EP0868835B1 - Procede et dispositif de caracterisation d'un milieu ionise mettant en oeuvre une source de rayonnement electromagnetique a duree ultracourte - Google Patents

Procede et dispositif de caracterisation d'un milieu ionise mettant en oeuvre une source de rayonnement electromagnetique a duree ultracourte Download PDF

Info

Publication number
EP0868835B1
EP0868835B1 EP96943163A EP96943163A EP0868835B1 EP 0868835 B1 EP0868835 B1 EP 0868835B1 EP 96943163 A EP96943163 A EP 96943163A EP 96943163 A EP96943163 A EP 96943163A EP 0868835 B1 EP0868835 B1 EP 0868835B1
Authority
EP
European Patent Office
Prior art keywords
ray
radiation
laser
photoconducting
ionized medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96943163A
Other languages
German (de)
English (en)
Other versions
EP0868835A1 (fr
Inventor
Jean-François Eloy
Hans Wilhelmsson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP0868835A1 publication Critical patent/EP0868835A1/fr
Application granted granted Critical
Publication of EP0868835B1 publication Critical patent/EP0868835B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001Production of X-ray radiation generated from plasma
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/0006Investigating plasma, e.g. measuring the degree of ionisation or the electron temperature
    • H05H1/0012Investigating plasma, e.g. measuring the degree of ionisation or the electron temperature using electromagnetic or particle radiation, e.g. interferometry
    • H05H1/0043Investigating plasma, e.g. measuring the degree of ionisation or the electron temperature using electromagnetic or particle radiation, e.g. interferometry by using infrared or ultraviolet radiation

Definitions

  • the present invention relates to a method and a device for characterizing an ionized medium using a radiation source ultra short duration electromagnetic.
  • thermodynamics electronics and physico-chemicals of an ionized medium with a transient lifetime and at evolutionary character, such as laser plasma, plasma nozzle combustion, or a welding plasma arc or laser
  • diagnostic and spectroscopic means using to the illumination of this environment by a source of short electromagnetic radiation wave, X-ray type or external radiation, sometimes called an auxiliary source.
  • a source of short electromagnetic radiation wave X-ray type or external radiation
  • auxiliary source sometimes called an auxiliary source.
  • Such a process requires the use of a radiation source intense electromagnetic capable of illuminating the medium ionized, or plasma, to know during its phase evolutionary transient.
  • the characteristics of this radiation-source are chosen in such a way that the measurements, either of the reflected part, or of the transmitted part of this electromagnetic radiation, may reveal, after interpretation, the specific temporal physical characteristics of the medium, condensed or gaseous, ionized which has been illuminated.
  • a source of pulsed radiation is coherent, of the type laser radiation, either incoherent, radiation type X. This radiation can originate from the source even laser radiation that generates the plasma at to study.
  • the diagnostic means is a X-ray flash X-ray.
  • the radiation is reflected, either transmitted, can be focused so diffractive in order to deliver an image of the ionized medium through a camera.
  • the source radiation is coherent laser radiation
  • characterization of the radiation transmitted by the ionized plasma medium allows to implement a magnetic rotational polarization measurement for calculate the spatial gradients of density and temperature of this medium, as described in the document referenced [3].
  • type electromagnetic radiation X radiation issued transiently but repetitive, can be detected, discriminated against temporally (sampled) and recorded.
  • These three operations can then be performed by a single autocorrelation sampling device optoelectronics.
  • laser method pump-probe we temporally modulate the phenomenon generated by a laser pump beam by means of a opto-mechanical, or opto-acoustic modulation device, according to a fixed repetition frequency, and in parallel by means of the laser probe beam generating the switching phenomenon.
  • plasma laser single shot a solved measurement method in time, pump-probe type, is not applicable by principle. So far, a measurement method time resolved rather uses a device sampling. Plus the measurement, well only temporally sampled, concerns only one global radiation pulse measurement spatio-temporally averaged electromagnetic and emitted directly by the constituent particles, transiently, the whole medium, condensed or gaseous, ionized to study. For there to be measurement, it is necessary that there be emission. Now a very localized medium or ionized gas does not emit systematically electromagnetic radiation detectable, which can be absorbed by the surrounding ionized medium. Even if this device allows to discriminate advantageously, and with a resolution high temporal, direct radiation pulse issued, the information collected by this single element only restore average vision of the physical state of the environment, although the signal be resolved in time.
  • this prior art system has an important limitation: The signal to detected by the sampling device cannot not be time modulated. Indeed, a level of significant system noise affects the sensitivity of the measurement by sampling and limits the application of this system to detect and measure signals of high amplitude, which stand out clearly above noise from the associated electronic system.
  • the document referenced [5] studies the formation and consistency of fringes due to a wave X-ray laser illuminating a Mach-Zehnder interferometer.
  • This document describes in particular a device and an interferometric method for assessing the temporal and spatial coherence properties of the laser wave, this device can be used to electronic density measurements in plasmas.
  • the document referenced [6] describes a single short pulse measurement device, comprising at least one measuring assembly comprising a conductive line to which a set of photoconductors, the line and the photoconductors being placed between two dielectrics forming a single support in which the length of the line separating the photoconductors two by two is equal to the product of the propagation speed over the line by the ratio of the duration of the pulse on the number of measuring points, the service life of majority carriers constituting the photoconductors being chosen equal to or less than 10% of the duration of the impulse, the device thus allowing to obtain a time analysis or the autocorrelation function of the impulse which can be an impulse of electromagnetic, or ionizing radiation or a electrical impulse.
