EP0880724A1 - Anzeigevorrichtung und flacher fernsehbildschirm, der diese vorrichtung benutzt - Google Patents

Anzeigevorrichtung und flacher fernsehbildschirm, der diese vorrichtung benutzt

Info

Publication number
EP0880724A1
EP0880724A1 EP97913252A EP97913252A EP0880724A1 EP 0880724 A1 EP0880724 A1 EP 0880724A1 EP 97913252 A EP97913252 A EP 97913252A EP 97913252 A EP97913252 A EP 97913252A EP 0880724 A1 EP0880724 A1 EP 0880724A1
Authority
EP
European Patent Office
Prior art keywords
display device
pixels
light
plane
elementary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP97913252A
Other languages
English (en)
French (fr)
Inventor
Jean-Pierre Thomson-CSF S.C.P.I. HUIGNARD
Brigitte Thomson-CSF S.C.P.I. LOISEAUX
Cécile Thomson-CSF S.C.P.I. JOUBERT
Anne Thomson-CSF S.C.P.I. DELBOULBE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0880724A1 publication Critical patent/EP0880724A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133526Lenses, e.g. microlenses or Fresnel lenses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor
    • H04N5/7416Projection arrangements for image reproduction, e.g. using eidophor involving the use of a spatial light modulator, e.g. a light valve, controlled by a video signal
    • H04N5/7441Projection arrangements for image reproduction, e.g. using eidophor involving the use of a spatial light modulator, e.g. a light valve, controlled by a video signal the modulator being an array of liquid crystal cells

