EP0884554B1 - Method for controlling the lateral dispersion of projectiles stabilised by means of gyroscopic effect - Google Patents

Method for controlling the lateral dispersion of projectiles stabilised by means of gyroscopic effect Download PDF

Info

Publication number
EP0884554B1
EP0884554B1 EP19980401348 EP98401348A EP0884554B1 EP 0884554 B1 EP0884554 B1 EP 0884554B1 EP 19980401348 EP19980401348 EP 19980401348 EP 98401348 A EP98401348 A EP 98401348A EP 0884554 B1 EP0884554 B1 EP 0884554B1
Authority
EP
European Patent Office
Prior art keywords
munition
fins
ammunition
fin
centre
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19980401348
Other languages
German (de)
French (fr)
Other versions
EP0884554A1 (en
Inventor
Jean-Paul Labroche
Jean-Pierre Frehaut
Pascal Tarayre
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDA Armements SAS
Original Assignee
TDA Armements SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDA Armements SAS filed Critical TDA Armements SAS
Publication of EP0884554A1 publication Critical patent/EP0884554A1/en
Application granted granted Critical
Publication of EP0884554B1 publication Critical patent/EP0884554B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B10/00Means for influencing, e.g. improving, the aerodynamic properties of projectiles or missiles; Arrangements on projectiles or missiles for stabilising, steering, range-reducing, range-increasing or fall-retarding
    • F42B10/02Stabilising arrangements
    • F42B10/14Stabilising arrangements using fins spread or deployed after launch, e.g. after leaving the barrel

Definitions

  • the present invention relates to a method for controlling the lateral dispersion on the ground of artillery ammunition stabilized by effect gyroscopic as, for example, those described in document WO-A-8100908, as well as a munition applying this method. She applies in particular to improving the effectiveness of artillery ammunition especially in the context of ammunition with increased range.
  • the second process is more complex, but offers the advantage of avoiding adjustment shots, which is doubly interesting from an operational point of view by the effect of surprise obtained which does not allow the target to leave the target area and by the reduction of the time required to take a shot on goal which allows the shooter to leave the shooting position quickly, and greatly decreases the probability of location of the shooter by counter-battery radars.
  • the ammunition trajectory correction is carried out according to two steps :
  • a first step is to correct only the errors by scope. All you need is an action in the vertical plane, which can be performed from relatively simple way, by deliberately aiming beyond the target, and by controlling aerodynamic drag by an air brake system. Curvature of the trajectory is thus modulated. During this action, the control of the range involves purely axial forces, and requires only ammunition location information.
  • the second step consists of correcting also lateral errors by implementing for example actuators developing forces perpendicular to the speed of displacement of the ammunition, that is to say substantially perpendicular to the axis of revolution.
  • actuators developing forces perpendicular to the speed of displacement of the ammunition, that is to say substantially perpendicular to the axis of revolution.
  • knowledge of the angular position actuators with respect to a terrestrial reference, vertical for example, is required.
  • the trajectory correction is in principle in one direction relatively unchanging compared to a terrestrial reference, at the most less as long as the amplitude of the requested correction is sufficient important.
  • the actuators When the ammunition rolls, the actuators must, in case they are linked to the ammunition, switch to a double frequency of the roll frequency in order to achieve a "straightening" of the force generated, to obtain an average value of the non-zero resultant force.
  • the direction of the average force is adjusted by playing on the instants of switching.
  • the first method may be to use organs piezoelectric which allow switching frequencies to be reached high. However, these may not satisfy the amplitudes of deformations required.
  • the second method can consist in using organs of correction decoupled in roll from the rest of the ammunition. But such a process encounters problems in making decoupling bearings which must resist initial acceleration at the time of firing and exhibit low friction.
  • the object of the invention is to overcome the aforementioned drawbacks.
  • the invention relates to a method for the control of lateral dispersion of stabilized gyroscopic ammunition characterized in that it consists in modulating the acceleration of bypass horizontal due to the gyroscopic effect by varying the center of thrust aerodynamics of the ammunition.
  • the subject of the invention is also a munition making application of the above method.
  • the method and the device according to the invention have the advantage that they require a simple arrangement of the ammunition stabilized in rotation by gyroscopic effect requiring no rapid switching actuators, no decoupling of actuators and above all no means of vertical reference measurement.
  • the gyroscopic shunt of shells with high roll speed is a physical phenomenon resulting in a continuous lateral deviation of the trajectory, which can reach several hundred meters at the end of path.
  • the lateral deflection of a 155-millimeter shell range 27 km, depending on the horizontal distance traveled is around 800 m.
  • the skid angle corresponds to a rotation around the axis vertical and therefore lies in a horizontal plane. Lifting force associated is itself horizontal, and produces the trajectory derivation.
  • the gyroscopic bypass phenomenon leads to a horizontal deflection which is the natural response of ammunition to the vertical stress of gravity.
  • the derivation is to the right of the line firing, for a projectile rotating in the positive direction around its spin axis.
  • the speed vector V is as shown in Figure 1 tangent to the path and its direction relative to the horizontal defines the slope of the path.
  • the center of aerodynamic thrust F is located in front of the center of gravity G as shown in Figure 2 which shows ammunition in the form of a shell composed of a cylindrical body 1, a conical head 2 and a base 3.
  • ⁇ D gcos ⁇ Ap mvx F 1+ Ap mvx F
  • ⁇ D gcos ⁇ u 1 + u 2
  • a decrease in roll speed can be achieved by example by aerodynamic brakes. However these decrease the ammunition stability margin. In addition, this results in a decrease of parameter u, and therefore offers little room for correction.
  • a third solution implemented by the invention consists in modifying the static margin x F.
  • the airfoils 4 used here remain fixed after deployment. Their role is only to modify the aerodynamic center of thrust F in order to vary the static margin x F.
  • the airfoils 4 must also be angularly wedged, as shown in Figure 9, so as to maintain the roll speed of the ammunition.
  • the airfoils 4 are placed at the level of the base 3 of the projectile.
  • the deployment of the fins 4 can be obtained naturally by centrifugal effect.
  • the fins are wedged angularly with respect to the axis of the projectile, as shown in Figure 11.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Description

La présente invention concerne un procédé pour le contrôle de la dispersion latérale au sol de munitions d'artillerie stabilisées par effet gyroscopique comme, par example, les décrites dans le document WO-A-8100908, ainsi qu'une munition faisant application de ce procédé. Elle s'applique notamment à l'amélioration de l'efficacité des munitions d'artillerie surtout dans le cadre des munitions à portée augmentée.The present invention relates to a method for controlling the lateral dispersion on the ground of artillery ammunition stabilized by effect gyroscopic as, for example, those described in document WO-A-8100908, as well as a munition applying this method. She applies in particular to improving the effectiveness of artillery ammunition especially in the context of ammunition with increased range.

