EP0883736B1 - Faserverbundwerkstoffe und verfahren zu ihrer herstellung - Google Patents

Faserverbundwerkstoffe und verfahren zu ihrer herstellung Download PDF

Info

Publication number
EP0883736B1
EP0883736B1 EP97905225A EP97905225A EP0883736B1 EP 0883736 B1 EP0883736 B1 EP 0883736B1 EP 97905225 A EP97905225 A EP 97905225A EP 97905225 A EP97905225 A EP 97905225A EP 0883736 B1 EP0883736 B1 EP 0883736B1
Authority
EP
European Patent Office
Prior art keywords
fibres
product
binder
composite fibre
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97905225A
Other languages
English (en)
French (fr)
Other versions
EP0883736A1 (de
Inventor
Stuart Samuel Boffey
Paul Martin Lawford Asher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saffil Ltd
Original Assignee
Saffil Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GBGB9604097.7A external-priority patent/GB9604097D0/en
Priority claimed from GBGB9615770.6A external-priority patent/GB9615770D0/en
Application filed by Saffil Ltd filed Critical Saffil Ltd
Publication of EP0883736A1 publication Critical patent/EP0883736A1/de
Application granted granted Critical
Publication of EP0883736B1 publication Critical patent/EP0883736B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • D04H1/4218Glass fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/58Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives
    • D04H1/64Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives the bonding agent being applied in wet state, e.g. chemical agents in dispersions or solutions
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/58Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives
    • D04H1/64Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives the bonding agent being applied in wet state, e.g. chemical agents in dispersions or solutions
    • D04H1/645Impregnation followed by a solidification process
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H13/00Other non-woven fabrics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2839Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration

Definitions

  • the present invention relates to composite fibre products comprising a plurality of inorganic fibres which are bound together with a binder and to processes for their production. More particularly, the present invention relates to composite fibre mats which can be used for resiliently mounting the fragile ceramic or metal monoliths which are found in catalytic converters and diesel particulate filters in a surrounding metal casing.
  • Catalytic converters and diesel particulate filters are routinely fitted to automobiles and other road going vehicles in order to purify the exhaust gases which are generated by the engine.
  • These devices usually comprise a ceramic honeycomb monolith which is housed within a metal casing and provides a support for the catalyst.
  • the ceramic monolith comprises a plurality of tiny flow channels and is a fragile structure which is susceptible to damage when subjected to the kind of vibrational forces which prevail when any road going vehicle is in use.
  • the monolith and the surrounding metal casing are subjected to extremely high temperatures in use which causes them to expand, but not to the same extent.
  • the mounting system which is used to mount the ceramic monolith in its metal casing must insulate the monolith from the attendant vibrational forces and compensate for any difference between the expansion of the monolith and the casing. In this way, the stresses to which the monolith is subjected during use as a result of differential expansion or vibrational forces can be maintained at an acceptable level.
  • the present invention provides a composite fibre product comprising a plurality of inorganic fibres and a binder and a process for its production.
  • the composite fibre product can take the form of a flexible mat which can be used to mount ceramic or metal monoliths found in catalytic converters and diesel particulate filters in their metal casings.
  • a composite fibre product particularly a mat, which comprises a plurality of inorganic fibres and a binder which is substantially uniformly distributed throughout the fibre product, said composite fibre product having a laminar shear strength of at least 0.1 MPa.
  • the inorganic fibres may be any of the inorganic fibres known in the art.
  • the composite fibre product is a mat which is to be used for resiliently mounting the ceramic or metal monoliths contained in catalytic converters and diesel particulate filters
  • the fibres will need to be thermally stable (i.e. will not degrade) at the high operating temperatures prevailing in such devices.
  • the fibres contained in composite fibre mats which are to be used in such mounting applications will be thermally stable at temperatures in excess of 700°C, preferably in excess of 800°C and more preferably in excess of 900°C.
  • Thermally stable inorganic fibres include ceramic fibres such as alumina, mullite, aluminosilicate, aluminoborosilicate, zirconia and titania fibres as well as vitreous glass fibres.
  • the preferred thermally stable inorganic fibres are polycrystalline inorganic fibres, particularly polycrystalline inorganic oxide fibres, such as alumina, mullite, aluminosilicate, aluminoborosilicate, zirconia and titania fibres.
  • alumina fibres by which term we are also intending to include alumina fibres comprising a few weight % of silica added as a phase stabiliser, are particularly preferred.
  • the fibres are preferably short staple fibres having a length in the range of from 1 to 10 cms and a mean diameter in the range of from 1 to 10 microns.
  • Especially preferred alumina fibres are those sold in the form of a loosely bound, low density mat by Imperial Chemical Industries PLC under the trade name Saffil which are thermally stable at temperatures in excess of 1000°C.
  • the composite fibre products of the invention may comprise two or more different types of inorganic fibre.
  • the different fibre types may be intimately mixed or they may be segregated and arranged in definite patterns, e.g. in discrete layers.
  • the binder may be an inorganic material, but is preferably organic. Suitable organic binders are more particularly described in US-4,011,651 and WO-94/24425. Preferably the binder is an organic polymer.
  • One suitable binder is a copolymer based on n-butyl acrylate and acrylonitrile.
  • Preferred binders are those obtained on curing a curable polymer composition.
  • Preferred examples of curable polymer compositions are those comprising a combination of an acrylic polymer and a cross-linking agent, particular an epoxy group containing cross-linking agent such as an epoxy resin.
  • Curable polymer compositions of this type will typically comprise from 90.0 to 99.0 % by weight, preferably from 95.0 to 99.0 % by weight of the acrylic polymer and from 1.0 to 10.0 % by weight, preferably from 1.0 to 5.0 % by weight of the cross-linking agent.
  • the acrylic polymer is suitably a homopolymer or copolymer comprising monomer units derived from at least one acrylic monomer selected from the C 1-8 alkyl (C 1-4 alkyl)acrylates, and in a preferred embodiment is a homopolymer or copolymer comprising monomer units derived from at least one acrylic monomer selected from the C 1-4 alkyl (meth)acrylates, for example methyl methacrylate, methyl acrylate, ethyl acrylate, propyl acrylate and butyl acrylate.