  • the document referenced [7] describes imaging systems to analyze high plasmas density in the soft X-ray regime.
  • the system experiment includes a spherical mirror multilayer which reflects a narrow band of soft x-ray radiation in the energy region 50 to 200 ev.
  • This mirror image is the own emission of a plasma produced by laser and / or the shadow of the laser in expansion generated by an X-ray source produced by a separate laser with approximately one amplification of 50 in the image plane and a submicron resolution in the target plane.
  • resolution time of around 150 ps is obtained either with a grid microchannel plate intensifier in as a detector, be a “backlighter” device short pulse X-rays.
  • the document referenced [8] describes the use of the backlighting technique of soft X-rays to measure the density of dense plasma produced in a capillary discharge.
  • Plasma tellurium produced by laser is used as a source of x-rays and a two-dimensional flash image with a 140 ⁇ m resolution is obtained.
  • the document referenced [9] describes a device for evaluating an X-ray optical element. improves efficiency of use of shelves X from an X-ray generator in converting x-rays from the means of projection in parallel X-rays or by condensing these at one point.
  • the document referenced [10] describes a X-ray interferometer to test a plasma produced by laser with micron spatial resolutions.
  • a soft X-ray laser operating at 155 Angstroms is combined with a multilayer Mach-Zehnder interferometer to get electron density profiles in a plasma produced by laser irradiation of a target.
  • two beams are used primary and secondary laser derived from the same ultra-short duration laser beam.
  • the interaction means is a metallic target material included among the following materials: titanium, nickel, zinc or tungsten which, under the effect of the main beam focused by a lens, generates an X-ray beam.
  • a spherical mirror, reflector of the X-ray is located between the interaction medium and the X-ray beam sequencing means.
  • the X-ray beam sequencing means is a mirror composed of metallic layers reflectors stacked regularly and oriented way to deliver a compound X-ray beam of a train of temporally spaced X pulses regularly.
  • Several reflecting optical means are disposed between the beam separation means and the detection means for modifying the path of the secondary beam.
  • the radiation detection means is a microelectronic technology optoelectronic component autocorrelating type, combining a insulating substrate, a photoconductive material under a fast type laser impact on which is deposited a metallic electrical signal transmission line emitted by the detector under the impact of X-rays secondary re-emitted by the ionized medium.
  • the insulating substrate is a sapphire or gallium arsenide or telluride material cadmium (CdTe); the photoconductive material is a gallium arsenide or cadmium telluride material low temperature ; the transmission line is in aluminum.
  • the present invention therefore relates to a device for characterizing an ionized medium transient, resolved in time.
  • the optoelectronic device 31 of microelectronic technology combines a substrate insulator, for example in a material such as sapphire, gallium arsenide, cadmium telluride, a photoconductive material (under laser impact) of type fast, for example in low gallium arsenide temperature, on which is deposited the line of metallic transmission 34, the material used being for example aluminum, of the electrical signal emitted by the detector 30 under the impact of secondary X-rays 35 re-emitted by the ionized medium 21.
  • a substrate insulator for example in a material such as sapphire, gallium arsenide, cadmium telluride
  • a photoconductive material (under laser impact) of type fast for example in low gallium arsenide temperature, on which is deposited the line of metallic transmission 34, the material used being for example aluminum
  • the electrical signal emitted by the detector 30 under the impact of secondary X-rays 35 re-emitted by the ionized medium 21 for example in
  • these photoconductive elements 33 are each formed by a discontinuity between each sampling line 32 and the line of transmission 34.
  • the optoelectronic device 31 is a microsystem capable of analyzing impulses up to 50 Ghz.
  • This device is an integrated component, realized in a microelectronic type technology, and comprising photoconductive elements and lines microstrips. It consists of a line of main propagation 34 where the signal is sent unique to sample, and n lines 32 arranged in a "comb" along this line. Between each of these lines sampling line and the main line, there is a pad or layer of photoconductive material 33.
  • the principle of this device is relatively simple and reminds a little of photography: right now propagation where the signal is "delayed" by the lines sampling, an ultra-fast laser pulse lights and closes the n switches that constitute photoconductive elements. The signals as well samples are then stored in a capacity and read by dedicated electronics.
  • each line 32 can be connected to a connected CCD 40 element to a drawer responsible for storing information in a register.
  • Detector 30 is a sensitive detector x-ray, very fast. It includes material photoconductor whose carriers have a lifetime less than picosecond; it can be, by example, CdTe, GaAs, Si doped oxygen on sapphire or diamond.
  • the optoelectronic device 31 can, also, be a sliding contact device whose the operating principle is described in the document referenced [4].
  • the second laser pulse train of few femtoseconds results not only from the spatial distribution of the photoswitches 33 but can also result from a temporal distribution of the attenuated laser beam delivered by the mirror 22, obtained by passing the laser radiation from start in a sequencing device 37, for example Michelson type possibly followed by an amplifier beam.
  • the method of the invention which is a new method of applying the pump-probe method, has the advantage of eliminating imprecision space-time of the prior art because it allows discriminatingly probe the ionized medium of spatio-temporal way.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • X-Ray Techniques (AREA)

