EP0861315B1 - Detergents delivering a stronger organic peroxyacid bleach to a wash first followed by delivering a weaker peroxyacid - Google Patents

Detergents delivering a stronger organic peroxyacid bleach to a wash first followed by delivering a weaker peroxyacid Download PDF

Info

Publication number
EP0861315B1
EP0861315B1 EP96936561A EP96936561A EP0861315B1 EP 0861315 B1 EP0861315 B1 EP 0861315B1 EP 96936561 A EP96936561 A EP 96936561A EP 96936561 A EP96936561 A EP 96936561A EP 0861315 B1 EP0861315 B1 EP 0861315B1
Authority
EP
European Patent Office
Prior art keywords
peroxyacid
acid
detergent composition
organic
alkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96936561A
Other languages
German (de)
French (fr)
Other versions
EP0861315A4 (en
EP0861315A1 (en
Inventor
Gerard Marcel Baillely
Nour-Eddine Guedira
Robin Gibson Hall
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Procter and Gamble Co filed Critical Procter and Gamble Co
Publication of EP0861315A1 publication Critical patent/EP0861315A1/en
Publication of EP0861315A4 publication Critical patent/EP0861315A4/en
Application granted granted Critical
Publication of EP0861315B1 publication Critical patent/EP0861315B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3945Organic per-compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3902Organic or inorganic per-compounds combined with specific additives
    • C11D3/3905Bleach activators or bleach catalysts
    • C11D3/3907Organic compounds

Definitions

  • This invention relates to detergent compositions containing an organic peroxyacid bleaching system capable of releasing a plurality of organic peroxyacids of different strength to a wash solution.
  • bleach components such as oxygen bleaches. including hydrogen peroxide and organic peroxyacids.
  • the organic peroxyacids are often obtained by the in situ perhydrolysis reaction between hydrogen peroxide and an organic peroxyacid bleach precursor. Alternatively, a preformed organic peroxyacid can be used.
  • equivalent bleachable stain removal performance may be obtained from a mixed organic peroxyacid bleach system containing lower levels of a stronger organic peroxyacid whose release to the wash solution is delayed, as may be obtained for an, otherwise comparable, organic peroxyacid bleach system having no delayed release of the stronger peroxyacid to the wash solution.
  • equivalent bleaching performance can be obtained even though less of the stronger peroxyacid is used overall.
  • the mechanism behind the present development is as follows: In the first stage the weaker organic peroxyacid is released rapidly to the wash solution where it can act on readily bleachable stains, but also where it can fall prey to wasteful decomposition reactions in the early parts of the wash. Such decomposition most often arises as a result of reactions with components (such as heavy metal ions) present in the wash solution, which themselves are often derived from the soiled washload. In the second stage, the stronger peroxyacid is released and can act on the less readily bleachable (i.e.
  • compositions suitable for use in laundry and machine dishwashing methods having enhanced bleachable soil/stain removal.
  • a detergent composition containing an organic peroxyacid bleaching system capable of releasing two different organic peroxyacid bleaches to a wash solution wherein said organic peroxyacid bleathing system contains a hydrogen peroxide source and a plurality of organic peroxyacid bleach precursor compounds, and wherein a means is provided for delaying the release to a wash solution of the stronger peroxyacid relative to the release of a weaker peroxyacid such that in the T50 test method herein described the time to achieve a concentration that is 50% of the ultimate concentration of said stronger peroxyacid is at least 120 seconds more than the time to achieve a concentration that is 50% of the ultimate concentration of said weaker peroxyacid, wherein the relative strength of the peroxyacids is measured according to the 'dye bleaching protocol' described herein.
  • a detergent composition containing an organic peroxyacid bleaching system capable of releasing two different organic peroxyacid bleaches to a wash solution
  • a means is provided for delaying the release to a wash solution of the stronger peroxyacid relative to the release of the weaker peroxyacid such that in the T50 test method herein described the time to achieve a concentration that is 50% of the ultimate concentration of the weaker peroxyacid is less than 60 seconds and the time to achieve a concentration that is 50% of the ultimate concentration of the stronger peroxyacid is more than 180 seconds, wherein the relative strength of the peroxyacids is measured according to the 'dye bleaching protocol' described herein.
  • the detergent composition contains only two organic peroxyacid bleach precursor compounds, i.e. it is a binary bleach precursor system.
  • the detergent compositions contain an organic peroxyacid bleaching system.
  • the bleaching system contains a hydrogen peroxide source and a plurality of organic peroxyacid bleach precursor compounds capable of releasing at least two different organic peroxyacids to a wash solution.
  • the production of the organic peroxyacid occurs by an in situ reaction of the precursor with a source of hydrogen peroxide.
  • Preferred sources of hydrogen peroxide include inorganic perhydrate bleaches.
  • a preformed organic peroxyacid is used as a substitute for one, many or all of the organic peroxyacid bleach precursor compounds. Compositions containing mixtures of a hydrogen peroxide source and organic peroxyacid precursor in combination with a preformed organic peroxyacid are thus envisaged.
  • Inorganic perhydrate salts are a preferred source of hydrogen peroxide. These salts are normally incorporated in the form of the alkali metal, preferably sodium salt at a level of from 1% to 40% by weight, more preferably from 2% to 30% by weight and most preferably from 5% to 25% by weight of the compositions.
  • inorganic perhydrate salts include perborate, percarbonate, perphosphate, persulfate and persilicate salts.
  • the inorganic perhydrate salts are normally the alkali metal salts.
  • the inorganic perhydrate salt may be included as the crystalline solid without additional protection.
  • the preferred executions of such granular compositions utilize a coated form of the material which provides better storage stability for the perhydrate salt in the granular product.
  • Suitable coatings comprise inorganic salts such as alkali metal silicate, carbonate or borate salts or mixtures thereof, or organic materials such as waxes, oils, or fatty soaps.
  • Sodium perborate is a preferred perhydrate salt and can be in the form of the monohydrate of nominal formula NaBO 2 H 2 O 2 or, more preferably, the tetrahydrate NaBO 2 H 2 O 2 .3H 2 O.
  • Alkali metal percarbonates particularly sodium percarbonate are preferred perhydrates herein.
  • Sodium percarbonate is an addition compound having a formula corresponding to 2Na 2 CO 3 .3H 2 O 2 , and is available commercially as a crystalline solid.
  • Potassium peroxymonopersulfate is another inorganic perhydrate salt of use in the detergent compositions herein.
  • Peroxyacid bleach precursors are compounds which react with hydrogen peroxide in a perhydrolysis reaction to produce a peroxyacid.
  • peroxyacid bleach precursors may be represented as where L is a leaving group and X is essentially any functionality, such that on perhydroloysis the structure of the peroxyacid produced is
  • Peroxyacid bleach precursor compounds are preferably incorporated at a level of from 0.5% to 20% by weight, more preferably from 1% to 15% by weight, most preferably from 1.5% to 10% by weight of the detergent compositions.
  • Suitable peroxyacid bleach precursor compounds typically contain one or more Nor O-acyl groups, which precursors can be selected from a wide range of classes.
  • Suitable classes include anhydrides, esters, imides, lactams and acylated derivatives of imidazoles and oximes. Examples of useful materials within these classes are disclosed in GB-A-1586789.
  • Suitable esters are disclosed in GB-A-836988, 864798, 1147871, 2143231 and EP-A-0170386.
  • L group The leaving group, hereinafter L group, must be sufficiently reactive for the perhydrolysis reaction to occur within the optimum time frame (e.g., a wash cycle). However, if L is too reactive, this activator will be difficult to stabilize for use in a bleaching composition.
  • Preferred L groups are selected from the group consisting of: and mixtures thereof, wherein R 1 is an alkyl, aryl, or alkaryl group containing from 1 to 14 carbon atoms, R 3 is an alkyl chain containing from 1 to 8 carbon atoms, R 4 is H or R 3 , and Y is H or a solubilizing group. Any of R 1 , R 3 and R 4 may be substituted by essentially any functional group including, for example alkyl, hydroxy, alkoxy, halogen, amine, nitrosyl, amide and ammonium or alkyl ammmonium groups
  • the preferred solubilizing groups are -SO 3 - M + , -CO 2 - M + , -SO 4 - M + , -N + (R 3 ) 4 X - and O ⁇ --N(R 3 ) 3 and most preferably -SO 3 - M + and -CO 2 - M + wherein R 3 is an alkyl chain containing from 1 to 4 carbon atoms, M is a cation which provides solubility to the bleach activator and X is an anion which provides solubility to the bleach activator.
  • M is an alkali metal, ammonium or substituted ammonium cation, with sodium and potassium being most preferred, and X is a halide, hydroxide, methylsulfate or acetate anion.
  • Alkyl percarboxylic acid bleach precursors form percarboxylic acids on perhydrolysis.
  • Preferred precursors of this type provide peracetic acid on perhydrolysis.
  • Preferred alkyl percarboxylic precursor compounds of the imide type include the N-,N,N 1 N 1 tetra acetylated alkylene diamines wherein the alkylene group contains from 1 to 6 carbon atoms, particularly those compounds in which the alkylene group contains 1, 2 and 6 carbon atoms. Tetraacetyl ethylene diamine (TAED) is particularly preferred.
  • TAED Tetraacetyl ethylene diamine
  • alkyl percarboxylic acid precursors include sodium 3,5,5-tri-methyl hexanoyloxybenzene sulfonate (iso-NOBS), sodium nonanoyloxybenzene sulfonate (NOBS), sodium acetoxybenzene sulfonate (ABS) and pentaacetyl glucose.
  • Amide substituted alkyl peroxyacid precursor compounds are suitable herein, including those of the following general formulae: wherein R 1 is an alkyl group with from 1 to 14 carbon atoms, R 2 is an alkylene group containing from 1 to 14 carbon atoms, and R 5 is H or an alkyl group containing 1 to 10 carbon atoms and L can be essentially any leaving group. Most preferably R 1 is an alkyl group with 9 carbon atoms, R 2 is an alkylene group containing 4 carbon atoms, R 5 is H, thus the organic peroxyacid released on perhydrolysis is a nonyl amide of peroxy adipic acid (NAPAA). Amide substituted bleach activator compounds of this type are described in EP-A-0170386.
  • Perbenzoic acid precursor compounds provide perbenzoic acid on perhydrolysis.
  • Suitable O-acylated perbenzoic acid precursor compounds include the substituted and unsubstituted benzoyl oxybenzene sulfonates, and the benzoylation products of sorbitol, glucose, and all saccharides with benzoylating agents, and those of the imide type including N-benzoyl succinimide, tetrabenzoyl ethylene diamine and the N-benzoyl substituted ureas.
  • Suitable imidazole type perbenzoic acid precursors include N-benzoyl imidazole and N-benzoyl benzimidazole.
