (en) OBJECT OF A SUPER ALLOY PROVIDED WITH A COATING LAYER AND METHOD FOR PRODUCING THE SAME
EP1867423A1 (en) Process for repairing a workpiece through soldering with a sheet coated with solder
EP1816316B1 (en) Method for Repairing a Component
DE102012108057B4 (en) Method of manufacturing a last stage steam turbine blade
US6149389A (en) Protective coating for turbine blades
DE2812311A1 (en) METHOD AND DEVICE FOR VACUUM VAPORIZATION OF THIN LAYERS BY MEANS OF ELECTRON BEAMS, ESPECIALLY FOR THE PRODUCTION OF TURBINE BLADES
EP3877564A1 (en) Hardened component, comprising a steel substrate and an anti-corrosion coating, corresponding component for producing the hardened component, production method, and use
DE4215017C2 (en) Process for the production of a component based on intermetallic phases of the titanium-aluminum system
EP1029104A1 (en) GAZ JET PVD METHOD FOR PRODUCING A LAYER WITH MoSi 2?

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980610

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH DE FR GB IT LI

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 20011024

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI

REF Corresponds to:

Ref document number: 218670

Country of ref document: AT

Date of ref document: 20020615

Kind code of ref document: T

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ROTTMANN, ZIMMERMANN + PARTNER AG

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59707422

Country of ref document: DE

Date of ref document: 20020711

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020906

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030306

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20070221

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20070222

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20070301

Year of fee payment: 11

BERE Be: lapsed

Owner name: FORSCHUNGSZENTRUM *KARLSRUHE G.M.B.H.

Effective date: 20080228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080229

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120228

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120222

Year of fee payment: 16

Ref country code: IT

Payment date: 20120223

Year of fee payment: 16

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130212

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20131031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130212

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140220

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59707422

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150901