EP0866152B1 - Dispositif et procédé pour fusion-soufflage - Google Patents

Dispositif et procédé pour fusion-soufflage Download PDF

Info

Publication number
EP0866152B1
EP0866152B1 EP19980302075 EP98302075A EP0866152B1 EP 0866152 B1 EP0866152 B1 EP 0866152B1 EP 19980302075 EP19980302075 EP 19980302075 EP 98302075 A EP98302075 A EP 98302075A EP 0866152 B1 EP0866152 B1 EP 0866152B1
Authority
EP
European Patent Office
Prior art keywords
air
die
row
forming means
air holes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19980302075
Other languages
German (de)
English (en)
Other versions
EP0866152A1 (fr
Inventor
Martin A. Allen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nordson Corp
Original Assignee
Nordson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nordson Corp filed Critical Nordson Corp
Publication of EP0866152A1 publication Critical patent/EP0866152A1/fr
Application granted granted Critical
Publication of EP0866152B1 publication Critical patent/EP0866152B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • B05C5/027Coating heads with several outlets, e.g. aligned transversally to the moving direction of a web to be coated
    • B05C5/0275Coating heads with several outlets, e.g. aligned transversally to the moving direction of a web to be coated flow controlled, e.g. by a valve
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D4/00Spinnerette packs; Cleaning thereof
    • D01D4/02Spinnerettes
    • D01D4/025Melt-blowing or solution-blowing dies
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/098Melt spinning methods with simultaneous stretching
    • D01D5/0985Melt spinning methods with simultaneous stretching by means of a flowing gas (e.g. melt-blowing)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • B05C5/0225Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work characterised by flow controlling means, e.g. valves, located proximate the outlet
    • B05C5/0237Fluid actuated valves