  • An especially preferred binder is that obtained on curing a composition comprising an acrylic polymer based on butyl acrylate and an epoxy resin cross-linking agent.
  • a composite fibre mat of the invention When a composite fibre mat of the invention is to be used for mounting a ceramic or metal monolith in a catalytic converter or in a diesel particulate filter, it is preferred to use an organic binder which will be substantially pyrolysed/burned out by the high temperatures to which the mat will be subjected in use.
  • the organic binder is preferably one which will not lead to the generation of toxic emissions when it is pyrolysed/burned out and for this reason is preferably free of chlorine and nitrogen.
  • the binder contained in the composite fibre product of the present invention is substantially uniformly distributed throughout the fibre product.
  • the distribution of the binder in the composite fibre product is such that the percentage by weight of binder in each 1 mm 3 region of the product based on the total weight of the product in that region is within 40 %, more preferably within 30 % and particularly preferably within 20 % of the overall percentage by weight of binder in the product based on the total weight of the product.
  • the distribution of the binder in the composite fibre product is such that the percentage by weight of binder in each 1 mm 3 region of the product based on the total weight of the product in that region is within 10 % of the overall percentage by weight of binder in the product based on the total weight of the product.
  • the thickness of the composite fibre product will depend on the intended end use for the product. However, when the product is a composite fibre mat for mounting a ceramic or metal monolith in a catalytic converter or in a diesel particulate filter, it will typically have a thickness in the range of from 3 to 15 mm, preferably in the range of from 5 to 12 mm and more preferably in the range of from 5 to 9 mm.
  • the loading of the binder in the composite fibre product will typically be in the range of from 2 to 15 % by weight and preferably in the range of from 5 to 15 % by weight based on the total weight of the product.
  • the composite fibre product of the invention typically has a density in the range of from 30 to 700 kg/m 3 , preferably in the range of from 100 to 500 kg/m 3 and more preferably in the range of from 100 to 350 kg/m 3 .
  • the composite fibre product of the invention has a laminar shear strength, by which is meant the force which has to be applied in order to bring about delamination of the product, of at least 0.1 MPa, preferably of at least 0.2 MPa and more preferably of at least 0.3 MPa.
  • the laminar shear strength can be conveniently measured on an Instron or similar machine using a three point bend test.
  • the composite fibre product is also capable of exerting a pressure of at least 1.0 kgf/cm 2 , more preferably in the range of from 1.5 to 4.0 kgf/cm 2 when a sample of the product having a thickness in the range of from 5 to 10 mm is compressed to a thickness of 3 mm between two plates and the binder removed.
  • a process for the production of a composite fibre product which comprises impregnating a fibre mass comprising a plurality of inorganic fibres with a liquid binder system comprising a binder material and a carrier liquid and subjecting the impregnated fibre mass to a heating step, characterised in that the heating step involves the use of dielectric heating, such as microwave or radio frequency heating.
  • the impregnated fibre mass is preferably held under compression during at least a part of the heating step.
  • the fibre mass which is impregnated in the processes of the present invention may comprise a plurality of discrete fibres or it may take the form of a multi-fibre product in which the individual fibres are assembled into a low density mat or blanket which is loosely held together by fibre intertwining or perhaps more robustly consolidated by some other means such as weaving, knitting, stitching, needle-punching or vacuum packing.
  • the fibre mass which is impregnated in the processes of the present invention is a multi-fibre product having a thickness in the range of from 10 to 60 mm, more preferably in the range of from 30 to 50 mm, and an area density in the range of from 0.2 to 2.0 kg/m 2 , more preferably in the range of from 1.0 to 2.0 kg/m 2 .
  • the inorganic fibres and preferred inorganic fibres for use in the processes of the present invention are as described previously in connection with the composite fibre product.
  • the processes of the present invention may be used to prepare composite fibre products from two or more different types of inorganic fibre.
  • the different fibre types may be intimately mixed or they may be segregated and arranged in definite patterns, e.g. in discrete layers.
  • the liquid binder system may comprise an inorganic binder material, but preferably comprises an organic binder material, such as a polymer, and an organic or aqueous carrier liquid which is able to dissolve or disperse the organic binder material.
  • organic binder materials are more particularly described in US-4,011,651 and WO-94/24425, the disclosures in which are incorporated herein by way of reference, and include polymers as well as curable polymers or prepolymers which can be cured in situ on the impregnated fibre mass as part of the drying step or in a subsequent processing step.