  • Other useful N-acyl group-containing perbenzoic acid precursors include N-benzoyl pyrrolidone, dibenzoyl taurine and benzoyl pyroglutamic acid.
  • Suitable N-acylated lactam perbenzoic acid precursors have the formula: wherein n is from 0 to 8, preferably from 0 to 2, and R 6 is an aryl, alkoxyaryl or alkaryl group containing from 1 to 12 carbon atoms, or a substituted phenyl group containing from 6 to 18 carbon atoms. preferably a benzoyl group.
  • Cationic peroxyacid precursor compounds produce cationic peroxyacids on perhydrolysis.
  • cationic peroxyacid precursors are formed by substituting the peroxyacid part of a suitable peroxyacid precursor compound with a positively charged functional group, such as an ammonium or alkyl ammmonium group, preferably an ethyl or methyl ammonium group.
  • Cationic peroxyacid precursors are typically present in the solid detergent compositions as a salt with a suitable anion, such as a halide ion.
  • the peroxyacid precursor compound to be so cationically substituted may be a perbenzoic acid, or substituted derivative thereof, precursor compound as described hereinbefore.
  • the peroxyacid precursor compound may be an alkyl percarboxylic acid precursor compound or an amide substituted alkyl peroxyacid precursor as described hereinafter
  • Cationic peroxyacid precursors are described in U.S. Patents 4,904,406; 4,751,015; 4,988,451; 4,397,757; 5,269,962; 5,127,852; 5,093.022; 5,106,528; U.K. 1.382,594; EP 475,512, 458,396 and 284,292; and in JP 87-318,332.
  • Suitable cationic peroxyacid precursors include any of the ammonium or alkyl ammonium substituted alkyl or benzoyl oxybenzene sulfonates, N-acylated caprolactams, and monobenzoyltetraacetyl glucose benzoyl peroxides.
  • Preferred cationic peroxyacid precursors of the N-acylated caprolactam class include the trialkyl ammonium methylene benzoyl caprolactams and the trialkyl ammonium methylene alkyl caprolactams.
  • precursor compounds of the benzoxazin-type as disclosed for example in EP-A-332,294 and EP-A-482,807, particularly those having the formula: wherein R 1 is H, alkyl, alkaryl, aryl, or arylalkyl.
  • the organic peroxyacid bleaching system may contain, in addition to, or as an alternative to, an organic peroxyacid bleach precursor compound, a preformed organic peroxyacid , typically at a level of from 1% to 15% by weight, more preferably from 1% to 10% by weight of the composition.
  • a preferred class of organic peroxyacid compounds are the amide substituted compounds of the following general formulae: or wherein R 1 is an alkyl, aryl or alkaryl group with from 1 to 14 carbon atoms, R 2 is an alkylene, arylene, and alkarylene group containing from 1 to 14 carbon atoms, and R 5 is H or an alkyl, aryl, or alkaryl group containing 1 to 10 carbon atoms.
  • Amide substituted organic peroxyacid compounds of this type are described in EP-A-0170386.
  • organic peroxyacids include diacyl and tetraacylperoxides, especially diperoxydodecanedioc acid, diperoxytetradecanedioc acid and diperoxyhexadecanedioc acid.
  • diacyl and tetraacylperoxides especially diperoxydodecanedioc acid, diperoxytetradecanedioc acid and diperoxyhexadecanedioc acid.
  • Mono- and diperazelaic acid, mono- and diperbrassylic acid and N-phthaloylaminoperoxicaproic acid are also suitable herein.
  • the release to a wash solution of a stronger organic peroxyacid is delayed relative to the release of a weaker organic peroxyacid.
  • the strength of the organic peroxyacid is assessed by reference to the 'peroxyacid dye-bleaching' protocol now described. In essence, this protocol compares the kinetics of bleaching action of the organic peroxyacid on a representative dyestuff under controlled conditions of pH and temperature.
  • a first solution is made up containing 0.5M of an organic peroxyacid precursor compound in distilled water (or a mixture of distilled water/spectrometric grade ethanol for poorly water-soluble precursor compounds).
  • a second solution is made in three stages.
  • 0.3 mg EDTA, and 0.277g uncoated sodium percarbonate are added to 100ml of distilled water.
  • the resulting peroxide solution which is equivalent to a 0.025M solution of active oxygen, is buffered to pH 10.5 using an appropriate buffering agent (e. g. sodium carbonate).
  • an appropriate buffering agent e. g. sodium carbonate.
  • 18mg of Direct Blue No. I is added to 100ml of distilled water together with buffering agent to give a constant pH of 10.5.
  • the peroxide solution is mixed with the dye solution.
  • the wavelength measured is 596 nm
  • the spectrometer is preferably a HP 8452 A (tradename) diode array spectrophotometer, although other suitable spectrometers within the knowledge of the skilled person could be used.
  • Spectrophotometric measurements are typically taken at 0.5 second intervals and the readings processed using known single cell kinetics software.
  • a bleaching effectiveness ratio which compares the bleaching strength of two organic peroxyacids, may be defined as the rate constant for the stronger organic peroxyacid divided by the rate constant for the weaker organic peroxyacid.
  • the bleaching effectiveness ratio is preferably at least 1.1, more preferably at least 1.3, most preferably at least 1.5.
  • a means for delaying the release to a wash solution of a stronger organic peroxyacid relative to the release of a weaker organic peroxyacid.
  • Said means may comprise a means for delaying the release of the stronger peroxyacid to the wash solution.
  • said means may comprise a means for enhancing the rate of release of the weaker organic peroxyacid to the wash solution.
  • the delayed release means can include coating the stronger organic peroxyacid bleach precursor compound with a coating or mixture of coatings designed to provide the delayed release.
  • the coating may therefore, for example, comprise a poorly water soluble material, or be a coating of sufficient thickness that the kinetics of dissolution of the thick coating provide the controlled rate of release.
  • the coating material may be applied using various methods. Any coating material is typically present at a weight ratio of coating material to bleach of from 1:99 to 1:2, preferably from 1:49 to 1:9.
  • Suitable coating materials include triglycerides (e.g. partially) hydrogenated vegetable oil, soy bean oil, cotton seed oil) mono or diglycerides, microcrystalline waxes, gelatin, cellulose, fatty acids and any mixtures thereof.
  • Suitable coating materials can comprise the alkali and alkaline earth metal sulphates, silicates and carbonates, including calcium carbonate.
  • Preferred as a coating material is sodium silicate of SiO 2 : Na 2 O ratio from 1.6 : 1 to 3.4 : 1, preferably 2.8 : 1, applied as an aqueous solution to give a level of from 2% to 10%, (normally from 3% to 5%) of silicate solids by weight of the percarbonate.
  • Magnesium silicate can also be included in the coating.
  • Suitable binders include the C 10 -C 20 alcohol ethoxylates containing from 5 - 100 moles of ethylene oxide per mole of alcohol and more preferably the C 15 -C 20 primary alcohol ethoxylates containing from 20 - 100 moles of ethylene oxide per mole of alcohol.
  • binders include certain polymeric materials.
  • Polyvinylpyrrolidones with an average molecular weight of from 12,000 to 700,000 and polyethylene glycols (PEG) with an average molecular weight of from 600 to 10.000 are examples of such polymeric materials.
  • Copolymers of maleic anhydride with ethylene, methylvinyl ether or methacrylic acid. the maleic anhydride constituting at least 20 mole percent of the polymer are further examples of polymeric materials useful as binder agents. These polymeric materials may be used as such or in combination with solvents such as water, propylene glycol and the above mentioned C 10 -C 20 alcohol ethoxylates containing from 5 - 100 moles of ethylene oxide per mole.
  • Further examples of binders include the C 10 -C 20 mono- and diglycerol ethers and also the C 10 -C 20 fatty acids.
  • Cellulose derivatives such as methylcellulose, carboxymethylcellulose, ethyl hydroxyethylcellulose and hydroxyethylcellulose, and homo- or co-polymeric polycarboxylic acids or their salts are other examples of binders suitable for use herein.
  • One method for applying the coating material involves agglomeration.
  • Preferred agglomeration processes include the use of any of the organic binder materials described hereinabove. Any conventional agglomerator/mixer may be used including, but not limted to pan, rotary drum and vertical blender types. Molten coating compositions may also be applied either by being poured onto, or spray atomized onto a moving bed of bleaching agent.
  • Suitable means of providing the required delayed release include mechanical means for altering the physical characteristics of the bleach to control its solubility and rate of release. Suitable protocols could include compaction, mechanical injection, manual injection, and adjustment of the solubility of the bleach compound by selection of particle size of any particulate component.
  • particle size Whilst the choice of particle size will depend both on the composition of the particulate component, and the desire to meet the desired delayed release kinetics, it is desirable that the particle size should be more than 500 micrometers, preferably having an average particle diameter of from 800 to 1200 micrometers.
  • Additional protocols for providing the means of delayed release include the suitable choice of any other components of the detergent composition matrix such that when the composition is introduced to the wash solution the ionic strength environment therein provided enables the required delayed release kinetics to be achieved.
  • the enhanced release means can include coating the weaker organic peroxyacid component with a coating designed to provide the enhanced release.
  • the coating may therefore, for example, comprise a highly, or even effervescently, water soluble material.
  • a suitable protocol could include deliberate selection of the particle size of the weaker organic peroxyacid component.
  • the choice of particle size will depend both on the composition of the particulate component, and the desire to meet the desired enhanced release kinetics.
  • the release of the stronger organic peroxyacid relative to that of the weaker organic peroxyacid component is such that, in the T50 test method herein described, the T50 value for the weaker organic peroxyacid component is at least 120 seconds less than the T50 value for the stronger organic peroxyacid component.
  • the time (T50) to achieve a concentration that is 50% of the ultimate concentration of said weaker organic peroxyacid is less than 60 seconds, preferably less than 50 seconds, more preferably less than 40 seconds
  • the time (T50) to achieve a concentration that is 50% of the ultimate concentration of said stronger organic peroxyacid is more than 120 seconds, preferably from 180 to 480 seconds, more preferably from 240 to 360 seconds.
  • the delayed release kinetics herein are defined with respect to a 'TA test method' which measures the time to achieve A% of the ultimate concentration/level of that component when a composition containing the component is dissolved according to the standard conditions now set out.
  • the standard conditions involve a 1 litre glass beaker filled with 1000 ml of distilled water at 20°C, to which 10g of composition is added.
  • the contents of the beaker are agitated using a magnetic stirrer set at 100 rpm.
  • the magnetic stirrer is pea/ovule-shaped having a maximum dimension of 1.5cm and a minimum dimension of 0.5cm.
  • the ultimate concentration/level is taken to be the concentration/level attained 10 minutes after addition of the composition to the water-filled beaker.
  • Suitable analytical methods are chosen to enable a reliable determination of the incidental, and ultimate in solution concentrations of the component of concern, subsequent to the addition of the composition to the water in the beaker.