Definitions

  • the field of the invention is that of display devices and in particular that of large flat TV screens, consisting of an active matrix liquid crystal matrix addressing (LCD).
  • LCD liquid crystal matrix addressing
  • the present invention provides a display device and in particular a flat television screen, comprising a large matrix with a small pixel size in front of the pitch of the image white dots.
  • the subject of the invention is a display device comprising a lighting source emitting an Ip radiation, and a spatial light modulator illuminated by the Ip radiation, said modulator consisting of a matrix of NxM elementary pixels (Xj ) of dimensions dfsjxdf / j, the pixels Xj; and Xj + -
  • j being separated by a step p j sj, the pixels Xj j and Xjj + being separated by a step p ⁇
  • the device comprises means for collimating the radiation Ip in each pixel and in that the step p ⁇ is at least an order of magnitude greater than the dimension df
  • the pitch p ⁇ is greater by at least an order of magnitude than the dimension d
  • the subject of the invention is also a color display device comprising a display device comprising a light source simultaneously emitting several radiations in ranges of chromatic components (R, G, B) and a spatial light modulator comprising an NxM matrix elementary dots (Dj), each dot comprising at least one elementary sub-pixel per range of chromatic component (XRI; Xvij; X ⁇ i) ⁇ e dimensions d ⁇ xd ⁇ , the sub-pixels XRJ j (Xvjj; X ⁇ jj) being separated from the sub-pixels XR (J + 1) J (Xv (i + 1), j ' ⁇ x B (i + 1), j) by a step pN, the pixels XRJJ (Xvij; X ⁇ j) being separated from the pixels XRJJ + ( Xvij + 1; X ⁇ i, j + 1)
  • a P as PM.
  • the pitch p ⁇ is at least an order of magnitude greater
  • the invention proposes using light sources, more compact than conventional light sources using in particular parabolic reflectors and standard collimators.
  • the subject of the invention is also a display device comprising a lighting source which comprises a light source and a light wave guide coupled to said light source, the light wave guide comprising a diffracting element, located along the guide for collimating emerging light rays from the source, in a direction substantially perpendicular to the surface of the waveguide, said surface of the waveguide being substantially parallel to the plane of the spatial light modulator .
  • the display device comprises a spatial light modulator in a plane (yox), a light source and means for collimating said source so as to create a collimated beam in a plane (zox ), a first mirror M-
  • the anamorphic function can be performed by an index network or a relief network, or even by a set of separating blades.
  • the spatial modulator can include filters R, G, B located on the sub-pixels XRJJ, Xvij, X ⁇ ij-
  • the spatial modulator comprises a lighting source comprising spatio-chromatic means.
  • the spatial modulator does not include filters and, advantageously, the lighting source can comprise a component which can be a diffractive mirror, capable of angularly dispersing the R, G, B components of incident radiation in the case of spatial modulator comprising elementary sub-pixels XRJJ, X JJ, X ⁇ ij. or else another set of dielectric mirrors arranged in a fan shape so as to angularly separate the components R, G, B.
  • the subject of the invention is also a method of producing a display device according to the invention, comprising the manufacture of a spatial light modulator constituted by a matrix of N x M elementary pixels on a substrate using several steps masking using masks adapted to define the N x M elementary pixels, the control electrodes and the switching circuits of the spatial modulator, this method being characterized in that: - it comprises the implementation of a network Rj of lenses on the rear face of the substrate intended for producing the spatial modulator;
  • FIG. 2 illustrates a second configuration of active matrix used in a display device according to the invention
  • FIG. 3 illustrates an example of a display device according to the invention comprising an incident beam of collimated light, two lens arrays and a diffuser;
  • - Figure 4 illustrates a first example of a light source which can in particular be used to light an active matrix of the type shown in Figure 1
  • - Figure 5 illustrates a second example of a light source, which can in particular be used to light an active matrix of the type shown in Figure 2;
  • FIG. 6 illustrates a third example of a light source that can illuminate an active matrix of the type shown in Figure 2;
  • - Figure 7 illustrates a first example of mirror M-
  • FIG. 8 illustrates a second example of an anamorphic mirror M'i
  • FIG. 9 illustrates a third configuration of active matrix used in a three-color display device according to the invention.
  • FIG. 10a and 10b illustrate other active matrix configurations used in a three-color display device
  • FIG. 11 illustrates a three-color display device
  • FIG. 12 illustrates a variant of the three-color display device according to the invention, using another possible configuration for the components M-
  • the display device comprises a spatial light modulator of the active matrix liquid crystal type.
  • the invention resides in the fact of using pixels of small dimensions compared to the total surface of all the elementary image points.