  • the polymer may be a material which allows for the recovery of fibres from waste product generated in a process of the present invention or in subsequent processing/finishing operations.
  • One suitable binder system comprises an aqueous dispersion of a copolymer based on n-butyl acrylate and acrylonitrile.
  • Preferred binder systems are those comprising a dispersion, preferably an aqueous dispersion, of a curable polymer composition, sometimes termed a resin or latex.
  • a curable polymer composition sometimes termed a resin or latex.
  • preferred curable polymer compositions are those comprising a combination of an acrylic polymer and a cross-linking agent, particular an epoxy group containing cross-linking agent such as an epoxy resin.
  • Curable polymer compositions of this type will typically comprise from 90.0 to 99.0 % by weight, preferably from 95.0 to 99.0 % by weight of the acrylic polymer and from 1.0 to 10.0 % by weight, preferably from 1.0 to 5.0 % by weight of the cross-linking agent.
  • the acrylic polymer is suitably a homopolymer or copolymer comprising monomer units derived from at least one acrylic monomer selected from the C 1-8 alkyl (C 1-4 alkyl)acrylates, and in a preferred embodiment is a homopolymer or copolymer comprising monomer units derived from at least one acrylic monomer selected from the C 1-4 alkyl (meth)acrylates, for example methyl methacrylate, methyl acrylate, ethyl acrylate, propyl acrylate and butyl acrylate.
  • An especially preferred binder system is one comprising an aqueous dispersion of an acrylic polymer based on butyl acrylate and an epoxy resin cross-linking agent.
  • liquid binder system When the liquid binder system is one comprising a curable polymer composition, it may also comprise a catalyst to accelerate the curing process.
  • liquid binder system we are also intending to include binder systems which comprise dispersions or suspensions of finely divided solids in liquid vehicles.
  • the liquid binder system will typically comprise from 0.5 to 50.0 % by weight of the binder material and from 50.0 to 99.5 % by weight of the carrier liquid.
  • the liquid binder system will comprise from 0.5 to 10.0 % by weight, more preferably from 1.0 to 5.0 % by weight of the binder material and from 90.0 to 99.5 % by weight, more preferably from 95.0 to 99.0 % by weight of the carrier liquid.
  • the individual fibres may be thoroughly dispersed in the liquid binder system and the resulting dispersion cast into sheets using a paper making process which involves removing excess carrier liquid, e.g. by vacuum.
  • the mass of inorganic fibres may take the form of a multi-fibre product in which the individual fibres are assembled into a low density mat or blanket
  • the mat or blanket may be simply immersed or soaked in the liquid binder system.
  • the low density fibre mat may be sprayed with the liquid binder system.
  • the impregnated fibre mass Before the impregnated fibre mass is subjected to the drying/heating step, it will often be convenient to remove any excess carrier liquid. This can be achieved by pressing the impregnated fibre mass between rollers or plates, by placing it under vacuum or by centrifuging.
  • the impregnated fibre mass is subjected to a drying/heating step.
  • a drying/heating step is conducted while the impregnated fibre mass is held under compression.
  • the impregnated fibre mass should be held under compression until such time as the binder material is able to hold the fibres together and significantly limit the expansion of the composite fibre product once the compressive forces are released.
  • the whole of the drying/heating step will be performed while the impregnated fibre mass is held under compression, but it may be possible to perform just the final stages of the drying/heating step in this manner and still obtain satisfactory results.
  • substantially all and preferably all of any residual carrier liquid will be removed.
  • the pressure which is applied during the drying/heating step to compress the impregnated fibre mass will generally be in the range of from 5 to 500 KPa, preferably in the range of from 5 to 200 KPa.
  • the pressure applied is such as to produce a composite fibre product having a density in the range of from 30 to 700 kg/m 3 , preferably in the range of from 100 to 500 kg/m 3 , more preferably in the range of from 100 to 350 kg/m 3 .
  • the fibre mass which is impregnated is a multi-fibre product having a thickness in the range of from 10 to 60 mm, e.g. in the range of from 30 to 50 mm, and an area density in the range of from 0.2 to 2.0 kg/m 2 , e.g.
  • the resulting impregnated fibre mass will generally be compressed to a thickness in the range of from 2 to 5 mm during the drying/heating step.
  • This pressure is conveniently applied in a batch process by sandwiching the impregnated fibre mass between plates and then squeezing the plates together, e.g. by means of clamps, spring loaded clips or hydraulic presses.
  • a conventional oven may be employed to carry out the drying/heating step, but in a preferred embodiment dielectric heating such as microwave or radio frequency heating is employed since it tends to result in an appreciably more uniform distribution of the binder in the final composite fibre product.
  • dielectric heating such as microwave or radio frequency heating
  • the drying/heating step will involve heating the impregnated fibre mass to a temperature in the range of from 80 to 200°C, preferably in the range of from 100 to 170°C. Temperatures in the range of from 140 to 160°C are especially preferred.
  • the drying/heating step may be followed by a further processing step in which the curable polymer composition is cured.
  • This curing process preferably involves the polymer composition undergoing some form of cross-linking reaction.
  • the temperatures which are employed in the drying/heating step are usually sufficient to remove any residual carrier liquid and cure the curable polymer composition so that a separate curing step is generally unnecessary.
  • the impregnated fibre mass will generally be held under compression for the duration of the curing step.
  • the composite fibre product of the present invention may also contain one or more other materials.
  • Suitable materials for inclusion in the composite fibre product include the layer minerals, particularly the expandable layer silicate minerals such as vermiculite.
  • the incorporation of another material into the composite fibre product may be achieved by adding the material to a liquid binder system used in the preparation of such a product.
  • a composite fibre product prepared in accordance with the present processes may be post-treated with a solution or dispersion of the material to be incorporated.
  • Composite fibre products of the present invention may be used as mounting mats to mount ceramic and metal monoliths in catalytic converters and diesel particulate filters or to support the ceramic monoliths found in hot gas filtration units and coal gasification plants.
  • Composite fibre products of the invention may also be usefully employed in gasket applications and as a high temperature insulation material.
  • Samples of "Saffil" low density mat having a size of about 500 mm by 200 mm were cut from a bulk product having a known area density of from 1.2 to 1.6 kg/m 2 and a thickness of from 30 to 50 mm. These samples were weighed and then transferred to a tray where they were soaked in a latex (Acronal 35D, a 50 % aqueous dispersion of a copolymer based on n-butyl acrylate and acrylonitrile available from BASF) which had been diluted to a solids content of around 3 % w/w.
  • a latex Acronal 35D, a 50 % aqueous dispersion of a copolymer based on n-butyl acrylate and acrylonitrile available from BASF
  • the impregnated samples were then sandwiched between two sheets of PTFE-coated glass fibre mesh and these sandwiches were then placed between two sheets of glass fibre filled silicone resin board of size 500 mm by 200 mm by 12 mm.
  • the resin boards were then pressed together using G-clamps until the impregnated "Saffil" layers were reduced to a thickness of about 5 mm (equal to an applied pressure of about 0.5 bar (50 KPa)), and held in this position with clips. During this assembly excess latex drained from the samples.
  • the completed mould assemblies were then placed on the belt of an air/radio frequency (RF) assisted oven and the belt speed was adjusted to give a residence time of between 15 and 45 minutes.
  • the RF power to the oven was set at about 5.5 KW and the temperature of the air in the oven was adjusted to about 150°C.
  • the samples were removed from the oven when the latex had been fully dried and cured (cross-linked).
  • the clips and the boards were then carefully removed from the samples and the PTFE mesh peeled off to reveal the final composite fibre mats which had a thickness in the range of from 7 to 8.5 mm.
  • Samples of "Saffil" low density mat having a size of about 500 mm by 200 mm were cut from a bulk product having a known area density of from 1.0 to 2.0 kg/m 2 and a thickness of from 30 to 50 mm. These samples were weighed and then transferred to a tray where they were soaked in a latex (60 % aqueous dispersion of a butyl acrylate based polymer containing 3 % w/w of Epikote (TM) 828 epoxy resin cross-linking agent) which had been diluted to a solids content of around 5 % w/w.
  • TM Epikote
  • the impregnated samples were then sandwiched between two sheets of PTFE-coated glass fibre mesh and these sandwiches were then placed between two sheets of glass fibre filled silicone resin board of size 500 mm by 200 mm by 12 mm.
  • the resin boards were then pressed together using G-clamps until the impregnated "Saffil" layers were reduced to a thickness of about 5 mm (equal to an applied pressure of about 0.5 bar (50 KPa)), and held in this position with clips. During this assembly excess latex drained from the samples.
  • the completed mould assemblies were then placed on the belt of an air/radio frequency (RF) assisted oven and the belt speed was adjusted to give a residence time of between 15 and 45 minutes.
  • the RF power to the oven was set at about 5.5 KW and the temperature of the air in the oven was adjusted to about 150°C.
  • the samples were removed from the oven when the latex had been fully dried and cured (cross-linked).
  • the clips and the boards were then carefully removed from the samples and the PTFE mesh peeled off to reveal the final composite fibre mats which had a thickness in the range of from 7 to 8.5 mm.