Definitions

  • This invention relates generally to a meltblowing process and die system known, for instance, from US-A-4 969 602.
  • the invention relates to a meltblowing die comprising a plurality of self-contained, interchangeable modular units.
  • the invention relates to a meltblowing die for meltblowing polymer onto a substrate or collector wherein the deposition pattern is wider than the effective length of the die.
  • the present invention relates to a modular meltblowing die wherein adhesive is deposited uniformly across a substrate.
  • Meltblowing is a process in which high velocity hot air (normally referred to as "primary air") is used to blow molten fibers extruded from a die onto a collector to form a web, or onto a substrate to form a coating or composite.
  • the process employs a die provided with (a) a plurality of openings (e.g. orifices) formed in the apex of a triangular shaped die tip and (b) flanking air passages.
  • openings e.g. orifices
  • the converging high velocity air from the air passages contacts the filaments and by drag forces stretches and draws them down forming microsized filaments.
  • the microsized filaments are deposited in a random pattern on a collector or substrate.
  • the openings are in the form of slots.
  • the die openings are in the form of orifices.
  • the die tips are adapted to form a row of filaments which upon contact with the converging sheets of air are carried to and deposited on a collector or a substrate in a random manner.
  • meltblowing technology was originally developed for producing nonwoven fabrics but recently has been utilized in the meltblowing of adhesives onto substrates.
  • the filaments are drawn down to their final diameter of 5 to 50.0 ⁇ m, preferably 10 to 20.0 ⁇ m, and are deposited at random on a substrate to form an adhesive layer thereon onto which may be laminated another layer such as film or other types of materials or fabrics.
  • the polymers such as polyolefin, particularly polypropylene
  • the polymers are extruded as filaments and drawn down to an average fiber diameter of 0.5 to 10 ⁇ m and deposited at random on a collector to form a nonwoven fabric.
  • the integrity of the nonwoven fabric is achieved by fiber entanglement with some fiber-to-fiber fusion.
  • the nonwoven fabrics have many uses including oil wipes, surgical gowns, masks, filters, etc.
  • filaments extruded from the die may be continuous or discontinuous.
  • filament is used interchangeably with the term “fiber” and refers to both continuous and discontinuous strands.
  • meltblowing process grew out of laboratory research by the Naval Research Laboratory which was published in Naval Research Laboratory Report 4364 "Manufacture of Superfine Organic Fibers," Apr. 15, 1954.
  • Exxon Chemical developed a variety of commercial meltblowing dies, processes, and end-use products as evidenced by US-A-3,650,866, US-A-3,707,198, US-A-3,755,527, US-A-3,825379, US-A-3,849,241, US-A-3,947,537 and US-A-3,978,185 by Beloit and Kimberly Clark.
  • Representative meltblowing patents of these two companies include US-A-3,942,723, US-A-4,100,324, and US-A-4,526,733. More recent meltblowing die improvements are disclosed in US-A-4,818,463 and US-A-4,889,476.
  • US-A-5,145,689 discloses die constructed in side-by-side units with each unit having separate polymer flow systems including internal valves.
  • US Patent 4969602 describes a meltblowing system having a nozzle with an adhesive delivery passageway and an air delivery passageway.
  • a nozzle attachment has a single throughbore for receiving adhesive and delivering this as a bead.
  • Air jet bores receive air and direct it at the bead to form an elongate adhesive fibre in a compact spiral pattern.
  • a first aspect of the invention relates to a meltblowing system comprising
  • a second aspect of the invention relates to a meltblowing die comprising
  • the meltblowing die of the present invention may be modular in structure, comprising a plurality of self-contained meltblowing modules.
  • the modules are mounted in side-by-side relationship on a manifold so that the length of the die can be varied by merely adding modules to, or removing modules from, the structure.
  • the modules are interchangeable and each includes an internal valve for controlling polymer flow therethrough.
  • the modular meltblowing die comprises a manifold and plurality of modules mounted on the manifold.
  • the manifold has formed therein polymer flow passages for delivering a hot melt adhesive polymer to each module and hot air flow passages for delivering hot air to each module.
  • Each module includes a body, a die tip, and polymer and air flow passages for conducting hot melt adhesive and hot air from the manifold through each module.
  • the die tip of each module comprises (a) a triangular nosepiece terminating in an apex and polymer discharge means (i.e. fiber forming means) at the apex for discharging a row of closely spaced fibers, and (b) two rows of air passages flanking the row of fiber forming means.
  • the fiber forming means may be in the form of an elongate slot or slots but preferably is in the form of a row of orifices. In either design a row of fibers are discharged from the die.
  • Hot air which flows through the manifold and each module is discharged as two rows of converging hot air streams at or near the apex.