Description

Domaine de l'invention
La présente invention concerne un procédé et un dispositif de caractérisation d'un milieu ionisé mettant en oeuvre une source de rayonnement électromagnétique à durée ultracourte.
Etat de la technique antérieure
Pour mesurer et connaítre les propriétés thermodynamiques, électroniques et physico-chimiques d'un milieu ionisé à durée de vie transitoire et à caractère évolutif, tel qu'un plasma laser, un plasma de combustion de tuyère, ou un plasma de soudure à l'arc ou à laser, on met généralement en oeuvre des moyens de diagnostic et de spectroscopie faisant appel à l'éclairement de ce milieu par une source de rayonnement électromagnétique de courte longueur d'onde, de type radiation X ou de radiation externe, appelée parfois source auxiliaire. Un tel procédé nécessite la mise en oeuvre d'une source de rayonnement électromagnétique intense capable d'illuminer le milieu ionisé, ou plasma, à connaítre pendant sa phase évolutive transitoire. Les caractéristiques de ce rayonnement-source sont choisies de telle manière que les mesures, soit de la partie réfléchie, soit de la partie transmise de ce rayonnement électromagnétique, puissent révéler, après interprétation, les caractéristiques physiques temporelles spécifiques du milieu, condensé ou gazeux, ionisé qui a été illuminé.
Comme décrit dans le document référencé [1] en fin de description, on peut utiliser à cet effet une source de rayonnement pulsé soit cohérent, de type rayonnement laser, soit incohérent, de type rayonnement X. Ce rayonnement peut avoir pour origine la source même de rayonnement laser qui génère le plasma à étudier.
Dans le cas d'une source à rayonnement laser, le moyen de diagnostic est un dispositif de radiographie par flash X. Le rayonnement soit réfléchi, soit transmis, peut être focalisé de manière diffractive afin de délivrer une image du milieu ionisé par l'intermédiaire d'une caméra. Dans le cas où le rayonnement-source est un rayonnement laser cohérent, la caractérisation du rayonnement transmis par le milieu de plasma ionisé permet de mettre en oeuvre une mesure de polarisation rotatoire magnétique pour calculer les gradients spatiaux de densité et de température de ce milieu, comme décrit dans le document référencé [3].
Par ailleurs, comme décrit dans le document référencé [2], un rayonnement électromagnétique de type radiation X, émis de manière transitoire mais répétitive, peut être détecté, discriminé temporellement (échantillonné) et enregistré. Ces trois opérations peuvent alors être réalisées par un seul dispositif d'échantillonnage à autocorrélation optoélectronique. Dans la méthode de mesure, résolue en temps, couramment employée pour l'étude des phénomènes physico-chimiques transitoires, dénommée "méthode laser pompe-sonde", on module temporellement le phénomène généré par un faisceau-pompe laser au moyen d'un dispositif de modulation opto-mécanique, ou opto-acoustique, selon une fréquence de répétition fixe, et en parallèle au moyen du faisceau-sonde laser générant le phénomène de commutation. On extrait alors du signal délivré par le dispositif détecteur à échantillonnage la composante spectrale correspondant à cette fréquence.
A des fins plus spécifiques de diagnostic monocoup de plasma laser une méthode de mesure résolue en temps, de type pompe-sonde, n'est pas applicable par principe. Jusqu'à présent, une méthode de mesure résolue en temps utilise plutôt un dispositif d'échantillonnage. De plus la mesure, bien qu'échantillonnée temporellement, ne concerne qu'une mesure d'impulsion globale de rayonnement électromagnétique moyennée spatio-temporellement et émise directement par les particules constituant, transitoirement, tout le milieu, condensé ou gazeux, ionisé à étudier. Pour qu'il y ait mesure, il est nécessaire qu'il y ait émission. Or une zone très localisée du milieu ou gaz ionisé n'émet pas systématiquement de rayonnement électromagnétique détectable, celui-ci pouvant être absorbée par le milieu ionisé environnant. Même si ce dispositif permet de discriminer avantageusement, et avec une résolution temporelle élevée, l'impulsion de rayonnement direct émise, les informations recueillies par ce seul élément de diagnostic ne restituent qu'une vision moyenne d'ensemble de l'état physique du milieu, bien que le signal soit résolu en temps.
Pour améliorer la compréhension des phénomènes physiques des milieux, condensés ou à gaz, ionisés, un tel système monocoup nécessite un élément de diagnostic complémentaire capable de restituer séparément l'aspect cartographique de l'émission de rayonnement.
De plus, ce système de l'art antérieur présente une limitation importante : Le signal à détecter par le dispositif à échantillonnage ne peut pas être modulé temporellement. En effet, un niveau de bruit important du système affecte la sensibilité de la mesure par échantillonnage et limite l'application de ce système à la détection et à la mesure de signaux d'amplitude élevée, qui ressortent nettement au-dessus du bruit du système électronique associé.
Le document référencé [5] étudie la formation et la cohérence de franges dues à une onde laser rayons X illuminant un interféromètre Mach-Zehnder. Ce document décrit notamment un dispositif et un procédé interférométrique permettant d'évaluer les propriétés de cohérence temporelle et spatiale de l'onde laser, ce dispositif pouvant être utilisé pour des mesures de densité électronique dans des plasmas.
Le document référencé [6] décrit un dispositif de mesure d'une impulsion brève, unique, comprenant au moins un ensemble de mesure comportant une ligne conductrice à laquelle sont reliés un ensemble de photoconducteurs, la ligne et les photoconducteurs étant placés entre deux diélectriques formant un unique support dans lequel la longueur de la ligne séparant les photoconducteurs deux à deux est égale au produit de la vitesse de propagation sur la ligne par le rapport de la durée de l'impulsion sur le nombre de points de mesure, la durée de vie des porteurs majoritaires constituant les photoconducteurs étant choisie égale ou inférieure à 10 % de la durée de l'impulsion, le dispositif permettant ainsi d'obtenir une analyse temporelle ou la fonction d'autocorrélation de l'impulsion qui peut être une impulsion de rayonnement électromagnétique, ou ionisant ou une impulsion électrique.
Le document référencé [7] décrit des systèmes d'imagerie pour analyser des plasmas haute densité dans le régime rayons X mous. Le système d'expérimentation comprend un miroir sphérique multicouches qui réfléchit une bande étroite de rayonnement de rayons X mous dans la région d'énergie 50 à 200 ev. Ce miroir image soit l'émission propre d'un plasma produit par laser et/ou l'ombre du laser en expansion généré par une source de rayons X produite par un laser séparé avec approximativement une amplification de 50 dans le plan image et une résolution submicronique dans le plan de la cible. let temps de résolution d'environ 150 ps est obtenu soit avec un intensifieur de plaque microcanal à grille en tant que détecteur, soit un dispositif « backlighter » rayons X courtes impulsions.
