EP0866778A1 - Procede de fabrication de compositions de ciments de melange - Google Patents

Procede de fabrication de compositions de ciments de melange

Info

Publication number
EP0866778A1
EP0866778A1 EP96944741A EP96944741A EP0866778A1 EP 0866778 A1 EP0866778 A1 EP 0866778A1 EP 96944741 A EP96944741 A EP 96944741A EP 96944741 A EP96944741 A EP 96944741A EP 0866778 A1 EP0866778 A1 EP 0866778A1
Authority
EP
European Patent Office
Prior art keywords
cement
portland cement
weight
amount
clinker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP96944741A
Other languages
German (de)
English (en)
Other versions
EP0866778A4 (fr
Inventor
Joseph P. Fleming
Joseph J. Hiznay
Arpad Savoly
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel Corp
Original Assignee
Henkel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel Corp filed Critical Henkel Corp
Publication of EP0866778A1 publication Critical patent/EP0866778A1/fr
Publication of EP0866778A4 publication Critical patent/EP0866778A4/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/48Clinker treatment
    • C04B7/52Grinding ; After-treatment of ground cement
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/16Sulfur-containing compounds
    • C04B24/20Sulfonated aromatic compounds
    • C04B24/22Condensation or polymerisation products thereof
    • C04B24/226Sulfonated naphtalene-formaldehyde condensation products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/12Natural pozzuolanas; Natural pozzuolana cements; Artificial pozzuolanas or artificial pozzuolana cements other than those obtained from waste or combustion residues, e.g. burned clay; Treating inorganic materials to improve their pozzuolanic characteristics
    • C04B7/13Mixtures thereof with inorganic cementitious materials, e.g. Portland cements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding

Definitions

  • This invention relates to a method of making a blended cement composition comprised of a portland cement and a pozzolanic material.
  • Hydraulic cements are powder material which, when mixed with water, alone or with aggregate, form rock-hard products, such as paste, mortar or concrete Paste is formed by mixing water with a hydraulic cement Mortar is formed by mixing a hydraulic cement with small aggregate (e g sand) and water Concrete is formed by mixing a hydraulic cement with small aggregate, large aggregate (e g 0 2-1 inch stone) and water
  • portland cement is a commonly used hydraulic cement material with particular standard specifications established in the various countries of the world
  • various organizations such as American Society for Testing and Materials (ASTM), American Association of State Highway and Transportation Officials, as well as other governmental agencies, have established certain minimum standards for hydraulic cements which are based on principal chemical composition requirements of the clinker used to form the cement powder and principal physical property requirements of the final cement mix
  • hydraulic cements are prepared by sintering a mixture of components including calcium carbonate (as limestone), aluminum silicate (as clay or shale), silicon dioxide (as sand), and miscellaneous iron oxides
  • calcium carbonate limestone
  • aluminum silicate as clay or shale
  • silicon dioxide as sand
  • miscellaneous iron oxides During the sintering process, chemical reactions take place wherein hardened nodules, commonly called clinkers, are formed
  • Portland cement clinker is formed by the reaction of calcium oxide with acidic components to give, primarily t ⁇ calcium silicate, dicalcium silicate, t ⁇ calcium aluminate, and a ferrite solid solution phase approximating tetracalcium aluminofer ⁇ te
  • CaO C
  • S ⁇ O 2 S
  • AI 2 O 3 A
  • Fe 2 O 3 F
  • tncalcium silicate C3S
  • dicalcium silicate C2S
  • gypsum calcium sulfate
  • gypsum calcium sulfate
  • other materials may be added or the clinker composition may be modified to provide a particular desired type of hydraulic cement
  • limestone granulated blast furnace slag, pozzolans and the like are substituted for a portion of the expensive clinker material
  • cements are generally inert and are used in cements where economy is of prime consideration and some diminuation in strength is acceptable
  • boended cement refers to hydraulic cements having between 5 and 80% (more conventionally 5-60%) clinker substitute material as part of its composition
  • Other hydraulic cements include, for example, moderate heat portland cement, fly ash portland cement, portland blast furnace cement and the like
  • U S Patent No 5,429,675 discloses a grinding aid composition suitable for grinding clinker into hydraulic cement powder, which grinding aid composition is composed of a mixture of at least one alkylene ether glycol and particulate carbon
  • U S Patent No 3,856,542 discloses an aqueous solution of melamine formaldehyde condensation product is sprayed over dry cement product in the fine grinding compartment of a cement grinding mill at a uniform rate essentially throughout the grinding process in concentration and amount chosen to evaporate all the aqueous solvent during the normal cement g ⁇ nding process and introduce an aggregate of 0 1 to 2 0 weight per cent of condensation product solid in relation to the dry cement product being ground
  • two previously necessary operation steps are spared, (1) spray drying of the solution of the condensation product and (2) the mixing of the pulverulent condensation product with the ground cement
  • U S Patent No 4,306,912 discloses a process for producing a binder (cement) to be used in slurry, mortar, or concrete having a low water-to-cement ratio
  • a binder cement
  • the hydraulic material is ground to a specific surface of at least 400 m 2 /kg.
  • a plasticizing material such as a sulphonated polyelectrolyte, e.g. formaldehyde-naphthalene condensation products.
  • the raw-material To the raw-material are also added in total 0.5 to 8% by weight of sodium carbonate and/or sodium hydroxide. It is also disclosed that if it is desirable to add clinker to the binder or to the concrete, the clinker should preferably be ground separately while using the same admixtures.
  • This invention relates a method of preparing a blended cement composition which comprises intergrinding a composition comprised of a major amount by weight of portland cement clinker, a minor amount by weight of a pozzolanic material and a grinding aid in an amount of from about 0.1% to about 5% based on the total weight of portland cement clinker and pozzolanic material, said grinding aid being comprised of a naphthalenesulfonate formaldehyde
  • Naphthaleneformaldehyde sulfonic acid is also known as the naphthalenesulfonic acid-formaldehyde condensates, formalin condensates of beta-naphthalenesulfonic acid, condensation products of naphthalenesulfonic acid with formaldehyde.
  • Naphthaleneformaldehyde sulfonic acid may be prepared by reacting a mixture of naphthalene, formaldehyde and sulfuric acid. It may be prepared by the processes described in U.S. Pat. No. 2, 141 ,569 (Tucker et al, issued Dec. 27, 1938), U.S. Pat. No.
  • Naphthaleneformaldehyde sulfonic acid is a mixture of condensation products of naphthalenesulfonic acid and formaldehyde. It can be chromatographed by size exclusion chromatography through a column containing pore sizes which selectively separate molecular volumes according to size. The solvent chosen for the acid in chromatography should minimize solute-packing interaction and solute-solute interaction. The chromatogram gives a true molecular volume profile when the eluents are displayed on a detector-strip chart recorder display.