  • FIG. 1 illustrates a first possible configuration of an active matrix comprising a matrix addressing obtained by an array of electrodes Ej, E; capable of electrically controlling NxM elementary pixels, Xj; of liquid crystal type electrooptical material via transistors not shown. It may advantageously be thin film transistors produced in Si amorphous or Si polyc ⁇ staliin technology. In this configuration, the entire surface of elementary pixels remains small compared to the size of the matrix. Indeed, the dimension djsg is at least an order of magnitude less than the step p ⁇ , the dimension d ⁇ possibly being of the order of magnitude of the step p ⁇ .
  • Figure 2 illustrates an active matrix similar to that of Figure
  • a light source, collimation means and means for focusing the light in the different pixels Xj are used.
  • FIG. 3 illustrates a display device according to the invention, comprising an R- network
  • may include N cylindrical lenses.
  • the network R- j can comprise NxM spherical lenses, the pitch of the network being of the order of the parameter p j s j (or p ⁇ , PM being close to pj ).
  • the display device can conventionally comprise a second network R2 of lenses, identical to the network R- ⁇ and generating a beam whose intensity has been modulated by each liquid crystal pixel Xj as a function of the signals electrical applied to the electrodes Ej and Ej.
  • This collimated beam towards an observer can be scattered by a diffuser D, so as to adapt the radiation diagram of the display device.
  • the device of the invention comprises means for collimating an incident beam to illuminate the network R ⁇ of lenses, upstream of the liquid crystal matrix.
  • a fairly conventional solution consists in coupling the light source 11 to a light guide 13 using a collimator 12.
  • the rays of the source propagating by total reflection inside the guide.
  • the two faces of the guide not being parallel, the angle ⁇ which they form is calculated so as to gradually reduce the light rays which propagate towards the normal to the guide, so as to extract them from the latter to provide consistent lighting.
  • a set of prisms of index np makes it possible to reflect in the direction perpendicular to the guide of index ng the rays extracted from the latter, which emerge in an oblique direction (the angles at the base of these premiums being very close to 45 e and np>ng> 1) (see figure 4).
  • the light extracted from the guide is collimated in a zox plane. It can therefore be focused in the z direction using a cylindrical lens matrix (cylinder axis // y).
  • the diffracting element located along the guide may advantageously be a holographic element constituted by a layer of material comprising an index network, organized in strata. The strata are oriented at about 45 ° relative to the axis of the light waveguide.
  • FIG. 5 illustrates such a compact collimated source.
  • the light source 21 is coupled to a light guide, by a collimator 22.
  • the diffracting element 24 is placed at the heart of the guide 23 and diffracts from the emerging rays in a direction perpendicular to the plane of the guide, represented by the plane zoy, if the guide is a plan guide in the yox plan.
  • This collimated lighting source is arranged parallel to the active matrix and to the plane array R-j of cylindrical lenses.
  • the diffracting element can advantageously be a holographic element obtained by interference of two coherent beams in the plane of a photosensitive layer.
  • the holographic element can be produced by developing an index network having strata of indices oriented in a z'oy plane making an angle of 45 ° with the zoy plane.
  • the photosensitive layer can typically be dichromate gelatin or photopolymer.
  • the waveguide coupled to the light source can advantageously have a dihedral structure so as to bring emerging rays into the hologram capture cone corresponding to all of the angles of incidence for which the hologram is diffracting in the z'oy plane.
  • This type of lighting source configuration makes it possible to effectively collimate the light flux in the plane zoy on the elementary pixels Xj after focusing by the network R-j, the small dimension df along the axis x represented in FIG. 4.
  • the display device can include another lighting source delivering a light flux collimated in the zoy plane, and also collimated in the zox plane.
  • FIG. 6 illustrates this light source comprising a light source 31, a collimation lens 32, an anamorphic mirror M-j and a second mirror M2.
  • the collimated luminous flux coming from the source 31, is reflected by the mirror M-
  • the mirror M- ⁇ has a particular structure of the relief network or index type with strata oriented at 45 ° from the axis ox.
  • FIG. 7 shows diagrammatically an example of an M-] mirror which can also be of the holographic type with a grating function with high diffraction efficiency, recorded for example in a photopolymer material.
  • a second M2 mirror collimates the light flux spread over the entire surface of the active matrix.
  • This mirror has a structure similar to that of the mirror M-
  • the anamorphic mirror M mentioned above can be replaced by an optical component M'1 consisting of N separating plates at 45 °.