Le document référencé [8] décrit l'utilisation de la technique de « backlighting» de rayons X mous pour mesurer la densité d'un plasma dense produit dans une décharge capillaire. Un plasma tellurium produit par laser est utilisé comme source de rayons X et une image flash à deux dimensions avec une résolution de 140 µm est obtenue.
Le document référencé [9] décrit un dispositif pour évaluer un élément optique rayons X. Il permet d'améliorer l'efficacité d'utilisation de rayons X provenant d'un générateur de rayons X en convertissant les rayons X provenant des moyens de projection en rayons X parallèles ou en condensant ceux-ci en un point.
Le document référencé [10] décrit un interféromètre à rayons X pour tester un plasma produit par laser avec des résolutions spatiales microniques. Un laser rayons X mous fonctionnant à 155 Angstrôm est combiné avec un interféromètre Mach-Zehnder multicouche pour obtenir des profils de densité électronique dans un plasma produit par l'irradiation laser d'une cible.
L'invention a pour objet un procédé et un dispositif de caractérisation d'un milieu ionisé dans lequel on puisse :
  • acquérir une connaissance précise et résolue en temps (historique des processus) de l'évolution spatio-temporelle des caractéristiques physiques de ce milieu à durée de vie transitoire et à caractère évolutif dans un état hors-équilibre thermodynamique ;
  • déterminer des paramètres transitoires de durée ultracourte ; tout en palliant les inconvénients des dispositifs de l'art antérieur, définis ci-dessus.
Exposé de l'invention
L'invention concerne un procédé de caractérisation d'un milieu ionisé en mettant en oeuvre une source de rayonnement électromagnétique de quelques 10-15 secondes de durée, dans lequel :
  • on utilise deux faisceaux laser synchronisés de rayonnement : un faisceau principal et un faisceau secondaire ;
  • on génère un rayonnement intense de radiation X ;
  • on réfléchit le rayonnement X de manière à le diriger et à le focaliser sur le volume de l'espace où se trouve situé le milieu ionisé ;
  • on réfléchit le rayonnement X, selon un angle spécifique dépendant de l'angle d'incidence sous la forme d'un faisceau de photons X composé d'un premier train d'impulsions X espacées régulièrement, ce train d'impulsions étant dirigé vers le milieu ionisé à diagnostiquer ;
  • on délivre un second train d'impulsions de même distribution temporelle que le premier ;
caractérisé en ce que :
  • on génère le rayonnement intense de radiation X par impact du faisceau principal sur une cible métallique, les caractéristiques de ce rayonnement dépendant de la cible sélectionnée ;
  • on détecte le rayonnement X réémis par le milieu ionisé avec un dispositif comprenant une ligne de transmission et plusieurs lignes d'échantillonnage pouvant être reliées à celle-ci par des éléments photoconducteurs en activant ces éléments photoconducteurs par le second train d'impulsions ;
  • on mesure et on enregistre les signaux délivrés par chaque ligne d'échantillonnage connectée aux éléments photoconducteurs.
Avantageusement on utilise deux faisceaux laser principal et secondaire dérivés d'un même faisceau laser de durée ultracourte.
L'invention concerne également un dispositif de caractérisation d'un milieu ionisé, comprenant :
  • une source délivrant un faisceau laser de rayonnement électromagnétique de quelques 10-15 secondes de durée ;
  • un moyen de séparation de ce faisceau en deux faisceaux laser synchronisés de rayonnement : un faisceau principal et un faisceau secondaire ;
  • un moyen d'interaction qui génère un rayonnement intense de radiation X ;
  • un miroir réflecteur du rayonnement X de manière à le diriger et à le focaliser sur le volume de l'espace où se trouve situé le milieu ionisé ;
  • un moyen séquenceur orienté de manière à réfléchir le rayonnement X, selon un angle spécifique dépendant de l'angle d'incidence sous la forme d'un faisceau de photons X composé d'un premier train d'impulsions X espacées régulièrement, ce train d'impulsions X étant dirigé vers le milieu ionisé ;
  • une série d'optiques de reprise du faisceau secondaire ;
  • un séquenceur de faisceau laser délivrant un second train d'impulsions de même distribution temporelle que le premier ;
caractérisé en ce que le moyen d'interaction génère le rayonnement intense de radiation X sous l'effet du faisceau principal, les caractéristiques de ce rayonnement X dépendant du moyen d'interaction considéré ; et en ce que ledit dispositif comprend en outre :
  • un dispositif optoélectronique à la fois détecteur du rayonnement X réémis par le milieu ionisé et autocorrélateur optoélectronique comprenant une ligne de transmission et plusieurs lignes d'échantillonnage pouvant être reliées à celle-ci par des photocommutateurs, une ligne à retard optique étant associée à chaque élément photoconducteur, ces éléments photoconducteurs étant activés par le second train d'impulsion ;
  • un système électronique de mesure et d'enregistrement des signaux délivrés par chaque ligne d'échantillonnage connectée aux éléments photoconducteurs.
Dans un exemple de réalisation avantageux du dispositif de l'invention, le moyen d'interaction est un matériau-cible métallique compris parmi les matériaux suivants : titane, nickel, zinc ou tungstène qui, sous l'effet du faisceau principal focalisé par une lentille, génère un faisceau de rayons X.
Un miroir de forme sphérique, réflecteur du rayonnement X, est situé entre le moyen d'interaction et le moyen séquenceur du faisceau de rayons X.
Le moyen séquenceur du faisceau de rayons X est un miroir composé de couches métalliques réflectrices empilées régulièrement et orientées de manière à délivrer un faisceau de photons X composé d'un train d'impulsions X espacées temporellement régulièrement.
Plusieurs moyens optiques réflecteurs sont disposés entre le moyen de séparation de faisceaux et le moyen de détection pour modifier le trajet du faisceau secondaire.
Le moyen de détection de rayonnement est un composant optoélectronique de technologie micro-électronique type autocorrélateur, associant un substrat isolant, un matériau photoconducteur sous un impact laser de type rapide sur lequel est déposé une ligne de transmission métallique du signal électrique émis par le détecteur sous l'impact des rayons X secondaires réémis par le milieu ionisé.