  • the polymer melt (such as hot melt adhesive) flows through the manifold and each module and discharges as a plurality of fibers into the converging air streams.
  • the air streams contact and draw down the fibers depositing them as random fibers onto a collector or a substrate.
  • the air passages flanking the row orifices are shaped and positioned in relation thereto so that the discharging air streams contact opposite sides of the row of fibers and preferably causes, at least some of the filaments, to flare out longitudinally in relation to the row of orifices.
  • the pattern of fiber deposition on the substrate thus has a lateral dimension larger than the length of the row of orifices.
  • the air passages are in the form of air holes drilled in the die.
  • the flanking air passages thus comprise two rows of converging air holes which lie in converging planes which intersect at or near the nosepiece apex.
  • the converging planes define an included angle of between above 60° - 90°.
  • the air hole design eliminates the need for air plates commonly used in meltblowing dies and thus represents a significant improvement over conventional meltblowing die designs.
  • a particularly advantageous feature of the modular die construction of the present invention is that it offers a highly versatile meltblowing die.
  • the die tip is the most expensive component of the die, requiring extremely accurate machining (a tolerance of 0.0005 to 0.001 inches (12.5 to 25 ⁇ m) on die tip dimensions is typical).
  • the cost of long dies is extremely expensive (on the order of US$1,300/inch).
  • the modules which are relatively inexpensive (US$300/inch)
  • the length of the die can economically be extended to lengths of 200 or more inches (5 m or more).
  • the air hole design permits controlled deposition of the fibers along the die length.
  • Another advantageous feature of the modular die construction is that it permits the repair or replacement of only the damaged or plugged portions of a die tip.
  • damage to or plugging of the die tip requires the complete replacement, or at least removal, of the die tip.
  • the present invention only the damaged or plugged module needs replacement or removal which can be done quickly which results in reduced equipment and service costs.
  • Another advantage of the preferred die constructed according to the present invention is as noted above, expensive and troublesome (e.g. plugging) air plates are not needed.
  • a still further advantage of the invention is the ability of the die to deposit the adhesive uniformly across on the substrate a plurality of modules.
  • the outwardly flaring of the filaments permits the adhesive to deposit on the substrate in a lateral spacing, greater than the length of the row of orifices.
  • a modular meltblowing die assembly 10 of the present invention comprises a manifold 11, a plurality of side-by-side self contained die modules 12, and a valve actuator assembly (including actuator 20) for controlling the polymer flow through each module.
  • Each module 12 includes a die body 16 and a die tip 13 for discharging a plurality of fibers 14 onto a substrate 15 (or collector).
  • the manifold 11 distributes a polymer melt and hot air to each of the modules 12.
  • die body 16 has formed therein an upper circular recess 17 and a low circular recess 18 which are interconnected by a narrow opening 19.
  • the upper recess 17 defines a cylindrical chamber 23 which is closed at its top by threaded plug 24.
  • a valve assembly 21 mounted within chamber 23 comprises piston 22 having depending therefrom stem 25.
  • the piston 22 is reciprocally movable within chamber 23, with adjustment pin 24A limiting the upward movement.
  • Conventional o-rings 28 may be used at the interface of the various surfaces for fluid seals as illustrated. Threaded set screws 29 may be used to anchor cap 24 and pin 24A at the proper location within recess 17.
  • Side ports 26 and 27 are formed in the wall of the die body 16 to provide communication to chamber 23 above and below piston 22, respectively. As described in more detail below, the ports 26 and 27 serve to conduct air (referred to as instrument gas) to and from each side of piston 22.
  • instrument gas air
  • lower recess 18 is formed in a downwardly facing surface 16A of body 16. This surface serves as the mounting surface for attaching the die tip 13 to the die body 16.
  • a threaded valve insert 30 mounted in the lower recess 18 is a threaded valve insert 30 having a central opening 31 extending axially therethrough and terminating in valve port 32 at its lower extremity.
  • a lower portion 33 of insert member 30 is of reduced diameter and in combination with die body inner wall 35 define a downwardly facing cavity 34 best seen in Figure 7.
  • Threaded bolt holes 50A formed in the mounting surface 16A of the die body receive bolts 50. As described later, bolts 50 maintain the die tip 13 secured to the die body 16.
  • Upper portion 36 of insert member 30 abuts the top surface of recess 18 and has a plurality (e.g. 4) of circumferential ports 37 formed therein and in fluid communication with the central passage 31.
  • An annular recess extends around the upper portion 36 interconnecting the ports 37.