  • the two anionic materials are identical. That is, the anionic materials from the acid have the same profile as the anionic materials from the sodium naphthaleneformaldehyde sulfonate having lowest elution volumes of from above 61 to about 70% of the total elution volume and equivalent elution volumes of from about 61 to about 70% of the total elution volume.
  • the naphthaleneformaldehyde sulfonic acid resin can be in the acid form but is preferably in an essentially neutralized form, e.g. as a water soluble salt.
  • the counter ion of the neutralized resin can be a metal selected from the group consisting of sodium, calcium, magnesium, lithium, zinc, and mixtures of two or more of said metals Naphthalenesulfonate formaldehyde condensate resins available from Henkel Corporation, Ambler, Pennsylvania, as Lomar D, are particularly preferred
  • the concentration of the grinding aid composition in the blend of cement clinker and pozzolanic material may vary, but will generally be less than about
  • the portland cement clinker used in the process of this invention is an intermediate produced in the process of manufacturing finished portland cements
  • a portland cement is a hydraulic cement produced by pulverizing clinker which predominantly comprises hydraulic calcium silicates, and usually contains one or more of the forms of calcium sulfate e g gypsum, as an interground addition present in a few percent by weight, typically 4% to 6% by weight
  • the clinker is prepared by heating a mixture of limestone and clay or shale, or other calcareous and argillaceous mate ⁇ als to a fused state
  • a portland cement will typically comprise about 60 to about 69% by weight of combined and uncombined calcium oxide
  • ASTM C 150 Standard Specification for Portland Cement, covers 8 types of portland cement, all of which may be employed in accordance with the present invention, ASTM C 150 is hereby incorporated by reference in its entirety
  • Type I is for use when the special properties specified for any other type are not required, no limits are imposed on any of the four principal compounds
  • Type IA is air-entrained Type I cement, for use where air entrainment is desired (e g , for making frost-resistant concrete)
  • Type II is for general use, more especially when moderate sulfate resistance or moderate heat of hydration is desired; since C3A and C3S produce high heats of hydration, the specification limits the C3A content of the cement to maximum 8 percent, and has an optional limit of maximum 58 percent on the sum of C3S and C3A (this limit applies when a moderate heat of hydration is required and test data for heat of hydration are not available).
  • ASTM C 595 Standard Specification for Blended Hydraulic Cements, covers five classes of blended cements; ASTM C 595 is hereby incorporated by reference in its entirety.
  • a blended cement which is typically produced by the present invention may be characterized as a cement which meets the specifications of ASTM C 595 for Type IS, Type l(SM), Type IP or Type !(PM) cement.
  • a blended cement may, in general, be produced by intergrinding portland cement clinker with other materials, blending the components together or both intergrinding and blending them together. In the method of this invention, the portland cement clinker, pozzolanic material and grinding aid are all ground together.
  • Type l(PM) is a pozzolan-modified portland cement produced either by intergrinding portland cement clinker and pozzolan, or by blending portland cement and finely divided pozzolan, in which the pozzolan content is less than 15% by weight of the pozzolan-modified portland cement composition.
  • Type IP is a portland-pozzolan cement produced either by intergrinding portland Cement clinker and pozzolan or by blending portland cement and finely divided pozzolan, in which the pozzolan constituent comprises about 15-40 weight-% of the portland-pozzolan composition.
  • ASTM C 618 Standard Specification for Fly Ash and Raw or Calcined Natural Pozzolan for Use as a Mineral Admixture in Portland Cement Concrete, provides additional details concerning the chemical and physical properties of pozzolans and fly ashes.
  • ASTM C 618 is hereby inco ⁇ orated by reference in its entirety.
  • the materials comprised within the specifications of ASTM C 618 are divided into three classes.
  • Class N comprises raw or calcined natural pozzolans such as some diatomaceous earths, opaline cherts and shales, tuffs and volcanic ashes or pumicites, and various materials requiring calcination to induce satisfactory properties (such as some clays and shales.
  • Class F comprises fly ash normally produced from burning anthracite or bituminous coal.
  • Portland cement is by far the most widely used hydraulic cement
  • hydraulic cement includes those inorganic cements which, when mixed with water, set and harden as a result of chemical reactions between the water and the compounds present in the cement
  • crete includes a mixture of such hydraulic cements and inert aggregates Typical aggregates include conventional aggregates such as gravel, sand, granite, limestone, and quartz sieve
  • Conventional hydraulic cement concretes e g Portland cement concretes, employ major amounts, i e over 50%, usually up to about 75% by volume of such aggregates in the set product
  • the cements may be used to prepare concrete mixes containing 100 parts by weight of cement, from about 140 to about 260 parts by weight of sand, from about 100 to about 200 parts by weight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