Avantageusement le substrat isolant est un matériau saphir ou arséniure de gallium ou tellurure de cadmium (CdTe) ; le matériau photoconducteur est un matériau arséniure de gallium ou tellurure de cadmium basse température ; la ligne de transmission est en aluminium.
La présente invention concerne donc un dispositif de caractérisation d'un milieu ionisé transitoire, résolue en temps.
Elle permet de diagnostiquer l'état physique d'un milieu ionisé de type plasma à chaque moment de son chauffage. Elle permet de détecter l'apparition de micro-instabilités qui perturbent ce chauffage.
L'invention s'applique notamment aux études :
  • de la matière condensée par radiographie éclair (domaine de la détonique) ;
  • des gaz ionisés ;
  • des claquages dans les gaz (bougies, éclateurs, foudre) ;
  • de la combustion dans les tuyères de réacteurs en aéronautique ;
  • du plasma de soudure laser ou à l'arc ;
  • du plasma de fusion magnétique ;
  • du plasma de fusion par confinement inertiel ;
  • en physique spatiale : étude de l'ionosphère et de la magnétosphère.
Brève description des dessins
la figure illustre schématiquement le dispositif de l'invention.
Exposé détaillé de modes de réalisation
Le dispositif de l'invention comporte les éléments suivants, représentés sur la figure 1 :
  • une source intense de lumière laser pulsée permettant de générer deux faisceaux laser synchronisés de rayonnement ; un faisceau principal 10 et un faisceau secondaire 12 ;
  • un matériau-cible 11 composé d'un matériau métallique, par exemple de type titane, nickel, zinc ou tungstène, qui sous l'effet du faisceau principal 10, focalisé par une lentille 13, génère un rayonnement intense de radiation X 15 dont les caractéristiques énergétiques (et spectrales) dépendent du matériau-cible sélectionné ;
  • un miroir 16, de forme sphérique par exemple, réflecteur du rayonnement X 15 de manière à le diriger et à la focaliser sur le volume de l'espace où se trouve situé le milieu ionisé ;
  • un miroir 18 composé de couches métalliques réflectrices 19 empilées régulièrement et orienté de manière à réfléchir le rayonnement X 15, selon un angle spécifique dépendant de l'angle d'incidence sous la forme d'un faisceau de photons X composé d'un premier train 20 d'impulsions X espacées régulièrement d'un délai temporel correspondant au temps de propagation aller et retour du faisceau incident dans chaque empilement de couches : ce faisceau de photons X 20 résultant de la réflexion sur le miroir multicouche 18 est dirigé vers le milieu ionisé 21 à diagnostiquer ;
  • un dispositif 22 permettant le dédoublement de la ligne optique du faisceau laser de durée ultracourte (soit dans le régime femtoseconde, quelques 10-15s, soit de durée beaucoup plus brève que la durée de vie du milieu ionisé à diagnostiquer) et d'obtenir ainsi le faisceau principal 10 et le faisceau secondaire 12 ;
  • une série d'optiques de reprise 23, 24, 25 et 26 de la deuxième ligne de transfert 12 du rayonnement laser ;
  • un séquenceur 37 de faisceau laser de type Michelson délivrant un second train d'impulsions de même distribution temporelle que le premier ;
  • un dispositif opto-électronique (30, 31) à la fois détecteur 30 du rayonnement X réémis par le milieu ionisé 21 et autocorrélateur optoélectronique 31 comprenant une ligne de transmission 34 et plusieurs lignes d'échantillonnage 32 pouvant être reliées à celle-ci par des photocommutateurs 33,
  • un ensemble de lignes à retard optique 38 associées chacune à un élément photoconducteur 33 ;
  • un système électronique de mesure 36 de type amplificateur de charge par exemple et d'enregistrement des signaux délivrés par chaque ligne d'échantillonnage 32 connectée aux photocommutateurs 33.
Le dispositif optoélectronique 31 de technologie micro-électronique associe un substrat isolant, par exemple en un matériau tel que le saphir, l'arséniure de gallium, le tellurure de cadmium, un matériau photoconducteur (sous l'impact laser) de type rapide, par exemple en arséniure de gallium basse température, sur lequel est déposée la ligne de transmission métallique 34, le matériau utilisé étant par exemple l'aluminium, du signal électrique émis par le détecteur 30 sous l'impact des rayons X secondaires 35 réémis par le milieu ionisé 21.
Sur la figure ces éléments photoconducteurs 33 sont formés chacun par une discontinuité entre chaque ligne d'échantillonnage 32 et la ligne de transmission 34. Lorsque ces photoconducteurs sont frappés par un faisceau laser il y a création de conduction pendant une fraction de picoseconde pendant laquelle on peut détecter un signal.
Ainsi, le dispositif optoélectronique 31 est un microsystème capable d'analyser des impulsions jusqu'à 50 Ghz. Ce dispositif est un composant intégré, réalisé dans une technologie de type microélectronique, et comprenant éléments photoconducteurs et lignes microrubans. Il est constitué d'une ligne de propagation principale 34 où est envoyé le signal unique à échantillonner, et de n lignes d'échantillonnage 32 disposées en "peigne" le long de cette ligne. Entre chacune de ces lignes d'échantillonnage et la ligne principale, se trouve un plot ou une couche de matériau photoconducteur 33. Le principe de ce dispositif est relativement simple et rappelle un peu celui de la photographie : à l'instant de propagation où le signal est en "retard" des lignes d'échantillonnage, une impulsion laser ultra-rapide éclaire et ferme les n interrupteurs que constituent les éléments photoconducteurs. Les signaux ainsi prélevés sont ensuite stockés dans une capacité et lus par une électronique dédiée.
Comme représenté sur la figure, chaque ligne 32 peut être reliée à un élément CCD 40 connecté à un tiroir chargé de stocker les informations dans un registre.
Le détecteur 30 est un détecteur sensible aux rayons X, très rapide. Il comprend un matériau photoconducteur dont les porteurs ont une durée de vie inférieure à la picoseconde ; ce peut être, par exemple, du CdTe, GaAs,Si dopé oxygène sur saphir ou diamant.
Le dispositif optoélectronique 31 peut, également, être un dispositif à contact glissant dont le principe de fonctionnement est décrit dans le document référencé [4].
Le dispositif de l'invention comprend donc deux faisceaux laser 10, 12 synchronisés, car dérivés par dédoublement d'un même faisceau laser 10 de durée ultracourte (en femtoseconde, c'est-à-dire quelques 10- 15s), lui-même déclenché par le générateur principal du milieu ionisé 21 déclenchant :
  • d'une part l'illumination du milieu ionisé 21 par une série d'impulsions ultracourtes 20 réparties et distribuées dans le temps, de rayonnement électromagnétique pulsé auxiliaire à courte longueur d'onde de type radiations X ; et,
  • d'autre part l'activation d'une série d'éléments photoconducteurs 33 par le second train d'impulsions laser de quelques femtosecondes de même distribution temporelle, dans la gamme une picoseconde à une nanoseconde, que le train 20 d'impulsions de radiations X.