  • the reflection-transmission coefficient RjTj of these plates can be adjusted so that the light intensity is distributed uniformly over the array of microlenses, therefore over the electrooptical pixels after focusing.
  • the position of this element is not critical given the distance between pixels which can typically be of the order of 300 ⁇ m to 1 ⁇ m.
  • Two components of this type M 'and M'2 are used for producing compact collimated lighting from a short arc lamp.
  • the means of producing these components are of molding-pressing techniques (see FIG. 8).
  • the lighting sources described above are particularly advantageous in the case of a color display screen and allow lighting practically perpendicular to the plane of the screen.
  • the active matrix has a dot consisting of sub pixels XjRj, Xjvj and XjRj as illustrated in FIG. 9. It should be noted that the invention is compatible with a distribution of the pixels such as that proposed in FIGS. 10a and 10b.
  • the active matrix is then made up of pixels of square shape (50 ⁇ 50 ⁇ m typically), or of rectangular shape (50 ⁇ m ⁇ 300 ⁇ m) with a spatial period in the horizontal direction of the order of 300 ⁇ m. In the vertical direction, the spatial period of these elementary pixels is 1 mm.
  • a “white” pixel then consists of three equidistant RGB elementary pixels whose pitch is 300 ⁇ m. Color image case with color filters
  • the device of the invention can associate with the various aforementioned lighting systems, a spatial modulator which includes RGB filters located on the sub-pixels XV, B, R.
  • a spatial modulator which includes RGB filters located on the sub-pixels XV, B, R.
  • RGB filters located on the sub-pixels XV, B, R.
  • the realization of an efficient lighting system requires the implementation of a matrix of cylindrical or spherical lenses according to the geometry of the pixels to focus the lighting in the transparent zone of the pixels.
  • the pitch of this lens matrix will either be equal to the period of the white pixels when the sub-pixels are grouped according to an organization of the grouped sub-pixel type, or equal to the period of the sub-pixels when the latter are equally distributed in the white sub-pixel.
  • the microlens array and the means of chromatic dispersions by diffractive grating and / or by three-color separator of the dielectric mirror type are adapted to the generation of the RGB spectral components focused selectively in the pixels of the LCD screen.
  • the microlens array is used to selectively focus the collimated light from the compact lighting system in the electrooptical pixels.
  • a first type of three-color separator can consist of a set of dielectric mirrors arranged in a fan so as to angularly separate the RGB components. This separator is placed at the output of the light source and upstream of a collimation assembly of the Mi and / or M2 components type mentioned above.
  • the component Mi or M2 has a chromatic separation function.
  • a light source 20 comprising the red, green and blue spectral components
  • the collimated and then spread out light flux is diffracted on the mirror M2 which can have a diffracting structure such that it also performs the function of chromatic separation as illustrated in FIG. 11.
  • the beams of red, green, blue light can illuminate the network R-
  • the second array of lenses with focal length f / 2 generates the image of a “white” pixel in a symmetrical plane of the liquid crystal screen by compared to the second microlens array. In this plane, the diffuser D or a Fresnel type screen is placed which directs the light towards the observer.
  • the beams thus generated are focused respectively on the elementary sub pixels XRJ J, X ⁇ ⁇ j and X ⁇ j j.
  • Such a configuration is particularly compact insofar as the network of lenses R ⁇ is in contact with the diffractive component M'2.
  • can be combined in a com posing a single diffractive effect performing both the focusing function and the dispersion function.
  • This type of component has been described by the applicant in a previous patent application (publication no. 2,711,878).
  • an extremely compact structure typically a thickness of the order of 50 mm
  • large dimensions typically greater than 800 x 600 mm 2 .
  • the invention also proposes an original and direct method for producing the active matrix by using masking steps directly through the lens array R-
  • the elementary pixels of the active matrix had a surface, equivalent to the pupil of the lenses of the array Ri, it was therefore not possible with prints close to the thickness of the substrate of the active matrix, d '' imaging large areas from the lenses used. According to the invention this becomes possible due to the areas of elementary pixels clearly smaller than those of the pupils of the lenses.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
EP97913252A 1996-11-05 1997-11-05 Anzeigevorrichtung und flacher fernsehbildschirm, der diese vorrichtung benutzt Withdrawn EP0880724A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9613454A FR2755530B1 (fr) 1996-11-05 1996-11-05 Dispositif de visualisation et ecran plat de television utilisant ce dispositif
FR9613454 1996-11-05
PCT/FR1997/001980 WO1998020390A1 (fr) 1996-11-05 1997-11-05 Dispositif de visualisation et ecran plat de television utilisant ce dispositif