  • Valve stem 25 extends through body opening 19 and axial opening 31 of insert member 30, and is adapted to seat on valve port 32 (as illustrated in Figure 2).
  • the annular space between stem 25 and opening 31 is sufficient for polymer melt to flow therethrough.
  • the lower end of stem 25 seats on port 32 with piston 22 in its lower position within chamber 23 as illustrated in Figure 2.
  • actuation of the valve moves stem end 25 away from port 32 (open position), permitting the flow of polymer melt therethrough, through port 37, through annular space, discharging through port 32 into the die tip 13.
  • Conventional o-rings may be used at the interface of the various surfaces as illustrated in the drawings.
  • the die tip 13 comprises a base member 46 which is generally coextensive with the mounting of surface 16A of die body 16, and a triangular nosepiece 52 which may be integrally formed with the base 46.
  • the nosepiece 52 is defined by converging surfaces 53 and 54 which meet at apex 56.
  • the apex 56 may be discontinuous, but preferably is continuous along the die 10.
  • the height of the nosepiece 52 may vary from 100% to 25% of the overall height of the die tip 13, but preferably is more than 50% and most preferably between 20% and 40%.
  • the portions of the base 46 extending outwardly from the nosepiece 52 serve as flanges for mounting the die tip 13 to the assembly and provide means for conducting air through the base.
  • the flanges of the base 46 have two rows of air holes 57 and 58, and mounting holes 51 which register with the mounting holes 50 of the body 16.
  • the rows of air holes 57 and 58 formed in the die tip base 46 define converging planes.
  • the plane defined by air holes 57 extends at the same angle as nosepiece surface 53, and the plane defined by air holes 58 extend at the same angle as nosepiece surface 54 (see Figure 3).
  • the included angles ( ⁇ ) of the planes and surfaces 52 and 53 ranges from 30° to 90°, preferably from 60° to 90°. (It is to be understood that reference to holes lying in a plane means the axes of the holes lie in the plane).
  • each row of air holes 57 and 58 lie in their respective planes, at least some of the air holes 57 or 58 within their respective planes are not parallel.
  • the die tip 13 is provided with an odd number (e.g. 17) of air holes 57, each having an inlet 59 and an outlet 60.
  • the row of air holes 58, on the opposite side of the nosepiece 52 is preferably the mirror image of the row of orifices 57, although they need not be.
  • the air holes 58 may be offset from air holes 52).
  • the die tip 13 further includes surface 47 which is mounted on surface 16A of the die body 16, closing cavity 34. Surface 47 also seats on the downwardly facing surface of insert member 30, with o-right providing a fluid seal at the junction of these two surfaces.
  • the central air holes (in this embodiment air hole 57A) extends perpendicular to the apex 56 as shown in Figure 8.
  • One or more air holes 57 located at the longitudinal center of the die tip 13 may extend parallel to air hole 57A. In designs with an even number of air holes 57, at least two of the center air holes 57A are preferably provided.
  • the air holes 57 flanking the center air hole 57A form an angle ⁇ (see Figure 9) with the apex 56 which decreases progressively (arithmetic) and symmetrically from the center hold 57A outwardly.
  • the outermost holes are shown as 57B on Figures 8 and 9.
  • the air holes 57B form an angle with the apex 56 that decreases in constant increments outwardly.
  • center air hole 57A forms an angle of 90° with the apex 56. If the angle increment is -1°, then the two air holes 57 adjacent air hole 57A forms an angle of 89° with the apex 56.
  • the angle of these air holes would be 82°.
  • the incremental angle may vary, but preferably is between 1/2 and 4°, most preferably between 1° and 3.5°.
  • center air holes 58 are referred to as 58A and flanking air holes 58 are referred to as 58B.
  • Polymer passages 65 are formed in the die tip 13, as shown in Figures 3 and 5.
  • the passages may be in the form of a distribution system comprising a plurality of passages 65 connected to inlet 67 by passage 68.
  • Inlet 67 registers with die body port 32 with die tip 13 mounted on die body 16.
  • the passages 65 have outlets at 69 which are uniformly spaced along the apex 56. Passages 65 preferably extend perpendicular to apex 56.
  • the design illustrated in Figure 5 serves well for small modules (i.e. lengths less than about 3" to 4" (75 to 100 mm)). For longer dies, a pressure balance coathanger design may be preferred.
  • the passages 65 are preferably small diameter orifices and serve as the fiber forming means. In an alternate embodiment, the fiber forming means may be in the form of a slot as described in US-A-5,618,566.
  • the manifold 11 is constructed in two parts: an upper body 81 and a lower body 82 bolted to the upper body by spaced bolts 92.
  • the upper body 81 and lower body 82 have mounting surfaces 83 and 84, respectively, which lie in the same plane for receiving modules 12.
  • the upper manifold body 81 has formed therein polymer header passages 86 extending longitudinally along the interior of body 81 and side feed passages 87 spaced along the header passage 86 for delivering polymer to each module 12.