L'amélioration de la précision du point d'impact des munitions d'artillerie se justifie par le fait qu'elle permet le traitement de cibles en exigeant un nombre réduit de munitions mais aussi en raison de l'augmentation de portée actuellement envisagée des munitions futures qui va de pair avec une dégradation de la précision des points d'impact.Improving the accuracy of the point of impact of ammunition artillery is justified by the fact that it allows the treatment of targets in requiring a reduced number of ammunition but also due to the currently envisaged increase in range of future munitions which goes hand in hand with a degradation of the precision of the points of impact.

Pour satisfaire ces besoins, il est connu de doter les munitions de dispositifs aptes à les localiser. Ceux-ci mettent en oeuvre des systèmes de navigation, comme le système connu sous l'abréviation anglo-saxonne GPS de « Global Positioning system » ou encore des centrales inertielles bas coût. Ces systèmes permettent, dans un premier temps, de corriger les angles de pointage pour les tirs futurs à partir de mesures de trajectoire réelle du premier obus tiré, sans qu'il soit nécessaire de placer des observateurs avancés sur les points d'impact et dans un deuxième temps, de corriger directement la trajectoire réelle, en utilisant des dispositifs de contrôle adaptés, embarqués dans la munition. Le deuxième procédé est plus complexe, mais offre l'avantage d'éviter les tirs d'ajustement, ce qui est doublement intéressant d'un point de vue opérationnel par l'effet de surprise obtenu qui ne permet pas à la cible de quitter la zone visée et par la réduction du temps nécessaire pour réaliser un tir au but ce qui permet au tireur de quitter rapidement la position de tir, et diminue fortement la probabilité de localisation du tireur par les radars de contre-batterie.To meet these needs, it is known to provide ammunition with devices capable of locating them. These implement systems of navigation, like the system known by the abbreviation Anglo-Saxon GPS of Global Positioning System or low inertial units cost. These systems allow, as a first step, to correct the aiming angles for future shots from trajectory measurements first shell fired, without the need to place advanced observers on the points of impact and secondly, directly correct the real trajectory, using adapted controls, loaded in the ammunition. The second process is more complex, but offers the advantage of avoiding adjustment shots, which is doubly interesting from an operational point of view by the effect of surprise obtained which does not allow the target to leave the target area and by the reduction of the time required to take a shot on goal which allows the shooter to leave the shooting position quickly, and greatly decreases the probability of location of the shooter by counter-battery radars.

La correction de trajectoire des munitions s'effectue suivant deux étapes :The ammunition trajectory correction is carried out according to two steps :

Une première étape consiste à corriger uniquement les erreurs en portée. Il suffit d'une action dans le plan vertical, qui peut être réalisée de façon relativement simple, en visant volontairement au-delà de la cible, et en contrôlant la traínée aérodynamique par un système d'aérofrein. La courbure de la trajectoire est ainsi modulée . Au cours de cette action, le contrôle de la portée met en jeu des forces purement axiales, et ne requiert que des informations de localisation de la munition.A first step is to correct only the errors by scope. All you need is an action in the vertical plane, which can be performed from relatively simple way, by deliberately aiming beyond the target, and by controlling aerodynamic drag by an air brake system. Curvature of the trajectory is thus modulated. During this action, the control of the range involves purely axial forces, and requires only ammunition location information.

La deuxième étape, plus difficile à atteindre, consiste à corriger également les erreurs latérales en mettant en oeuvre par exemple des actionneurs développant des forces perpendiculaires à la vitesse de déplacement de la munition, c'est-à-dire sensiblement perpendiculaire à l'axe de révolution. Dans ce cas, la connaissance de la position angulaire des actionneurs par rapport à une référence terrestre, verticale par exemple, est requise.The second step, more difficult to reach, consists of correcting also lateral errors by implementing for example actuators developing forces perpendicular to the speed of displacement of the ammunition, that is to say substantially perpendicular to the axis of revolution. In this case, knowledge of the angular position actuators with respect to a terrestrial reference, vertical for example, is required.

La correction de trajectoire se situe en principe dans une direction relativement peu évolutive par rapport à une référence terrestre, tout au moins tant que l'amplitude de la correction demandée est suffisamment importante.The trajectory correction is in principle in one direction relatively unchanging compared to a terrestrial reference, at the most less as long as the amplitude of the requested correction is sufficient important.

Lorsque la munition tourne en roulis, il faut que les actionneurs, dans le cas où ils sont liés à la munition, commutent à une fréquence double de la fréquence de roulis afin de réaliser un « redressement » de la force générée, pour obtenir une valeur moyenne de la force résultante non nulle. La direction de la force moyenne est ajustée en jouant sur les instants de commutation.When the ammunition rolls, the actuators must, in case they are linked to the ammunition, switch to a double frequency of the roll frequency in order to achieve a "straightening" of the force generated, to obtain an average value of the non-zero resultant force. The direction of the average force is adjusted by playing on the instants of switching.