  • Such analytical methods can include those involving a continuous monitoring of the level of concentration of the component, including for example photometric and conductrimetric methods.
  • methods involving removing titres from the solution at set time intervals, stopping the disssolution process by an appropriate means such as by rapidly reducing the temperature of the titre, and then determining the concentration of the component in the titre by any means such as chemical titrimetric methods, can be employed.
  • Suitable graphical methods including curve fitting methods, can be employed, where appropriate, to enable calculation of the the TA value from raw analytical results.
  • the particular analytical method selected for determining the concentration of the component will depend on the nature of that component, and of the nature of the composition containing that component.
  • the detergent compositions of the invention may also contain additional detergent components.
  • additional detergent components and levels of incorporation thereof will depend on the physical form of the composition. and the nature of the cleaning operation for which it is to be used.
  • compositions of the invention may for example, be formulated as hand and machine laundry detergent compositions, including laundry additive compositions and compositions suitable for use in the pretreatment of stained fabrics and machine dishwashing compositions.
  • compositions suitable for use in a machine washing method eg: machine laundry and machine dishwashing methods
  • the compositions of the invention preferably contain one or more additional detergent components selected from surfactants, builders, enzymes, heavy metal ion sequestrants, organic polymeric compounds, suds suppressors, lime soap dispersants, soil suspension and anti-redeposition agents and corrosion inhibitors.
  • Laundry compositions can also contain, as additional detergent components, softening agents.
  • the detergent compositions of the invention may contain as an optional detergent component a surfactant selected from anionic, cationic, nonionic ampholytic, amphoteric and zwitterionic surfactants and mixtures thereof.
  • the surfactant is typically present at a level of from 0.1% to 60% by weight. More preferred levels of incorporation of surfactant are from 1% to 35% by weight, most preferably from 1% to 20% by weight.
  • the surfactant is preferably formulated to be compatible with any enzyme components present in the composition.
  • the surfactant is most preferably formulated such that it promotes, or at least does not degrade, the stability of any enzyme in these compositions.
  • ampholytic, amphoteric and zwitteronic surfactants are generally used in combination with one or more anionic and/or nonionic surfactants.
  • any anionic surfactants useful for detersive purposes can be included in the compositions. These can include salts (including, for example, sodium, potassium, ammonium, and substituted ammonium salts such as mono-, di- and triethanolamine salts) of the anionic sulfate, sulfonate, carboxylate and sarcosinate surfactants.
  • salts including, for example, sodium, potassium, ammonium, and substituted ammonium salts such as mono-, di- and triethanolamine salts of the anionic sulfate, sulfonate, carboxylate and sarcosinate surfactants.
  • anionic surfactants include the isethionates such as the acyl isethionates, N-acyl taurates, fatty acid amides of methyl tauride, alkyl succinates and sulfosuccinates, monoesters of sulfosuccinate (especially saturated and unsaturated C 12 -C 18 monoesters) diesters of sulfosuccinate (especially saturated and unsaturated C 6 -C 14 diesters), N-acyl sarcosinates.
  • Resin acids and hydrogenated resin acids are also suitable, such as rosin, hydrogenated rosin, and resin acids and hydrogenated resin acids present in or derived from tallow oil.
  • Anionic sulfate surfactants suitable for use herein include the linear and branched primary alkyl sulfates, alkyl ethoxysulfates, fatty oleyl glycerol sulfates, alkyl phenol ethylene oxide ether sulfates, the C 5 -C 17 acyl-N-(C 1 -C 4 alkyl) and -N-(C 1 -C 2 hydroxyalkyl) glucamine sulfates, and sulfates of alkylpolysaccharides such as the sulfates of alkylpolyglucoside (the nonionic nonsulfated compounds being described herein).
  • Alkyl ethoxysulfate surfactants are preferably selected from the group consisting of the C 6 -C 18 alkyl sulfates which have been ethoxylated with from about 0.5 to about 20 moles of ethylene oxide per molecule. More preferably, the alkyl ethoxysulfate surfactant is a C 6 -C 18 alkyl sulfate which has been ethoxylated with from about 0.5 to about 20, preferably from about 0.5 to about 5, moles of ethylene oxide per molecule.
  • Anionic sulfonate surfactant Anionic sulfonate surfactant
  • Anionic sulfonate surfactants suitable for use herein include the salts of C 5 -C 20 linear alkylbenzene sulfonates, alkyl ester sulfonates, C 6 -C 22 primary or secondary alkane sulfonates, C 6 -C 24 olefin sulfonates, sulfonated polycarboxylic acids, alkyl glycerol sulfonates, fatty acyl glycerol sulfonates, fatty oleyl glycerol sulfonates, and any mixtures thereof.
  • Anionic carboxylate surfactants suitable for use herein include the alkyl ethoxy carboxylates, the alkyl polyethoxy polycarboxylate surfactants and the soaps ('alkyl carboxyls'), especially certain secondary soaps as described herein.
  • Preferred alkyl ethoxy carboxylates for use herein include those with the formula RO(CH 2 CH 2 0) x CH 2 C00 - M + wherein R is a C 6 to C 18 alkyl group, x ranges from O to 10, and the ethoxylate distribution is such that, on a weight basis, the amount of material where x is 0 is less than about 20 %, and the amount of material where x is greater than 7, is less than about 25 %, the average x is from about 2 to 4 when the average R is C 13 or less, and the average x is from about 3 to 10 when the average R is greater than C 13 , and M is a cation, preferably chosen from alkali metal, alkaline earth metal, ammonium, mono-, di-, and tri-ethanol-ammonium, most preferably from sodium, potassium, ammonium and mixtures thereof with magnesium ions.
  • the preferred alkyl ethoxy carboxylates are those where R is a C 12 to C 18 alkyl group.
  • Alkyl polyethoxy polycarboxylate surfactants suitable for use herein include those having the formula RO-(CHR 1 -CHR 2 -O)-R 3 wherein R is a C 6 to C 18 alkyl group, x is from 1 to 25, R 1 and R 2 are selected from the group consisting of hydrogen, methyl acid radical, succinic acid radical, hydroxysuccinic acid radical, and mixtures thereof, wherein at least one R 1 or R 2 is a succinic acid radical or hydroxysuccinic acid radical, and R 3 is selected from the group consisting of hydrogen, substituted or unsubstituted hydrocarbon having between 1 and 8 carbon atoms, and mixtures thereof.
  • Preferred soap surfactants are secondary soap surfactants which contain a carboxyl unit connected to a secondary carbon.
  • the secondary carbon can be in a ring structure, e.g. as in p-octyl benzoic acid, or as in alkyl-substituted cyclohexyl carboxylates.
  • the secondary soap surfactants should preferably contain no ether linkages, no ester linkages and no hydroxyl groups. There should preferably be no nitrogen atoms in the head-group (amphiphilic portion).
  • the secondary soap surfactants usually contain 11-15 total carbon atoms, although slightly more (e.g., up to 16) can be tolerated, e.g. p-octyl benzoic acid.
  • the species M can be any suitable, especially water-solubilizing, counterion.
  • Especially preferred secondary soap surfactants for use herein are water-soluble members selected from the group consisting of the water-soluble salts of 2-methyl-1-undecanoic acid, 2-ethyl-1-decanoic acid, 2-propyl-1-nonanoic acid, 2-butyl-1-octanoic acid and 2-pentyl-1-heptanoic acid.
  • alkali metal sarcosinates of formula R-CON (R 1 )CH 2 COOM, wherein R is a C 5 -C 17 linear or branched alkyl or alkenyl group, R 1 is a C 1 -C 4 alkyl group and M is an alkali metal ion.
  • R is a C 5 -C 17 linear or branched alkyl or alkenyl group
  • R 1 is a C 1 -C 4 alkyl group
  • M is an alkali metal ion.
  • any anionic surfactants useful for detersive purposes can be included in the compositions.
  • Exemplary, non-limiting classes of useful nonionic surfactants are listed below.
  • Nonionic polyhydroxy fatty acid amide surfactant Nonionic polyhydroxy fatty acid amide surfactant
  • Polyhydroxy fatty acid amides suitable for use herein are those having the structural formula R 2 CONR 1 Z wherein: R1 is H, C 1 -C 4 hydrocarbyl, 2-hydroxy ethyl, 2-hydroxy propyl, or a mixture thereof, preferable C1-C4 alkyl, more preferably C 1 or C 2 alkyl, most preferably C 1 alkyl (i.e., methyl); and R 2 is a C 5 -C 31 hydrocarbyl, preferably straight-chain C 5 -C 19 alkyl or alkenyl, more preferably straight-chain C 9 -C 17 alkyl or alkenyl, most preferably straight-chain C 11 -C 17 alkyl or alkenyl, or mixture thereof; and Z is a polyhydroxyhydrocarbyl having a linear hydrocarbyl chain with at least 3 hydroxyls directly connected to the chain, or an alkoxylated derivative (preferably ethoxylated or propoxylated) thereof. Z preferably will be derived from
  • polyethylene, polypropylene, and polybutylene oxide condensates of alkyl phenols are suitable for use herein.
  • the polyethylene oxide condensates are preferred.
  • These compounds include the condensation products of alkyl phenols having an alkyl group containing from about 6 to about 18 carbon atoms in either a straight chain or branched chain configuration with the alkylene oxide.
  • alkyl ethoxylate condensation products of aliphatic alcohols with from about 1 to about 25 moles of ethylene oxide are suitable for use herein.
  • the alkyl chain of the aliphatic alcohol can either be straight or branched, primary or secondary, and generally contains from 6 to 22 carbon atoms.
  • Particularly preferred are the condensation products of alcohols having an alkyl group containing from 8 to 20 carbon atoms with from about 2 to about 10 moles of ethylene oxide per mole of alcohol.
  • the ethoxylated C 6 -C 18 fatty alcohols and C 6 -C 18 mixed ethoxylated/propoxylated fatty alcohols are suitable surfactants for use herein, particularly where water soluble.
  • the ethoxylated fatty alcohols are the C 10 -C 18 ethoxylated fatty alcohols with a degree of ethoxylation of from 3 to 50, most preferably these are the C 12 -C 18 ethoxylated fatty alcohols with a degree of ethoxylation from 3 to 40.
  • the mixed ethoxylated/propoxylated fatty alcohols have an alkyl chain length of from 10 to 18 carbon atoms, a degree of ethoxylation of from 3 to 30 and a degree of propoxylation of from 1 to 10.
  • the condensation products of ethylene oxide with a hydrophobic base formed by the condensation of propylene oxide with propylene glycol are suitable for use herein.
  • the hydrophobic portion of these compounds preferably has a molecular weight of from about 1500 to about 1800 and exhibits water insolubility.
  • Examples of compounds of this type include certain of the commercially-available PluronicTM surfactants, marketed by BASF.