La présente invention concerne un procédé de préparation d'une composition de ciment de mélange. Ce procédé comprend le broyage d'une composition comprenant une proportion très importante, en poids, de clinker de ciment portland, une faible proportion en poids de pouzzolane et un auxiliaire de broyage dans une proportion d'environ 0,1 % à environ 5 % par rapport au poids total de clinker de ciment portland et de pouzzolane. Cet auxiliaire de broyage est constitué par un condensat de formaldéhyde de naphtalènesulfonate.
EP96944741A 1995-12-13 1996-12-06 Procede de fabrication de compositions de ciments de melange Withdrawn EP0866778A4 (fr)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US755433 1991-09-05
US854595P 1995-12-13 1995-12-13
US8545P 1995-12-13
US75543396A 1996-11-22 1996-11-22
PCT/US1996/019145 WO1997021637A1 (fr) 1995-12-13 1996-12-06 Procede de fabrication de compositions de ciments de melange

Publications (2)

Publication Number Publication Date
EP0866778A1 true EP0866778A1 (fr) 1998-09-30
EP0866778A4 EP0866778A4 (fr) 2000-01-12

Family

ID=26678305

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96944741A Withdrawn EP0866778A4 (fr) 1995-12-13 1996-12-06 Procede de fabrication de compositions de ciments de melange

Country Status (3)

Country Link
EP (1) EP0866778A4 (fr)
CA (1) CA2240291C (fr)
WO (1) WO1997021637A1 (fr)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1160218A3 (fr) * 2000-05-22 2004-05-12 Cay Worldwide Corp. Silver Procédé de fabrication d'un liant
SE524393C2 (sv) * 2002-11-07 2004-08-03 Procedo Entpr Ets Metod för behandling av flygaska
US7631692B2 (en) * 2005-09-09 2009-12-15 Halliburton Energy Services, Inc. Settable compositions comprising a natural pozzolan and associated methods
US8281859B2 (en) 2005-09-09 2012-10-09 Halliburton Energy Services Inc. Methods and compositions comprising cement kiln dust having an altered particle size
US8609595B2 (en) 2005-09-09 2013-12-17 Halliburton Energy Services, Inc. Methods for determining reactive index for cement kiln dust, associated compositions, and methods of use
US9809737B2 (en) 2005-09-09 2017-11-07 Halliburton Energy Services, Inc. Compositions containing kiln dust and/or biowaste ash and methods of use
US9006155B2 (en) 2005-09-09 2015-04-14 Halliburton Energy Services, Inc. Placing a fluid comprising kiln dust in a wellbore through a bottom hole assembly
US9051505B2 (en) 2005-09-09 2015-06-09 Halliburton Energy Services, Inc. Placing a fluid comprising kiln dust in a wellbore through a bottom hole assembly
US8522873B2 (en) 2005-09-09 2013-09-03 Halliburton Energy Services, Inc. Spacer fluids containing cement kiln dust and methods of use
US9150773B2 (en) 2005-09-09 2015-10-06 Halliburton Energy Services, Inc. Compositions comprising kiln dust and wollastonite and methods of use in subterranean formations
US8950486B2 (en) 2005-09-09 2015-02-10 Halliburton Energy Services, Inc. Acid-soluble cement compositions comprising cement kiln dust and methods of use
US8672028B2 (en) 2010-12-21 2014-03-18 Halliburton Energy Services, Inc. Settable compositions comprising interground perlite and hydraulic cement
US9023150B2 (en) 2005-09-09 2015-05-05 Halliburton Energy Services, Inc. Acid-soluble cement compositions comprising cement kiln dust and/or a natural pozzolan and methods of use
US8505630B2 (en) 2005-09-09 2013-08-13 Halliburton Energy Services, Inc. Consolidating spacer fluids and methods of use
US9676989B2 (en) 2005-09-09 2017-06-13 Halliburton Energy Services, Inc. Sealant compositions comprising cement kiln dust and tire-rubber particles and method of use
RU2544355C2 (ru) * 2013-03-18 2015-03-20 Закрытое акционерное общество "ИМЭТСТРОЙ" (ЗАО "ИМЭТСТРОЙ") Способ производства наноцемента и наноцемент
US10737979B2 (en) 2017-04-20 2020-08-11 United States Gypsum Company Gypsum set accelerator and method of preparing same
US10961428B1 (en) 2020-01-02 2021-03-30 Halliburton Energy Services, Inc. Low-Portland extended life slurries for use in oilwell cementing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1469273A (en) * 1973-03-14 1977-04-06 Raychem Corp Hydraulic cemenet and methods therefor
GB2099414A (en) * 1981-06-02 1982-12-08 Grace W R & Co Grinding aids for hydraulic cements
WO1992000251A1 (fr) * 1990-06-25 1992-01-09 The Regents Of The University Of California Produits de ciment extremement durables contenant des cendres silicieuses