  • the polymer feed passages 87 have outlets which register with passage 38 of its associated module 12.
  • the polymer header passage 86 has a side inlet at the end of the body 81 and terminates at near the opposite end of the body 81.
  • a connector block 94 (see Figure 1) bolted to the side of body 81 has a passage for directing polymer from feed line to the header channel 86.
  • the connector block 94 may include a polymer filter.
  • a polymer melt delivered to the die 10 flows from a source such as an extruder of metering pump through inlet passages to passage 86 and in parallel through the said feed passages 87 to the individual modules 12.
  • air is delivered to the modules through the lower block 82 of the manifold 11.
  • the air passages in the lower block 82 are in the form of a network of passages comprising a pair of passages 101 and 102, interconnecting side ports 103, and module air feed ports 105 longitudinally spaced along bore 101.
  • Air inlet passage 106 connects to air feed-line 107 near the longitudinal center of block 82.
  • Air feed ports 105 register with air passage 39 of its associated module.
  • the air flows through passage 102, through side passages 103 into passage 101, and in parallel through module air feed ports 105 and module passages 39.
  • the network design of manifold 82 serves to balance the air flow laterally over the length of the die 10.
  • instrument air for activating valve 21 is delivered to the chamber 23 of each module 12 by air passages formed in the block 81 of manifold 11.
  • instrument air passages 110 and 111 extend through the width of body 81 and each has an inlet 112 and an outlet 113.
  • Outlet 113 of passage 110 registers with port 26 formed in module 12 which leads to chamber 23 above piston 22; and
  • outlet 113 of passage 111 registers with port 27 of module 12 which leads to chamber 23 below piston 22.
  • An instrument air block 114 is bolted to block 81 and traverses the full length of the instrument air passages 110 and 111 spaced along body 81 (see Figure 1).
  • the instrument air block 114 has formed therein two longitudinal channels 115 and 116. With the block 114 bolted to body 81, channels 115 and 116 communicate with the instrument air passages 110 and 111, respectively.
  • Instrument tubing 117 and 118 delivers instrument air from control valve 119 to flow ports 108 and 109 and passages 110 and 111 in parallel.
  • Actuator 20 comprises three-way solenoidal air valve 119 coupled with electronic controls 120.
  • valve 21 of each module 12 is normally closed with the chamber 23 above piston 22 being pressurized and chamber 23 below piston 22 being vented through valve control 119.
  • Spring 55 also acts to maintain the closed position.
  • the 3-way control valve 119 is actuated by controls 120 sending instrument gas through tubing 118, channel 116, through passage 111, port 27 to pressurize chamber 23 below piston 22 and while venting chamber 23 above piston 22 through port 26, passage 110, channel 115 and tubing 117.
  • the excess pressure below piston 22 moves the piston and stem 25 upwardly opening port 32 to permit the flow of polymer to the die tip 13.
  • valves are activated simultaneously using a single valve actuator 20 so that polymer flows through all the modules 12 in parallel, or there is no flow at all through the die.
  • individual modules or groups of modules may be activated using multiple actuators 20 spaced along the die.
  • a particularly advantageous feature of the present invention is that it permits the construction of a meltblowing die with a wide range of possible lengths using standard sized manifolds and interchangeable, self-contained modules and achieve uniform fiber deposition along the length of the modular die.
  • Variable die length may be important for coating substrates of different sizes from one application to another. The following sizes and numbers are illustrative of the versatility of modular construction.
  • standard sized manifolds may be used. For example, a die length of one meter could employ 54 modules mounted on a manifold 1 m long. For a 20 inch (0.5 m) die length 27 modules would be mounted on a 20 inch (0.5 m) manifold.
  • the number of modules mounted on a standard manifold may be less than the number of module mounting places on the manifold.
  • Figure 1 illustrates a die having a total capacity of 16 modules. If, however, the application calls for only 14 modules, two end stations may be sealed using plates 99A and 99B disposed sealingly over the stations and secured to the die manifold using bolts. Each plate will be provided with a gasket or other means for sealing the air passages 105, polymer passage 87, and instrument air passages 110 and 111.
  • the plates 99A or 99B may also be useful in the event a module requires cleaning or repair.
  • the station may be sealed and the die continue to operate while the module is being worked on.
  • the die assembly may also include electric heaters (not shown) and thermocouple (not shown) for heat control and other instruments.
  • air supply line 107 may be equipped with an in-line electric or gas heater.
  • the modular die assembly can be tailored to meet the needs of a particular operation.