Le mode de fonctionnement décrit précédemment est envisageable pour des munitions à roulis modéré jusqu'à 30 tours/s par exemple. En revanche, il semble difficilement applicable à des munitions stabilisées par effet gyroscopique car leur vitesse de roulis est alors trop élevée, elle est de l'ordre de 300 tours/s pour une munition de 155 mm et les performances dynamiques attendues de l'actionneur apparaissent dans ce cas incompatibles des systèmes aéromécaniques classiques à gouvernes par exemple.The operating mode described above is possible for ammunition with moderate roll up to 30 turns / s per example. On the other hand, it seems difficult to apply to ammunition stabilized by gyroscopic effect because their roll speed is then too high, it is around 300 rpm for 155 mm ammunition and the expected dynamic performances of the actuator appear in this incompatible cases of conventional aeromechanical control systems for example.

A l'heure actuelle, deux procédés exploitant des principes d'actionneurs classiques, tels que décrits ci-avant, apparaissent pouvoir être envisagés.Currently, two processes exploiting principles conventional actuators, as described above, appear to be able to be considered.

Le premier procédé peut consister à utiliser des organes piézo-électriques qui permettent d'atteindre des fréquences de commutation élevées. Cependant, ceux-ci risquent de ne pas satisfaire les amplitudes de déformations requises. The first method may be to use organs piezoelectric which allow switching frequencies to be reached high. However, these may not satisfy the amplitudes of deformations required.

Le deuxième procédé peut consister à utiliser des organes de correction découplés en roulis du reste de la munition. Mais un tel procédé se heurte à des problèmes de réalisation des roulements de découplages qui doivent résister à l'accélération initiale au moment du tir et présenter de faibles frottements.The second method can consist in using organs of correction decoupled in roll from the rest of the ammunition. But such a process encounters problems in making decoupling bearings which must resist initial acceleration at the time of firing and exhibit low friction.

Le but de l'invention est de pallier les inconvénients précités.The object of the invention is to overcome the aforementioned drawbacks.

A cet effet, l'invention a pour objet un procédé pour le contrôle de la dispersion latérale de munitions stabilisées à effet gyroscopique caractérisé en ce qu'il consiste à moduler l'accélération de dérivation horizontale due à l'effet gyroscopique en faisant varier le centre de poussée aérodynamique de la munition.To this end, the invention relates to a method for the control of lateral dispersion of stabilized gyroscopic ammunition characterized in that it consists in modulating the acceleration of bypass horizontal due to the gyroscopic effect by varying the center of thrust aerodynamics of the ammunition.

L'invention a également pour objet une munition faisant application du procédé précité.The subject of the invention is also a munition making application of the above method.

Le procédé et le dispositif selon l'invention ont pour avantage qu'ils requièrent un aménagement simple des munitions stabilisées en rotation par effet gyroscopique ne nécessitant aucune commutation rapide d'actionneurs, aucun découplage d'actuateurs et surtout aucun moyen de mesure de référence de verticale.The method and the device according to the invention have the advantage that they require a simple arrangement of the ammunition stabilized in rotation by gyroscopic effect requiring no rapid switching actuators, no decoupling of actuators and above all no means of vertical reference measurement.

D'autres caractéristiques et avantages de l'invention apparaítront à l'aide de la description qui suit faite en regard des dessins annexés qui représentent :

  • la figure 1, la trajectoire d'une munition relativement à l'horizontale,
  • la figure 2, les dispositions relatives sur l'axe longitudinal du centre de poussée et du centre de gravité d'une munition,
  • les figures 3 et 4, l'évolution de l'accélération latérale en fonction d'un paramètre de stabilité u,
  • la figure 5, un graphe montrant une dérivation de munition en fonction de la distance du point d'impact,
  • la figure 6, un exemple de dépointage de tir pour centrer les corrections,
  • les figures 7 et 8, un exemple de déplacement des centres de poussée après correction,
  • la figure 9, un exemple d'implantation d'ailettes radiales de correction sur le corps de la munition,
  • la figure 10, les ailettes de la figure 9 en position déployée, et
  • les figures 11 et 12, un exemple de calage d'ailettes selon l'invention sur un culot de munition.
Other characteristics and advantages of the invention will become apparent with the aid of the description which follows given with reference to the appended drawings which represent:
  • FIG. 1, the trajectory of a munition relative to the horizontal,
  • FIG. 2, the relative arrangements on the longitudinal axis of the center of thrust and the center of gravity of a munition,
  • FIGS. 3 and 4, the evolution of the lateral acceleration as a function of a stability parameter u,
  • FIG. 5, a graph showing a diversion of ammunition as a function of the distance from the point of impact,
  • FIG. 6, an example of shot firing to center the corrections,
  • FIGS. 7 and 8, an example of displacement of the centers of thrust after correction,
  • FIG. 9, an example of installation of radial correction fins on the body of the ammunition,
  • FIG. 10, the fins of FIG. 9 in the deployed position, and
  • Figures 11 and 12, an example of wedging fins according to the invention on an ammunition base.

La dérivation gyroscopique des obus à forte vitesse de roulis, est un phénomène physique se traduisant par une déviation latérale continue de la trajectoire, qui peut atteindre plusieurs centaines de mètres en fin de trajectoire. A titre d'exemple, la déviation latérale d'un obus de 155 de portée 27 km, en fonction de la distance horizontale parcourue est de l'ordre de 800 m.The gyroscopic shunt of shells with high roll speed is a physical phenomenon resulting in a continuous lateral deviation of the trajectory, which can reach several hundred meters at the end of path. For example, the lateral deflection of a 155-millimeter shell range 27 km, depending on the horizontal distance traveled is around 800 m.