Ces caractéristiques permettent de pallier au caractère monocoup (une seule impulsion laser possible) de ce dispositif de caractérisation du milieu ionisé 21.
Le second train d'impulsions laser de quelques femtosecondes résulte non seulement de la distribution spatiale des photocommutateurs 33 mais peut aussi résulter d'une distribution temporelle du faisceau laser atténué délivré par le miroir 22, obtenue en faisant transiter le rayonnement laser de départ dans un dispositif séquenceur 37, par exemple du type Michelson suivi éventuellement d'un amplificateur de faisceau.
L'échantillonnage d'une part de la source X et d'autre part du train d'impulsions laser de quelques femtosecondes, activant la série d'éléments photoconducteurs 33, correspond à la mise en oeuvre d'une mesure de type pompe-sonde selon un nouveau procédé et avec une nouvelle technologie d'autocorrélation optoélectronique. En effet, la modulation du phénomène de pompe ou de sonde n'est plus de type actif mais passif grâce :
  • d'une part à l'adjonction d'un miroir réflecteur X multicouche 18 qui joue le rôle de séquenceur en délivrant un train d'impulsions X ultracourtes 20 à un taux de répétition supérieur à celui de tous les dispositifs modulateurs existants ;
  • d'autre pari par l'adjonction d'un séquenceur optique 37 de faisceau laser.
Le procédé de l'invention, qui est un nouveau procédé d'application de la méthode pompe-sonde, a pour avantage de supprimer l'imprécision spatio-temporelle de l'art antérieur car il permet de sonder de manière discriminante le milieu ionisé de manière spatio-temporelle.
Si on analyse à présent le fonctionnement du procédé de l'invention : on dispose d'un milieu ionisé 21 de type plasma, ou gaz ionisé, par exemple d'un microplasma (cas du plasma laser à confinement inertiel). Au préalable une source laser émet un faisceau 10 dont la durée d'impulsion est inférieure à la durée de vie du plasma. Ce faisceau laser 10 frappe une cible métallique 11 et produit un flux 15 de radiations X intense et brève. Ce flux de radiations 15 est dirigé vers le milieu ionisé 21 à étudier et à diagnostiquer. Ce milieu 21 renvoie une partie de ce flux de radiations X vers un récepteur détecteur 30. Ce dernier analyse temporellement le signal reçu en fonction du faisceau laser qui génère le flux. De plus, l'invention consiste dans la mise en oeuvre simultanée :
  • d'un faisceau laser de puissance à durée ultracourte dont la plus grande partie de l'énergie, donc de la puissance, est destinée à générer, par impact sur une cible métallique 11, un faisceau 15 de rayons X et, dont l'autre faible partie 12 de l'énergie sert à piloter l'échantillonnage du dispositif optoélectronique 31 ;
  • d'un miroir multicouche 18 à radiations X destiné :
    • à diriger le faisceau réfléchi vers le milieu ionisé à illuminer,
    • à moduler et distribuer temporellement le flux de rayonnement X primaire 15 en une pluralité d'impulsions X 20 retardées régulièrement dans le temps. En effet, la propagation et les réflexions successives des impulsions X sur les couches régulièrement empilées a pour finalité de moduler temporellement en allongeant le temps d'illumination X du milieu ionisé par impulsions X discriminées. A partir des coefficients d'absorption et de réflexion des couches du miroir 18, un rapide calcul permet de choisir l'espacement et le nombre des couches réflectrices du miroir X en fonction de l'allongement de la plage temporelle recherchée. Sachant que n fois 100 femtosecondes supplémentaires correspondent à chaque couche espacée de 30 µ m (n étant l'indice du matériau à la longueur d'onde moyenne des radiations X), il est possible de sélectionner l'écart temporel entre les illuminations de chaque microsource X ;
  • d'un dispositif optoélectronique 30, 31 qui a pour fonction à la fois :
    • de détecter le rayonnement X réémis par le milieu ionisé, et
    • de discriminer le signal généré par ce même détecteur dans la ligne de transmission, par un autocorrélateur à échantillonnage temporel résultant de l'illumination successive des éléments photoconducteurs (distribués le long de la ligne de propagation) par le faisceau laser secondaire 12.
REFERENCES
  • [1] "Physics of Laser Fusion" de H.G. Ahalström ("Diagnostics of Experiments on Laser Fusion Target at Lawrence Livermore National Laboratories ; UCRL 53106, janvier 1982, volume 2, chapitre 2, paragraphe c, pages 69 à 129, "X Rays Diagnostics")
  • [2] "Etude et réalisation d'un dispositif opto-électronique d'échantillonnage pour l'analyse d'impulsions brèves et uniques" (Thèse de docteur ingénieur à l'université Joseph Fourier, Grenoble I, Spécialité : optique, opto-électronique et micro-ondes, présentée par Vincent Gerbe, soutenue le 24 septembre 1993)
  • [3] "Faraday-Rotation Measurements of Megagauss Magnetic Fields in Laser-Produced Plasmas" de J.A. Stamper et B.H. Ripin (Physical Review Letters, volume 34, n° 3, pages 138-141, 20 janvier 1975)
  • [4] "Mise au point d'un banc de test d'un générateur optoélectronique d'impulsions électromagnétiques ultracourtes" de Christophe Rivière (Projet de fin d'études, Ecole Nationale Supérieure de Physique de Grenoble ; Spécialité : Instrumentation physique effectué au service de physique expérimentale CEA/CESTA.- Département technique, du 1er mars au 15 Septembre 1994)
  • [5] "Fringe Formation and Coherence Of a Soft-X-ray Laser Beam Illuminating a Mach-Zehnder Interferometer » de P. Celliers, F. Weber, L.B. Da Silva, T.W. Barbee, R. Cauble, A.S. Wan et J.C. Moreno (Optics Letters, 15 septembre, 1995, Volume 20, numéro 18, pages 1907 à 1909)
  • [6] EP-A-0 327 420
  • [7] « Time Resolved Soft X-Ray Imaging With Submicron Spatial Resolution (Invited) » de O. Willi, T. Afshar-Rad, M. Desselberger, M. Dunne, J. Edwards, F. Khattak et R. Taylor (Review of Scientific instruments, volume 63, numéro 10, PCT II, octobre 1992, ISSN 0034-6748, pages 4818-4822, XP000321111)
  • [8] « Density Measurement Of Dense Capillary Discharge Plasma using Soft X-Ray Backlighting » de B. Brill, B. Arad, M. Kishenevsky, A. Ludmisky et A. Zigler (Journal of Physics D,Applied Physics , volume 23, numéro 8, 14 août 1990, pages 1064-1068, XP 000150819)
  • [9] Patents Abstracts of Japan, volume 014, numéro 094 (P-1010), 21 février 1990, & JP-A-01301153, & Database WPI, Section ch, Week 9003, Derwent Publications Ltd, Londre, GP, Class K08, AN90-020040)
  • [10] « Electron Density Measurements Of High Density Plasmas Using Soft X-Ray laser Interferometry » de C.B Da Silva, T.W. Barbee, R. Cauble, P. Celliers, D. Ciarlo, S. Libby, R.A. London, D. Mattjews, S. Mrowka, J.C. Moreno, D. Ress, J.E. Trebes, A.S. Wan, et F. Weber (Physical Review Letters, volume 74, 1995, pages 3991-3994)
  • Claims (17)