  • 14 modules each 0.74 inches (19 mm) in width, are mounted on a 13" (0.33 m) long manifold.
  • two end stations have been rendered inoperative using sealing plates 99A and 99B as has been described.
  • the lines, instruments, and controls are connected and operation commenced.
  • a hot melt adhesive is delivered to the die through line 97, hot air is delivered to the die through line 107, and instrument air or gas is delivered through lines 117 and 118.
  • Actuation of the control valves opens port 32 as described previously, causing polymer melt to flow though each module.
  • the melt flows in parallel through manifold passages 87, through side ports 38, through passages 27, annular space, and through port 32 into the die tip via passage 67.
  • the polymer melt is distributed laterally in passages 65 and 68 discharges through orifice 69 as side-by-side fibers 14.
  • the air meanwhile flows from manifold passage 105 into port 39 through chamber 34, holes 57 and 58 discharging at air hole outlets 60.
  • the converging air streams of air contact the fibers 14 discharging from the orifices 69 and by drag forces stretch them and deposit them onto an underlying substrate 15 in random pattern. This forms a generally uniform layer of meltblown material on the substrate 15.
  • the center air holes 57A and 58A are perpendicular to the apex so the air streams therefrom carry the fibers 14 directly to the substrate with no or little lateral flaring. However, the air streams discharging from the flanking air holes 57B and 58B converge upon the fibers 14 therebetween at an angle ⁇ (see Figure 9).
  • the angle ⁇ causes the fibers 14 to flare outwardly from the center of the die tip.
  • the flaring is gradual from center to the outermost holes 57B depending on the value of angle ⁇ .
  • the outermost fibers 14 of each module 16 exhibit the greatest degree of flaring, with the inner fibers gradually showing an increase in the degree of flaring from center to opposite ends.
  • the die is constructed so the fibers 14 deposited by one module is uniformly spaced with the fibers 14 deposited by its adjacent module or modules, with no, or very little overlapping.
  • Typical operational parameters are as follows: Polymer Hot melt adhesive Temperature of the Die and Polymer 270°F to 325°F (132-163°C), preferably at least 280°F (138°C) Temperature of Air 280°F to 325°F (138-163°C) Polymer Flow Rate 0.1 to 10 gms/hole/min. Hot Air Flow Rate 0.1 to 2 SCPM/inch 18.57 to 371.4 cm 3 .s -1 .cm -1 Deposition 0.05 to 500 g/m2
  • the die assembly 10 may be used in meltblowing adhesives, spray coating resins, and web forming resins.
  • the adhesives include EVA's (e.g. 20-40 wt% VA). These polymers generally have lower viscosities than those used in meltblown webs.
  • Conventional hot melt adhesives useable include those disclosed in US-A-4,497,941, US-A-4,325,853, and US-A-4,315,842, the disclosures of which are incorporated herein by reference. The above melt adhesives are by way of illustration only; other melt adhesives may also be used.
  • the typical meltblowing web forming resins include a wide range of polyolefins such as propylene and ethylene homopolymers and copolymers.
  • Specific thermoplastics include ethylene acrylic copolymers, nylon, polyamides, polyesters, polystyrene, poly(methyl methacrylate), polytrifluoro-chloroethylene, polyurethanes, polycarbonates, silicon sulfide, and poly(ethylene terephthalate), pitch and blends of the above.
  • the preferred resin is polypropylene. The above list is not intended to be limiting, as new and improved meltblowing thermoplastic resins continue to be developed.
  • Polymers used in coating may be the same used in meltblowing webs but at somewhat lower viscosities. Meltblowing resins for a particular application can readily be selected by those skilled in the art.
  • the die assemble 10 is connected to a conventional extruder or polymer melt delivery system such as that disclosed in US-A-5,061,170, the disclosure of which is incorporated herein by reference.
  • Two identical side-by-side modules were constructed having the following dimensions: Die Tip Width 0.740 inches (18.3 mm) Polymer Orifices Number: 6 Diameter: 0.02 inches (0.51 mm) Center-to-Center: 1.04 inches (26.4 mm) Apex Length Between Orifices: 0.100 inches (2.54 mm) Air Holes Diameter: 0.02 inches (0.51 mm) Number Per Side: 17 Angle: ( ⁇ ) 60° Incremental Angle: 1° Spacing: 27 per inch (1.1 per mm) Nosepiece Apex Height From Base: 0.088 inches (2.23 mm)
  • the two-module die was operated at the following conditions: Polymer Hot Melt Adhesive Polymer Melt Temp. 270°F (132°C) Air Temp. 280°F (138°C) Polymer Flow Rate 1.66 g/hole/min. Air Flow Rate 0.55 SCFM (259.54 cm 3 s -1 )
  • the adhesive filaments were deposited on a substrate in a generally uniform sinusoidal wave pattern with very little overlapping.
  • the width (TD) of the adhesive pattern produced by the side-by-side module was approximately 1.5 inches (38 mm) even through the total length of the row of orifices of the side-by-side modules was only 1.248 inches (31.70 mm).
  • the pattern was uniform even across the space between the two modules.
  • the lateral deposition of the adhesive from each module was 0.750 inches (19 mm) from a row of orifices 0.52 inches (13 mm) long.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Claims (16)