Qualitativement, le phénomène peut s'analyser de la façon suivante :

  • a) La pesanteur provoque la courbure de la trajectoire, c'est-à-dire la rotation du vecteur vitesse vers le bas.
  • b) Les conditions de stabilité gyroscopique étant supposées remplies (vitesse de rotation autour de son axe longitudinal suffisante), la munition suit son vecteur vitesse avec un certain traínage, mais à la même vitesse de rotation.
  • c) La vitesse de rotation de la munition autour de son axe longitudinal encore appelé SPIN, induit par réaction gyroscopique un couple autour de l'axe vertical (couple gyroscopique).
  • d) Le couple gyroscopique fait apparaítre un angle de dérapage entre l'axe du projectile et son vecteur vitesse. Cet angle s'établit à une valeur d'équilibre telle que le moment aérodynamique qu'il induit compense le couple gyroscopique.
  • Qualitatively, the phenomenon can be analyzed in the following way:
  • a) Gravity causes the curvature of the trajectory, that is to say the rotation of the speed vector downwards.
  • b) The conditions of gyroscopic stability being assumed to be fulfilled (speed of rotation around its longitudinal axis sufficient), the ammunition follows its speed vector with a certain drag, but at the same speed of rotation.
  • c) The speed of rotation of the munition around its longitudinal axis also called SPIN, induced by gyroscopic reaction a couple around the vertical axis (gyroscopic couple).
  • d) The gyroscopic couple shows a skid angle between the axis of the projectile and its speed vector. This angle is established at an equilibrium value such that the aerodynamic moment which it induces compensates for the gyroscopic torque.
  • L'angle de dérapage correspond à une rotation autour de l'axe vertical et se situe donc dans un plan horizontal. La force de portance associée est elle même horizontale, et produit la dérivation de trajectoire.The skid angle corresponds to a rotation around the axis vertical and therefore lies in a horizontal plane. Lifting force associated is itself horizontal, and produces the trajectory derivation.

    Le phénomène de dérivation gyroscopique conduit à une déviation horizontale qui est la réponse naturelle de la munition à la sollicitation verticale de la pesanteur. La dérivation est à droite de la ligne de tir, pour un projectile tournant dans le sens positif autour de son axe de spin.The gyroscopic bypass phenomenon leads to a horizontal deflection which is the natural response of ammunition to the vertical stress of gravity. The derivation is to the right of the line firing, for a projectile rotating in the positive direction around its spin axis.

    Vu l'ordre de grandeur de la dérivation gyroscopique par rapport à l'amplitude des dispersions latérales, il est envisageable selon l'invention de corriger ces dernières en modulant l'amplitude de dérivation.Given the order of magnitude of the gyroscopic derivation compared to the amplitude of the lateral dispersions, it is possible according to the invention to correct these by modulating the bypass amplitude.

    La dérivation gyroscopique se traduit par une accélération latérale horizontale ΓD, qui s'exprime à partir des grandeurs définies ci-après :

  • g : accélération de la pesanteur
  • A : inertie de la munition autour de son axe longitudinal (axe de spin)
  • m : masse de la munition
  • V: vitesse de la munition
  • γ : pente de la trajectoire
  • p : vitesse de roulis de la munition
  • xF : abscisse du centre de poussée aérodynamique F par rapport au centre de gravité G de la munition.
  • The gyroscopic derivation results in a horizontal lateral acceleration Γ D , which is expressed from the quantities defined below:
  • g: acceleration of gravity
  • A: inertia of the ammunition around its longitudinal axis (spin axis)
  • m: mass of the ammunition
  • V: speed of the ammunition
  • γ: slope of the trajectory
  • p: rolling speed of the ammunition
  • x F : abscissa of the aerodynamic center of thrust F relative to the center of gravity G of the ammunition.
  • Le vecteur de vitesse V est comme le montre la figure 1 tangent à la trajectoire et sa direction par rapport à l'horizontale définit la pente de la trajectoire.The speed vector V is as shown in Figure 1 tangent to the path and its direction relative to the horizontal defines the slope of the path.

    Pour les munitions stabilisées par effet gyroscopique, le centre de poussée aérodynamique F se situe en avant du centre de gravité G comme représenté sur la figure 2 qui représente une munition sous la forme d'un obus composé d'un corps cylindrique 1, d'une tête conique 2 et d'un culot 3.For ammunition stabilized by gyroscopic effect, the center of aerodynamic thrust F is located in front of the center of gravity G as shown in Figure 2 which shows ammunition in the form of a shell composed of a cylindrical body 1, a conical head 2 and a base 3.

    Par analogie, aux munitions empennées stabilisées par effet aérodynamique, le paramètre xF est dénommé par la suite « marge statique ».By analogy, with stabilized ammunition stabilized by aerodynamic effect, the parameter x F is hereinafter called "static margin".

    La vitesse de spin étant supposée assez grande pour assurer la stabilité, l'accélération ΓD s'établit après stabilisation des mouvements transitoires du projectile à la valeur suivante : ΓD = gcosγ ApmvxF 1+ ApmvxF The spin speed being assumed to be large enough to ensure stability, the acceleration Γ D is established after stabilization of the transient movements of the projectile at the following value: Γ D = gcosγ Ap mvx F 1+ Ap mvx F

    Pour une trajectoire de pente γ donnée, ΓD ne dépend que du paramètre suivant : u ApmVxF    et s'exprime par : ΓD = gcosγ u1+u2 For a given slope trajectory γ, Γ D depends only on the following parameter: u Ap MVX F and is expressed by: Γ D = gcosγ u 1 + u 2

    La condition de stabilité de la munition impose de plus que le coefficient de stabilité essentielle s, donné par s = A2p2 2Bρv2SCzαxF The condition of stability of the ammunition imposes more than the essential stability coefficient s, given by s = AT 2 p 2 2Bρv 2 SCzαx F

    Vérifie l'inégalité : s ≥ 1Checks for inequality: s ≥ 1

    Dans laquelle

  • B représente l'inertie de tangage/lacet
  • ρ est la masse volumique de l'air
  • S est la surface de référence ( = ΠD2 / 4 avec D=calibre)
  • et Czα est le gradient de portance
  • In which
  • B represents the pitch / yaw inertia
  • ρ is the density of air
  • S is the reference surface (= ΠD 2/4 D = caliber)
  • and Czα is the lift gradient
  • En fonction du paramètre u, la condition nécessaire de stabilité devient : u ≥ 2BρVSCzαmAp Depending on the parameter u, the necessary stability condition becomes: u ≥ 2BρVSCzα Map

    Habituellement, la condition de stabilité la plus sévère se situe au début du vol de la munition ρ, V / p et Czα étant maximum en sortie du tube de lancement de la munition. Pour un projectile de 155 mm, les ordres de grandeur sont les suivants :