  • condensation products of ethylene oxide with the product resulting from the reaction of propylene oxide and ethylenediamine are suitable for use herein.
  • the hydrophobic moiety of these products consists of the reaction product of ethylenediamine and excess propylene oxide, and generally has a molecular weight of from about 2500 to about 3000.
  • this type of nonionic surfactant include certain of the commercially available TetronicTM compounds, marketed by BASF.
  • Suitable alkylpolysaccharides for use herein are disclosed in U.S. Patent 4,565,647, Llenado, issued January 21, 1986, having a hydrophobic group containing from about 6 to about 30 carbon atoms, preferably from about 10 to about 16 carbon atoms and a polysaccharide, e.g., a polyglycoside, hydrophilic group containing from about 1.3 to about 10, preferably from about 1.3 to about 3, most preferably from about 1.3 to about 2.7 saccharide units.
  • Any reducing saccharide containing 5 or 6 carbon atoms can be used, e.g., glucose, galactose and galactosyl moieties can be substituted for the glucosyl moieties.
  • the hydrophobic group is attached at the 2-, 3-, 4-, etc. positions thus giving a glucose or galactose as opposed to a glucoside or galactoside.
  • the intersaccharide bonds can be, e.g., between the one position of the additional saccharide units and the 2-, 3-, 4-, and/or 6- positions on the preceding saccharide units.
  • the preferred alkylpolyglycosides have the formula R 2 O(C n H 2n O)t(glycosyl) x wherein R2 is selected from the group consisting of alkyl, alkylphenyl, hydroxyalkyl, hydroxyalkylphenyl, and mixtures thereof in which the alkyl groups contain from 10 to 18, preferably from 12 to 14, carbon atoms; n is 2 or 3; t is from 0 to 10, preferably 0, and X is from 1.3 to 8, preferably from 1.3 to 3, most preferably from 1.3 to 2.7.
  • the glycosyl is preferably derived from glucose.
  • Nonionic fatty acid amide surfactant Nonionic fatty acid amide surfactant
  • Fatty acid amide surfactants suitable for use herein are those having the formula: R 6 CON(R 7 ) 2 wherein R 6 is an alkyl group containing from 7 to 21, preferably from 9 to 17 carbon atoms and each R 7 is selected from the group consisting of hydrogen, C 1 -C 4 alkyl, C 1 -C 4 hydroxyalkyl, and -(C 2 H 4 O) x H, where x is in the range of from 1 to 3.
  • Suitable amphoteric surfactants for use herein include the amine oxide surfactants and the alkyl amphocarboxylic acids.
  • a suitable example of an alkyl aphodicarboxylic acid for use herein is Miranol(TM) C2M Conc. manufactured by Miranol, Inc., Dayton, NJ.
  • Amine oxides useful herein include those compounds having the formula R 3 (OR 4 ) x N 0 (R 5 ) 2 wherein R 3 is selected from an alkyl, hydroxyalkyl, acylamidopropoyl and alkyl phenyl group, or mixtures thereof, containing from 8 to 26 carbon atoms, preferably 8 to 18 carbon atoms; R 4 is an alkylene or hydroxyalkylene group containing from 2 to 3 carbon atoms, preferably 2 carbon atoms, or mixtures thereof; x is from 0 to 5, preferably from 0 to 3; and each R 5 is an alkyl or hydyroxyalkyl group containing from I to 3, preferably from 1 to 2 carbon atoms, or a polyethylene oxide group containing from 1 to 3, preferable 1, ethylene oxide groups.
  • the R 5 groups can be attached to each other, e.g., through an oxygen or nitrogen atom, to form a ring structure.
  • amine oxide surfactants in particular include C 10 -C 18 alkyl dimethyl amine oxides and C 8 -C 18 alkoxy ethyl dihydroxyethyl amine oxides.
  • examples of such materials include dimethyloctylamine oxide, diethyldecylamine oxide, bis-(2-hydroxyethyl)dodecylamine oxide, dimethyldodecylamine oxide, dipropyltetradecylamine oxide, methylethylhexadecylamine oxide, dodecylamidopropyl dimethylamine oxide, cetyl dimethylamine oxide, stearyl dimethylamine oxide, tallow dimethylamine oxide and dimethyl-2-hydroxyoctadecylamine oxide.
  • Preferred are C 10 -C 18 alkyl dimethylamine oxide, and C 10-18 acylamido alkyl dimethylamine oxide.
  • Zwitterionic surfactants can also be incorporated into the detergent compositions hereof. These surfactants can be broadly described as derivatives of secondary and tertiary amines, derivatives of heterocyclic secondary and tertiary amines, or derivatives of quaternary ammonium, quaternary phosphonium or tertiary sulfonium compounds. Betaine and sultaine surfactants are exemplary zwitterionic surfactants for use herein.
  • the betaines useful herein are those compounds having the formula R(R') 2 N + R 2 COO - wherein R is a C 6 -C 18 hydrocarbyl group, preferably a C 10 -C 16 alkyl group or C 10-16 acylamido alkyl group, each R 1 is typically C 1 -C 3 alkyl, preferably methyl,m and R 2 is a C 1 -C 5 hydrocarbyl group, preferably a C 1 -C 3 alkylene group, more preferably a C 1 -C 2 alkylene group.
  • betaines examples include coconut acylamidopropyldimethyl betaine; hexadecyl dimethyl betaine; C 12-14 acylamidopropylbetaine; C 8-14 acylamidohexyldiethyl betaine; 4[C 14-16 acylmethylamidodieihylammonio]-1-carboxybutane; C 16-18 acylamidodimethylbetaine; C 12-16 acylamidopentanediethyl-betaine; [C 12-16 acylmethylamidodimethylbetaine.
  • Preferred betaines are C 12-18 dimethyl-ammonio hexanoate and the C 10-18 acylamidopropane (or ethane) dimethyl (or diethyl) betaines.
  • Complex betaine surfactants are also suitable for use herein.
  • the sultaines useful herein are those compounds having the formula (R(R 1 ) 2 N + R 2 SO 3 - wherein R is a C 6 -C 18 hydrocarbyl group, preferably a C 10 -C 16 alkyl group, more preferably a C 12 -C 13 alkyl group, each R 1 is typically C 1 -C 3 alkyl, preferably methyl, and R 2 is a C 1 -C 6 hydrocarbyl group, preferably a C 1 -C 3 alkylene or, preferably, hydroxyalkylene group.
  • Ampholytic surfactants can be incorporated into the detergent compositions herein. These surfactants can be broadly described as aliphatic derivatives of secondary or tertiary amines, or aliphatic derivatives of heterocyclic secondary and tertiary amines in which the aliphatic radical can be straight chain or branched.
  • Cationic surfactants can also be used in the detergent compositions herein.
  • Suitable cationic surfactants include the quaternary ammonium surfactants selected from mono C 6 -C 16 , preferably C 6 -C 10 N-alkyl or alkenyl ammonium surfactants wherein the remaining N positions are substituted by methyl, hydroxyethyl or hydroxypropyl groups.
  • the detergent compositions of the present invention contain as a preferred optional component a water-soluble builder compound, typically present at a level of from 1% to 80% by weight, preferably from 10% to 70% by weight, most preferably from 20% to 60% by weight of the composition.
  • Suitable water-soluble builder compounds include the water soluble monomeric polycarboxylates, or their acid forms, homo or copolymeric polycarboxylic acids or their salts in which the polycarboxylic acid comprises at least two carboxylic radicals separated from each other by not more that two carbon atoms, carbonates, bicarbonates, borates, phosphates, silicates and mixtures of any of the foregoing.
  • the carboxylate or polycarboxylate builder can be momomeric or oligomeric in type although monomeric polycarboxylates are generally preferred for reasons of cost and performance.
  • Suitable carboxylates containing one carboxy group include the water soluble salts of lactic acid, glycolic acid and ether derivatives thereof.
  • Polycarboxylates containing two carboxy groups include the water-soluble salts of succinic acid, malonic acid, (ethylenedioxy) diacetic acid, maleic acid, diglycolic acid, tartaric acid, tartronic acid and fumaric acid, as well as the ether carboxylates and the sulfinyl carboxylates.
  • Polycarboxylates containing three carboxy groups include, in particular, water-soluble citrates, aconitrates and citraconates as well as succinate derivatives such as the carboxymethyloxysuccinates described in British Patent No.
  • Polycarboxylates containing four carboxy groups include oxydisuccinates disclosed in British Patent No. 1,261,829, 1,1,2,2-ethane tetracarboxylates, 1,1,3,3-propane tetracarboxylates and 1,1,2,3-propane tetracarboxylates.
  • Polycarboxylates containing sulfo substituents include the sulfosuccinate derivatives disclosed in British Patent Nos. 1,398,421 and 1,398,422 and in U.S. Patent No. 3,936,448, and the sulfonated pyrolysed citrates described in British Patent No. 1,439,000.
  • Alicyclic and heterocyclic polycarboxylates include cyclopentane-cis,cis,cis-tetracarboxylates, cyclopentadienide pentacarboxylates, 2,3,4,5-tetrahydrofuran - cis, cis, cis-tetracarboxylates, 2,5-tetrahydrofuran - cis - dicarboxylates, 2,2,5,5-tetrahydrofuran - tetracarboxylates, 1,2,3,4,5,6-hexane - hexacarboxylates and carboxymethyl derivatives of polyhydric alcohols such as sorbitol, mannitol and xylitol.
  • Aromatic polycarboxylates include mellitic acid, pyromellitic acid and the phthalic acid derivatives disclosed in British Patent No. 1,425,343.
  • the preferred polycarboxylates are hydroxycarboxylates containing up to three carboxy groups per molecule, more particularly citrates.
  • the parent acids of the monomeric or oligomeric polycarboxylate chelating agents or mixtures thereof with their salts e.g. citric acid or citrate/citric acid mixtures are also contemplated as useful builder components.
  • Borate builders, as well as builders containing borate-forming materials that can produce borate under detergent storage or wash conditions can also be used but are not preferred at wash conditions less that about 50°C, especially less than about 40°C.
  • carbonate builders are the alkaline earth and alkali metal carbonates, including sodium carbonate and sesqui-carbonate and mixtures thereof with ultra-fine calcium carbonate as disclosed in German Patent Application No. 2,321,001 published on November 15, 1973.
  • water-soluble phosphate builders are the alkali metal tripolyphosphates, sodium, potassium and ammonium pyrophosphate, sodium and potassium and ammonium pyrophosphate, sodium and potassium orthophosphate, sodium polymeta/phosphate in which the degree of polymerization ranges from about 6 to 21, and salts of phytic acid.
  • Suitable silicates include the water soluble sodium silicates with an SiO 2 : Na 2 O ratio of from 1.0 to 2.8, with ratios of from 1.6 to 2.4 being preferred, and 2.0 ratio being most preferred.