Claims (44)

  1. Faserkompositprodukt umfassend eine Vielzahl von anorganischen Fasern und ein Bindemittel, welches weitgehend gleichförmig über das Faserprodukt verteilt ist und das Faserkompositprodukt eine laminare Scherfestigkeit von wenigstens 0,1 MPa besitzt.
  2. Faserkompositprodukt nach Anspruch 1, worin die anorganischen Fasern bei Temperaturen über 700°C thermisch stabil sind.
  3. Faserkompositprodukt nach Anspruch 1 oder Anspruch 2, worin die anorganischen Fasern keramische Fasern sind.
  4. Faserkompositprodukt nach Anspruch 2 oder Anspruch 3, worin die anorganischen Fasern polykristalline anorganische Oxidfasern sind, ausgewählt aus der Gruppe, bestehend aus Aluminafasern, Mullitfasern, Aluminosilikatfasern, Aluminoborosilikatfasern, Zirkoniumfasern und Titanfasern.
  5. Faserkompositprodukt nach Anspruch 4, worin die anorganischen Fasern Aluminafasern sind.
  6. Faserkompositprodukt nach einem der Ansprüche 1 bis 5, worin die anorganischen Fasern kurze Stapelfasern mit einer Länge im Bereich von 1 bis 10 cm und einem mittleren Durchmesser im Bereich von 1 bis 10 µm sind.
  7. Faserkompositprodukt nach einem der Ansprüche 1 bis 6, worin das Bindemittel ein organisches Material ist.
  8. Faserkompositprodukt nach Anspruch 7, worin das Bindemittel ein organisches Polymer ist.
  9. Faserkompositprodukt nach Anspruch 7 oder Anspruch 8, worin das Bindemittel ein Material ist, abgeleitet vom Härten einer härtbaren Polymerzusammensetzung, umfassend ein Acrylpolymer und ein Epoxygruppe-enthaltendes Vernetzungsmittel.
  10. Faserkompositprodukt nach Anspruch 9, worin das Acrylpolymer ein Homopolymer oder Copolymer ist, umfassend Monomereinheiten, abgeleitet von wenigstens einem Acrylmonomer, ausgewählt aus C1-4 Alkyl(meth)acrylaten.
  11. Faserkompositprodukt nach Anspruch 9, worin das Bindemittel ein Material ist, abgeleitet aus dem Härten einer härtbaren Polymerzusammensetzung, umfassend ein Acrylpolymer, basierend auf Butylacrylat, und ein Epoxyharz-Vernetzungsmittel.
  12. Faserkompositprodukt nach einem der vorhergehenden Ansprüche, worin die Verteilung des Bindemittels in dem Faserkompositprodukt derart ist, daß der Gewichtsprozentsatz an Bindemittel in jedem 1 mm3 Bereich des Produkts, bezogen auf das Gesamtgewicht des Produkts in diesem Bereich, innerhalb 40% des gesamten Gewichtsprozentsatzes des Bindemittels im Produkt, bezogen auf das Gesamtgewicht des Produkts, liegt.
  13. Faserkompositprodukt nach Anspruch 12, worin die Verteilung des Bindemittels in dem Faserkompositprodukt derart ist, daß der Gewichtsprozentsatz an Bindemittel in jedem 1 mm3 Bereich des Produkts, bezogen auf das Gesamtgewicht des Produkts in diesem Bereich innerhalb 30% des Gesamtgewichtsprozentsatzes an Bindemittel in dem Produkt, bezogen auf das Gesamtgewicht des Produkt, liegt.
  14. Faserkompositprodukt nach einem der vorhergehenden Ansprüche, welches eine Dicke im Bereich von 3 bis 15 mm aufweist.
  15. Faserkompositprodukt nach einem der vorhergehenden Ansprüche, worin die Beladung des Bindemittels im Produkt im Bereich von 2 bis 15 Gew.%, bezogen auf das Gesamtgewicht des Produkts, beträgt.
  16. Faserkompositprodukt nach einem der vorhergehenden Ansprüche, welches eine Dichte im Bereich von 30 bis 700 kg/m3 aufweist.
  17. Faserkompositprodukt nach Anspruch 16, welches eine Dichte im Bereich von 100 bis 500 kg/m3 aufweist.
  18. Faserkompositprodukt nach einem der vorhergehenden Ansprüche, welches eine laminare Scherfestigkeit von wenigstens 0,2 MPa aufweist.
  19. Faserkompositprodukt nach einem der vorhergehenden Ansprüche, welches fähig ist, einen Druck von wengistens 1,0 kgf/cm2 auszuüben, wenn eine Produktprobe mit einer Dicke im Bereich von 5 bis 10 mm auf eine Dicke von 3 mm zwischen zwei Platten komprimiert wird und das Bindemittel entfernt wird.
  20. Faserkompositprodukt nach Anspruch 19, welches fähig ist einen Druck im Bereich von 1,5 bis 4,0 kgf/cm2 auszuüben, wenn eine Produktprobe mit einer Dicke im Bereich von 5 bis 10 mm auf eine Dicke von 3 mm zwischen zwei Platten komprimiert und das Bindemittel entfernt wird.
  21. Verfahren zur Herstellung eines Faserkompositprodukts, umfassend Imprägnieren einer Fasermasse, umfassend eine Vielzahl von anorganischen Fasern, mit einem flüssigen Bindemittelsystem umfassend ein Bindemittelmaterial und eine Trägerflüssigkeit, und unterwerfen der imprägnierten Fasermasse einem Heizschritt, dadurch gekennzeichnet, daß der Heizschritt die Verwendung dielektrischer Heizung einschließt.