  1. Un système de fusion-soufflage comprenant
    (a) un substrat ou collecteur mobile ;
    (b) une filière de fusion-soufflage (10) ayant des moyens de formation de fibres adaptés pour décharger des fibres thermoplastiques fondues et déposer celles-ci sur un substrat ou collecteur, et contenant des passages d'air de part et d'autre des moyens de formation de fibres ; ayant
    (i) un corps de filière (16) ; et
    (ii) une extrémité de filière (13) montée sur le corps de filière, caractérisée en ce que le corps de filière a (a) une rangée de moyens de formation de fibres (65) formés à l'intérieur, ladite rangée de moyens de formation de fibres étant adaptée pour décharger une rangée de fibres en thermoplastique fondue (14) hors de ces moyens, et pour déposer ces fibres sur le substrat ou collecteur mobile (15) en formant un motif, et (b) 2 rangées de passages d'air (57, 58) de part et d'autre des moyens de formation de fibres, les rangées de passages d'air étant placées de sorte à décharger de l'air hors des passages pour qu'il entre en contact avec des côtés opposés de la rangée de fibres entre l'extrémité de la filière et le substrat ou collecteur pour que certaines au moins de ces fibres s'évasent vers l'extérieur depuis le centre de la rangée des moyens de formation de fibres, de sorte que le motif de fibres sur le substrat collecteur a une dimension latérale qui est plus grande que la longueur de la rangée de moyens de formation de fibres.
  2. Le système de fusion-soufflage selon la revendication 1, dans lequel les fibres sont déposées sur le substrat ou collecteur selon un motif au hasard qui a une dimension latérale au moins 10% plus grande que la longueur de la rangée de moyens de formation de fibres.
  3. Le système de fusion-soufflage selon la revendication 1 ou selon la revendication 2, dans lequel chacune des rangées de passages d'air comprend une rangée de trous d'air équidistants (57, 58).
  4. Le système de fusion-soufflage selon la revendication 3, dans lequel les moyens de formation de fibres sont des orifices (65) équidistants en une rangée le long de l'extrémité de filière, qui sont disposés parallèlement les uns aux autres et qui sont disposés dans un même plan.
  5. Le système de fusion-soufflage selon la revendication 4, dans lequel la rangée d'orifices a une longueur comprise dans la plage de 0,25 à 3,00 pouces (6,3 à 76 mm) et sont équidistants avec un écart compris entre 5 et 50 orifices/pouce (0,2 à 2/mm).
  6. Le système de fusion-soufflage selon la revendication 4 ou la revendication 5, dans lequel
    (a) les trous d'air (57) de l'une des deux rangées de trous d'air se trouve dans le même plan, lequel forme un angle de 15° à 45° avec le plan des orifices, et
    (b) les trous d'air (58) de la deuxième des deux rangées de trous d'air se trouve dans le même plan et forme un angle de 15° à 45° avec le plan des orifices, lesdits plans de trous d'air se coupant au niveau des sorties des orifices à un angle α compris entre 30° et 90° de sorte que l'air qui est déchargé par les trous d'air converge pour contacter les filaments qui sont déchargés par les orifices.
  7. Le système de fusion-soufflage selon la revendication 6, dans lequel le rapport entre le nombre de trous d'air et le nombre d'orifices va de 3 à 8.
  8. Le système de fusion-soufflage selon la revendication 6 ou 7, dans lequel chaque rangée de trous d'air a au moins un trou d'air central (57A) qui se trouve dans un plan perpendiculaire à la rangée de moyens de formation de fibres, et à mi-chemin le long de celle-ci.
  9. Le système de fusion-soufflage selon la revendication 8, dans lequel chaque rangée de trous d'air (57B) placée extérieurement relativement au trou d'air central forme un angle β avec la rangée de moyens de formation de fibres, angle représenté par l'équation suivante β = 90° -ni dans laquelle
    n est la position du trou d'air de chaque côté du trou central, ou des trous centraux (préférentiellement dans la plage de 4 à 15) et
    i est l'angle incrémental et va de 0,5° à 4° et est préférentiellement constant.
  10. Le système de fusion-soufflage selon l'une quelconque des revendications 1 à 9, dans lequel les fibres sont des fibres d'adhésif thermofusible et les passages d'air placés pour décharger l'air qui doit contacter les fibres entre l'extrémité de la filière et le substrat ou collecteur font déposer les fibres sur le substrat ou collecteur en un motif sinusoïdal côte à côte.
  11. Une filière de fusion-soufflage (10) comprenant
    (a) un corps de filière ; et
    (b) une extrémité de filière (13) fixée au corps de filière et ayant une base (46) et un nez triangulaire (52) convergeant vers l'extérieur, délimité par une première et une deuxième surfaces (53, 54) qui se rejoignent à un sommet (56), caractérisée en ce que l'extrémité comprend de plus
    (i) une pluralité de moyens de formation de fibres (65) formés dans le corps de filière et dont les sorties (69) sont espacées le long du sommet
    (ii) une première rangée de trous d'air (57) formés dans la base et positionnés de sorte à décharger le long de la première (53) desdites surfaces à des intervalles espacés le long de celles-ci et parallèles à celles-ci ; et
    (iii) une deuxième rangée de trous d'air (58) formés dans la base et positionnés de sorte à décharger le long de la deuxième (54) desdites surfaces à des intervalles espacés le long de celles-ci et parallèles à celles-ci.
  12. La filière de fusion-soufflage selon la revendication 11, dans laquelle les première et deuxième rangées de trous d'air ont chacune au moins un trou d'air central (57A) placé perpendiculairement au sommet, et des trous d'air (58B) de part et d'autre, chaque trou d'air de part et d'autre forme un angle β relativement au sommet, sur la base de l'équation suivante β = 90° -ni    dans laquelle
    β est l'angle,
    n est la position du trou d'air à partir du trou d'air central (préférentiellement dans la plage de 4 à 15), et
    i est l'incrément angulaire constant qui va de 0,5° à 4°, préférentiellement de 1° à 3,5°.
  13. La filière de fusion-soufflage selon la revendication 12, dans laquelle les moyens de formation de fibres sont des orifices espacés le long du sommet avec un écartement de 10 à 20 par pouce (0,4 à 0,8/mm).
  14. La filière de fusion-soufflage selon l'une quelconque des revendications 11 à 13, dans laquelle
    (a) les trous d'air de la première rangée de trous d'air se trouvent dans le même plan que celui qui s'étend parallèlement à la première surface du nez et a un trou d'air central qui s'étend perpendiculairement au sommet et les trous d'air de part et d'autre du trou d'air central forment un angle qui s'étend vers l'extérieur relativement au sommet, ledit angle différant de son trou d'air adjacent intérieur par une constante qui va de -1/2° à -4°, et
    (b) les trous d'air de la deuxième rangée de trous d'air se trouvent dans le même plan que celui qui s'étend parallèlement à la deuxième surface du nez et a un trou d'air central qui s'étend perpendiculairement au sommet, et les trous d'air de part et d'autre du trou d'air central forment un angle qui s'étend vers l'extérieur relativement au sommet, ledit angle différant de son trou d'air adjacent intérieur par une constante qui va de -1/2° à -4°.
  15. Un système de fusion-soufflage selon la revendication 1 caractérisé en ce que la filière de fusion-soufflage comprend un premier et un deuxième modules de filière (12) ayant chacun (i) un corps de filière (16) et (ii) une extrémité de filière (13) ayant une rangée de moyens de formation de fibres (65) pour décharger une rangée de fibres (14) à partir de ce moyen, l'extrémité de filière des premier et deuxième modules étant placée en une relation bout à bout de sorte que les moyens de formation de fibres des modules et les fibres déchargées à partir de ceux-ci forment une rangée, chaque module ayant des trous d'air (57, 58) de chaque côté de sa rangée de moyens de formation de fibres, lesdits trous d'air étant placés et formés de sorte à ce que l'air qu'il décharge entre en contact avec les fibres déchargées à partir des moyens de formation de fibres et font évaser vers l'extérieur au moins certaines des fibres de chaque module sur la longueur de ses moyens de formation de fibres de sorte que les filaments sont déposés sur le substrat.
  16. Un procédé selon lequel un matériau thermoplastique fondu est soumis à une fusion-soufflage au moyen du système selon l'une quelconque des revendications 1 à 10, de sorte que des fibres sont recueillies sur la bande transporteuse.
EP19980302075 1997-03-19 1998-03-19 Dispositif et procédé pour fusion-soufflage Expired - Lifetime EP0866152B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US82055997A 1997-03-19 1997-03-19
US820559 1997-03-19