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3565648A (en) * 1966-10-13 1971-02-23 Kajima Construction Co Ltd Method of utilizing blast furnace slag as a strength-improving agent for hardened cement
US3857714A (en) * 1971-08-12 1974-12-31 Chem Prestressed Concrete High calcium sulfate expansive clinker
GR68405B (fr) * 1979-05-31 1981-12-29 Flowcon Oy
US4495228A (en) * 1981-08-19 1985-01-22 Cornwell Charles E Hydraulic cement composition and method for use as protective coating for substrates
US5578122A (en) * 1994-02-14 1996-11-26 The University Of Texas System Methods of producing concretes containing class C fly ash that are stable in sulphate environments

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1469273A (en) * 1973-03-14 1977-04-06 Raychem Corp Hydraulic cemenet and methods therefor
GB2099414A (en) * 1981-06-02 1982-12-08 Grace W R & Co Grinding aids for hydraulic cements
WO1992000251A1 (fr) * 1990-06-25 1992-01-09 The Regents Of The University Of California Produits de ciment extremement durables contenant des cendres silicieuses

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO9721637A1 *

Also Published As

Publication number Publication date
WO1997021637A1 (fr) 1997-06-19
CA2240291A1 (fr) 1997-06-19
CA2240291C (fr) 2004-10-26
EP0866778A4 (fr) 2000-01-12

Similar Documents

Publication Publication Date Title
CA2240291C (fr) Procede de fabrication de compositions de ciments de melange
US5584926A (en) Cement compostion
US5429675A (en) Grinding aid composition and cement product
CA1129444A (fr) Beton aux aggregats de cendres volantes et de ciment portland
US6869474B2 (en) Very fast setting cementitious composition
US5626665A (en) Cementitious systems and novel methods of making the same
US5084103A (en) Strength enhancing additive for certain portland cements
US4306912A (en) Process for producing a binder for slurry, mortar, and concrete
CA2105905C (fr) Formulations pour liants hydrauliques legers
US4943323A (en) Processing additives for blended cements
US4032353A (en) Low porosity aggregate-containing cement composition and process for producing same
CA2481273A1 (fr) Composition a base de ciment a prise rapide
CA2769877A1 (fr) Agent desentraineur d'air robuste pour le broyage de ciment
EP0346416B1 (fr) Ciment hydraulique et composition l'utilisant
WO1986000291A1 (fr) Ameliorations en matiere de composes organiques pour des melanges de ciment
CA1061809A (fr) Procede de fabrication d'un ciment peu poreux
WO2016151388A1 (fr) Composition de ciment mixte
Malhotra et al. Blended cements in North America—a review
US4424074A (en) Additives for cementitious compositions
CN118019720A (zh) 混凝土外加剂
EP4067321B1 (fr) Ciment comprenant du clinker de ciment et un materiau cimentaire complementaire de type pozzolanique
EP4392385A1 (fr) Adjuvants du béton
WO2001044358A1 (fr) Modificateur mineral organique pour systemes a base de ciment
BABU AN EFFECTIVE PERFORMANCE OF CONCRETE BY USING CHEMICAL & MINERAL ADMIXTURES
MXPA00003134A (en) Strength enhanced portland cement compositions

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980603

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HENKEL CORPORATION

A4 Supplementary search report drawn up and despatched

Effective date: 19991130

AK Designated contracting states

Kind code of ref document: A4

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20020702