  • the silicates may be in the form of either the anhydrous salt or a hydrated salt.
  • Sodium silicate with an SiO 2 : Na 2 O ratio of 2.0 is the most preferred silicate.
  • Silicates are preferably present in the detergent compositions in accord with the invention at a level of from 5% to 50% by weight of the composition, more preferably from 10% to 40% by weight.
  • Partially soluble or insoluble builder compound Partially soluble or insoluble builder compound
  • the detergent compositions of the present invention may contain a partially soluble or insoluble builder compound, typically present at a level of from 1% to 80% by weight, preferably from 10% to 70% by weight, most preferably from 20% to 60% weight of the composition.
  • Examples of partially water soluble builders include the crystalline layered silicates.
  • Examples of largely water insoluble builders include the sodium aluminosilicates.
  • Crystalline layered sodium silicates have the general formula NaMSi x O 2x+1 .yH 2 O wherein M is sodium or hydrogen, x is a number from 1.9 to 4 and y is a number from 0 to 20. Crystalline layered sodium silicates of this type are disclosed in EP-A-0164514 and methods for their preparation are disclosed in DE-A-3417649 and DE-A-3742043.
  • x in the general formula above has a value of 2, 3 or 4 and is preferably 2.
  • the most preferred material is ⁇ -Na 2 Si 2 O 5 , available from Hoechst AG as NaSKS-6.
  • the crystalline layered sodium silicate material is preferably present in granular detergent compositions as a particulate in intimate admixture with a solid, water-soluble ionisable material.
  • the solid, water-soluble ionisable material is selected from organic acids, organic and inorganic acid salts and mixtures thereof.
  • Suitable aluminosilicate zeolites have the unit cell formula Na z [(AlO 2 ) z (SiO 2 )y]. XH 2 O wherein z and y are at least 6; the molar ratio of z to y is from 1.0 to 0.5 and x is at least 5, preferably from 7.5 to 276, more preferably from 10 to 264.
  • the aluminosilicate material are in hydrated form and are preferably crystalline, containing from 10% to 28%, more preferably from 18% to 22% water in bound form.
  • the aluminosilicate ion exchange materials can be naturally occurring materials, but are preferably synthetically derived. Synthetic crystalline aluminosilicate ion exchange materials are available under the designations Zeolite A, Zeolite B, Zeolite P, Zeolite X, Zeoilte MAP, Zeolite HS and mixtures thereof. Zeolite A has the formula Na 12 [AlO 2 ) 12 (SiO 2 ) 12 ].xH 2 O wherein x is from 20 to 30, especially 27. Zeolite X has the formula Na 86 [(AlO 2 ) 86 (SiO 2 ) 106 ]. 276 H 2 O.
  • the detergent compositions of the invention may contain as a preferred optional component a heavy metal ion sequestrant.
  • heavy metal ion sequestrant it is meant herein components which act to sequester (chelate) heavy metal ions. These components may also have calcium and magnesium chelation capacity, but preferentially they show selectivity to binding heavy metal ions such as iron, manganese and copper.
  • Heavy metal ion sequestrants are generally present at a level of from 0.005% to 20%. preferably from 0.1% to 10%. more preferably from 0.25% to 7.5% and most preferably from 0.5% to 5% by weight of the compositions.
  • Heavy metal ion sequestrants which are acidic in nature, having for example phosphonic acid or carboxylic acid functionalities, may be present either in their acid form or as a complex/salt with a suitable counter cation such as an alkali or alkaline metal ion, ammonium, or substituted ammonium ion, or any mixtures thereof.
  • a suitable counter cation such as an alkali or alkaline metal ion, ammonium, or substituted ammonium ion, or any mixtures thereof.
  • any salts/complexes are water soluble.
  • the molar ratio of said counter cation to the heavy metal ion sequestrant is preferably at least 1:1.
  • Suitable heavy metal ion sequestrants for use herein include nitrilotriacetic acid and polyaminocarboxylic acids such as ethylenediaminotetracetic acid.
  • EDDS ethylenediamine-N,N'-disuccinic acid
  • Preferred EDDS compounds are the free acid form and the sodium or magnesium salt or complex thereof.
  • Examples of such preferred sodium salts of EDDS include Na 2 EDDS and Na 3 EDDS.
  • Examples of such preferred magnesium complexes of EDDS include MgEDDS and Mg 2 EDDS.
  • Suitable heavy metal ion sequestrants for use herein are iminodiacetic acid derivatives such as 2-hydroxyethyl diacetic acid or glyceryl imino diacetic acid, described in EP-A-317,542 and EP-A-399,133.
  • the iminodiacetic acid-N-2-hydroxypropyl sulfonic acid and aspartic acid N-carboxymethyl N-2-hydroxypropyl-3-sulfonic acid sequestrants described in EP-A-516,102 are also suitable herein.
  • the ⁇ -alanine-N,N'-diacetic acid, aspartic acid-N,N'-diacetic acid, aspartic acid-N-monoacetic acid and iminodisuccinic acid sequestrants described in EP-A-509,382 are also suitable.
  • EP-A-476,257 describes suitable amino based sequestrants.
  • EP-A-510,331 describes suitable sequestrants derived from collagen, keratin or casein.
  • EP-A-528,859 describes a suitable alkyl iminodiacetic acid sequestrant. Dipicolinic acid and 2-phosphonobutane-1,2,4-tricarboxylic acid are alos suitable.
  • Glycinamide-N,N'-disuccinic acid (GADS) is also suitable.
  • Organic polymeric compounds are particularly preferred components of the detergent compositions in accord with the invention.
  • organic polymeric compound it is meant essentially any polymeric organic compound commonly used as dispersants, and anti-redeposition and soil suspension agents in detergent compositions.
  • Organic polymeric compound is typically incorporated in the detergent compositions of the invention at a level of from 0.1% to 30%, preferably from 0.5% to 15%, most preferably from 1% to 10% by weight of the compositions.
  • organic polymeric compounds include the water soluble organic homo- or co-polymeric polycarboxylic acids or their salts in which the polycarboxylic acid comprises at least two carboxyl radicals separated from each other by not more than two carbon atoms.
  • Polymers of the latter type are disclosed in GB-A-1,596,756.
  • salts are polyacrylates of MWt 2000-5000 and their copolymers with maleic anhydride, such copolymers having a molecular weight of from 20,000 to 100,000, especially 40,000 to 80,000.
  • Suitable organic polymeric compounds include the polymers of acrylamide and acrylate having a molecular weight of from 3,000 to 100,000, and the acrylate/fumarate copolymers having a molecular weight of from 2,000 to 80,000.
  • polyamino compounds are useful herein including those derived from aspartic acid such as those disclosed in EP-A-305282, EP-A-305283 and EP-A-351629.
  • Terpolymers containing monomer units selected from maleic acid, acrylic acid, polyaspartic acid and vinyl alcohol, particularly those having an average molecular weight of from 5,000 to 10,000 are also suitable herein.
  • organic polymeric compounds suitable for incorporation in the detergent compositions herein include cellulose derivatives such as methylcellulose, carboxymethylcellulose and hydroxyethylcellulose.
  • organic polymeric compounds are the polyethylene glycols, particularly those of molecular weight 1000-10000, more particularly 2000 to 8000 and most preferably about 4000.
  • compositions optionally contain a transition metal containing bleach catalyst.
  • a transition metal containing bleach catalyst is a catalyst system comprising a heavy metal cation of defined bleach catalytic activity, such as copper, iron or manganese cations, an auxiliary metal cation having little or no bleach catalytic activity, such as zinc or aluminum cations, and a sequestrant having defined stability constants for the catalytic and auxiliary metal cations, particularly ethylenediaminetetraacetic acid, ethylenediaminetetra(methylenephosphonic acid) and water-soluble salts thereof.
  • ethylenediaminetetraacetic acid ethylenediaminetetra(methylenephosphonic acid) and water-soluble salts thereof.
  • bleach catalysts include the manganese-based complexes disclosed in U.S. Pat. 5,246.621 and U.S. Pat. 5,244,594. Preferred examples of these catalysts include Mn IV 2 (u-O) 3 (1,4,7-trimethyl-1,4,7-triazacyciononane) 2 -(PF 6 ) 2 , Mn III 2 (u-O) 1 (u-OAc) 2 (1,4,7-trimethyl-1,4,7-triazacyclononane) 2 -(ClO 4 ) 2 , Mn IV 4 (u-O) 6 (1,4,7-triazacyclononane) 4 -(ClO 4 ) 2 , Mn III Mn IV 4 (u-O) 1 (u-OAc) 2 -(1,4,7-trimethyl-1,4,7-triazacyclononane) 2 -(ClO 4 ) 3 , and mixtures thereof.
  • ligands suitable for use herein include 1,5,9-trimethyl-1,5,9-triazacyclododecane, 2-methyl-1,4,7-triazacyclononane, 2-methyl-1,4,7-triazacyclononane, 1,2,4,7-tetramethyl-1,4,7-triazacyclononane, and mixtures thereof.
  • bleach catalysts see U.S. Pat. 4,246,612 and U.S. Pat. 5,227,084. See also U.S. Pat. 5,194,416 which teaches mononuclear manganese (IV) complexes such as Mn(1,4,7-trimethyl-1,4,7-triazacyclononane)(OCH 3 ) 3- (PF 6 ).
  • Still another type of bleach catalyst, as disclosed in U.S. Pat. 5,114,606, is a water-soluble complex of manganese (III), and/or (IV) with a ligand which is a non-carboxylate polyhydroxy compound having at least three consecutive C-OH groups.
  • binuclear Mn complexed with tetra-N-dentate and bi-N-dentate ligands including N 4 Mn III (u-O) 2 Mn IV N 4 ) + and [Bipy 2 Mn III (u-O) 2 Mn IV bipy 2 ]-(ClO 4 ) 3 .
  • bleach catalysts are described, for example, in European patent application No. 409,131 (cobalt complex catalysts), European patent applications, publication nos. 384,503, and 306,089 (metallo-porphyrin catalysts), U.S. 4,728,455 (manganese/multidentate ligand catalyst), U.S. 4,711,748 and European patent application, publication no. 224,952, (absorbed manganese on aluminosilicate catalyst), U.S. 4,601,845 (aluminosilicate support with manganese and zinc or magnesium salt), U.S. 4,626,373 (manganese/ligand catalyst), U.S. 4,119,557 (ferric complex catalyst), German Pat.
  • a preferred component of the detergent compositions is an enzyme.
  • Suitable enzymes include the commercially available lipases, amylases, neutral and alkaline proteases, cellulases, pectinases, lactases and peroxidases, that is enzymes having lipolytic, amylolytic, proteolytic, cellulolytic, pectolytic, lactolytic and peroxidolytic activity respectively, conventionally incorporated into detergent compositions. Suitable enzymes are discussed in US Patents 3,519,570 and 3,533,139.