  • B = 1,715 m2kg
  • A = 0,159 m2kg
  • m = 46,95 kg
  • S = 0,01886 m2
  • Vo / po = 0,5 m/rd
  • Czα = 2,78
  • et ρ = 1,225 kg/m3
  • Usually, the most severe condition of stability is located at the start of the flight of the munition ρ, V / p and Czα being maximum at the outlet of the launch tube of the ammunition. For a 155 mm projectile, the orders of magnitude are as follows:
  • B = 1.715 m 2 kg
  • A = 0.159 m 2 kg
  • m = 46.95 kg
  • S = 0.01886 m 2
  • Vo / in = 0.5 m / rd
  • Czα = 2.78
  • and ρ = 1.225 kg / m 3
  • D'où la condition de stabilité : u ≥ 0,0147 Hence the condition of stability: u ≥ 0.0147

    L'évolution de ΓD = gcosγ u1+u2 est représentée sur les figures 3 et 4. La figure 3 est une représentation globale de la fonction. Avec les valeurs numériques utilisées ci-avant (projectile de 155 mm) le paramètre u évolue au cours du vol dans la plage suivante : 0,026 ≤ u ≤ 0,041 The evolution of Γ D = gcosγ u 1 + u 2 is shown in Figures 3 and 4. Figure 3 is an overall representation of the function. With the numerical values used above (155 mm projectile) the parameter u changes during the flight in the following range: 0.026 ≤ u ≤ 0.041

    La plage de variation ne concerne donc que le début de la courbe ΓD = f(u) qui est représentée à la figure 4. The range of variation therefore only concerns the start of the curve Γ D = f (u) which is represented in FIG. 4.

    L'examen de la courbe montre que ΓD est quasiment linéaire en fonction de u et que l'accélération latérale peut être facilement modifiée à condition de faire varier le paramètre u.Examination of the curve shows that Γ D is almost linear as a function of u and that the lateral acceleration can be easily modified provided that the parameter u is varied.

    Il est d'ailleurs préférable d'augmenter u, ce qui offre plus de possibilité de variation et de surcroít, renforce la stabilité de la munition.It is better to increase u, which offers more possibility of variation and in addition, strengthens the stability of the ammunition.

    D'après la relation (3) et pour une trajectoire dont le profil de pente γ est donné, il apparaít que l'accélération de dérivation ne dépend que du paramètre : u = ApmVxF , défini par la relation (2) qui lui-même s'exprime en fonction du moment cinétique Ap, de la quantité de mouvement mV et de la marge statique xF.According to equation (3) and for a trajectory whose slope profile γ is given, it appears that the acceleration of derivation depends only on the parameter: u = Ap MVX F , defined by the relation (2) which itself is expressed as a function of the angular moment Ap, the momentum mV and the static margin x F.

    La quantité de mouvement mV et le moment cinétique Ap résultent essentiellement des conditions initiales données par le tube de lancement à l'instant du tir.The momentum mV and the angular momentum Ap essentially result from the initial conditions given by the tube launch immediately.

    Il n'est pas envisageable de modifier la quantité de mouvement de la munition car cela influerait profondément sur sa portée.It is not possible to modify the amount of movement of ammunition as this would have a profound effect on its range.

    Il peut paraítre par contre envisageable de modifier son moment cinétique. Pour ce faire, deux moyens sont possibles consistant à diminuer ou augmenter la vitesse de roulis.On the other hand, it may seem possible to modify its moment kinetic. There are two ways to do this: or increase the roll speed.

    Une diminution de la vitesse de roulis peut être obtenue par exemple par des freins aérodynamiques. Cependant ceux-ci diminuent la marge de stabilité de la munition. De plus, cela entraíne une diminution de paramètre u, et offre donc peu de marge de correction.A decrease in roll speed can be achieved by example by aerodynamic brakes. However these decrease the ammunition stability margin. In addition, this results in a decrease of parameter u, and therefore offers little room for correction.

    Une augmentation de la vitesse de roulis peut être obtenue par un procédé énergétique de type impulseur. A titre d'exemple, pour doubler l'accélération de dérivation à mi-trajectoire, il suffit pratiquement de doubler la valeur de u, c'est-à-dire d'augmenter la vitesse de roulis d'un facteur 2. A mi trajectoire, la variation de p à communiquer est alors d'environ : Δρ = 200 tours/s. Compte tenu de l'inertie en roulis et en supposant que le couple d'accélération est obtenu par des tuyères situées à la périphérie du projectile, l'impulsion à communiquer est de l'ordre de : I = 2600 N.s An increase in the roll speed can be obtained by an energy process of the impeller type. For example, to double the diversion acceleration at mid-trajectory, it is practically enough to double the value of u, that is to say to increase the roll speed by a factor of 2. At mid trajectory, the variation of p to be communicated is then approximately: Δρ = 200 turns / s. Given the roll inertia and assuming that the acceleration torque is obtained by nozzles located at the periphery of the projectile, the impulse to communicate is of the order of: I = 2600 Ns

    Cependant cette solution présente l'inconvénient qu'elle requiert une masse de poudre d'environ 1,3 kg ce qui compte tenu des coefficients de remplissage des impulseurs risque d'être rédhibitoire vis-à-vis de l'architecture de la munition.However, this solution has the disadvantage that it requires a powder mass of approximately 1.3 kg which taking into account the coefficients filling the impellers may be prohibitive vis-à-vis the architecture of ammunition.

    Une troisième solution mise en oeuvre par l'invention consiste à modifier la marge statique xF.A third solution implemented by the invention consists in modifying the static margin x F.

    Le procédé selon l'invention consiste à faire varier directement la position du centre de poussée F qui résulte de la répartition des pressions dues à l'écoulement de l'air sur la surface de la munition. A titre indicatif, pour un projectile de 155 mm, les ordres de grandeur suivants peuvent être retenus :

    • centre de gravité à 2,16 calibres (335 mm) du culot.
    • centre de poussée variable en fonction du nombre de Mach M :
      Figure 00080001
    La correction de trajectoire se situe dans la phase descendante de la trajectoire, c'est-à-dire plutôt aux alentours de M = 1.The method according to the invention consists in directly varying the position of the center of thrust F which results from the distribution of the pressures due to the flow of air over the surface of the munition. As an indication, for a 155 mm projectile, the following orders of magnitude can be used:
    • center of gravity at 2.16 calibers (335 mm) from the base.
    • variable center of thrust depending on the Mach M number:
      Figure 00080001
    The trajectory correction is located in the downward phase of the trajectory, that is to say rather around M = 1.

    Une variation exploitable de la dérivation gyroscopique peut être obtenue en diminuant la marge statique xF d'environ 1 à 1,5 calibres. Des simulations montrent qu'il est alors possible d'augmenter la dérivation de 200 à 300 m par rapport à sa valeur normale de 800 m (voir figure 8 : dérivation latérale en diminuant la marge statique de 30% à partir de t = 30 s). Ce qui donne un potentiel de correction de 300 m maximum qui est toutefois modulable, en déclenchant la variation de marge statique plus ou moins tôt, en faisant implicitement l'hypothèse que la variation de la marge statique xF est de type « one shoot », en anglais, c'est-à-dire unique, par tout ou rien et non réversible. La correction est toujours dans le même sens, vers la droite de la ligne de tir. Afin de recentrer la correction, et d'être apte à rattraper les erreurs de signe quelconque, a priori symétriques autour de 0, il suffit de décaler le pointage en azimut du tube lanceur vers la gauche de façon à compenser systématiquement la moitié de la correction maximale possible.An exploitable variation of the gyroscopic derivation can be obtained by reducing the static margin x F by approximately 1 to 1.5 calibers. Simulations show that it is then possible to increase the bypass from 200 to 300 m compared to its normal value of 800 m (see Figure 8: lateral bypass by reducing the static margin by 30% from t = 30 s ). This gives a correction potential of 300 m maximum which is however flexible, by triggering the variation of static margin sooner or later, by implicitly assuming that the variation of the static margin x F is of the "one shoot" type. , in English, that is to say unique, by all or nothing and not reversible. The correction is always in the same direction, to the right of the line of fire. In order to refocus the correction, and to be able to catch any sign errors, a priori symmetrical around 0, it suffices to shift the pointing in azimuth of the launch tube to the left so as to systematically compensate for half of the correction maximum possible.

    Ainsi, en désignant par Δc l'amplitude de correction réalisable (par exemple : Δc = 300 m) et Xmax la portée visée, l'angle de site de tir doit être décalé de : Δs = Δc 2Xmax Thus, by designating by Δ c the amplitude of correction achievable (for example: Δ c = 300 m) and X max the target range, the firing site angle must be offset by: Δs = Δ vs 2X max

    Pour modifier le point d'application de la résultante des forces de pression sur la munition, il suffit selon l'invention de déployer, comme le montrent les figures 9 et 10, au moment souhaité pour le début de correction, des voilures 4 dont la portance combinée à celle de la munition fournit la marge statique voulue.To modify the point of application of the result of the forces of pressure on the ammunition, it is sufficient according to the invention to deploy, as the show Figures 9 and 10, at the desired time for the start of correction, 4 airfoils whose lift combined with that of the ammunition provides the desired static margin.

    A la différence des systèmes classiques de gouvernes qui doivent être orientés pour infléchir la trajectoire dans la direction de la cible, les voilures 4 mises en oeuvre ici restent fixes après déploiement. Leur rôle est uniquement de modifier le centre de poussée aérodynamique F afin de faire varier la marge statique xF.Unlike the classic control systems which must be oriented in order to bend the trajectory in the direction of the target, the airfoils 4 used here remain fixed after deployment. Their role is only to modify the aerodynamic center of thrust F in order to vary the static margin x F.

    Les voilures 4 doivent être de plus calées angulairement, comme représenté sur la figure 9, de façon à entretenir la vitesse de roulis de la munition.The airfoils 4 must also be angularly wedged, as shown in Figure 9, so as to maintain the roll speed of the ammunition.

    A titre d'exemple, pour un projectile de 155 mm, dont le centre de poussée est situé très à l'avant du projectile surtout pendant la phase où la correction est susceptible d'être commandée, la figure 10 montre l'emplacement de la force aérodynamique F pour Mach = 1 et montre la plage dans laquelle elle doit être positionnée. Cette dernière s'obtient dansl'exemple en reculant le point d'application de la force F de 1 à 1,45 calibres pour obtenir une modulation de déviation latérale suffisante.For example, for a 155 mm projectile, the center of which thrust is located very in front of the projectile especially during the phase where the correction is likely to be ordered, Figure 10 shows the location of the aerodynamic force F for Mach = 1 and shows the range in which it should be positioned. The latter is obtained in the example by moving the point of application of the force F from 1 to 1.45 calibers to obtain sufficient lateral deviation modulation.

    L'examen de la figure 8 montre que pour obtenir le recul souhaité pour le centre de poussée, la seule solution réaliste est de déployer les voilures 4 en arrière du centre de gravité.Examination of Figure 8 shows that to obtain the desired distance for the center of thrust, the only realistic solution is to deploy the wings 4 behind the center of gravity.

    Afin de rendre maximum l'effet des voilures 4 et de réduire au maximum leurs dimensions tout en conservant une certaine modularité à la munition corrigée, les voilures 4 sont placées au niveau du culot 3 du projectile.In order to maximize the effect of the sails 4 and to reduce maximum dimensions while retaining a certain modularity to the corrected ammunition, the airfoils 4 are placed at the level of the base 3 of the projectile.

    En désignant par :

  • F0, le centre de poussée de la munition sans ailettes
  • F1, le centre de poussée de la munition avec ailettes
  • xF0 , la marge statique de la munition sans ailettes
  • xF1 , la marge statique de la munition avec ailettes
  • Pc, la portance du corps sans ailettes (appliquée en F0)
  • Pa, la portance des ailettes
  • et La, le bras de levier de la portance ailettes (La < 0).
  • By designating by:
  • F 0 , the center of thrust of the ammunition without fins
  • F 1 , the center of thrust of the ammunition with fins
  • x F 0 , the static margin of the ammunition without fins
  • x F 1 , the static margin of the ammunition with fins
  • Pc, the lift of the body without fins (applied in F 0 )
  • Pa, the lift of the fins
  • and La, the lever arm of the wing lift (La <0).
  • La marge statique avec ailettes se calcule en considérant le moment de la force résultante. On obtient suivant le diagramme de répartition des forces de la figure 8 xF1 = PcxF0 + PaLaPc + Pa The static margin with fins is calculated by considering the moment of the resulting force. We obtain according to the force distribution diagram of Figure 8 x F 1 = pcx F 0 + PaLa Pc + Pa

    Avec huit ailettes radiales de surface unitaire Sa implantées comme sur la figure 9 la portance Pa est approximativement donnée par la relation : Pa = 4Sa q CNa q est la pression dynamique de l'écoulement et CNa est le coefficient de portance d'une ailette.With eight radial fins of unitary surface Sa located as in FIG. 9, the lift Pa is approximately given by the relation: Pa = 4Sa q VS N / A or q is the dynamic flow pressure and C Na is the lift coefficient of a fin.

    Compte tenu des interactions avec le corps cylindrique de la munition, on peut considérer que : CNa = 8α où α est l'incidence du corps.Given the interactions with the cylindrical body of the ammunition, we can consider that: VS N / A = 8α where α is the incidence of the body.

    La portance de la munition s'exprime par : Pc = q Sc CNc    où Sc est la surface du maítre couple ΠD2 / 4 et CNc le coefficient de portance du corps.The bearing capacity of the munition is expressed by: Pc = q Sc C Nc where Sc is the area of midship ΠD 2/4 and C Nc is the lift coefficient of the body.

    Pratiquement : CNc = 2αPractically: C Nc = 2α

    La surface requise pour une ailette 4 s'exprime alors : Sa = Sc CNc 4CNa .xF0 - xF1 xF1 - La The area required for a fin 4 is then expressed: Sa = Sc C Nc 4C N / A . x F 0 - x F 1 x F 1 - The

    En prenant comme exemple :

  • xF0 = 2,8 calibres
  • xF1 1,3 calibres (recul de 1,5 calibres)
  • La = 2,1 calibres
  • Taking as an example:
  • x F 0 = 2.8 calibers
  • x F 1 1.3 calibers (1.5 caliber drop)
  • La = 2.1 calibers
  • La relation (10) donne :

  • Sa = 5,2 cm2
  • The relation (10) gives:
  • Sa = 5.2 cm 2
  • Ce qui correspond à des ailettes de dimension relativement modestes, faciles à intégrer au niveau du culot 3 par un montage radial comme indiqué sur la figure 10.Which corresponds to relatively large fins modest, easy to integrate at the level of the base 3 by a radial mounting as shown in figure 10.

    Dans ce cas, le déploiement des ailettes 4 peut être obtenu naturellement par effet centrifuge. In this case, the deployment of the fins 4 can be obtained naturally by centrifugal effect.

    Afin de ne pas contrarier la vitesse de roulis de la munition, les ailettes sont calées angulairement par rapport à l'axe du projectile, comme l'indique la figure 11.In order not to interfere with the rolling speed of the ammunition, the fins are wedged angularly with respect to the axis of the projectile, as shown in Figure 11.

    Le calage vérifie la relation : tgη = pdV où d est la distance entre l'axe du projectile et le centre de gravité de l'ailette.The calibration checks the relationship: tgη = pd V where d is the distance between the axis of the projectile and the center of gravity of the fin.

    A titre d'exemple, pour :

  • p = 200 t/s
  • V =350 m/s
  • d = 0,09 m
  • For example, for:
  • p = 200 t / s
  • V = 350 m / s
  • d = 0.09 m
  • La relation (11) donne : η = 17,9°.The relation (11) gives: η = 17.9 °.

    Claims (6)

    1. Method for controlling the lateral dispersion of gyroscopically stabilized munitions (1), characterized in that it consists in modulating the horizontal drift acceleration due to the gyroscopic effect by varying the aerodynamic centre of thrust F of the munition (1).
    2. Method according to Claim 1, characterized in that it consists in placing retractable fins (4) at the rear (3) of the munition in order to modify, at a defined instant on the trajectory, the pressure distribution on the munition by displacing the centre of thrust towards the rear of the munition in order to apply the required dispersion correction.
    3. Method according to Claim 2, characterized in that it consists in setting the fins (4) radially to the munition (1) at a defined angle of inclination relative to the longitudinal axis of the munition (1) in order not to interfere with its roll speed.
    4. Munition rotationally stabilizable by a gyroscopic effect for implementing the method according to any one of Claims 1 to 3, of the type comprising a cylindrical body (1) placed between a nose cone (2) and a base (3), characterized in that it includes retractable fins (4) placed radially on the base (3) so as, when they are deployed, to correct the horizontal drift of the munition due to the gyroscopic effect.
    5. Munition according to Claim 4, characterized in that the fins (4) are inclined relative to the longitudinal axis of the munition at an angle η such that tgη = pd / V where p is the roll speed, d is the distance between the axis of the munition and the centre of gravity of the fin (4) and V is the speed of the munition (1).
    6. Munition according to Claim 5, characterized in that each fin (4) has an area Sa defined by the equation Sa = Sc CNc 4CNa . x F 0 - x F 1 x F 1 - La in which Sc is the area of the master cross section of the munition, CNc is the lift coefficient of the munition body, CNa is the lift coefficient of the fin, xF0 is the static margin of the munition without fins, XF1 is the static margin of the munition with fins and La is the lever arm of the fin lift.
    EP19980401348 1997-06-13 1998-06-05 Method for controlling the lateral dispersion of projectiles stabilised by means of gyroscopic effect Expired - Lifetime EP0884554B1 (en)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    FR9707352A FR2764689B1 (en) 1997-06-13 1997-06-13 METHOD FOR CONTROLLING THE LATERAL DISPERSION OF GYROSCOPIC STABILIZED AMMUNITION
    FR9707352 1997-06-13