Publications (1)

Publication Number Publication Date
EP0880724A1 true EP0880724A1 (de) 1998-12-02

Family

ID=9497328

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97913252A Withdrawn EP0880724A1 (de) 1996-11-05 1997-11-05 Anzeigevorrichtung und flacher fernsehbildschirm, der diese vorrichtung benutzt

Country Status (5)

Country Link
US (1) US6069728A (de)
EP (1) EP0880724A1 (de)
JP (1) JP2000503423A (de)
FR (1) FR2755530B1 (de)
WO (1) WO1998020390A1 (de)

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050259302A9 (en) * 1987-09-11 2005-11-24 Metz Michael H Holographic light panels and flat panel display systems and method and apparatus for making same
EP0969305B1 (de) * 1998-01-20 2004-12-08 Seiko Epson Corporation Optische schaltvorrichtung,bildanzeige und projektionsvorrichtung
US7067144B2 (en) * 1998-10-20 2006-06-27 Omeros Corporation Compositions and methods for systemic inhibition of cartilage degradation
FR2793566B1 (fr) 1999-05-11 2002-07-12 Thomson Csf Separateur de polarisations
JP3574365B2 (ja) * 1999-05-28 2004-10-06 ユニベルシテ・ド・リエージュ 照明装置、その用い方及び製造方法
DE10021725A1 (de) * 2000-05-04 2001-11-15 Osram Opto Semiconductors Gmbh Facettierter Reflektor
DE50106330D1 (de) * 2000-08-18 2005-06-30 Linde Ag Verfahren zur herstellung einer luftzerlegungsanlage
FR2813128B1 (fr) 2000-08-18 2003-01-17 Thomson Csf Dispositif de visualisation a cristal liquide a compensateur de birefringence
FR2819061B1 (fr) * 2000-12-28 2003-04-11 Thomson Csf Dispositif de controle de polarisation dans une liaison optique
US7486854B2 (en) 2006-01-24 2009-02-03 Uni-Pixel Displays, Inc. Optical microstructures for light extraction and control
GB0718706D0 (en) 2007-09-25 2007-11-07 Creative Physics Ltd Method and apparatus for reducing laser speckle
US9335604B2 (en) 2013-12-11 2016-05-10 Milan Momcilo Popovich Holographic waveguide display
US11726332B2 (en) 2009-04-27 2023-08-15 Digilens Inc. Diffractive projection apparatus
US20200057353A1 (en) 2009-10-09 2020-02-20 Digilens Inc. Compact Edge Illuminated Diffractive Display
US9075184B2 (en) 2012-04-17 2015-07-07 Milan Momcilo Popovich Compact edge illuminated diffractive display
JP5918758B2 (ja) * 2010-07-06 2016-05-18 シーリアル テクノロジーズ ソシエテ アノニムSeereal Technologies S.A. ホログラフィックディスプレイ又は立体ディスプレイのための、ビームの発散及び種々のコリメータ
WO2012136970A1 (en) 2011-04-07 2012-10-11 Milan Momcilo Popovich Laser despeckler based on angular diversity
WO2016020630A2 (en) 2014-08-08 2016-02-11 Milan Momcilo Popovich Waveguide laser illuminator incorporating a despeckler
EP2995986B1 (de) 2011-08-24 2017-04-12 Rockwell Collins, Inc. Datenanzeige
US10670876B2 (en) 2011-08-24 2020-06-02 Digilens Inc. Waveguide laser illuminator incorporating a despeckler
US20150010265A1 (en) 2012-01-06 2015-01-08 Milan, Momcilo POPOVICH Contact image sensor using switchable bragg gratings
US9456744B2 (en) 2012-05-11 2016-10-04 Digilens, Inc. Apparatus for eye tracking
US9933684B2 (en) 2012-11-16 2018-04-03 Rockwell Collins, Inc. Transparent waveguide display providing upper and lower fields of view having a specific light output aperture configuration
WO2014188149A1 (en) 2013-05-20 2014-11-27 Milan Momcilo Popovich Holographic waveguide eye tracker
US9727772B2 (en) 2013-07-31 2017-08-08 Digilens, Inc. Method and apparatus for contact image sensing
WO2016020632A1 (en) 2014-08-08 2016-02-11 Milan Momcilo Popovich Method for holographic mastering and replication
US10241330B2 (en) 2014-09-19 2019-03-26 Digilens, Inc. Method and apparatus for generating input images for holographic waveguide displays
WO2016046514A1 (en) 2014-09-26 2016-03-31 LOKOVIC, Kimberly, Sun Holographic waveguide opticaltracker
DE102014116687A1 (de) * 2014-11-14 2016-05-19 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement und Beleuchtungsvorrichtung
CN111323867A (zh) 2015-01-12 2020-06-23 迪吉伦斯公司 环境隔离的波导显示器
EP3245551B1 (de) 2015-01-12 2019-09-18 DigiLens Inc. Lichtfeldanzeigen mit wellenleiter
CN107533137A (zh) 2015-01-20 2018-01-02 迪吉伦斯公司 全息波导激光雷达
US9632226B2 (en) 2015-02-12 2017-04-25 Digilens Inc. Waveguide grating device
JP6598269B2 (ja) 2015-10-05 2019-10-30 ディジレンズ インコーポレイテッド 導波管ディスプレイ
CN109073889B (zh) 2016-02-04 2021-04-27 迪吉伦斯公司 全息波导光学跟踪器
US10859768B2 (en) 2016-03-24 2020-12-08 Digilens Inc. Method and apparatus for providing a polarization selective holographic waveguide device
CN109154717B (zh) 2016-04-11 2022-05-13 迪吉伦斯公司 用于结构光投射的全息波导设备
WO2018102834A2 (en) 2016-12-02 2018-06-07 Digilens, Inc. Waveguide device with uniform output illumination
US10545346B2 (en) 2017-01-05 2020-01-28 Digilens Inc. Wearable heads up displays
WO2019079350A2 (en) 2017-10-16 2019-04-25 Digilens, Inc. SYSTEMS AND METHODS FOR MULTIPLYING THE IMAGE RESOLUTION OF A PIXÉLISÉ DISPLAY
US10914950B2 (en) 2018-01-08 2021-02-09 Digilens Inc. Waveguide architectures and related methods of manufacturing
EP3710893A4 (de) 2018-01-08 2021-09-22 Digilens Inc. Systeme und verfahren zur hochdurchsatzaufzeichnung von holografischen gittern in wellenleiterzellen
US11402801B2 (en) 2018-07-25 2022-08-02 Digilens Inc. Systems and methods for fabricating a multilayer optical structure
CN113692544A (zh) 2019-02-15 2021-11-23 迪吉伦斯公司 使用集成光栅提供全息波导显示的方法和装置
CN113728258A (zh) 2019-03-12 2021-11-30 迪吉伦斯公司 全息波导背光及相关制造方法
KR20220016990A (ko) 2019-06-07 2022-02-10 디지렌즈 인코포레이티드. 투과 및 반사 격자를 통합하는 도파관 및 관련 제조 방법
WO2021021926A1 (en) 2019-07-29 2021-02-04 Digilens Inc. Methods and apparatus for multiplying the image resolution and field-of-view of a pixelated display
CN114450608A (zh) 2019-08-29 2022-05-06 迪吉伦斯公司 真空布拉格光栅和制造方法