  • Protease enzymes are especially preferred as the enzyme component.
  • Preferred commercially available protease enzymes include those sold under the tradenames Alcalase, Savinase, Primase, Durazym, and Esperase by Novo Industries A/S (Denmark), those sold under the tradename Maxatase, Maxacal and Maxapem by Gist-Brocades, those sold by Genencor International, and those sold under the tradename Opticlean and Optimase by Solvay Enzymes.
  • Protease enzyme may be incorporated into the compositions in accordance with the invention at a level of from 0.0001% to 4% active enzyme by weight of the composition.
  • Preferred amylases include, for example, ⁇ -amylases obtained from a special strain of B licheniformis, described in more detail in GB-1,269,839 (Novo).
  • Preferred commercially available amylases include for example, those sold under the tradename Rapidase by Gist-Brocades, and those sold under the tradename Termamyl and BAN by Novo Industries A/S.
  • Amylase enzyme may be incorporated into the composition in accordance with the invention at a level of from 0.0001% to 4% active enzyme by weight of the composition.
  • Lipolytic enzyme which are also preferred may be present at levels of active lipolytic enzyme of from 0.0001% to 4% active enzyme by weight, preferably 0.001% to 1% by weight. most preferably from 0.001% to 0.5% by weight of the compositions.
  • the lipase may be fungal or bacterial in origin being obtained, for example. from a lipase producing strain of Humicola sp., Thermomyces sp. or Pseudomonas sp. including Pseudomonas pseudoalcaligenes or Pseudomas fluorescens . Lipase from chemically or genetically modified mutants of these strains are also useful herein.
  • a preferred lipase is derived from Pseudomonas pseudoalcaligenes , which is described in Granted European Patent, EP-B-0218272.
  • Another preferred lipase herein is obtained by cloning the gene from Humicola lanuginosa and expressing the gene in Aspergillus oryza , as host, as described in European Patent Application, EP-A-0258 068, which is commercially available from Novo Industri A/S, Bagsvaerd, Denmark, under the trade name Lipolase. This lipase is also described in U.S. Patent 4,810,414, Huge-Jensen et al, issued March 7, 1989.
  • Preferred enzyme-containing compositions herein may comprise from about 0.001% to about 10%, preferably from about 0.005% to about 8%,most preferably from about 0.01% to about 6%, by weight of an enzyme stabilizing system.
  • the enzyme stabilizing system can be any stabilizing system which is compatible with the detersive enzyme.
  • Such stabilizing systems can comprise calcium ion, boric acid, propylene glycol, short chain carboxylic acid, boronic acid, and mixtures thereof.
  • Such stabilizing systems can also comprise reversible enzyme inhibitors, such as reversible protease inhibitors.
  • compositions herein may further comprise from 0 to about 10%, preferably from about 0.01% to about 6% by weight, of chlorine bleach scavengers, added to prevent chlorine species present in many water supplies from attacking and inactivating the enzymes, especially under alkaline conditions.
  • chlorine bleach scavengers While chlorine levels in water may be small, typically in the range from about 0.5 ppm to about 1.75 ppm, the available chlorine in the total volume of water that comes in contact with the enzyme during washing is usually large; accordingly, enzyme stability in-use can be problematic.
  • Suitable chlorine scavenger anions are widely available, and are illustrated by salts containing ammonium cations or sulfite, bisulfite, thiosulfite, thiosulfate, iodide, etc.
  • Antioxidants such as carbamate, ascorbate, etc., organic amines such as ethylenediaminetetracetic acid (EDTA) or alkali metal salt thereof, monoethanolamine (MEA), and mixtures thereof can likewise be used.
  • EDTA ethylenediaminetetracetic acid
  • MEA monoethanolamine
  • Other conventional scavengers such as bisulfate, nitrate, chloride, sources of hydrogen peroxide such as sodium perborate tetrahydrate.
  • sodium perborate monohydrate and sodium percarbonate as well as phosphate, condensed phosphate, acetate, benzoate, citrate, formate, lactate, malate, tartrate, salicylate, etc. and mixtures thereof can be used if desired.
  • compositions of the invention may contain a lime soap dispersant compound, which has a lime soap dispersing power (LSDP), as defined hereinafter of no more than 8, preferably no more than 7, most preferably no more than 6.
  • LSDP lime soap dispersing power
  • the lime soap dispersant compound is preferably present at a level of from 0.1% to 40% by weight, more preferably 1% to 20% by weight, most preferably from 2% to 10% by weight of the compositions.
  • a lime soap dispersant is a material that prevents the precipitation of alkali metal, ammonium or amine salts of fatty acids by calcium or magnesium ions.
  • a numerical measure of the effectiveness of a lime soap dispersant is given by the lime soap dispersing power (LSDP) which is determined using the lime soap dispersion test as described in an article by H.C. Borghetty and C.A. Bergman, J. Am. Oil. Chem. Soc., volume 27, pages 88-90, (1950).
  • This lime soap dispersion test method is widely used by practitioners in this art field being referred to , for example, in the following review articles; W.N. Linfield, Surfactant Science Series, Volume 7, p3; W.N. Linfield, Tenside Surf. Det.
  • Surfactants having good lime soap dispersant capability will include certain amine oxides, betaines, sulfobetaines, alkyl ethoxysulfates and ethoxylated alcohols.
  • Polymeric lime soap dispersants suitable for use herein are described in the article by M.K. Nagarajan and W.F. Masler. to be found in Cosmetics and Toiletries, Volume 104, pages 71-73, (1989).
  • Examples of such polymeric lime soap dispersants include certain water-soluble salts of copolymers of acrylic acid, methacrylic acid or mixtures thereof, and an acrylamide or substituted acrylamide, where such polymers typically have a molecular weight of from 5,000 to 20,000.
  • the detergent compositions of the invention when formulated for use in machine washing compositions, preferably comprise a suds suppressing system present at a level of from 0.01% to 15%, preferably from 0.05% to 10%, most preferably from 0.1% to 5% by weight of the composition.
  • Suitable suds suppressing systems for use herein may comprise essentially any known antifoam compound, including, for example silicone antifoam compounds and 2-alkyl alcanol antifoam compounds.
  • antifoam compound any compound or mixtures of compounds which act such as to depress the foaming or sudsing produced by a solution of a detergent composition, particularly in the presence of agitation of that solution.
  • Particularly preferred antifoam compounds for use herein are silicone antifoam compounds defined herein as any antifoam compound including a silicone component. Such silicone antifoam compounds also typically contain a silica component.
  • silicone antifoam compounds as used herein, and in general throughout the industry, encompasses a variety of relatively high molecular weight polymers containing siloxane units and hydrocarbyl group of various types.
  • Preferred silicone antifoam compounds are the siloxanes, particularly the polydimethylsiloxanes having trimethylsilyl end blocking units.
  • Suitable antifoam compounds include the monocarboxylic fatty acids and soluble salts thereof. These materials are described in US Patent 2,954,347, issued September 27, 1960 to Wayne St. John.
  • the monocarboxylic fatty acids, and salts thereof, for use as suds suppressor typically have hydrocarbyl chains of 10 to 24 carbon atoms, preferably 12 to 18 carbon atoms.
  • Suitable salts include the alkali metal salts such as sodium, potassium, and lithium salts, and ammonium and alkanolammonium salts.
  • Suitable antifoam compounds include, for example, high molecular weight fatty esters (e.g. fatty acid triglycerides), fatty acid esters of monovalent alcohols, aliphatic C 18 -C 40 ketones (e.g. stearone) N-alkylated amino triazines such as tri- to hexa-alkylmelamines or di- to tetra alkyldiamine chlortriazines formed as products of cyanuric chloride with two or three moles of a primary or secondary amine containing I to 24 carbon atoms, propylene oxide, bis stearic acid amide and monostearyl di-alkali metal (e.g. sodium, potassium, lithium) phosphates and phosphate esters.
  • high molecular weight fatty esters e.g. fatty acid triglycerides
  • fatty acid esters of monovalent alcohols e.g. fatty acid esters of monovalent alcohols
  • a preferred suds suppressing system comprises
  • a highly preferred particulate suds suppressing system is described in EP-A-0210731 and comprises a silicone antifoam compound and an organic carrier material having a melting point in the range 50°C to 85°C, wherein the organic carrier material comprises a monoester of glycerol and a fatty acid having a carbon chain containing from 12 to 20 carbon atoms.
  • EP-A-0210721 discloses other preferred particulate suds suppressing systems wherein the organic carrier material is a fatty acid or alcohol having a carbon chain containing from 12 to 20 carbon atoms, or a mixture thereof, with a melting point of from 45°C to 80°C.
  • the detergent compositions herein may also comprise from 0.01% to 10 %, preferably from 0.05% to 0.5% by weight of polymeric dye transfer inhibiting agents.
  • the polymeric dye transfer inhibiting agents are preferably selected from polyamine N-oxide polymers, copolymers of N-vinylpyrrolidone and N-vinylimidazole, polyvinylpyrrolidonepolymers or combinations thereof.
  • Polyamine N-oxide polymers suitable for use herein contain units having the following structure formula: wherein P is a polymerisable unit, and A is -O-, -S-, -N-; x is O or 1; R are aliphatic, ethoxylated aliphatics, aromatic, heterocyclic or alicyclic groups or any combination thereof whereto the nitrogen of the N-O group can be attached or wherein the nitrogen of the N-O group is part of these groups.
  • the N-O group can be represented by the following general structures : wherein R1, R2, and R3 are aliphatic groups, aromatic, heterocyclic or alicyclic groups or combinations thereof, x or/and y or/and z is 0 or 1 and wherein the nitrogen of the N-O group can be attached or wherein the nitrogen of the N-O group forms part of these groups.
  • the N-O group can be part of the polymerisable unit (P) or can be attached to the polymeric backbone or a combination of both.
  • Suitable polyamine N-oxides wherein the N-O group forms part of the polymerisable unit comprise polyamine N-oxides wherein R is selected from aliphatic, aromatic, alicyclic or heterocyclic groups.
  • R is selected from aliphatic, aromatic, alicyclic or heterocyclic groups.
  • One class of said polyamine N-oxides comprises the group of polyamine N-oxides wherein the nitrogen of the N-O group forms part of the R-group.
  • Preferred polyamine N-oxides are those wherein R is a heterocyclic group such as pyrridine, pyrrole, imidazole, pyrrolidine, piperidine, quinoline, acridine and derivatives thereof.
  • polyamine N-oxides are the polyamine oxides whereto the N-O group is attached to the polymerisable unit.
  • a preferred class of these polyamine N-oxides comprises the polyamine N-oxides having the general formula (I) wherein R is an aromatic.heterocyclic or alicyclic groups wherein the nitrogen of the N-O functional group is part of said R group.