    1. Procédé de caractérisation d'un milieu ionisé en mettant en oeuvre une source de rayonnement électromagnétique de quelques 10-15 secondes de durée, dans lequel :
      on utilise deux faisceaux laser synchronisés de rayonnement : un faisceau principal (10) et un faisceau secondaire (12) ;
      on génère un rayonnement intense de radiation X (15) ;
      on réfléchit le rayonnement X (15) de manière à le diriger et à le focaliser sur le volume de l'espace où se trouve situé le milieu ionisé ;
      on réfléchit le rayonnement X (15), selon un angle spécifique dépendant de l'angle d'incidence sous la forme d'un faisceau de photons X composé d'un premier train (20) d'impulsions X espacées régulièrement, ce train d'impulsions (20) étant dirigé vers le milieu ionisé (21) ;
      on délivre un second train d'impulsions de même distribution temporelle que le premier ;
      caractérisé en ce que :
      on génère le rayonnement intense de radiation X (15) par impact du faisceau principal (10) sur une cible métallique (11), les caractéristiques de ce rayonnement dépendant de la cible sélectionnée ;
      on détecte (30) le rayonnement X réémis par le milieu ionisé (21) avec un dispositif (31) comprenant une ligne de transmission (34) et plusieurs lignes d'échantillonnage (32) pouvant être reliées à celle-ci par des éléments photoconducteurs (33) en activant ces éléments photoconducteurs par le second train d'impulsions ;
      on mesure (36) et on enregistre les signaux délivrés par chaque ligne d'échantillonnage (32) connectée aux éléments photoconducteurs (33).
    2. Procédé selon la revendication 1, caractérisé en ce que le fonctionnement des faisceaux laser est synchronisé à celui du dispositif générateur du milieu ionisé à caractériser.
    3. Procédé selon la revendication 1, caractérisé en ce qu'on utilise deux faisceaux lasers (10, 12) principal et secondaire dérivés d'un même faisceau laser de quelques 10-15 secondes de durée.
    4. Dispositif de caractérisation d'un milieu ionisé, comprenant :
      une source délivrant un faisceau laser (10) de rayonnement électromagnétique de quelques 10-15 secondes de durée ;
      un moyen (22) de séparation de ce faisceau en deux faisceaux laser synchronisés de rayonnement : un faisceau principal (10) et un faisceau secondaire (12) ;
      un moyen d'interaction (11) qui génère un rayonnement intense de radiation X (15) ;
      un miroir (16) réflecteur du rayonnement X (15) de manière à le diriger et à le focaliser sur le volume de l'espace où se trouve situé le milieu ionisé ;
      un moyen séquenceur (18) orienté de manière à réfléchir le rayonnement X (15), selon un angle spécifique dépendant de l'angle d'incidence sous la forme d'un faisceau de photons X composé d'un premier train (20) d'impulsions X espacées régulièrement, ce train d'impulsions X (20) étant dirigé vers le milieu ionisé (21) ;
      une série d'optiques de reprise (23, 24, 25 et 26) du faisceau secondaire ;
      un séquenceur (37) de faisceau laser délivrant un second train d'impulsions de même distribution temporelle que le premier ;
      caractérisé en ce que le moyen d'interaction (11) génère le rayonnement intense de radiation X sous l'effet du faisceau principal (10), les caractéristiques de ce rayonnement dépendant du moyen d'interaction considéré et en ce que ledit dispositif comprend en outre :
      un dispositif opto-électronique (30, 31) à la fois détecteur (30) du rayonnement X réémis par le milieu ionisé (21) et autocorrélateur optoélectronique (31) comprenant une ligne de transmission (34) et plusieurs lignes d'échantillonnage (32) pouvant être reliées à celle-ci par des éléments photoconducteurs (33), une ligne à retard optique (38) étant associée à chaque élément photoconducteur (33), ces éléments photoconducteurs étant activés par le second train d'impulsions ;
      un système électronique de mesure (36) et d'enregistrement des signaux délivrés par chaque ligne d'échantillonnage (32) connectée aux éléments photoconducteurs (33).
    5. Dispositif selon la revendication 4, caractérisé en ce que le dispositif autocorrélateur optoélectronique (31) est un dispositif de discrimination (31) du signal généré dans une ligne de transmission (34) par un échantillonnage temporel résultant de l'illumination successive d'éléments photoconducteurs (33) distribués le long de cette ligne (34) par le second train d'impulsions.
    6. Dispositif selon la revendication 4, caractérisé en ce que le moyen d'interaction est un matériau-cible (11) qui, sous l'effet du faisceau principal (10) focalisé par une lentille (13), génère un faisceau de rayons X (15).
    7. Dispositif selon la revendication 6, caractérisé en ce que le matériau-cible (11) est composé d'un matériau métallique.
    8. Dispositif selon la revendication 7, caractérisé en ce que ce matériau est compris parmi les matériaux suivants : titane, nickel, zinc ou tungstène.
    9. Dispositif selon la revendication 4, caractérisé en ce que ce miroir (16) est un miroir de forme sphérique.
    10. Dispositif selon la revendication 4, caractérisé en ce que le moyen séquenceur du faisceau de rayons X est un miroir (18) composé de couches métalliques réflectrices empilées régulièrement et orientées de manière à délivrer un faisceau de photons X composé d'un train (20) d'impulsions X espacés régulièrement.
    11. Dispositif selon la revendication 4, caractérisé en ce que plusieurs moyens optiques réflecteurs (23, 24, 25, 26) sont disposés entre le moyen de séparation de faisceaux (22) et le moyen de détection (31) pour modifier le trajet du faisceau secondaire (12).
    12. Dispositif selon la revendication 4, caractérisé en ce que le moyen de détection est un composant optoélectronique de technologie micro-électronique associant un substrat isolant, un matériau photoconducteur sous un impact laser de type rapide sur lequel est déposé une ligne de transmission métallique (34) du signal électrique émis par un détecteur (30) sous l'impact des rayons X secondaires (35) réémis par le milieu ionisé (21).
    13. Dispositif selon la revendication 12, caractérisé en ce que le substrat isolant est un matériau saphir ou arséniure de gallium ou tellurure de Cadmium.
    14. Dispositif selon la revendication 12, caractérisé en ce que le matériau photoconducteur est un matériau arséniure de gallium ou tellurure de cadmium basse température.
    15. Dispositif selon la revendication 12, caractérisé en ce que la ligne de transmission est en aluminium.
    16. Dispositif selon la revendication 4, caractérisé en ce que le moyen séquenceur du faisceau secondaire (37) est un dispositif de type Michelson.
    17. Dispositif selon la revendication 16, caractérisé en ce que ce moyen séquenceur (37) est suivi d'un amplificateur de faisceau.
    EP96943163A 1995-12-22 1996-12-20 Procede et dispositif de caracterisation d'un milieu ionise mettant en oeuvre une source de rayonnement electromagnetique a duree ultracourte Expired - Lifetime EP0868835B1 (fr)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    FR9515390 1995-12-22
    FR9515390A FR2742866B1 (fr) 1995-12-22 1995-12-22 Procede et dispositif de caracterisation d'un milieu ionise mettant en oeuvre une source de rayonnement electromagnetique a duree ultracourte
    PCT/FR1996/002047 WO1997024020A1 (fr) 1995-12-22 1996-12-20 Procede et dispositif de caracterisation d'un milieu ionise mettant en oeuvre une source de rayonnement electromagnetique a duree ultracourte