    Publications (2)

    Publication Number Publication Date
    EP0884554A1 EP0884554A1 (en) 1998-12-16
    EP0884554B1 true EP0884554B1 (en) 2003-04-16

    Family

    ID=9507945

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP19980401348 Expired - Lifetime EP0884554B1 (en) 1997-06-13 1998-06-05 Method for controlling the lateral dispersion of projectiles stabilised by means of gyroscopic effect

    Country Status (3)

    Country Link
    EP (1) EP0884554B1 (en)
    DE (1) DE69813381T2 (en)
    FR (1) FR2764689B1 (en)

    Families Citing this family (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FR2916268B1 (en) * 2007-05-15 2010-09-10 Saint Louis Inst PROJECTILE AND STEERING METHOD
    FR3018908B1 (en) 2014-03-18 2016-03-04 Nexter Munitions GYROSTABILIZED PROJECTILE

    Family Cites Families (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE2160324C2 (en) * 1971-12-04 1982-04-08 Messerschmitt-Bölkow-Blohm GmbH, 8000 München Missile with deployable stabilization surfaces
    SE432670B (en) * 1979-09-27 1984-04-09 Kurt Andersson SETTING TO STABILIZE AN ARTILLERY PROJECTILY AND IN THE FINAL PHASE CORRECT ITS COURSE AND ARTILLERY PROJECTILE FOR IMPLEMENTATION OF THE SET
    US5398887A (en) * 1993-10-12 1995-03-21 Thiokol Corporation Finless aerodynamic control system

    Also Published As

    Publication number Publication date
    FR2764689B1 (en) 1999-08-27
    DE69813381D1 (en) 2003-05-22
    DE69813381T2 (en) 2004-03-04
    FR2764689A1 (en) 1998-12-18
    EP0884554A1 (en) 1998-12-16

    Similar Documents

    Publication Publication Date Title
    US6666402B2 (en) 2-D projectile trajectory corrector
    AU2005283164B2 (en) 2-D projectile trajectory correction system and method
    EP2165152B1 (en) Hybrid spin/fin stabilized projectile
    US7628353B2 (en) Delayed tail fin deployment mechanism and method
    US11060829B1 (en) Guidance system and method for guiding projectiles
    FR2768500A1 (en) METHOD OF AUTONOMOUS GUIDANCE OF A ROTATION-STABILIZED ARTILLERY PROJECTILE AND ARTILLERY PROJECT OF AUTONOMOUSLY GUIDED FOR THE IMPLEMENTATION OF THE PROCESS
    FR2761767A1 (en) Control system for projectile launched from tank mounted gun
    FR2526149A1 (en) ARM SYSTEM AND MUNITION OF OVERVOL
    EP0439392B1 (en) Projectile and its process of utilization
    EP1480000A1 (en) Method for controlling the trajectory of a spinning projectile
    EP0884554B1 (en) Method for controlling the lateral dispersion of projectiles stabilised by means of gyroscopic effect
    FR2554577A1 (en) CONTROL SYSTEM FOR GUIDED MUNITION SPREADING IN AIR AT A SUPERSONIC SPEED
    FR2583868A1 (en) SUBMUNITION WITH SEARCHING IGNITION HEAD.
    FR2492966A1 (en) IMPROVEMENTS IN PROJECTILES WITH CORRECTED PATH
    EP0316216B1 (en) Gyroscopic stabilising device for a projectile steering element
    US11555679B1 (en) Active spin control
    EP0062563B1 (en) Lateral acceleration control method for a missile and corresponding weapon system
    EP0809084B1 (en) Apparatus for determining the roll angle position of a flying device, especially of an ammunition
    FR2504703A1 (en) Guidance system for missile eliminating wind effects - uses array of impulse jets operating in brief regular bursts to correct wind forces on missile
    US20230228546A1 (en) Steerable projectile
    WO2007115998A1 (en) Device for controlling the initiation of the warhead of a rocket and method for launching the rocket equipped with such a device
    FR2916268A1 (en) Projectile, has symmetrical longitudinal axis and blades with longitudinal axis making angle that generates rotational speed of projectile and precession movement with precession period between hundred millisecond and ten millisecond
    WO2016169760A1 (en) Device for correcting the trajectory of a projectile and trajectory correction method
    FR2612620A1 (en) Improvements made to projectiles, in particular for direct firing
    ZA200305836B (en) 2-D Projectile trajectory corrector.

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): BE DE FR GB IT NL SE

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    RTI1 Title (correction)
    K1C3 Correction of patent application (complete document) published

    Effective date: 19981216

    RAP3 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: TDA ARMEMENTS S.A.S.

    17P Request for examination filed

    Effective date: 19990510

    AKX Designation fees paid

    Free format text: BE DE FR GB IT NL SE

    17Q First examination report despatched

    Effective date: 20010521

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Designated state(s): BE DE FR GB IT NL SE

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REF Corresponds to:

    Ref document number: 69813381

    Country of ref document: DE

    Date of ref document: 20030522

    Kind code of ref document: P

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: TRGR

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20030805

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20040119

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20130605

    Year of fee payment: 16

    Ref country code: SE

    Payment date: 20130612

    Year of fee payment: 16

    Ref country code: DE

    Payment date: 20130529

    Year of fee payment: 16

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20130619

    Year of fee payment: 16

    Ref country code: FR

    Payment date: 20130624

    Year of fee payment: 16

    Ref country code: NL

    Payment date: 20130608

    Year of fee payment: 16

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BE

    Payment date: 20130614

    Year of fee payment: 16

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 69813381

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: V1

    Effective date: 20150101

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20140606

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: EUG

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20140605

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20150227

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20150101

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 69813381

    Country of ref document: DE

    Effective date: 20150101

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20140605

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20150101

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20140605

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20140630

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20140630