  22. Verfahren nach Anspruch 21, worin die imprägnierte Fasermasse während wenigstens eines Teils des Heizschritts unter Druck gehalten wird.
  23. Verfahren nach Anspruch 21 oder 22, worin die imprägnierte Fasermasse ein Multifaserprodukt ist, bei welchem die individuellen Fasern zu einer Matte oder eine Decke mit niedriger Dichte zusammengesetzt sind.
  24. Verfahren nach Anspruch 23, worin das Multifaserprodukt eine Dicke im Bereich von 10 bis 16 mm und eine Flächendichte im Bereich von 0,2 bis 2,0 kg/m2 aufweist.
  25. Verfahren nach einem der Ansprüche 21 bis 24, worin die anorganischen Fasern bei Temperaturen oberhalb 700°C thermisch stabil sind.
  26. Verfahren nach Anspruch 25, worin die anorganischen Fasern keramische Fasern sind.
  27. Verfahren nach Anspruch 25 oder Anspruch 26, worin die anorganischen Fasern polykristalline anorganische Oxidfasern sind, ausgewählt aus der Gruppe, bestehend aus Aluminafasern, Mullitfasern, Aluminosilikatfasern, Aluminoborosilikatfasern, Zirkoniumfasern und Titanfasern.
  28. Verfahren nach Anspruch 27, worin die anorganischen Fasern Aluminafasern sind.
  29. Verfahren nach einem der Ansprüche 21 bis 28, worin die anorganischen Fasern kurze Stapelfasern mit einer Länge im Bereich von 1 bis 10 cm und einem mittleren Durchmesser im Bereich von 1 bis 10 µm sind.
  30. Verfahren nach einem der Ansprüche 21 bis 29, worin das flüssige Bindemittelsystem ein organisches Bindemittelmaterial umfaßt und eine organische oder wässrige Trägerflüssigkeit, welche fähig ist, das organische Bindemittelmaterial zu lösen oder zu dispergieren.
  31. Verfahren nach Anspruch 30, worin das organische Bindemittelmaterial ein Polymer ist.
  32. Verfahren nach Anspruch 30 oder Anspruch 31, worin das flüssige Bindemittelsystem eine Dispersion aus einer härtbaren Polymerzusammensetzung umfaßt, umfassend ein Acrylpolymer und ein Epoxygruppe-enthaltendes Vernetzungsmittel.
  33. Verfahren nach Anspruch 32, worin das Acrylpolymer ein Homopolymer oder Copolymer ist, umfassend Monomereinheiten, abgeleitet von wenigstens einem Acrylmonomer, ausgewählt aus den C1-4 Alkyl(meth)acrylaten.
  34. Verfahren nach Anspruch 32, worin das flüssige Bindemittelsystem eine Dispersion aus einer härtbaren Polymerzusammensetzung umfaßt, umfassend ein Acrylpolymer, basierend auf Butylacrylat, und ein Epoxyharz-Vernetzungsmittel.
  35. Verfahren nach einem der Ansprüche 30 bis 34, worin die Dispersion eine wässrige Dispersion ist.
  36. Verfahren nach einem der Ansprüche 21 bis 35, worin das flüssige Bindemittelsystem 0,5 bis 50,0 Gew.% Bindemittelmaterial und 50,0 bis 99,5 Gew.% Trägerflüssigkeit umfaßt.
  37. Verfahren nach Anspruch 36, worin das flüssige Bindemittelsystem 1,0 bis 5,0 Gew.% Bindemittelmaterial und 95,0 bis 99,9 Gewichts% Trägerflüssigkeit umfaßt.
  38. Verfahren nach Anspruch 22, worin der gesamte Trocknungs/Heizschritt durchgeführt wird, während die imprägnierte Fasermasse unter Kompression gehalten ist.
  39. Verfahren nach Anspruch 22, worin der Druck, welcher während dem Trocknungs/Heizschritt angewandt wird, um die imprägnierte Fasermasse zu komprimieren, im Bereich von 5 bis 500 kPa liegt.
  40. Verfahren nach Anspruch 39, worin der Druck, welcher während dem Trocknungs/Heizschritt angewandt wird, um die imprägnierte Fasermasse zu komprimieren, im Bereich von 5 bis 200 kPa liegt.
  41. Verfahren nach Anspruch 21, worin die dielektrische Heizeinrichtung eine Mikrowellen- oder Radiofrequenzheizung ist.
  42. Verfahren nach Anspruch 21, worin eine Kombination von dielektrischem Heizen und herkömmlichen Heizen während dem Trocknungs/Heizschritt verwendet wird.
  43. Verfahren nach einem der Ansprüche 21 bis 47, worin die imprägnierte Fasermasse auf eine Temperatur im Bereich von 80 bis 200°C im Trocknungs/Heizschritt erhitzt wird.
  44. Verfahren nach Anspruch 43, worin die imprägnierte Fasermasse auf eine Temperatur im Bereich von 100 bis 170°C im Trocknungs/Heizschritt erhitzt wird.
EP97905225A 1996-02-27 1997-02-20 Faserverbundwerkstoffe und verfahren zu ihrer herstellung Expired - Lifetime EP0883736B1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
GBGB9604097.7A GB9604097D0 (en) 1996-02-27 1996-02-27 Production process
GB9604097 1996-02-27
GB9615770 1996-07-26
GBGB9615770.6A GB9615770D0 (en) 1996-07-26 1996-07-26 Production process
PCT/GB1997/000466 WO1997032118A1 (en) 1996-02-27 1997-02-20 Composite fibre products and processes for their production

