EP0864174A1 - Optoelectronic semiconductor device and method for producing the same - Google Patents

Optoelectronic semiconductor device and method for producing the same

Info

Publication number
EP0864174A1
EP0864174A1 EP97943755A EP97943755A EP0864174A1 EP 0864174 A1 EP0864174 A1 EP 0864174A1 EP 97943755 A EP97943755 A EP 97943755A EP 97943755 A EP97943755 A EP 97943755A EP 0864174 A1 EP0864174 A1 EP 0864174A1
Authority
EP
European Patent Office
Prior art keywords
iii
semiconductor
semiconductor substrate
functional
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP97943755A
Other languages
German (de)
French (fr)
Inventor
Alfred Lell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineon Technologies AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0864174A1 publication Critical patent/EP0864174A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0605Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits made of compound material, e.g. AIIIBV

Definitions

  • the invention relates to an optoelectronic semiconductor device in which at least one functional optoelectronic semiconductor structure is assigned to a first main surface of an electrically conductive III-V semiconductor substrate and in which the functional optoelectronic semiconductor structure is arranged from a second main surface of the III opposite the first main surface -V semiconductor substrate is electrically isolated.
  • Such a semiconductor device is, for example, from Franklin S. Harris, Jr., Applied Optics, Vol. 27, No. 15, page 3141.
  • an MCRW (Metal Clad Ridge Waveguide) laser structure is known, which is applied to a semi-insulating GaAs substrate.
  • the semi-insulating GaAs substrate serves here to electrically isolate several components monolithically integrated on the substrate from one another.
  • the insulating effect of semi-insulating substrates is achieved by incorporating deep impurity levels (eg Cr or C for GaAs substrates and Fe for InP substrates).
  • deep impurity levels eg Cr or C for GaAs substrates and Fe for InP substrates.
  • the installation of such dopants in a III-V crystal lattice presents a number of difficulties both in terms of manufacture and in terms of handling. For example, it is very difficult to incorporate these dopants homogeneously into the III-V crystal lattice, which makes the implementation a homogeneous insulation effect over the entire surface of a semi-insulating substrate is considerably more difficult.
  • the production yield in the manufacture of semiconductor devices with semi-insulating substrates is therefore z. B. very low compared to the production of semiconductor devices on conductive GaAs substrates.
  • the object of the present invention is to develop an optoelectronic semiconductor device of the type mentioned at the outset, in which the electrical insulation properties between the functional semiconductor structure and the second main surface of the III-V semiconductor substrate are subject to the smallest possible fluctuations and in which the corresponding electrical insulation effect also in the case of temperature increases which usually occur during the operation of optoelectronic semiconductor components, such as, for example, B. occur in particular in power semiconductors and in motor vehicles (ambient temperature fluctuations), is sufficiently large.
  • At least one electrically insulating oxide layer is arranged between the functional semiconductor structure and the III-V semiconductor substrate. net.
  • This has the particular advantage that, instead of a semi-insulating substrate that is difficult to manufacture, a conductive substrate that is much easier to manufacture and therefore less expensive can be used.
  • the electrically insulating oxide layer takes over the electrical isolation of the functional semiconductor structure from the second main surface of the III-V semiconductor substrate.
  • an electrically conductive III-V semiconductor substrate which has a charge carrier concentration of> 1 • 10 15 cm 3 at room temperature. It is particularly advantageous if the electrically conductive III-V semiconductor substrate has a charge carrier concentration between 1-10 16 cm “3 and 1-10 19 cm “ 3 at room temperature, ie at approximately 20 ° C. Such III-V semiconductor substrates are produced in large quantities for conventional III-V semiconductor components and are therefore available at low cost.
  • an electrically insulating oxide layer in particular an AlAs oxide layer, is applied or formed on the first main surface of the doped III-V semiconductor substrate.
  • the functional semiconductor structure is arranged on this oxide layer.
  • At least two monolithically integrated functional semiconductor structures are assigned to the electrically conductive III-V semiconductor substrate.
  • an integrated circuit arrangement consisting of a plurality of III-V semiconductor components (functional semiconductor structures) on a single III-V semiconductor substrate can be easily implemented.
  • an electrically insulating oxide layer is first produced on a prefabricated, conductively doped III-V semiconductor substrate.
  • An active layer system of at least one functional semiconductor structure is then applied to this.
  • functional semiconductor structures that are electrically insulated from one another are produced by severing (for example separating etching or sawing) the active layer system along dividing lines between the functional semiconductor structures up to the electrically insulating oxide layer.
  • severing for example separating etching or sawing
  • the active layer system along dividing lines between the functional semiconductor structures up to the electrically insulating oxide layer.
  • Figure 1 is a schematic representation of a sectional view of a first embodiment of the semiconductor device according to the invention.
  • FIG. 2 shows a schematic sectional view of a second exemplary embodiment of a semiconductor device according to the invention.
  • elt is a MCRW laser structure 9.
  • This is applied to ei ⁇ ner layer sequence consisting of a III-V semiconductor substrate 3 and a layer formed on this applied or on this electrically insulating Oxide layer 6.
  • the III-V semiconductor substrate 3 is made of n-doped GaAs, for example, and the electrically insulating oxide layer 6 is made of AlAs oxide, for example.
  • any other suitable electrically insulating layer can also be used.
  • first main surface 11 of the III-V semiconductor substrate 3 this is the surface on which the first doped III-V semiconductor layer is applied - a second main surface 12 opposite a metallization layer 13, e.g. B. consisting of Cr / In applied. This is used, for example, to solder the semiconductor device onto a heat sink made of copper.
  • a metallization layer 13 e.g. B. consisting of Cr / In applied.
  • This is used, for example, to solder the semiconductor device onto a heat sink made of copper.
  • dopant for the III-V semiconductor substrate 3 z. B. the dopants commonly used in semiconductor technology for III-V semiconductors. These are therefore not explained in more detail here.
  • the functional semiconductor structure 1 of the MCRW laser structure 9 is applied to the electrically insulating oxide layer 6, for example by means of MOVPE or MBE.
  • This consists, for. B., starting from the electrically insulating oxide layer 6, from an n + -doped GaAs layer 14, an n-doped GaAlAs layer 15, an active layer 16 from undoped GaAs or from an active layer sequence / system, one p-doped GaAlAs layer 17 and a p + -doped GaAs layer 18.
  • the n + -doped GaAs layer 14 is for example with an n-contact 19 consisting of AuGe / Ni / Au and the p-doped GaAlAs layer 17 and the p + -doped GaAs layer 18 is with a p-contact metallization 20, the z. B. from a Cr / Au, Cr / Pt / Au, Ti / Pt / Au or Ti / Au Layer sequence exists. This is a conventional, well-known to those skilled structure of MCRW- L milling tool that requires therefore at this point no further explanation.
  • a plurality of MCRW laser structures 9, which are electrically insulated from one another, can be formed on a III-V semiconductor substrate 3 with an electrically insulating oxide layer 6 according to the first exemplary embodiment.
  • the individual MCRW laser structures can of course be interconnected via metallization tracks.
  • FIG. 2 shows an exemplary embodiment of a semiconductor device according to the invention, in which a plurality of photodiode structures 10 of a photodiode array 8 are applied to a single electrically conductive III-V semiconductor substrate 3.
  • An electrically insulating oxide layer 6 is arranged between the photodiode structures 10 and the electrically conductive III-V semiconductor substrate 3, which consists, for example, of n-doped GaAs. This consists, for example, of AlAs oxide.
  • the photodiode structures 10 are each composed of an n-doped GaAs layer 21, a p-doped GaAs layer 22 and a p-doped Al-GaAs layer 23.
  • the individual photodiode structures 10 which are separated from one another are produced in that this layer sequence is severed along predetermined dividing lines, for example by means of etching trenches 24.
  • the inner sides of the etching trenches 24 are provided with an insulation layer 25 consisting, for example, of SiO 2 , on which in turn a metallization layer 26 is applied, via which the individual photodiode structures 10 are connected in series with one another.
  • This semiconductor device is also a conventional semiconductor component known to the person skilled in the art and is therefore not explained in more detail at this point.
  • any other III-V semiconductor material can also be used in the semiconductor device according to the invention instead of the III-V semiconductor substrate made of GaAs mentioned in the exemplary embodiments, depending on the type of functional semiconductor structure to be applied to the substrate. Likewise, it can of course also be p-type. The electrically insulating oxide layer must then be adapted accordingly.
  • conductive III-V semiconductor substrates compared to semi-insulating substrates is that the crystal growing process is much easier to master. This leads to more homogeneous wafers whose dopant (generally Si) is also characterized by lower diffusion effects.
  • the electrically isolating oxide layer 6 between the doped III-V semiconductor substrate 3 and the active epitaxial layer system (functional semiconductor structure 1) is advantageously an oxidized AlAs epitaxial layer (applies to both exemplary embodiments).
  • the AlA ⁇ layer can be oxidized either by targeted contamination during the epitaxy or by a 2-stage epitaxy, in which an AlAs layer is first grown on the III-V semiconductor substrate 3 and then oxidized in air. The active epitaxial layer system is subsequently grown on the AlAs layer.
  • the active epitaxial layer system can also be applied to the not yet oxidized AlAs epitaxial layer.
  • the AlA ⁇ layer is then oxidized by means of oxidation of the finished component.
  • the side surface exposed by the component separation (separating a wafer) is sufficient for the desired oxidation of the AlAs layer.
  • the invention also provides for various types of functional semiconductor structures, eg. B. photodiodes, light emitting diodes, transistors, etc. to be arranged on one and the same electrically conductive III-V semiconductor substrate.
  • functional semiconductor structures eg. B. photodiodes, light emitting diodes, transistors, etc.

Abstract

The invention concerns an optoelectronic semiconductor device in which at least one functional semiconductor structure (1) is disposed on a III-V semiconductor substrate (3). According to the invention there is a provided an electrically conductive III-V semiconductor substrate (3) which, at room temperature, has a charge-carrier concentration of more than 1*1015 cm-3. At least one electrically insulating oxide layer (6) is provided between the functional semiconductor structure (1) and the III-V semiconductor substrate (3).

Description

Beschreibungdescription
Optoelektronische Halbleitervorrichtung und Verfahren zu dessen Herstellung O ptoelectronic semiconductor device and method for its production
Die Erfindung bezieht sich auf eine optoelektronische Halbleitervorrichtung, bei dem einer ersten Hauptfläche eines elektrisch leitenden III-V-Halbleiter-Substrats mindestens eine funktionelle optoelektronische Halbleiterstruktur zuge- ordnet ist und bei dem die funktionelle optoelektronische Halbleiterstruktur von einer der ersten Hauptfläche gegenüberliegenden zweiten Hauptfläche des III-V-Halbleiter- Substrats elektrisch isoliert ist.The invention relates to an optoelectronic semiconductor device in which at least one functional optoelectronic semiconductor structure is assigned to a first main surface of an electrically conductive III-V semiconductor substrate and in which the functional optoelectronic semiconductor structure is arranged from a second main surface of the III opposite the first main surface -V semiconductor substrate is electrically isolated.
Eine derartige Halbleitervorrichtung ist beispielsweise aus Franklin S. Harris, Jr. , Applied Optics, Vol. 27, No. 15, pa- ge 3141, bekannt. Hierin ist ein Fotodioden-Array beschrieben, bei dem auf einem sogenannten semiisolierenden GaAs- Substrat eine Mehrzahl von AlGaAs/GaAs-Fotodioden mono- lithisch integriert sind.Such a semiconductor device is, for example, from Franklin S. Harris, Jr., Applied Optics, Vol. 27, No. 15, page 3141. This describes a photodiode array in which a plurality of AlGaAs / GaAs photodiodes are monolithically integrated on a so-called semi-insulating GaAs substrate.
Weiterhin ist aus G. Müller, M. Honsberg, Journal of Optical Communications 6 (1985), June No. 2, Berlin, Germany, page 42, eine MCRW(Metal Clad Ridge Waveguide) -Laserstruktur be- kannt, die auf einem semiisolierenden GaAs-Substrat aufgebracht ist. Das semiisolierende GaAs-Substrat dient hier dazu, mehrere auf dem Substrat monolithisch integrierte Komponenten voneinander elektrisch zu isolieren.Furthermore, from G. Müller, M. Honsberg, Journal of Optical Communications 6 (1985), June No. 2, Berlin, Germany, page 42, an MCRW (Metal Clad Ridge Waveguide) laser structure is known, which is applied to a semi-insulating GaAs substrate. The semi-insulating GaAs substrate serves here to electrically isolate several components monolithically integrated on the substrate from one another.
Die Isolationswirkung von semiisolierenden Substraten wird über den Einbau tiefer Störstellen-Niveaus (z.B. Cr bzw. C bei GaAs-Substraten und Fe bei InP-Substraten) erreicht. Der Einbau derartiger Dotierstoffe in ein III-V-Kristallgitter bringt jedoch sowohl in der Herstellung als auch in der Hand- habung eine Reihe von Schwierigkeiten mit sich. So ist es beispielsweise sehr schwierig, diese Dotierstoffe homogen in das III-V-Kristallgitter einzubauen, wodurch die Realisierung einer homogenen Isolationswirkung über die gesamte Fläche eines semiisolierenden Substrats erheblich erschwert ist. Die Produktionsausbeute bei der Herstellung von Halbleiterbauelementen mit semiisolierenden Substraten ist daher z. B. im Vergleich zur Herstellung von Halbleiterbauelementen auf leitenden GaAs-Substraten sehr gering.The insulating effect of semi-insulating substrates is achieved by incorporating deep impurity levels (eg Cr or C for GaAs substrates and Fe for InP substrates). However, the installation of such dopants in a III-V crystal lattice presents a number of difficulties both in terms of manufacture and in terms of handling. For example, it is very difficult to incorporate these dopants homogeneously into the III-V crystal lattice, which makes the implementation a homogeneous insulation effect over the entire surface of a semi-insulating substrate is considerably more difficult. The production yield in the manufacture of semiconductor devices with semi-insulating substrates is therefore z. B. very low compared to the production of semiconductor devices on conductive GaAs substrates.
Ein weiteres Problem von semiisolierenden Halbleitersubstra- ten besteht darin, daß ihre Isolationswirkung schon bei äßi- ger Temperaturerhöhung drastisch abnimmt, da im Halbleiterkristall freie Ladungsträger erzeugt werden.Another problem with semi-insulating semiconductor substrates is that their insulating effect decreases drastically even with a moderate rise in temperature, since free charge carriers are generated in the semiconductor crystal.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, eine optoelektronische Halbleitervorrichtung der eingangs genann- ten Art zu entwickeln, bei dem die elektrischen Isolationseigenschaften zwischen der funktionellen Halbleiterstruktur und der zweiten Hauptfläche des des III-V-Halbleiter-Substrats möglichst geringen Schwankungen unterworfen sind und bei dem die entsprechende elektrische Isolationswirkung auch bei üb- licherweise im Betrieb von optoelektronischen Halbleiterbauelementen auftretenden Temperaturerhöhungen, wie sie z. B. insbesondere bei Leiεtungshalbleitern sowie in Kraftfahrzeugen (Umgebungstemperaturschwankungen) vorkommen, ausreichend groß ist.The object of the present invention is to develop an optoelectronic semiconductor device of the type mentioned at the outset, in which the electrical insulation properties between the functional semiconductor structure and the second main surface of the III-V semiconductor substrate are subject to the smallest possible fluctuations and in which the corresponding electrical insulation effect also in the case of temperature increases which usually occur during the operation of optoelectronic semiconductor components, such as, for example, B. occur in particular in power semiconductors and in motor vehicles (ambient temperature fluctuations), is sufficiently large.
Diese Aufgabe wird durch eine optoelektronische Halbleitervorrichtung mit den Merkmalen des Patentanspruches 1 gelöst. Vorteilhafte Weiterbildungen und bevorzugte Ausführungsformen der erfindungsgemäßen Halbleitervorrichtung sind Gegenstand der Unteransprüche 2 bis 8. Ein bevorzugtes Verfahren zumThis object is achieved by an optoelectronic semiconductor device with the features of patent claim 1. Advantageous further developments and preferred embodiments of the semiconductor device according to the invention are the subject of subclaims 2 to 8. A preferred method for
Herstellen einer erfindungsgemäßen Halbleitervorrichtung ist Gegenstand des Anspruches 9.Manufacture of a semiconductor device according to the invention is the subject of claim 9.
Erfindungsgemäß ist bei einer optoelektronischen Halbleiter- Vorrichtung der eingangs genannten Art zwischen der funktionellen Halbleiterstruktur und dem III-V-Halbleiter-Substrat mindestens eine elektrisch isolierende Oxidschicht angeord- net . Dies hat insbesondere den Vorteil, daß anstelle eines aufwendig herzustellenden semiisolierenden Substrates ein wesentlich einfacher herstellbares und damit kostengünstigeres leitendes Substrat verwendet werden kann. Die elektrische Isolation der funktionellen Halbleiterstruktur von der zweiten Hauptfläche des III-V-Halbleiter-Substrats übernimmt die elektrisch isolierende Oxidschicht.According to the invention, in an optoelectronic semiconductor device of the type mentioned at the beginning, at least one electrically insulating oxide layer is arranged between the functional semiconductor structure and the III-V semiconductor substrate. net. This has the particular advantage that, instead of a semi-insulating substrate that is difficult to manufacture, a conductive substrate that is much easier to manufacture and therefore less expensive can be used. The electrically insulating oxide layer takes over the electrical isolation of the functional semiconductor structure from the second main surface of the III-V semiconductor substrate.
Bei einer bevorzugten Weiterbildung der erfindungsgemäßen Halbleitervorrichtung ist ein elektrisch leitendes III-V- Halbleiter-Substrat vorgesehen, das bei Raumtemperatur eine Ladungsträgerkonzentration von > 1 • 1015 cm3 aufweist. Besonders vorteilhaft ist, wenn das elektrisch leitende III-V- Halbleiter-Substrat bei Raumtemperatur, d. h. bei ca. 20°C, eine Ladungsträgerkonzentration zwischen 1- 1016 cm"3 und 1- 1019 cm"3 aufweist . Derartige III-V-Halbleiter-Substrate werden für herkömmliche III-V-Halbleiter-Bauelemente in großen Stückzahlen hergestellt und sind von daher kostengünstig verfügbar.In a preferred development of the semiconductor device according to the invention, an electrically conductive III-V semiconductor substrate is provided which has a charge carrier concentration of> 1 • 10 15 cm 3 at room temperature. It is particularly advantageous if the electrically conductive III-V semiconductor substrate has a charge carrier concentration between 1-10 16 cm "3 and 1-10 19 cm " 3 at room temperature, ie at approximately 20 ° C. Such III-V semiconductor substrates are produced in large quantities for conventional III-V semiconductor components and are therefore available at low cost.
Bei einer vorteilhaf en Ausgestaltung der er indungsgemäßen Halbleitervorrichtung ist auf der ersten Hauptfläche des dotierten III-V-Halbleiter-Substrats eine elektrisch isolierende Oxidschicht, insbesondere eine AlAs-Oxidschicht , aufgebracht oder ausgebildet. Auf dieser Oxidschicht ist die funk- tionelle Halbleiterstrukutur angeordnet.In an advantageous embodiment of the semiconductor device according to the invention, an electrically insulating oxide layer, in particular an AlAs oxide layer, is applied or formed on the first main surface of the doped III-V semiconductor substrate. The functional semiconductor structure is arranged on this oxide layer.
Bei einer weiteren bevorzugten Weiterbildung der erfindungs- gemäßen Halbleitervorrichtung sind dem elektrisch leitenden III-V-Halbleitersubεtrat mindestens zwei monolithisch inte- grierte funktionelle Halbleiterstrukturen zugeordnet. Auf diese Weise ist eine integrierte Schaltungsanordnung, bestehend aus einer Mehrzahl von III-V-Halbleiterbauelementen (funktionelle Halbleiterstrukturen) auf einem einzigen III -V- Halbleitersubstrat einfach zu realisieren.In a further preferred development of the semiconductor device according to the invention, at least two monolithically integrated functional semiconductor structures are assigned to the electrically conductive III-V semiconductor substrate. In this way, an integrated circuit arrangement consisting of a plurality of III-V semiconductor components (functional semiconductor structures) on a single III-V semiconductor substrate can be easily implemented.
Bei einer vorteilhaften Ausführungsform der erfindungsgemäßen Halbleitervorrichtung sind mindestens zwei verschiedenartige monolithisch integrierte funktionelle Halbleiterstrukturen auf einem einzigen elektrisch leitenden III-V-Halbleiter- Substrat vorgesehen sind.In an advantageous embodiment of the semiconductor device according to the invention, there are at least two different types monolithically integrated functional semiconductor structures o f a single electrically conductive III-V-semiconductor substrate are provided.
Bei einem bevorzugten Verfahren zum Herstellen einer erfindungsgemäßen Halbleitervorrichtung wird zunächst auf einem vorgefertigten leitend dotierten III-V-Halbleitersubstrat eine elektrisch isolierende Oxidschicht hergstellt. Auf diese wird dann ein aktives Schichtensystem mindesten einer funk- tionellen Halbleiterstruktur aufgebracht. Nachfolgend werden mittels Durchtrennen (z. B. Trenn-Ätzen oder Ansägen) des aktiven Schichtensystems entlang von Trennlinien zwischen den funktionellen Halbleiterstrukturen bis zur elektrisch isolierenden Oxidschicht hin elektrisch voneinander isolierte funk- tionelle Halbleiterstrukturen hergestellt. Diese können dann natürlich mittels Kontaktmetallisierungen elektrisch miteinander verschaltet und ggf. an extern angeordnete weitere Bauelemente angeschlossen werden. Anstelle des Durchtrennens des aktiven Schichtensystems können natürlich auch Trenndiffusio- nen vorgesehen sein, die die funktionellen Halbleiterεtruktu- ren voneinander elektrisch isolieren. Dabei werden zwischen den funktionellen Halbleiterstrukturen zusätzliche Dotierstoffe in das aktive Schichtensystem eingebracht. Derartige Trenndiffusionen sind in der Halbleitertechnik bekannt und werden daher an dieser Stelle nicht näher erläutert.In a preferred method for producing a semiconductor device according to the invention, an electrically insulating oxide layer is first produced on a prefabricated, conductively doped III-V semiconductor substrate. An active layer system of at least one functional semiconductor structure is then applied to this. Subsequently, functional semiconductor structures that are electrically insulated from one another are produced by severing (for example separating etching or sawing) the active layer system along dividing lines between the functional semiconductor structures up to the electrically insulating oxide layer. These can then of course be electrically connected to one another by means of contact metallizations and, if necessary, connected to further components arranged externally. Instead of severing the active layer system, it is of course also possible to provide separation diffusions which electrically isolate the functional semiconductor structures from one another. Additional dopants are introduced into the active layer system between the functional semiconductor structures. Such separation diffusions are known in semiconductor technology and are therefore not explained in more detail here.
Die erfindungsgemäße Halbleitervorrichtung wird im weiteren anhand von zwei Ausführungsbeispielen in Verbindung mit den Figuren 1 und 2 näher erläutert. Es zeigen:The semiconductor device according to the invention is explained in more detail below on the basis of two exemplary embodiments in conjunction with FIGS. 1 and 2. Show it:
Figur 1 eine schematische Darstellung einer Schnittansicht eines ersten Ausführungsbeispieles der erfindungsgemäßen Halbleitervorrichtung undFigure 1 is a schematic representation of a sectional view of a first embodiment of the semiconductor device according to the invention and
Figur 2 eine schematische Schnittansicht eines zweiten Aus- führungsbeispieles einer erfindungsgemäßen Halbleitervorrichtung . Bei der funktionellen Halbleiterεtruktur 1 von Figur 1 handelt es sich um eine MCRW-Laserstruktur 9. Diese ist auf ei¬ ner Schichtenfolge aufgebracht, bestehend aus einem III-V- Halbleitersubstrat 3 und einer auf diesem aufgebrachten oder auf dieser ausgebildeten elektrisch isolierenden Oxidschicht 6. Das III-V-Halbleitersubstrat 3 ist beispielsweise aus n- dotiertem GaAs hergestellt und die elektrisch isolierende Oxidschicht 6 besteht beispielsweise aus AlAs-Oxid. Anstelle der Oxidschicht 6 kann auch jede andere geeignete elektrisch isolierende Schicht verwendet sein.FIG. 2 shows a schematic sectional view of a second exemplary embodiment of a semiconductor device according to the invention. In th e functional Halbleiterεtruktur 1 of Figure 1 han d it elt is a MCRW laser structure 9. This is applied to ei ¬ ner layer sequence consisting of a III-V semiconductor substrate 3 and a layer formed on this applied or on this electrically insulating Oxide layer 6. The III-V semiconductor substrate 3 is made of n-doped GaAs, for example, and the electrically insulating oxide layer 6 is made of AlAs oxide, for example. Instead of the oxide layer 6, any other suitable electrically insulating layer can also be used.
Auf einer einer ersten Hauptfläche 11 des III-V- Halbleiterεubstratε 3 - dieε ist die Fläche, auf der die er- ste dotierte III-V-Halbleiterschicht aufgebracht ist - gegenüberliegenden zweiten Hauptfläche 12 ist eine Metallisierungsschicht 13, z. B. bestehend aus Cr/In, aufgebracht. Diese dient beispielsweise dazu, die Halbleitervorrichtung auf eine aus Kupfer gefertigte Wärmesenke aufzulöten. Als Dotier- stoff für das III-V-Halbleitersubstrat 3 sind z. B. die in der Halbleitertechnik üblicherweise für III-V-Halbleiter eingesetzten Dotierstoffe verwendet. Diese werden daher an dieser Stelle nicht näher erläutert.On a first main surface 11 of the III-V semiconductor substrate 3 - this is the surface on which the first doped III-V semiconductor layer is applied - a second main surface 12 opposite a metallization layer 13, e.g. B. consisting of Cr / In applied. This is used, for example, to solder the semiconductor device onto a heat sink made of copper. As dopant for the III-V semiconductor substrate 3 z. B. the dopants commonly used in semiconductor technology for III-V semiconductors. These are therefore not explained in more detail here.
Auf die elektrisch isolierende Oxidschicht 6 iεt die funktionelle Halbleiterεtruktur 1 der MCRW-Laserstruktur 9 bei- εpielεweiεe mittels MOVPE oder MBE aufgebracht. Diese besteht z. B., ausgehend von der elektrisch isolierenden Oxidschicht 6, aus einer n+-dotierten GaAs-Schicht 14, einer n-dotierten GaAlAs-Schicht 15, einer aktiven Schicht 16 aus undotiertem GaAs oder aus einer/m aktiven Schichtenfolge/-System, einer p-dotierten GaAlAs-Schicht 17 und einer p+-dotierten GaAs- Schicht 18. Die n+-dotierte GaAs-Schicht 14 ist beispielsweise mit einem aus AuGe/Ni/Au bestehenden n-Kontakt 19 und die p-dotierte GaAlAs-Schicht 17 sowie die p+-dotierte GaAs- Schicht 18 ist mit einer p-Kontaktmetallisierung 20, die z. B. aus einer Cr/Au- , Cr/Pt/Au-, Ti/Pt/Au- oder Ti/Au- Schichtenfolge besteht, versehen. Hierbei handelt es sich um eine herkömmliche, dem Fachmann bekannte Struktur eines MCRW- Lasers, die von daher an dieser Stelle keiner näheren Erläuterung bedarf .The functional semiconductor structure 1 of the MCRW laser structure 9 is applied to the electrically insulating oxide layer 6, for example by means of MOVPE or MBE. This consists, for. B., starting from the electrically insulating oxide layer 6, from an n + -doped GaAs layer 14, an n-doped GaAlAs layer 15, an active layer 16 from undoped GaAs or from an active layer sequence / system, one p-doped GaAlAs layer 17 and a p + -doped GaAs layer 18. The n + -doped GaAs layer 14 is for example with an n-contact 19 consisting of AuGe / Ni / Au and the p-doped GaAlAs layer 17 and the p + -doped GaAs layer 18 is with a p-contact metallization 20, the z. B. from a Cr / Au, Cr / Pt / Au, Ti / Pt / Au or Ti / Au Layer sequence exists. This is a conventional, well-known to those skilled structure of MCRW- L milling tool that requires therefore at this point no further explanation.
Selbstverständlich können auf einem III-V-Halbleitersubstrat 3 mit einer elektrisch isolierenden Oxidschicht 6 gemäß dem ersten Ausführungsbeispiel mehrere MCRW-Laserstrukturen 9 ausgebildet sein, die voneinander elektrisch isoliert sind. Hierbei ist ausεchließlich die elektriεche Iεolation durch das Substrat gemeint. Über Metallisierungsbahnen können die einzelnen MCRW-Laserstrukturen natürlich untereinander verschaltet sein.Of course, a plurality of MCRW laser structures 9, which are electrically insulated from one another, can be formed on a III-V semiconductor substrate 3 with an electrically insulating oxide layer 6 according to the first exemplary embodiment. Here, only the electrical insulation through the substrate is meant. The individual MCRW laser structures can of course be interconnected via metallization tracks.
In Figur 2 ist ein Ausführungsbeispiel einer erfindungsgemäßen Halbleitervorrichtung dargestellt, bei der eine Mehrzahl von Fotodiodenεtrukturen 10 eines Fotodiodenfeldes 8 auf einem einzigen elektrisch leitenden III-V-Halbleitersubstrat 3 aufgebracht sind. Zwischen den Fotodiodenstrukturen 10 und dem elektrisch leitenden III-V-Halbleitersubstrat 3, das beispielsweise aus n-dotiertem GaAs besteht, ist jeweils eine elektrisch isolierende Oxidschicht 6 angeordnet. Diese besteht beispielsweise aus AlAs-Oxid. Die Fotodiodenstrukturen 10 setzen sich, ausgehend von der elektrisch isolierenden Oxidschicht 6 jeweils aus einer n-dotierten GaAs-Schicht 21, einer p-dotierten GaAs-Schicht 22 und einer p-dotierten Al- GaAε-Schicht 23 zuεammen. Die einzelnen voneinander getrennten Fotodiodenstrukturen 10 sind dadurch hergestellt, daß diese Schichtenfolge entlang von vorgegebenen Trennungslinien beispielsweise mittels Ätzgräben 24 durchtrennt sind. Die Innenseiten der Ätzgräben 24 sind mit einer beispielweise aus Si02 bestehenden Isolationsschicht 25 versehen, auf der wiederum eine Metallisierungsschicht 26 aufgebracht ist, über die die einzelnen Fotodiodenstrukturen 10 seriell miteinander verschaltet sind. Auch bei dieser Halbleitervorrichtung handelt es sich um ein herkömmliches dem Fachmann bekanntes Halbleiterbauelement und wird von daher an dieser Stelle nicht näher erläutert.FIG. 2 shows an exemplary embodiment of a semiconductor device according to the invention, in which a plurality of photodiode structures 10 of a photodiode array 8 are applied to a single electrically conductive III-V semiconductor substrate 3. An electrically insulating oxide layer 6 is arranged between the photodiode structures 10 and the electrically conductive III-V semiconductor substrate 3, which consists, for example, of n-doped GaAs. This consists, for example, of AlAs oxide. Starting from the electrically insulating oxide layer 6, the photodiode structures 10 are each composed of an n-doped GaAs layer 21, a p-doped GaAs layer 22 and a p-doped Al-GaAs layer 23. The individual photodiode structures 10 which are separated from one another are produced in that this layer sequence is severed along predetermined dividing lines, for example by means of etching trenches 24. The inner sides of the etching trenches 24 are provided with an insulation layer 25 consisting, for example, of SiO 2 , on which in turn a metallization layer 26 is applied, via which the individual photodiode structures 10 are connected in series with one another. This semiconductor device is also a conventional semiconductor component known to the person skilled in the art and is therefore not explained in more detail at this point.
Selbstverständlich kann bei der erfindungsgemäßen Halbleitervorrichtung anstelle des in den Ausführungsbeispielen genannten III-V-Halbleitersubstrats aus GaAs je nach Art der auf das Substrat aufzubringenden funktionellen Halbleiterstruktur auch jedes andere III-V-Halbleitermaterial verwendet werden. Ebenso kann es natürlich auch p-leitend ausgebildet sein. Die elektrisch isolierende Oxidschicht ist dann entsprechend anzupassen.Of course, any other III-V semiconductor material can also be used in the semiconductor device according to the invention instead of the III-V semiconductor substrate made of GaAs mentioned in the exemplary embodiments, depending on the type of functional semiconductor structure to be applied to the substrate. Likewise, it can of course also be p-type. The electrically insulating oxide layer must then be adapted accordingly.
Ein Vorteil von leitenden III-V-Halbleitersubstraten gegen- über semiiεolierenden Subεtraten beεteht darin, daß das Kri- εtallzuchtverfahren wesentlich einfacher zu beherrschen ist. Dies führt zu homogeneren Wafern, deren Dotierstoff (im allgemeinen Si) sich zudem durch geringere Diffusionseffekte auszeichnet .One advantage of conductive III-V semiconductor substrates compared to semi-insulating substrates is that the crystal growing process is much easier to master. This leads to more homogeneous wafers whose dopant (generally Si) is also characterized by lower diffusion effects.
Vorteilhafterweise ist die elektrisch iεolierende Oxidschicht 6 zwischen dem dotierten III-V-Halbleitersubstrat 3 und dem aktiven Epitaxieschicht-System (funktionelle Halbleiterstruktur 1) eine oxidierte AlAs-Epitaxieschicht (gilt für beide Ausführungsbeispiele) .The electrically isolating oxide layer 6 between the doped III-V semiconductor substrate 3 and the active epitaxial layer system (functional semiconductor structure 1) is advantageously an oxidized AlAs epitaxial layer (applies to both exemplary embodiments).
Die Oxidation der AlAε-Schicht kann entweder durch gezielte Verunreinigung während der Epitaxie oder durch eine 2 -Stufen- Epitaxie erfolgen, bei der zunächst eine AlAs-Schicht auf das III-V-Halbleitersubstrat 3 aufgewachsen und anschließend an Luft oxidiert wird. Nachfolgend wird das aktive Epitaxie- εchicht-Syεtem auf die AlAε-Schicht aufgewachεen .The AlAε layer can be oxidized either by targeted contamination during the epitaxy or by a 2-stage epitaxy, in which an AlAs layer is first grown on the III-V semiconductor substrate 3 and then oxidized in air. The active epitaxial layer system is subsequently grown on the AlAs layer.
Ebenso kann aber auch das aktive Epitaxieschichtεyεtem auf die noch nicht oxidierte AlAs-Epitaxieschicht aufgebracht werden. Die Oxidation der AlAε-Schicht erfolgt dann mittels Oxidation des fertig prozessierte Bauteils. Im allgemeinen reicht dazu die durch das Bauteil -Trennen (Vereinzeln eines Wafers) freigelegte Seitenfläche zu der gewünschten Oxidation der AlAs-Schicht aus.However, the active epitaxial layer system can also be applied to the not yet oxidized AlAs epitaxial layer. The AlAε layer is then oxidized by means of oxidation of the finished component. In general the side surface exposed by the component separation (separating a wafer) is sufficient for the desired oxidation of the AlAs layer.
Selbstverständlich ist erfindungsgemäß auch vorgesehen, verschiedenartige funktionelle Halbleiterstrukturen, z. B. Photodioden, Leuchtdioden, Transistoren usw., auf ein und demselben elektrisch leitenden III-V-Halbleitersubstrat anzuordnen. Of course, the invention also provides for various types of functional semiconductor structures, eg. B. photodiodes, light emitting diodes, transistors, etc. to be arranged on one and the same electrically conductive III-V semiconductor substrate.

Claims

Patentansprüche claims
1. Optoelektronische Halbleitervorrichtung, bei dem einer ersten Hauptfläche eines III-V-Halbleiter-Substrats (3) minde- stens eine funktionelle optoelektronische Halbleiterstruktur (1) zugeordnet ist und bei dem die funktionelle Halbleiterstruktur (1) von einer der ersten Hauptfläche (11) gegenüberliegenden zweiten Hauptfläche (12) des III-V-Halbleiter- Substrats (3) elektrisch isoliert ist, d a d u r c h g e k e n n z e i c h n e t , daß das III-V- Halbleitersubstrat (3) elektrisch leitend ist und daß zwischen der funktionellen optoelektronischen Halbleiterstruktur (1) und dem III-V-Halbleiter-Substrat (3) mindeεtens eine elektrisch isolierende Oxidschicht (6) vorgeεehen ist.1. Optoelectronic semiconductor device in which at least one functional optoelectronic semiconductor structure (1) is assigned to a first main surface of a III-V semiconductor substrate (3) and in which the functional semiconductor structure (1) is assigned from one of the first main surface (11) opposite second main surface (12) of the III-V semiconductor substrate (3) is electrically insulated, characterized in that the III-V semiconductor substrate (3) is electrically conductive and that between the functional optoelectronic semiconductor structure (1) and the III- V-semiconductor substrate (3) at least one electrically insulating oxide layer (6) is provided.
2. Optoelektronische Halbleitervorrichtung nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , daß das elektrisch leitende III-V-Halbleiter-Substrat (3) bei Raumtemperatur eine Ladungstragerkonzentration von größer als 1*1015 cm"3 aufweist.2. Optoelectronic semiconductor device according to claim 1, characterized in that the electrically conductive III-V semiconductor substrate (3) has a charge carrier concentration of greater than 1 * 10 15 cm "3 at room temperature.
3. Optoelektronische Halbleitervorrichtung nach Anspruch 2, d a d u r c h g e k e n n z e i c h n e t , daß das elektrisch leitende III-V-Halbleiter-Substrat (3) bei Raumtemperatur eine Ladungstragerkonzentration zwischen l*1016 cm"3 und 1*1019 cm"3 aufweist.3. Optoelectronic semiconductor device according to claim 2, characterized in that the electrically conductive III-V semiconductor substrate (3) at room temperature has a charge carrier concentration between l * 10 16 cm "3 and 1 * 10 19 cm " 3 .
4. Optoelektronische Halbleitervorrichtung einem der Ansprüche 1 bis 3, d a d u r c h g e k e n n z e i c h n e t , daß zwischen III-V-Halbleiter-Substrat (3) und funktioneller Halbleiterstruktur (1) eine AlAs-Oxidεchicht angeordnet iεt.4. Optoelectronic semiconductor device according to one of claims 1 to 3, d a d u r c h g e k e n e z e i c h n e t that an AlAs oxide layer is arranged between III-V semiconductor substrate (3) and functional semiconductor structure (1).
5. Optoelektroniεche Halbleitervorrichtung nach einem der An- Sprüche 1 bis 4, d a d u r c h g e k e n n z e i c h n e t , daß als funktionelle Halbleiterstruktur (1) eine MCRW- Laserstruktur (9) vorgesehen ist.5. Optoelectronic semiconductor device according to one of claims 1 to 4, characterized in that an MCRW laser structure (9) is provided as the functional semiconductor structure (1).
6. Optoelektronische Halbleitervorrichtung nach einem der An- sprüche 1 bis 4, d a d u r c h g e k e n n z e i c h n e t , daß als funktionelle Halbleiterstrukturen (1) Photodiodenεtruktu- ren (10) vorgesehen sind, die ein Photodiodenfeld (8) bilden.6. Optoelectronic semiconductor device according to one of claims 1 to 4, so that functional semiconductor structures (1) are provided as photodiode structures (10) which form a photodiode array (8).
7. Optoelektronische Halbleitervorrichtung nach einem der Ansprüche 1 bis 6, d a d u r c h g e k e n n z e i c h n e t , daß mindestens zwei monolithisch integrierte funktionelle Halbleiterstrukturen (1) auf dem elektrisch leitenden III-V-Halbleiter- Substrat (3) vorgesehen sind und daß zwischen jeder der funktionellen Halbleiterstrukturen (1) und dem elektrisch leitenden III-V-Halbleiter-Substrat (3) mindestens eine elektrisch isolierende Oxidschicht (6) angeordnet ist.7. Optoelectronic semiconductor device according to one of claims 1 to 6, characterized in that at least two monolithically integrated functional semiconductor structures (1) are provided on the electrically conductive III-V semiconductor substrate (3) and that between each of the functional semiconductor structures (1) and the electrically conductive III-V semiconductor substrate (3) is arranged at least one electrically insulating oxide layer (6).
8. Optoelektronische Halbleitervorrichtung nach Anspruch 7, d a d u r c h g e k e n n z e i c h n e t , daß mindestens zwei verschiedenartige monolithisch integrierte funktionelle Halbleiterstrukturen (1) auf dem elektrisch leitenden III-V-Halbleiter-Substrat (3) vorgesehen sind.8. Optoelectronic semiconductor device according to claim 7, d a d u r c h g e k e n n z e i c h n e t that at least two different types of monolithically integrated functional semiconductor structures (1) are provided on the electrically conductive III-V semiconductor substrate (3).
9. Verfahren zum Herstellen einer optoelektronischen Halbleitervorrichtung nach einem der Ansprüche 1 bis 8, g e k e n n z e i c h n e t durch die Verfahrensεchritte : a) Herstellen des elektrisch leitenden III-V-Halbleiter- Substrats (3) , b) Aufbringen oder Ausbilden der elektrisch isolierenden Oxidschicht (6) auf das elektrisch leitende III-V- Halbleitersubstrat (3) , c) Aufbringen eines aktiven Schichtensyεtems auf die elek- trisch isolierende Oxidschicht (6) und d) Herstellen von mindestens zwei elektrisch voneinander isolierten funktionellen Halbleiterstrukturen (1) mittels Durchtrennen des aktiven Schichtensyεtems bis zur elektrisch isolierenden Oxidschicht (6) hin entlang von Trennlinien zwischen den funktionellen Halbleiterstrukturen. 9. A method for producing an optoelectronic semiconductor device according to one of claims 1 to 8, characterized by the method steps: a) producing the electrically conductive III-V semiconductor substrate (3), b) applying or forming the electrically insulating oxide layer (6) on the electrically conductive III-V semiconductor substrate (3), c) applying an active layer system to the electrically insulating oxide layer (6) and d) producing at least two functional semiconductor structures (1) electrically isolated from one another by means of Cutting through the active layer system to the electrically insulating oxide layer (6) along dividing lines between the functional semiconductor structures.
EP97943755A 1996-09-27 1997-09-11 Optoelectronic semiconductor device and method for producing the same Withdrawn EP0864174A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19640005A DE19640005A1 (en) 1996-09-27 1996-09-27 Semiconductor device and method for its production
DE19640005 1996-09-27
PCT/DE1997/002038 WO1998013864A1 (en) 1996-09-27 1997-09-11 Optoelectronic semiconductor device and method for producing the same

Publications (1)

Publication Number Publication Date
EP0864174A1 true EP0864174A1 (en) 1998-09-16

Family

ID=7807228

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97943755A Withdrawn EP0864174A1 (en) 1996-09-27 1997-09-11 Optoelectronic semiconductor device and method for producing the same

Country Status (5)

Country Link
US (1) US6081000A (en)
EP (1) EP0864174A1 (en)
DE (1) DE19640005A1 (en)
TW (1) TW451429B (en)
WO (1) WO1998013864A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19842217A1 (en) * 1998-09-15 2000-03-23 Siemens Ag Metallized sloping step for a metal clad ridge waveguide semiconductor laser is produced by selectively etching a semiconductor substrate surface exposed by a partial metallization of finer grain structure than gold
US6518080B2 (en) * 2001-06-19 2003-02-11 Sensors Unlimited, Inc. Method of fabricating low dark current photodiode arrays

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3982265A (en) * 1975-09-19 1976-09-21 Bell Telephone Laboratories, Incorporated Devices containing aluminum-V semiconductor and method for making
US4216036A (en) * 1978-08-28 1980-08-05 Bell Telephone Laboratories, Incorporated Self-terminating thermal oxidation of Al-containing group III-V compound layers
US4291327A (en) * 1978-08-28 1981-09-22 Bell Telephone Laboratories, Incorporated MOS Devices
US4952527A (en) * 1988-02-19 1990-08-28 Massachusetts Institute Of Technology Method of making buffer layers for III-V devices using solid phase epitaxy
US5411914A (en) * 1988-02-19 1995-05-02 Massachusetts Institute Of Technology III-V based integrated circuits having low temperature growth buffer or passivation layers
US5262360A (en) * 1990-12-31 1993-11-16 The Board Of Trustees Of The University Of Illinois AlGaAs native oxide
JP2560562B2 (en) * 1991-04-30 1996-12-04 住友化学工業株式会社 Epitaxial growth compound semiconductor crystal
US5371384A (en) * 1993-06-24 1994-12-06 Sony Corporation Solid state imaging device having a light emitting diode
KR0148599B1 (en) * 1994-11-15 1998-12-01 양승택 Method for manufacturing defect-free compound semiconductor thin film on dielectric thin film
US5528616A (en) * 1995-04-24 1996-06-18 International Business Machines Corporation Asymmetric dual waveguide laser
JP3905935B2 (en) * 1995-09-01 2007-04-18 株式会社東芝 Semiconductor device and method for manufacturing semiconductor device
US6008506A (en) * 1996-04-25 1999-12-28 Nec Corporation SOI optical semiconductor device
JP3814880B2 (en) * 1996-08-05 2006-08-30 富士ゼロックス株式会社 Semiconductor device and manufacturing method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9813864A1 *

Also Published As

Publication number Publication date
US6081000A (en) 2000-06-27
DE19640005A1 (en) 1998-04-02
TW451429B (en) 2001-08-21
WO1998013864A1 (en) 1998-04-02

Similar Documents

Publication Publication Date Title
DE19640003B4 (en) Semiconductor device and method for its production
EP0487876B1 (en) Monolithically integrated laserdiode-waveguide-combination
DE69835505T2 (en) METHOD FOR PROVIDING A GRIP IN THE MANUFACTURE OF INTEGRATED SILICON-ON-ISOLATOR CIRCUITS
DE2721397B2 (en) Process for the production of an HF semiconductor component containing at least one planar diode
DE19615179B4 (en) Process for producing light-emitting semiconductor components with improved stability
DE3034894C2 (en)
WO2018109193A1 (en) Method for producing a semiconductor component
EP0390061B1 (en) Method for the production of monolithically integrated optoelectronic modules
DE2627355C3 (en) Solid state light emitting device and method for making the same
EP0258530A2 (en) Photoreceiver
EP0762500A1 (en) Planar PIN diode and method of manufacturing the same
DE2942508A1 (en) LIGHT-EMITTING DIODE AND METHOD FOR THEIR PRODUCTION
DE2039091A1 (en) A transistor with minimal side injection in a monolithic semiconductor body and method of manufacturing this transistor
WO1998013864A1 (en) Optoelectronic semiconductor device and method for producing the same
EP0103084B1 (en) Method of making a planar avalanche photodiode having a longwave sensitivity limit above 1.3 um
DE3432603A1 (en) SEMICONDUCTOR COMPONENT THAT HAS A LAYER OF TRANSPARENT, N-CONDUCTIVE MATERIAL, AND USE OF SUCH COMPONENTS
EP0432150B1 (en) Laser diode with buried active layer and lateral current limiting and process for its manufacture
EP0272384B1 (en) Monolithic integrated photodetector
DE3709302C2 (en) Monolithically integrated transmitter arrangement and method for its production
EP0619921A1 (en) Electronic component and process for making it
DE3629685C2 (en) Photo receiver
EP0272372B1 (en) Method of making a monolithic integrated photodetector
DE10012869C2 (en) Vertical resonator laser diode with coplanar electrical connection contacts and process for their production
DE2616925C2 (en) Semiconductor component and method for its manufacture
DE112021001428T5 (en) FABRICATION OF SEMICONDUCTOR STRUCTURES

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980519

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: INFINEON TECHNOLOGIES AG

RIC1 Information provided on ipc code assigned before grant

Free format text: 7H 01L 21/76 A, 7H 01L 31/0392 B, 7H 01S 5/40 B

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20030122