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4257041A (en) * 1978-06-19 1981-03-17 Izon Corporation Electro optical display device
FR2449381A1 (fr) * 1979-02-13 1980-09-12 Thomson Csf Dispositif de visualisation sur grand ecran
FR2519777A1 (fr) * 1982-01-12 1983-07-18 Thomson Csf Procede de fabrication de structures de phase diffractantes
FR2552565B1 (fr) * 1983-09-23 1985-10-25 Thomson Csf Dispositif d'enregistrement d'une image coherente dans une cavite optique multimode
FR2608792B1 (fr) * 1986-12-23 1989-03-31 Thomson Csf Dispositif d'amplification de signaux optiques a milieu photosensible
US5101279A (en) * 1989-12-14 1992-03-31 Canon Kabushiki Kaisha Liquid crystal display apparatus having lenticular elements oriented in relation to LC pixel aperture dimensions
JPH0457493A (ja) * 1990-06-26 1992-02-25 Mitsubishi Electric Corp 表示装置
FR2665773B1 (fr) * 1990-08-10 1993-08-20 Thomson Csf Dispositif de projection d'images utilisant deux composantes orthogonales de polarisation de la lumiere.
FR2669126B1 (fr) * 1990-11-09 1993-01-22 Thomson Csf Systeme de visualisation d'images fournies par un modulateur spatial avec transfert d'energie.
FR2669744B1 (fr) * 1990-11-23 1994-03-25 Thomson Csf Dispositif d'eclairage et application a un dispositif de visualisation.
FR2676302B1 (fr) * 1991-05-07 1993-07-16 Thomson Csf Procede de lecture des informations contenues dans un disque optique.
FR2676853B1 (fr) * 1991-05-21 1993-12-03 Thomson Csf Procede d'ecriture et de lecture optique sur support d'informations a stockage haute densite.
FR2680882B1 (fr) * 1991-08-06 1993-10-29 Thomson Csf Projecteur d'images a efficacite lumineuse orptimisee.
WO1993008558A1 (en) * 1991-10-24 1993-04-29 Stephen Weinreich Color display apparatus
FR2664712B1 (fr) * 1991-10-30 1994-04-15 Thomson Csf Dispositif de modulation optique a cellules deformables.
FR2684198B1 (fr) * 1991-11-22 1994-09-23 Thomson Csf Ecran pour projection d'image.
FR2685100A1 (fr) * 1991-12-17 1993-06-18 Thomson Csf Separateur de polarisations optique et application a un systeme de visualisation.
FR2691549A1 (fr) * 1992-05-22 1993-11-26 Thomson Csf Séparateur chromatique de lumière et projecteur d'image utilisant un tel séparateur.
FR2694103B1 (fr) * 1992-07-24 1994-08-26 Thomson Csf Projecteur d'images en couleurs.
DE69429209T2 (de) * 1993-06-01 2002-06-27 Sharp Kk Bildanzeigevorrichtung mit rückseitiger Beleuchtung
FR2707447B1 (fr) * 1993-07-09 1995-09-01 Thomson Csf Dispositif de visualisation couleurs.
FR2711878B1 (fr) * 1993-10-29 1995-12-15 Thomson Csf Dispositif de visualisation couleurs et procédé de réalisation.
US5680386A (en) * 1993-12-23 1997-10-21 Thomson-Csf Optical method and system for writing/reading information on a recording medium
DE69416840T2 (de) * 1994-06-17 1999-07-29 Thomson Csf Flüssigkristallprojektor mit holographischer filtervorrichtung
FR2722319B1 (fr) * 1994-07-08 1996-08-14 Thomson Csf Dispositif de visualisation couleurs
FR2732783B1 (fr) * 1995-04-07 1997-05-16 Thomson Csf Dispositif compact de retroprojection
FR2751398B1 (fr) * 1996-07-16 1998-08-28 Thomson Csf Dispositif d'eclairage et application a l'eclairage d'un ecran transmissif
FR2753544B1 (fr) * 1996-09-17 1998-11-27 Thomson Csf Systeme de controle de faisceau lumineux