Publications (2)

Publication Number Publication Date
EP0883736A1 EP0883736A1 (de) 1998-12-16
EP0883736B1 true EP0883736B1 (de) 2000-04-26

Family

ID=26308813

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97905225A Expired - Lifetime EP0883736B1 (de) 1996-02-27 1997-02-20 Faserverbundwerkstoffe und verfahren zu ihrer herstellung

Country Status (6)

Country Link
EP (1) EP0883736B1 (de)
CN (1) CN1082610C (de)
AU (1) AU1885097A (de)
DE (1) DE69701796T2 (de)
ES (1) ES2146461T3 (de)
WO (1) WO1997032118A1 (de)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9615720D0 (en) * 1996-07-26 1996-09-04 Ici Plc Composite mat
US20020025750A1 (en) 1996-07-26 2002-02-28 Imperial Chemical Industries Plc. Composite mat
KR20010070002A (ko) * 1999-07-29 2001-07-25 고오사이 아끼오 내산성 촉매 시트 및 이의 제조방법
EP1072311B1 (de) * 1999-07-29 2004-09-22 Sumitomo Chemical Company, Limited Hitzbeständiger blattformiger Katalysator und Verfahren zu seiner Herstellung
AU2003212657A1 (en) * 2002-03-22 2003-10-08 Jong-Hak Lee Bio-sheet material and its manufacturing method and apparatus
RU2388522C2 (ru) 2004-06-29 2010-05-10 Юнифрэкс Корпорейшн Устройство для обработки отходящих газов и способ его изготовления
CN101098998B (zh) * 2004-11-24 2010-05-12 日本板硝子株式会社 无机纤维纸
US9834875B2 (en) * 2007-10-09 2017-12-05 3M Innovative Properties Company Method of making mounting mats for mounting a pollution control panel
PL2752562T3 (pl) 2007-10-09 2019-01-31 3M Innovative Properties Company Mata montażowa obejmująca nieorganiczne nanocząstki i sposób jej wytwarzania
AU2009286013A1 (en) 2008-08-29 2010-03-04 Unifrax I Llc Mounting mat with flexible edge protection and exhaust gas treatment device incorporating the mounting mat
US8263512B2 (en) 2008-12-15 2012-09-11 Unifrax I Llc Ceramic honeycomb structure skin coating
JP2012524206A (ja) 2009-04-17 2012-10-11 ユニフラックス ワン リミテッド ライアビリティ カンパニー 排ガス処理装置
GB0906837D0 (en) 2009-04-21 2009-06-03 Saffil Automotive Ltd Mats
WO2011007184A2 (en) 2009-07-17 2011-01-20 Carbon Fibre Preforms Ltd A fibre matrix and a method of making a fibre matrix
EP2464840A4 (de) 2009-08-10 2013-10-30 Unifrax I Llc Montagematte oder vorform davon mit veränderlichem basisgewicht sowie abgasbearbeitungsvorrichtung
EP2464838A1 (de) 2009-08-14 2012-06-20 Unifrax I LLC Mehrschichtes substrat und abgasbehandlungsvorrichtung
EP2464836A2 (de) 2009-08-14 2012-06-20 Unifrax I LLC Montageunterlage für eine abgasverarbeitungsvorrichtung
US8071040B2 (en) 2009-09-23 2011-12-06 Unifax I LLC Low shear mounting mat for pollution control devices
KR20120074284A (ko) 2009-09-24 2012-07-05 유니프랙스 아이 엘엘씨 다층 매트 및 배기 가스 처리 장치
BR112012013587A2 (pt) 2009-12-01 2016-07-05 Saffil Automotive Ltd esteira de montagem
CN102844536B (zh) 2009-12-17 2017-03-22 尤尼弗瑞克斯 I 有限责任公司 用于废气处理装置的安装垫
WO2011084558A1 (en) 2009-12-17 2011-07-14 Unifrax I Llc Use of microspheres in an exhaust gas treatment device mounting mat
WO2011084475A1 (en) 2009-12-17 2011-07-14 Unifrax I Llc Multilayer mounting mat for pollution control devices
WO2012021817A2 (en) 2010-08-12 2012-02-16 Unifrax I Llc Exhaust gas treatment device
US8349265B2 (en) 2010-08-13 2013-01-08 Unifrax I Llc Mounting mat with flexible edge protection and exhaust gas treatment device incorporating the mounting mat
US9924564B2 (en) 2010-11-11 2018-03-20 Unifrax I Llc Heated mat and exhaust gas treatment device
KR101559640B1 (ko) 2010-11-11 2015-10-12 유니프랙스 아이 엘엘씨 장착 매트 및 배기 가스 처리 장치
CN102748109B (zh) * 2012-07-11 2016-03-09 中国第一汽车股份有限公司 纸质的尾气后处理用载体单元的制备方法
CN102748108B (zh) * 2012-07-11 2016-12-21 中国第一汽车股份有限公司 纸质的高强度后处理载体单元的制备方法
FR2994201B1 (fr) 2012-07-31 2014-08-08 Saint Gobain Isover Procede de cuisson d'un matelas continu de fibres minerales ou vegetales
WO2014160665A1 (en) * 2013-03-27 2014-10-02 3M Innovative Properties Company Thermally insulated components
US10385490B2 (en) 2014-11-19 2019-08-20 Mitsubishi Chemical Corporation Method for manufacturing binder-containing inorganic fiber molded body
PL3262287T3 (pl) 2015-02-24 2020-07-27 Unifrax I Llc Mata izolacyjna odporna na wysokie temperatury
CN105672056B (zh) * 2016-01-22 2018-06-29 山东大学 用于低温深冷绝热的氧化钛纤维纸及其制备方法与应用
CN109758830A (zh) * 2019-03-06 2019-05-17 江苏康隆迪超净科技有限公司 一种防静电阻燃ptfe针刺过滤材料及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4011651A (en) * 1973-03-01 1977-03-15 Imperial Chemical Industries Limited Fibre masses
AU6710594A (en) * 1993-04-22 1994-11-08 Carborundum Company, The Mounting mat for fragile structures such as catalytic converters
US5996228A (en) * 1995-04-13 1999-12-07 Mitsubishi Chemical Corporation Monolith-holding element, process for producing the same, catalytic converter using a monolith member and process for producing the same

Also Published As

Publication number Publication date
CN1082610C (zh) 2002-04-10
CN1216595A (zh) 1999-05-12
DE69701796D1 (de) 2000-05-31
WO1997032118A1 (en) 1997-09-04
AU1885097A (en) 1997-09-16
ES2146461T3 (es) 2000-08-01
EP0883736A1 (de) 1998-12-16
DE69701796T2 (de) 2000-11-09

Similar Documents

Publication Publication Date Title
EP0883736B1 (de) Faserverbundwerkstoffe und verfahren zu ihrer herstellung
US7387822B2 (en) Process of making a composite mat
EP1029163B1 (de) Verbundmatte
EP0914246B1 (de) Verbundmatte
CA2693570C (en) Exhaust gas treatment device
KR101058769B1 (ko) 배기가스 처리장치 및 그 제조방법
CA2353566C (en) Amorphous non-intumescent inorganic fiber mat for low temperature exhaust gas treatment devices
JP5484292B2 (ja) 排気ガス処理装置及びその製造方法
US8071040B2 (en) Low shear mounting mat for pollution control devices
WO2012065052A2 (en) Mounting mat and exhaust gas treatment device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980925

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT SE

17Q First examination report despatched

Effective date: 19990201

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SAFFIL LIMITED

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT SE

REF Corresponds to:

Ref document number: 69701796

Country of ref document: DE

Date of ref document: 20000531

ITF It: translation for a ep patent filed

Owner name: RACHELI & C. S.R.L.

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2146461

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080220

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20120224

Year of fee payment: 16

Ref country code: IT

Payment date: 20120220

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20120216

Year of fee payment: 16

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130220

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20140408

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140228

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140128

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140128

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130221

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69701796

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150220

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20151030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150220

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150302