Publications (2)

Publication Number Publication Date
EP0866152A1 EP0866152A1 (fr) 1998-09-23
EP0866152B1 true EP0866152B1 (fr) 2002-11-20

Family

ID=25231140

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19980302075 Expired - Lifetime EP0866152B1 (fr) 1997-03-19 1998-03-19 Dispositif et procédé pour fusion-soufflage

Country Status (2)

Country Link
EP (1) EP0866152B1 (fr)
DE (1) DE69809487T2 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6972104B2 (en) 2003-12-23 2005-12-06 Kimberly-Clark Worldwide, Inc. Meltblown die having a reduced size
US7316552B2 (en) 2004-12-23 2008-01-08 Kimberly-Clark Worldwide, Inc. Low turbulence die assembly for meltblowing apparatus
US11447893B2 (en) 2017-11-22 2022-09-20 Extrusion Group, LLC Meltblown die tip assembly and method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6422848B1 (en) 1997-03-19 2002-07-23 Nordson Corporation Modular meltblowing die
EP0987352A3 (fr) * 1998-09-16 2000-05-03 Nordson Corporation Matrice modulaire de soufflage à chaud
DE102005053248B4 (de) 2005-11-08 2016-12-01 Axel Nickel Schmelzblaskopf mit veränderbarer Spinnbreite
US8408889B2 (en) * 2009-01-14 2013-04-02 Oerlikon Textile Gmbh & Co. Kg Device for meltblowing
EP3946755A1 (fr) * 2019-04-05 2022-02-09 Nordson Corporation Collecteur d'air d'applicateur
DE102022001897A1 (de) * 2022-05-31 2023-11-30 Oerlikon Textile Gmbh & Co. Kg Schmelzblasdüsenvorrichtung und Verfahren zur Herstellung einer Vielzahl von Fasersträngen aus einer Polymerschmelze

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4969602A (en) * 1988-11-07 1990-11-13 Nordson Corporation Nozzle attachment for an adhesive dispensing device
US5478224A (en) * 1994-02-04 1995-12-26 Illinois Tool Works Inc. Apparatus for depositing a material on a substrate and an applicator head therefor
US5618566A (en) * 1995-04-26 1997-04-08 Exxon Chemical Patents, Inc. Modular meltblowing die

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6972104B2 (en) 2003-12-23 2005-12-06 Kimberly-Clark Worldwide, Inc. Meltblown die having a reduced size
US7316552B2 (en) 2004-12-23 2008-01-08 Kimberly-Clark Worldwide, Inc. Low turbulence die assembly for meltblowing apparatus
US11447893B2 (en) 2017-11-22 2022-09-20 Extrusion Group, LLC Meltblown die tip assembly and method

Also Published As

Publication number Publication date
EP0866152A1 (fr) 1998-09-23
DE69809487T2 (de) 2003-07-10
DE69809487D1 (de) 2003-01-02

Similar Documents

Publication Publication Date Title
US5618566A (en) Modular meltblowing die
US6422848B1 (en) Modular meltblowing die
US5728219A (en) Modular die for applying adhesives
USRE39399E1 (en) Segmented die for applying hot melt adhesives or other polymer melts
JP2623169B2 (ja) メルトブロー・ダイ
US6890167B1 (en) Meltblowing apparatus
EP0936000B1 (fr) Unité modulaire d'enduction à buse ou embout à changement rapide
US6540831B1 (en) Method and apparatus for applying a controlled pattern of fibrous material to a moving substrate
EP0872580B1 (fr) Procédé et dispositif pour fusion-soufflage
JP2002512121A (ja) ホットメルト接着剤又はその他のポリマー・メルト用のセグメント化された計量ダイ
EP0866152B1 (fr) Dispositif et procédé pour fusion-soufflage
JP2009536693A (ja) 列形のフィラメント群を溶融紡績するための装置
JP2019015017A (ja) 半溶融ブローシステム
US6474967B1 (en) Breaker plate assembly for producing bicomponent fibers in a meltblown apparatus
EP0987352A2 (fr) Matrice modulaire de soufflage à chaud
EP1407830A2 (fr) Buse segmentée d'application d'adhésifs thermofusibles ou d'autres polymères fondus

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB IT

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19990322

AKX Designation fees paid

Free format text: DE GB IT

RBV Designated contracting states (corrected)

Designated state(s): DE GB IT

17Q First examination report despatched

Effective date: 19990422

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: NORDSON CORPORATION

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69809487

Country of ref document: DE

Date of ref document: 20030102

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030821

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070322

Year of fee payment: 10

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080319

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090324

Year of fee payment: 12

Ref country code: DE

Payment date: 20090320

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100319