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9820390A1 *

Also Published As

Publication number Publication date
FR2755530A1 (fr) 1998-05-07
US6069728A (en) 2000-05-30
JP2000503423A (ja) 2000-03-21
WO1998020390A1 (fr) 1998-05-14
FR2755530B1 (fr) 1999-01-22

Similar Documents

Publication Publication Date Title
WO1998020390A1 (fr) Dispositif de visualisation et ecran plat de television utilisant ce dispositif
EP0633702B1 (de) Farbanzeigegerät
EP0512099B1 (de) Bilddarstellungsgerät
EP0527084B1 (de) Bildprojektor mit optimierter Lichtausbeute
EP0717911B1 (de) Farbanzeigevorrichtung
EP0485268B1 (de) Matrix-Bildprojektor mit zwei polarisierten Strahlen
EP0737870B1 (de) Projektionssystem mit einem Reflektor und einer Feldlinse
FR2737595A1 (fr) Dispositif d'affichage a cristaux liquides
FR2895526A1 (fr) Systeme de retro-eclairage pour panneau d'affichage a cristal liquide et dispositif d'affichage correspondant
FR2883645A1 (fr) Systeme d'imagerie pour projecteur et projecteur correspondant
FR2733601A1 (fr) Dispositif de separation de polarisation et application a un systeme d'eclairement d'un ecran a cristal liquide
EP0677230B1 (de) Farbanzeigegerät und herstellungsverfahren
EP0740476B1 (de) Vorrichtung zur Polarisationstrennung und Anwendung in einem Beleuchtungssystem einer Flüssigkristallanzeigevorrichtung
EP0937273B1 (de) Kompakte vorrichtung für beleuchtung
FR2737789A1 (fr) Systeme d'eclairage arriere pour modulateur electro-optique transmissif et dispositif d'affichage comportant un tel systeme d'eclairage
EP1477019A1 (de) Verfahren zum transferieren eines digitalen bildes, um so das digitale bild visuell wiederherzustellen, und einrichtung zur ausführung des verfahrens
WO1991005276A1 (fr) Systeme optique de reproduction d'images video en couleurs
EP0478425A1 (de) Vorrichtung zur Erzeugung von mehreren Lichtstrahlen
FR2759468A1 (fr) Dispositif holographique de formation de faisceaux de lumiere de compositions spectrales predeterminees et projecteur d'images video comprenant un tel dispositif
FR2760856A1 (fr) Dispositif d'eclairement
FR2607301A1 (fr) Dispositif d'affichage modulaire a cristaux liquides
FR3098311A1 (fr) Composant optique matriciel pour focaliser sur une série de points un faisceau lumineux incident.
FR2707444A1 (fr) Projecteur vidéo à cristaux liquides.
FR2887038A1 (fr) Systeme optique et element optique correspondant
FR2878626A1 (fr) Systeme optique et element optique correspondant

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980617

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB IT NL

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THALES

17Q First examination report despatched

Effective date: 20040309

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20040720