    Publications (2)

    Publication Number Publication Date
    EP0868835A1 EP0868835A1 (fr) 1998-10-07
    EP0868835B1 true EP0868835B1 (fr) 2001-07-25

    Family

    ID=9485878

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP96943163A Expired - Lifetime EP0868835B1 (fr) 1995-12-22 1996-12-20 Procede et dispositif de caracterisation d'un milieu ionise mettant en oeuvre une source de rayonnement electromagnetique a duree ultracourte

    Country Status (4)

    Country Link
    EP (1) EP0868835B1 (fr)
    DE (1) DE69614143D1 (fr)
    FR (1) FR2742866B1 (fr)
    WO (1) WO1997024020A1 (fr)

    Family Cites Families (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FR2626376B1 (fr) * 1988-01-22 1990-07-13 Commissariat Energie Atomique Dispositif et procede de mesure d'une impulsion breve de rayonnement ou d'une impulsion breve electrique
    JPH01301153A (ja) * 1988-05-30 1989-12-05 Toshiba Corp X線光学素子評価装置

    Non-Patent Citations (2)

    * Cited by examiner, † Cited by third party
    Title
    OPT. LETTERS, vol. 20, 1995, pages 1907-1909 *
    PHYSICAL REVIEW LETTERS, vol. 74, 1995, pages 3991-3994 *

    Also Published As

    Publication number Publication date
    FR2742866A1 (fr) 1997-06-27
    WO1997024020A1 (fr) 1997-07-03
    FR2742866B1 (fr) 1998-01-30
    EP0868835A1 (fr) 1998-10-07
    DE69614143D1 (de) 2001-08-30

    Similar Documents

    Publication Publication Date Title
    EP2614363B1 (fr) Dispositif de cartographie et d'analyse à haute résolution d'éléments dans des solides
    EP3635354B1 (fr) Dispositif optoélectronique de mesure répartie par fibre optique
    Shelkovenko et al. Time-resolved spectroscopic measurements of∼ 1 keV, dense, subnanosecond X-pinch plasma bright spots
    EP3137881B1 (fr) Systeme et procede de spectrometrie de decharge luminescente et de mesure in situ de la profondeur de gravure d'un echantillon
    Nugent-Glandorf et al. A laser-based instrument for the study of ultrafast chemical dynamics by soft x-ray-probe photoelectron spectroscopy
    Rymell et al. Debris elimination in a droplet‐target laser‐plasma soft x‐ray source
    WO1999061866A1 (fr) Dispositif et procede permettant de mesurer une caracteristique d'une structure
    KR101395908B1 (ko) 광학 공동을 통합한 피코초 초음파 시스템
    EP3488505A1 (fr) Système et procédé de spectrométrie acoustique résonante
    Zarini et al. Multioctave high-dynamic range optical spectrometer for single-pulse, longitudinal characterization of ultrashort electron bunches
    EP0868835B1 (fr) Procede et dispositif de caracterisation d'un milieu ionise mettant en oeuvre une source de rayonnement electromagnetique a duree ultracourte
    EP0846274A1 (fr) Sonde velocimetrique optique
    CN108387319B (zh) 一种单发宽带太赫兹频谱仪
    WO1997024019A1 (fr) Procede et dispositif interferometriques de caracterisation d'un milieu
    JP3699682B2 (ja) マルチパスレーザ散乱測定方法
    Jannitti et al. Analysis of the radiation backscattered from a laser‐produced plasma
    FR2850461A1 (fr) Procede et appareil pour realiser un substrat pour semi-conducteur ou similaire
    FR2752101A1 (fr) Dispositif de generation d'impulsions ultra-courtes de rayonnement x
    Offenberger et al. Experimental results for high intensity KrF laser/plasma interaction
    US6876723B1 (en) Rise time measurement for ultrafast X-ray pulses
    Werdiger et al. Development of holographic methods for investigating a moving free surface, accelerated by laser-induced shock waves
    WO2013092811A1 (fr) Procede de quantification d'atomes de gaz rare, notamment de xenon, et dispositif pour la mise en oeuvre d'un tel procede
    CN116136489A (zh) 多色仪及汤姆逊散射诊断系统
    Kim et al. Terahertz-frequency electrical conductivity measurements of ultrashort laser-ablated plasmas
    Gold et al. Interferometric and Chirped Optical Probe Techniques for High-Pressure Equation-of-State Measurements

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 19980520

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): DE GB IT

    17Q First examination report despatched

    Effective date: 19981123

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE GB IT

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

    Effective date: 20010725

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20010725

    REF Corresponds to:

    Ref document number: 69614143

    Country of ref document: DE

    Date of ref document: 20010830

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20011026

    GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

    Effective date: 20010725

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed