EP0862797A1 - Microwave resonator, method of producing such a resonator and method of compensating the temperature coefficient of the resonant frequency of a microwave resonator - Google Patents

Microwave resonator, method of producing such a resonator and method of compensating the temperature coefficient of the resonant frequency of a microwave resonator

Info

Publication number
EP0862797A1
EP0862797A1 EP96939813A EP96939813A EP0862797A1 EP 0862797 A1 EP0862797 A1 EP 0862797A1 EP 96939813 A EP96939813 A EP 96939813A EP 96939813 A EP96939813 A EP 96939813A EP 0862797 A1 EP0862797 A1 EP 0862797A1
Authority
EP
European Patent Office
Prior art keywords
resonator
microwave
temperature coefficient
microwave resonator
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP96939813A
Other languages
German (de)
French (fr)
Inventor
Norbert Klein
Claudio Zuccaro
Andreas Scholen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Juelich GmbH
Original Assignee
Forschungszentrum Juelich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Juelich GmbH filed Critical Forschungszentrum Juelich GmbH
Publication of EP0862797A1 publication Critical patent/EP0862797A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P7/00Resonators of the waveguide type
    • H01P7/10Dielectric resonators

Definitions

  • Microwave resonator method for producing such a resonator and method for compensating for the temperature coefficient of the resonance frequency of a microwave resonator
  • the invention relates to a microwave resonator according to the preamble of claim 1. Furthermore, the invention relates to a method for its production according to the preamble of claim 4. Furthermore, the invention relates to a method for compensating the temperature coefficient of the resonance frequency of a microwave resonator according to the preamble of the claim.
  • Microwave resonators have a temperature-dependent resonance frequency, which is disruptive for many applications.
  • the physical cause of the temperature dependence of the resonance frequency of the microwave resonator lies in the thermal expansion of the resonator material, possibly in the temperature dependence of the dielectric constant of dielectric and / or planar resonators introduced into the resonator space, and in the temperature dependence of the high-frequency field penetration depth, in particular justified with superconducting resonators. All of these effects result in the result that the resonance frequency of the microwave resonator changes with a change in the working temperature; the resonance frequency increases with falling temperature.
  • the size of the temperature coefficient is always correlated with the level of the requirements for the temperature stability of the cooler, so that a minimization of the temperature coefficient is desirable.
  • the object is achieved by a microwave resonator according to the entirety of the features according to claim 1.
  • the task is further solved by a method according to the entirety of the features according to claim 4. Further expedient or advantageous embodiments or variants can be found in each case ei ⁇ nen of these claims jerk-related subclaims.
  • the invention consists in introducing a dielectric body with a negative temperature coefficient in the resonator. It was also recognized that the behavior of such a dielectric body leads to the fact that, with a suitable arrangement and dimensions of the body, this is explained by the above Effects caused temperature coefficient in a more or less large temperature interval can be compensated.
  • the wall can be made partially or entirely of superconducting material
  • a dielectric as a dielectric resonator can be connected to the wall of the resonator chamber, in particular in a detachable manner.
  • Sapphire for example, can be selected as the material for such a dielectric resonator.
  • rutile monocrystalline T ⁇ 0 2
  • rutile has a very high, negative temperature coefficient of the relative dielectric number and is therefore extremely suitable as a material for such a dielectric body.
  • microwave losses in the case of the use of rutile as a dielectric body at cryogenic temperatures are advantageously very low, so that any noteworthy quality degradation of the microwave resonator is avoided.
  • Figure 1 shows an example of the cavity of a microwave resonator. This space is delimited by a conductive shield and contains a dielectric resonator made of sapphire, which is excited in the TE 01 ⁇ mode via a coupling antenna, not shown in detail, at a frequency of 10 GHz.
  • the coupling antenna for coupling the microwave is also not shown in FIG. 1.
  • the upper and / or lower end plate of the cylindrical cavity can be formed by layers of high-temperature superconductors.
  • a dielectric body with a negative temperature coefficient a thin one was used as an example
  • Rutile plate fixed to the upper end plate of the resonator chamber.
  • FIGS. 2a, 2b and 2c are one and the same result with different gray areas shown as a representation of the colored original according to FIG. 2a.
  • FIG. 3 shows the numerically calculated negative temperature coefficient of the rutile plate according to FIG. 1 at a temperature of 60 K as a function of the thickness of the rutile plate (dots with a solid line) and the value of the positive temperature coefficient experimentally determined on the microwave resonator without rutile plate (dashed line) at 60 K.

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

The invention concerns a microwave resonator with a resonator chamber and devices projecting thereinto for the coupling in and out of a microwave. The object of the invention is to provide a microwave resonator in which the temperature dependency of the resonant frequency of the microwave resonator is reduced. This object is achieved in that a dielectric body with a negative temperature coefficient is provided in the resonator chamber. Advantageously, superconductive, in particular high-temperature superconductive, material can be used to form at least part of the resonator chamber walls acting as electrical screening.

Description

B e s c h r e i b u n gDescription
Mikrowellenresonator, Verfahren zur Herstellung eines solchen Resonators sowie Verfahren zur Kompensation des Temperaturkoef¬ fizienten der Resonanzfrequenz eines MikrowellenresonatorsMicrowave resonator, method for producing such a resonator and method for compensating for the temperature coefficient of the resonance frequency of a microwave resonator
Die Erfindung betrifft einen Mikrowellenresonator gemäß dem Oberbegriff des Anspruchs 1. Desweiteren betrifft die Erfindung ein Verfahren zu seiner Herstellung gemäß dem Oberbegriff des Anspruchs 4. Desweiteren betrifft die Erfindung ein Verfahren zur Kompensation des Temperaturkoeffizienten der Resonanzfre¬ quenz eines Mikrowellenresonator gemäß dem Oberbegriff des An- Spruchs 5.The invention relates to a microwave resonator according to the preamble of claim 1. Furthermore, the invention relates to a method for its production according to the preamble of claim 4. Furthermore, the invention relates to a method for compensating the temperature coefficient of the resonance frequency of a microwave resonator according to the preamble of the claim. Proverb 5
Mikrowellenresonatoren weisen eine temperaturabhängige Resonanz¬ frequenz auf, die für viele Anwendungen störend ist. Die physi¬ kalische Ursache für die Temperaturabhängigkeit der Resonanzfre- quenz des Mikrowellenresonators liegt in der thermischen Ausdeh¬ nung des Resonatormaterials, ggfs. in der Temperaturabhängigkeit der Dielektrizitätszahl von in den Resonatorraum eingebrachten dielektrischen und/oder planaren Resonatoren sowie in der Temperaturabhängigkeit der Hochfrequenzfeldeindringtiefe, insbesondere bei supraleitenden Resonatoren begründet. Alle die¬ se Effekte führen im Ergebnis dazu, daß sich die Resonanzfre¬ quenz des Mikrowellenresonators mit einer Änderung der Arbeits¬ temperatur ändert; mit fallender Temperatur steigt die Resonanz¬ frequenz an. Insbesondere bei dielektrischen Resonatoren auf der Basis von Hochtemperatur-Supraleitern, die ein großes Potential für zu¬ kunftige Filter und Oszillatoren m der Mikrowellen-Kommunika¬ tionstechnik besitzen, ist die Größe des Temperaturkoeffizienten stets mit der Höhe der Anforderungen an die Temperaturstabilitat des Kuhlers korreliert, so daß eine Minimierung des Tempera¬ turkoeffizienten wünschenswert ist. Dies gilt insbesondere für Oszillatoren auf der Basis dielektrischer Resonatoren mit supra¬ leitender Abschirmung wie beispielsweise aus N.Klein et al. , IEEE Transactions on Applied Superconductivity 5, 2663, 1995 oder N.Klein et al . , eingeladener Vortrag bei der European Con¬ ference on Applied Superconductivity, Juli 1995 bekannt, die hinsichtlich des Temperaturkoeffizienten der Resonanzfrequenz besonders kritisch sind.Microwave resonators have a temperature-dependent resonance frequency, which is disruptive for many applications. The physical cause of the temperature dependence of the resonance frequency of the microwave resonator lies in the thermal expansion of the resonator material, possibly in the temperature dependence of the dielectric constant of dielectric and / or planar resonators introduced into the resonator space, and in the temperature dependence of the high-frequency field penetration depth, in particular justified with superconducting resonators. All of these effects result in the result that the resonance frequency of the microwave resonator changes with a change in the working temperature; the resonance frequency increases with falling temperature. In particular in the case of dielectric resonators based on high-temperature superconductors, which have great potential for future filters and oscillators in microwave communication technology, the size of the temperature coefficient is always correlated with the level of the requirements for the temperature stability of the cooler, so that a minimization of the temperature coefficient is desirable. This applies in particular to oscillators based on dielectric resonators with superconducting shielding, for example from N. Klein et al. , IEEE Transactions on Applied Superconductivity 5, 2663, 1995 or N. Klein et al. , invited lecture at the European Conference on Applied Superconductivity, July 1995, which are particularly critical with regard to the temperature coefficient of the resonance frequency.
Es ist deshalb Aufgabe der Erfindung einen Mikrowellenresonator zu schaffen, sowie ein Verfahren zur Herstellung eines solchen bereitzustellen, bei dem eine verringerte Temperaturabhangigkeit der Resonanzfrequenz des Mikrowellenresonators erreicht wirdIt is therefore an object of the invention to provide a microwave resonator and to provide a method for producing one in which a reduced temperature dependence of the resonance frequency of the microwave resonator is achieved
Die Aufgabe wird gelost durch einen Mikrowellenresonator gemäß der Gesamtheit der Merkmale nach Anspruch 1. Die Aufgabe wird ferner gelöst durch ein Verfahren gemäß der Gesamtheit der Merk¬ male nach Anspruch 4. Weitere zweckmäßige oder vorteilhafte Auε- führungsformen oder Varianten finden sich m den auf jeweils ei¬ nen dieser Ansprüche ruckbezogenen Unteranspruchen.The object is achieved by a microwave resonator according to the entirety of the features according to claim 1. The task is further solved by a method according to the entirety of the features according to claim 4. Further expedient or advantageous embodiments or variants can be found in each case ei¬ nen of these claims jerk-related subclaims.
Die Erfindung besteht darin, einen dielektrischen Körper mit ne¬ gativem Temperaturkoeffizienten m den Resonator einzubringen Es wurde zudem erkannt, daß das Verhalten eines solchen dielek¬ trischen Korpers dazu führt, daß dadurch bei geeigneter Anord¬ nung und Abmessungen des Korpers der durch die oben erklarten Effekte verursachte Temperaturkoeffizient m einem mehr oder we¬ niger großem Temperaturintervall kompensiert werden kann.The invention consists in introducing a dielectric body with a negative temperature coefficient in the resonator. It was also recognized that the behavior of such a dielectric body leads to the fact that, with a suitable arrangement and dimensions of the body, this is explained by the above Effects caused temperature coefficient in a more or less large temperature interval can be compensated.
Zur Steigerung der Gute des Mikrowellenresonators kann die Wan- düng teilweise oder ganz aus supraleitendem MaterialTo increase the quality of the microwave resonator, the wall can be made partially or entirely of superconducting material
(insbesondere aus hochtemperatursupraleitendem Material) ausge¬ bildet sein Außerdem kann ein dielektrikum als dielektrischer Resonator mit der Wandung des Resonatorraums - insbesondere los¬ bar - verbunden sein. Als Material für einen solchen dielektri- sehen Resonator kann zum Beispiel Saphir gewählt werden.(in particular made of high-temperature superconducting material). Furthermore, a dielectric as a dielectric resonator can be connected to the wall of the resonator chamber, in particular in a detachable manner. Sapphire, for example, can be selected as the material for such a dielectric resonator.
Es wurde zudem erkannt, daß Rutil (einkristallines Tι02) einen sehr hohen, negativen Temperaturkoeffizienten der relativen Die- lektπzitatszahl besitzt und insofern als Material für einen solchen dielektrischen Korper extrem geeignet ist. In vorteil¬ hafter Weise sind darüberhinaus die Mikrowellenverluste im Falle des Einsatzes von Rutil als dielektrischer Korper bei kryogenen Temperaturen sehr niedrig, εo daß eine nennenswerten Gütedegra¬ dation des Mikrowellenresonators vermieden wird.It was also recognized that rutile (monocrystalline Tι0 2 ) has a very high, negative temperature coefficient of the relative dielectric number and is therefore extremely suitable as a material for such a dielectric body. In addition, the microwave losses in the case of the use of rutile as a dielectric body at cryogenic temperatures are advantageously very low, so that any noteworthy quality degradation of the microwave resonator is avoided.
Die Erfindung ist im weiteren an Hand von Figur und Ausführungs¬ beispiel naher erläutert. Es zeigt:The invention is explained in more detail below with reference to the figure and exemplary embodiment. It shows:
Fig. 1. Querschnitt durch einen Resonatorraum mit zylin¬ drischer Form in der senkrechten Mittelachse des Zylinders;1. Cross-section through a resonator chamber with a cylindrical shape in the vertical central axis of the cylinder;
Fig. 2a,b,c: nummerisch berechnete Feldverteilung der aufgenom¬ menen Energie m der rechten Querschnittshälfte des in Figur 1 dargestellten Resonatorraums; Fig. 3: Temperaturkoeffizient der Rutilplatte nach Figur 1 als Funktion der Plattendicke.2a, b, c: numerically calculated field distribution of the absorbed energy m of the right half of the cross section of the resonator space shown in FIG. 1; Fig. 3: Temperature coefficient of the rutile plate according to Figure 1 as a function of the plate thickness.
AusführungsbeispielEmbodiment
Figur 1 zeigt als Beispiel den Resonatorraum eines Mikrowellen¬ resonators. Dieser Raum wird von einer leitenden Abschirmung be¬ grenzt und enthält einen dielektrischen Resonator aus Saphir, der in der TE01δ-Mode über eine im einzelnen nicht dargestellte Einkoppelantenne bei einer Frequenz von 10 GHz angeregt wird. Auch die Auskoppelantenne zur Auskopplung der Mikrowelle ist in der Figur 1 nicht dargestellt. Zur Maximierung des Gütefaktors kann die obere und/oder untere Endplatte des zylinderförmigen Hohlraums durch Schichten aus Hochtemperatur-Supraleitern gebil¬ det werden. Als Beispiel eines dielektrischen Körpers mit nega- tivem Temperaturkoeffizienten wurde beispielhaft eine dünneFigure 1 shows an example of the cavity of a microwave resonator. This space is delimited by a conductive shield and contains a dielectric resonator made of sapphire, which is excited in the TE 01δ mode via a coupling antenna, not shown in detail, at a frequency of 10 GHz. The coupling antenna for coupling the microwave is also not shown in FIG. 1. In order to maximize the quality factor, the upper and / or lower end plate of the cylindrical cavity can be formed by layers of high-temperature superconductors. As an example of a dielectric body with a negative temperature coefficient, a thin one was used as an example
Platte aus Rutil an der oberen Endplatte des Resonatorraumes fi¬ xiert .Rutile plate fixed to the upper end plate of the resonator chamber.
In Figur 2 a,b,c ist die numerisch berechnete Verteilung der Energie des elektrischen Feldes für die rechten Hälfte des in Figur 1 gezeigten Resonatorraumes dargestellt. Dabei bestimmt der Wert der in der Rutilplatte gespeicherten Energie die Größe des negativen Temperaturkoeffizienten. Bei den Figuren 2a, 2b und 2c handelt es sich um ein und das selbe Ergebnis mit unter- schiedlichen dargestellten Graubereichen als Darstellung des farbigen Originals nach Figur 2a. Dieses Original läßt im Ergeb- ms einen Verlauf von kleineren zu größeren Werten hm für die Feldverteilung im Bereich der Mitte der Rutilplatte bei etwa Z= 9.00E-03 sowie im Bereich des Saphir-Resonators bei etwa Z=4.5E-03 und etwa R=4.5E-03 erkennen.2 a, b, c show the numerically calculated distribution of the energy of the electric field for the right half of the resonator space shown in FIG. 1. The value of the energy stored in the rutile plate determines the size of the negative temperature coefficient. FIGS. 2a, 2b and 2c are one and the same result with different gray areas shown as a representation of the colored original according to FIG. 2a. The result of this original ms recognize a course from smaller to larger values hm for the field distribution in the area of the center of the rutile plate at approximately Z = 9.00E-03 and in the area of the sapphire resonator at approximately Z = 4.5E-03 and approximately R = 4.5E-03 .
Figur 3 zeigt den numerisch berechneten negativen Temperatur¬ koeffizienten der Rutilplatte nach Figur 1 bei einer Temperatur von 60 K als Funktion der Dicke der Rutilplatte (Punkte mit durchgezogener Linie) sowie den an dem Mikrowellenresonator ohne Rutilplatte experimentell bestimmten Wert (gestrichelte Linie) des positiven Temperaturkoeffizienten bei 60 KFIG. 3 shows the numerically calculated negative temperature coefficient of the rutile plate according to FIG. 1 at a temperature of 60 K as a function of the thickness of the rutile plate (dots with a solid line) and the value of the positive temperature coefficient experimentally determined on the microwave resonator without rutile plate (dashed line) at 60 K.
Man erkennt, daß sich bei einer Plattendicke von etwa 0,56 mm beide Effekte kompensieren. Bei dieser Plattendicke erwartet man deshalb einen weitgehend temperaturunabhängig arbeitenden Mikro¬ wellenresonator. Es sind jedoch auch andere geometrische Anord¬ nungen denkbar, bei denen diese Kompensation erreicht und auf diese Weise die Resonanzfrequenz des Resonators praktisch tempe- raturunabhangig wird.It can be seen that a plate thickness of about 0.56 mm compensates for both effects. With this plate thickness, a microwave resonator that works largely independently of temperature is therefore expected. However, other geometrical arrangements are also conceivable in which this compensation is achieved and in this way the resonance frequency of the resonator becomes practically temperature-independent.
Durch Messung des - negativen - Temperaturkoeffizienten m einem die Arbeitstemperatur des Resonators enthaltenden Temperaturin¬ tervall, beispielsweise zwischen 4K und Zimmertemperatur, ist auf diese Weise die Bestimmung der zur Kompensation erforderli- chen Geometrie des Resonators für ein zu definierendes Tempera¬ turintervall im gesamten Temperaturbereich möglich By measuring the - negative - temperature coefficient in a temperature interval containing the working temperature of the resonator, for example between 4K and room temperature, it is possible in this way to determine the geometry of the resonator required for compensation for a temperature interval to be defined in the entire temperature range

Claims

Patentansprüche claims
1. Mikrowellenresonator mit Resonatorraum und in diese hineinra¬ genden Mitteln zum Ein- und Auskoppeln einer Mikrowelle, ge - kennzeichnet durch einen im Resonatorraum befindli¬ chen dielektrischen Körper mit negativem Temperaturkoeffizi- enten.1. Microwave resonator with resonator space and means projecting into and out of it for coupling and uncoupling a microwave, characterized by a dielectric body in the resonator space with a negative temperature coefficient.
2. Mikrowellenresonator nach Anspruch 1, gekennzeichnet durch supraleitendes, insbesondere hochtemperatursupralei- tendes Material zur Bildung wenigstens ein Teil der als elek¬ trische Abschirmung wirkenden Wandung des Resonatorraumes.2. Microwave resonator according to claim 1, characterized by superconducting, in particular high-temperature, superconducting material for forming at least part of the wall of the resonator chamber which acts as an electrical shield.
3. Mikrowellenresonator nach Anspruch 1 oder 2 mit einem im Re- sonatorraum mit der Wandung, insbesondere lösbar verbundenen Dielektrikum.3. Microwave resonator according to claim 1 or 2 with a dielectric, in particular detachably connected to the wall in the resonator room.
4. Verfahren zur Herstellung eines Mikrowellenresonators mit Re- sonatorraum, dadurch gekennzeichnet , daß im gebil¬ deten Resonatorraum ein dielektrischer Körper mit negativem Temperaturkoeffizient vorgesehen wird.4. A method for producing a microwave resonator with a resonator chamber, characterized in that a dielectric body with a negative temperature coefficient is provided in the resonator chamber.
5. Verfahren zur Kompensation des Temperaturkoeffizienten der Resonanzfrequenz eines Mikrowellenresonators bei dem ein in den Resonatorraum des Mikrowellenresonators eingebrachter, dielektrischer Körper mit negativem Temperaturkoeffizient eingesetzt wird. 5. Method for compensating for the temperature coefficient of the resonance frequency of a microwave resonator, in which a cavity introduced into the cavity of the microwave resonator dielectric body with a negative temperature coefficient is used.
EP96939813A 1995-11-20 1996-11-20 Microwave resonator, method of producing such a resonator and method of compensating the temperature coefficient of the resonant frequency of a microwave resonator Withdrawn EP0862797A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19543179 1995-11-20
DE1995143179 DE19543179A1 (en) 1995-11-20 1995-11-20 Microwave resonator, method for producing such a resonator and method for compensating for the temperature coefficient of the resonance frequency of a microwave resonator
PCT/DE1996/002250 WO1997019486A1 (en) 1995-11-20 1996-11-20 Microwave resonator, method of producing such a resonator and method of compensating the temperature coefficient of the resonant frequency of a microwave resonator

Publications (1)

Publication Number Publication Date
EP0862797A1 true EP0862797A1 (en) 1998-09-09

Family

ID=7777890

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96939813A Withdrawn EP0862797A1 (en) 1995-11-20 1996-11-20 Microwave resonator, method of producing such a resonator and method of compensating the temperature coefficient of the resonant frequency of a microwave resonator

Country Status (4)

Country Link
EP (1) EP0862797A1 (en)
JP (1) JP2000500630A (en)
DE (1) DE19543179A1 (en)
WO (1) WO1997019486A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001512229A (en) 1997-07-31 2001-08-21 ミクロヴェーレン−テクノロジー ウント センソレン ゲーエムベーハー Distance measuring device and method for measuring distance
DE19807593A1 (en) * 1997-07-31 1999-02-04 Mikrowellen Technologie Und Se Distance measuring device and method for determining a distance
DE19734713A1 (en) 1997-08-11 1999-02-18 Mikrowellen Technologie Und Se Radar range finder
CN104300197A (en) * 2014-10-21 2015-01-21 成都顺为超导科技股份有限公司 Superconducting resonator and superconducting filter composed of superconducting resonators
JP6717996B1 (en) * 2019-03-14 2020-07-08 株式会社フジクラ filter

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2538779A1 (en) * 1975-09-01 1977-03-10 Philips Patentverwaltung Temp. compensated microwave cavity resonator - has NTC ceramic block inside cavity opposite output to compensate temp. effects
DE3241687A1 (en) * 1982-11-11 1984-05-17 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Arrangement for temperature compensation of waveguide-oscillator circuits
US4667172A (en) * 1986-04-07 1987-05-19 Motorola, Inc. Ceramic transmitter combiner with variable electrical length tuning stub and coupling loop interface
DE3923439A1 (en) * 1989-07-15 1991-01-24 Kolbe & Co Hans Circle-cylindrical resonator for microwave filter - uses high temp. superconductor ends, normal cover face and set diameter ratio

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9719486A1 *

Also Published As

Publication number Publication date
WO1997019486A1 (en) 1997-05-29
DE19543179A1 (en) 1997-05-22
JP2000500630A (en) 2000-01-18

Similar Documents

Publication Publication Date Title
DE69835684T2 (en) MULTIMODIAL DIELECTRIC RESONANCE DEVICES, DIELECTRIC FILTER, ASSEMBLED DIELECTRIC FILTER, SYNTHETIZER, DISTRIBUTOR AND COMMUNICATION DEVICE
DE3688375T2 (en) TRIPLE MODE WITH BAND PASS FILTERS LOADED WITH DIELECTRIC RESONATORS.
EP0353449B1 (en) Inductive current limitation device for an alternating current using the superconductivity superconductor
DE3437498C2 (en) Acoustic wave resonator and method for its production
DE69828249T2 (en) High frequency transmission line, dielectric resonator, filter, duplexer and communication device
US5965494A (en) Tunable resonance device controlled by separate permittivity adjusting electrodes
DE602006000444T2 (en) MADE OF DIELECTRIC MATERIAL, WITH DISCRETE VOLTAGES TUNABLE RESONATOR
DE60101771T2 (en) Ceramic body for high frequency applications, use of the body and method for its manufacture
DE69833662T2 (en) Multimodal Dielectric Resonance Device, Dielectric Filter, Synthesizer, Distributor and Communication Device
KR20010112381A (en) Microstrip cross-coupling control apparatus and method
DE2805964A1 (en) ELECTRIC FILTER
DE2158514A1 (en) Dielectric cavity resonator
DE69816324T2 (en) COMPOSITE FILTER
DE2047229A1 (en) Microwave component
DE2045560A1 (en) Rectangular waveguide resonator and microwave filter built with such resonators
DE10008018A1 (en) Dielectric resonator has strip line on surface of dielectric layer by providing slotted electrode with spiral shaped slot and shield conductor provided in predetermined gap by slotted electrode
DE69732201T2 (en) Dielectric resonator in TM mode and dielectric filter in TM mode and duplexer with the resonator
DE69725508T2 (en) Thin film multilayer electrode, high frequency transmission line, high frequency resonator, and high frequency filter
EP0862797A1 (en) Microwave resonator, method of producing such a resonator and method of compensating the temperature coefficient of the resonant frequency of a microwave resonator
US6218915B1 (en) Dual-mode ring resonator
DE2727485A1 (en) RESONATOR FOR HIGH FREQUENCY ELECTROMAGNETIC VIBRATIONS
DE10065510C2 (en) Resonator, filter and duplexer
DE60038079T2 (en) Dielectric resonance device, dielectric filter, assembled dielectric filter device, dielectric duplexer and communication device
DE3238858C2 (en) Dielectric ceramic material to be used in a component of a microwave circuit with a frequency of up to 40 GHz
DE69909000T2 (en) Dielectric resonator, dielectric filter, dielectric duplexer and communication device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980515

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 19990816

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 20000108