  • R is an aromatic.heterocyclic or alicyclic groups wherein the nitrogen of the N-O functional group is part of said R group.
  • examples of these classes are polyamine oxides wherein R is a heterocyclic compound such as pyrridine, pyrrole, imidazole and derivatives thereof.
  • the polyamine N-oxides can be obtained in almost any degree of polymerisation.
  • the degree of polymerisation is not critical provided the material has the desired water-solubility and dye-suspending power.
  • the average molecular weight is within the range of 500 to 1000,000.
  • Suitable herein are coploymers of N-vinylimidazole and N-vinylpyrrolidone having an average molecular weight range of from 5,000 to 50,000.
  • the preferred copolymers have a molar ratio of N-vinylimidazole to N-vinylpyrrolidone from 1 to 0.2.
  • the detergent compositions herein may also utilize polyvinylpyrrolidone ("PVP") having an average molecular weight of from 2,500 to 400,000.
  • PVP polyvinylpyrrolidone
  • Suitable polyvinylpyrrolidones are commercially vailable from ISP Corporation, New York, NY and Montreal, Canada under the product names PVP K-15 (viscosity molecular weight of 10,000), PVP K-30 (average molecular weight of 40,000), PVP K-60 (average molecular weight of 160,000), and PVP K-90 (average molecular weight of 360,000).
  • PVP K-15 is also available from ISP Corporation.
  • Other suitable polyvinylpyrrolidones which are commercially available from BASF Cooperation include Sokalan HP 165 and Sokalan HP 12.
  • the detergent compositions herein may also utilize polyvinyloxazolidones as polymeric dye transfer inhibiting agents.
  • Said polyvinyloxazolidones have an average molecular weight of from 2,500 to 400,000.
  • the detergent compositions herein may also utilize polyvinylimidazole as polymeric dye transfer inhibiting agent.
  • Said polyvinylimidazoles preferably have an average molecular weight of from 2,500 to 400,000.
  • the detergent compositions herein also optionally contain from about 0.005% to 5% by weight of certain types of hydrophilic optical brighteners.
  • Hydrophilic optical brighteners useful herein include those having the structural formula: wherein R 1 is selected from anilino, N-2-bis-hydroxyethyl and NH-2-hydroxyethyl; R 2 is selected from N-2-bis-hydroxyethyl, N-2-hydroxyethyl-N-methylamino, morphilino, chloro and amino; and M is a salt-forming cation such as sodium or potassium.
  • R 1 is anilino
  • R 2 is N-2-bis-hydroxyethyl and M is a cation such as sodium
  • the brightener is 4,4',-bis[(4-anilino-6-(N-2-bis-hydroxyethyl)-s-triazine-2-yl)amino]-2,2'-stilbenedisulfonic acid and disodium salt.
  • This particular brightener species is commercially marketed under the tradename Tinopal-UNPA-GX by Ciba-Geigy Corporation. Tinopal-UNPA-GX is the preferred hydrophilic optical brightener useful in the detergent compositions herein.
  • R 1 is anilino
  • R 2 is N-2-hydroxyethyl-N-2-methylamino
  • M is a cation such as sodium
  • the brightener is 4.4'-bis[(4-anilino-6-(N-2-hydroxyethyl-N-methylamino)-s-triazine-2-yl)amino]2,2'-stilbenedisulfonic acid disodium salt.
  • This particular brightener species is commercially marketed under the tradename Tinopal 5BM-GX by Ciba-Geigy Corporation.
  • R 1 is anilino
  • R 2 is morphilino
  • M is a cation such as sodium
  • the brightener is 4,4'-bis[(4-anilino-6-morphilino-s-triazine-2-yl)amino]2,2'-stilbenedisulfonic acid, sodium salt.
  • This particular brightener species is commercially marketed under the tradename Tinopal AMS-GX by Ciba Geigy Corporation.
  • Fabric softening agents can also be incorporated into laundry detergent compositions in accordance with the present invention. These agents may be inorganic or organic in type. Inorganic softening agents are exemplified by the smectite clays disclosed in GB-A-1 400 898. Organic fabric softening agents include the water insoluble tertiary amines as disclosed in GB-A-1 514 276 and EP-B-0 011 340.
  • Levels of smectite clay are normally in the range from 5% to 15%, more preferably from 8% to 12% by weight, with the material being added as a dry mixed component to the remainder of the formulation.
  • Organic fabric softening agents such as the water-insoluble tertiary amines or dilong chain amide materials are incorporated at levels of from 0.5% to 5% by weight, normally from 1% to 3% by weight, whilst the high molecular weight polyethylene oxide materials and the water soluble cationic materials are added at levels of from 0.1% to 2%, normally from 0.15% to 1.5% by weight.
  • compositions of the invention include perfumes, colours and filler salts, with sodium sulfate being a preferred filler salt.
  • the detergent compositions of the invention can be formulated in any desirable form such as powders, granulates, pastes, liquids and gels.
  • the compositions are preferably not in tablet-form. Most preferably, the compositions are in granular form.
  • the detergent compositions of the present invention may be formulated as liquid detergent compositions.
  • Such liquid detergent compositions typically comprise from 94% to 35% by weight, preferably from 90% to 40% by weight, most preferably from 80% to 50% by weight of a liquid carrier, e.g., water, preferably a mixture of water and organic solvent.
  • the detergent compositions of the present invention may also be in the form of gels.
  • Such compositions are typically formulated with polyakenyl polyether having a molecular weight of from about 750,000 to about 4,000,000.
  • the detergent compositions of the invention are preferably in the form of solids, such as powders and granules. Granular form is preferred.
  • the particle size of the components of granular compositions in accordance with the invention should preferably be such that no more that 5% of particles are greater than 1.4mm in diameter and not more than 5% of particles are less than 0.15mm in diameter.
  • the bulk density of granular detergent compositions in accordance with the present invention typically have a bulk density of at least 450 g/litre, more usually at least 600 g/litre and more preferably from 650 g/litre to 1200 g/litre.
  • Bulk density is measured by means of a simple funnel and cup device consisting of a conical funnel moulded rigidly on a base and provided with a flap valve at its lower extremity to allow the contents of the funnel to be emptied into an axially aligned cylindrial cup disposed below the funnel.
  • the funnel is 130 mm and 40 mm at its respective upper and lower extremities. It is mounted so that the lower extremity is 140 mm above the upper surface of the base.
  • the cup has an overall height of 90 mm, an internal height of 87 mm and an internal diameter of 84 mm. Its nominal volume is 500 ml.
  • the funnel is filled with powder by hand pouring, the flap valve is opened and powder allowed to overfill the cup.
  • the filled cup is removed from the frame and excess powder removed from the cup by passing a straight edged implement e.g. a knife, across its upper edge.
  • the filled cup is then weighed and the value obtained for the weight of powder doubled to provide the bulk density in g/litre. Replicate measurements are made as required.
  • granular detergent compositions in accordance with the present invention can be made via a variety of methods including dry mixing, spray drying, agglomeration and granulation.
  • compositions of the invention may be used in essentially any washing or cleaning method, including machine laundry and dishwashing methods.
  • a preferred machine dishwashing method comprises treating soiled articles selected from crockery, glassware, hollowware and cutlery and mixtures thereof, with an aqueous liquid having dissolved or dispensed therein an effective amount of a machine dishwashing composition in accord with the invention.
  • an effective amount of the machine dishwashing composition it is typically meant from 8g to 60g of product dissolved or dispersed in a wash solution of volume from 3 to 10 litres, as are typical product dosages and wash solution volumes commonly employed in conventional machine dishwashing methods.
  • Machine laundry methods herein comprise treating soiled laundry with an aqueous wash solution in a washing machine having dissolved or dispensed therein an effective amount of a machine laundry detergent composition in accord with the invention.
  • the detergent can be added to the wash solution either via the dispenser drawer of the washing machine or by a dispensing device.
  • an effective amount of the detergent composition it is typically meant from 40g to 300g of product dissolved or dispersed in a wash solution of volume from 5 to 65 litres, as are typical product dosages and wash solution volumes commonly employed in conventional machine laundry methods.
  • a dispensing device containing an effective amount of detergent product is introduced into the drum of a, preferably front-loading, washing machine before the commencement of the wash cycle.
  • the dispensing device is a container for the detergent product which is used to deliver the product directly into the drum of the washing machine. Its volume capacity should be such as to be able to contain sufficient detergent product as would normally be used in the washing method.
  • the dispensing device containing the detergent product is placed inside the drum.
  • water is introduced into the drum and the drum periodically rotates.
  • the design of the dispensing device should be such that it permits containment of the dry detergent product but then allows release of this product during the wash cycle in response to its agitation as the drum rotates and also as a result of its immersion in the wash water.
  • the device may possess a number of openings through which the product may pass.
  • the device may be made of a material which is permeable to liquid but impermeable to the solid product, which will allow release of dissolved product.
  • the detergent product will be rapidly released at the start of the wash cycle thereby providing transient localised high concentrations of components such as water-soluble builder and heavy metal ion sequestrant components in the drum of the washing machine at this stage of the wash cycle.
  • Preferred dispensing devices are reusable and are designed in such a way that container integrity is maintained in both the dry state and during the wash cycle.
  • Especially preferred dispensing devices for use in accord with the invention have been described in the following patents; GB-B-2, 157, 717, GB-B-2, 157, 718, EP-A-0201376, EP-A-0288345 and EP-A-0288346.
  • An article by J.Bland published in Manufacturing Chemist, November 1989, pages 41-46 also describes especially preferred dispensing devices for use with granular laundry products which are of a type commonly know as the "granulette”.
  • Especially preferred dispensing devices are disclosed in European Patent Application Publication Nos. 0343069 & 0343070.
  • the latter Application discloses a device comprising a flexible sheath in the form of a bag extending from a support ring defining an orifice, the orifice being adapted to admit to the bag sufficient product for one washing cycle in a washing process. A portion of the washing medium flows through the orifice into the bag, dissolves the product, and the solution then passes outwardly through the orifice into the washing medium.
  • the support ring is provided with a masking arrangemnt to prevent egress of wetted, undissolved, product, this arrangement typically comprising radially extending walls extending from a central boss in a spoked wheel configuration, or a similar structure in which the walls have a helical form.
  • laundry detergent compositions A to F were prepared in accord with the invention: A B C D E F LAS 8.0 8.0 8.0 8.0 8.0 8.0 C25E3 3.4 3.4 3.4 3.4 3.4 3.4 CEQ - 0.8 - - 0.8 - QAS - - 0.8 - - 0.8 Zeolite A 18.1 18.1 18.1 18.1 18.1 Carbonate 13.0 13.0 13.0 27.0 27.0 27.0 Silicate 1.4 1.4 1.4 3.0 3.0 3.0 3.0 Sodium sulfate 26.1 26.1 26.1 26.1 26.1 26.1 PB4 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 NAPAA precursor particle 0.8 0.6 0.4 1.0 0.5 1.0 TAED 0.7 0.9 0.6 1.0 1.5 1.5 DETPMP 0.25 0.25 0.25 0.25 0.25 0.25 HEDP 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
  • composition I is not within the scope of claim 1
  • G H I LAS 5.25 5.61 4.76 TAS 1.25 1.86 1.57 C45AS - 2.24 3.89 C25AE3S - 0.76 1.18 C45E7 3.25 - 5.0 C25E3 - 5.5 - CEQ 0.8 2.0 2.0 STPP 19.7 - - Zeolite A - 19.5 19.5 NaSKS-6/citric acid (79:21 ) - 10.6 10.6 Carbonate 6.1 21.4 21.4 Bicarbonate - 2.0 2.0 Silicate 6.8 - - Sodium sulfate 39.8 - 14.3 PB4 5.0 12.7 - TAED 0.5 1.0 1.0 Benzoyl caprolactam particle 0.5 1.0 0.5 DETPMP 0.25 0.2 0.2 HEDP - 0.3 0.3 Protease 0.26 0.85 0.85 Lipase 0.15 0.15 0.15 Cellul
  • J is a phosphorus-containing detergent composition
  • K is a zeolite-containing detergent composition
  • L is a compact detergent composition: J K L Blown Powder STPP 24.0 - 24.0 Zeolite A - 24.0 - C45AS 9.0 6.0 13.0 MA/AA 2.0 4.0 2.0 LAS 6.0 8.0 11.0 TAS 2.0 - - Silicate 7.0 3.0 3.0 CMC 1.0 1.0 0.5 Brightener 2 0.2 0.2 0.2 Soap 1.0 1.0 1.0 DTPMP 0.4 0.4 0.2 Spray On C45E7 2.5 2.5 2.0 C25E3 2.5 2.5 2.0 Silicone antifoam 0.3 0.3 0.3 Perfume 0.3 0.3 0.3 Dry additives Carbonate 6.0 13.0 15.0 PB4 18.0 18.0 10.0 PB1 4.0 0 TAED 2.0 1.5 1.0 Cationic caprolactam particle 1.0 0.5 1.0 Photoactivated bleach 0.02 0.02 0.02 Protease 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
  • compositions V and W are not within the scope of claim 1
  • the following detergent formulations were prepared: X Y Z Blown Powder Zeolite A 30.0 22.0 6.0 Sodium sulfate 19.0 5.0 7.0 MA/AA 3.0 3.0 6.0 LAS 14.0 12.0 22.0 C45AS 8.0 7.0 7.0 Silicate - 1.0 5.0 Soap - - 2.0 Brightener 1 0.2 0.2 0.2 Carbonate 8.0 16.0 20.0 DTPMP - 0.4 0.4 Spray On C45E7 1.0 1.0 1.0 1.0 Dry additives PVPVI/PVNO 0.5 0.5 0.5 0.5 Protease 1.0 1.0 1.0 Lipase 0.4 0.4 0.4 Amylase 0.1 0.1 0.1 0.1 Cellulase 0.1 0.1 0.1 NOBS particle 2.0 - 2.5 DAP particle 1.0 3.0 - TAED 2.0 3.0 3.0 PB1 1.0 5.0 6.0 Sodium sulfate - 6.0 - Balance (Moisture and Miscellaneous) 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)

Abstract

There is provided a detergent composition containing an organic peroxyacid bleaching system capable of releasing a plurality of organic peroxyacids of different strength to a wash solution. A means is provided for delaying the release of a stronger organic peroxyacid relative to the release of a weaker organic peroxyacid. The detergent composition provides bleachable soil/stain removal capability when employed in laundry or dishwashing methods.

Description

    Technical field
  • This invention relates to detergent compositions containing an organic peroxyacid bleaching system capable of releasing a plurality of organic peroxyacids of different strength to a wash solution.
  • Background to the invention
  • The satisfactory removal of bleachable soils/stains such as blood. spinach. chocolate, coffee. tea and tomato sauce from soiled/stained substrates is a particular challenge to the formulator of a detergent composition for use in a washing method sucn as a laundry or machine dishwashing method.
  • Traditionally, the removal of such bleachable soils/stains has been enabled by the use of bleach components such as oxygen bleaches. including hydrogen peroxide and organic peroxyacids. The organic peroxyacids are often obtained by the in situ perhydrolysis reaction between hydrogen peroxide and an organic peroxyacid bleach precursor. Alternatively, a preformed organic peroxyacid can be used.
  • Usually, a single organic bleach precursor compound or preformed organic peroxyacid is employed. It has however, now been established that the use of certain bleaching systems as defined by claim 1 capable of releasing a plurality of organic peroxyacids of different strength to a wash solution can provide bleachable soil/stain removal benefits.
  • In addition the Applicants have now found that when the release of the stronger of the organic peroxyacids to the wash solution is delayed relative to the release of the weaker organic peroxyacid further enhanced bleachable stain removal performance is obtained.
  • Alternatively the Applicants have found that equivalent bleachable stain removal performance may be obtained from a mixed organic peroxyacid bleach system containing lower levels of a stronger organic peroxyacid whose release to the wash solution is delayed, as may be obtained for an, otherwise comparable, organic peroxyacid bleach system having no delayed release of the stronger peroxyacid to the wash solution. In other words, by requiring delayed release of the stronger peroxyacid, equivalent bleaching performance can be obtained even though less of the stronger peroxyacid is used overall.
  • Without wishing to be bound by theory, it is believed that the mechanism behind the present development is as follows: In the first stage the weaker organic peroxyacid is released rapidly to the wash solution where it can act on readily bleachable stains, but also where it can fall prey to wasteful decomposition reactions in the early parts of the wash. Such decomposition most often arises as a result of reactions with components (such as heavy metal ions) present in the wash solution, which themselves are often derived from the soiled washload. In the second stage, the stronger peroxyacid is released and can act on the less readily bleachable (i.e. more stubborn) stains in an environment where it will be less susceptible to decomposition, in that any undesirable 'reactive components' of the washload will essentially have previously been 'exhausted' in attacking the weaker acid. Thus, the stronger peroxyacid is used to its greatest effect in dealing with only the more difficult to address stains, and any 'wastage' due to side reactions is minimized.
  • Binary organic peroxyacid precursor compound-containing compositions have been disclosed in the art. For example, US 5,405,412 A discloses a detergent composition containing both n-acyl caprolactam and alkanoyloxybenzene sulfonate bleach precursor compounds. The Applicant is however, unaware of any disclosure of mixed organic peroxyacid precursor systems in which the release of a stronger organic peroxyacid is deliberately delayed relative to the release of a weaker organic peroxyacid, nor of any teaching of performance benefits related thereto.
  • It is therefore an object of the present invention to provide compositions suitable for use in laundry and machine dishwashing methods having enhanced bleachable soil/stain removal.
  • Summary of the Invention
  • According to one aspect of the present invention there is provided a detergent composition containing an organic peroxyacid bleaching system capable of releasing two different organic peroxyacid bleaches to a wash solution wherein said organic peroxyacid bleathing system contains a hydrogen peroxide source and a plurality of organic peroxyacid bleach precursor compounds, and wherein a means is provided for delaying the release to a wash solution of the stronger peroxyacid relative to the release of a weaker peroxyacid such that in the T50 test method herein described the time to achieve a concentration that is 50% of the ultimate concentration of said stronger peroxyacid is at least 120 seconds more than the time to achieve a concentration that is 50% of the ultimate concentration of said weaker peroxyacid, wherein the relative strength of the peroxyacids is measured according to the 'dye bleaching protocol' described herein.
  • According to a preferred aspect of the present invention there is provided a detergent composition containing an organic peroxyacid bleaching system capable of releasing two different organic peroxyacid bleaches to a wash solution wherein a means is provided for delaying the release to a wash solution of the stronger peroxyacid relative to the release of the weaker peroxyacid such that in the T50 test method herein described the time to achieve a concentration that is 50% of the ultimate concentration of the weaker peroxyacid is less than 60 seconds and the time to achieve a concentration that is 50% of the ultimate concentration of the stronger peroxyacid is more than 180 seconds, wherein the relative strength of the peroxyacids is measured according to the 'dye bleaching protocol' described herein.
  • According to a preferred aspect of the present invention the detergent composition contains only two organic peroxyacid bleach precursor compounds, i.e. it is a binary bleach precursor system.
  • Detailed description of the invention Organic peroxyacid bleaching system
  • According to one aspect of the present invention the detergent compositions contain an organic peroxyacid bleaching system. In one preferred execution the bleaching system contains a hydrogen peroxide source and a plurality of organic peroxyacid bleach precursor compounds capable of releasing at least two different organic peroxyacids to a wash solution. The production of the organic peroxyacid occurs by an in situ reaction of the precursor with a source of hydrogen peroxide. Preferred sources of hydrogen peroxide include inorganic perhydrate bleaches. In an alternative preferred execution a preformed organic peroxyacid is used as a substitute for one, many or all of the organic peroxyacid bleach precursor compounds. Compositions containing mixtures of a hydrogen peroxide source and organic peroxyacid precursor in combination with a preformed organic peroxyacid are thus envisaged.
  • Inorganic perhydrate bleaches
  • Inorganic perhydrate salts are a preferred source of hydrogen peroxide. These salts are normally incorporated in the form of the alkali metal, preferably sodium salt at a level of from 1% to 40% by weight, more preferably from 2% to 30% by weight and most preferably from 5% to 25% by weight of the compositions.
  • Examples of inorganic perhydrate salts include perborate, percarbonate, perphosphate, persulfate and persilicate salts. The inorganic perhydrate salts are normally the alkali metal salts. The inorganic perhydrate salt may be included as the crystalline solid without additional protection. For certain perhydrate salts however, the preferred executions of such granular compositions utilize a coated form of the material which provides better storage stability for the perhydrate salt in the granular product. Suitable coatings comprise inorganic salts such as alkali metal silicate, carbonate or borate salts or mixtures thereof, or organic materials such as waxes, oils, or fatty soaps.
  • Sodium perborate is a preferred perhydrate salt and can be in the form of the monohydrate of nominal formula NaBO2H2O2 or, more preferably, the tetrahydrate NaBO2H2O2.3H2O.
  • Alkali metal percarbonates, particularly sodium percarbonate are preferred perhydrates herein. Sodium percarbonate is an addition compound having a formula corresponding to 2Na2CO3.3H2O2, and is available commercially as a crystalline solid.
  • Potassium peroxymonopersulfate is another inorganic perhydrate salt of use in the detergent compositions herein.
  • Peroxyacid bleach precursor
  • Peroxyacid bleach precursors are compounds which react with hydrogen peroxide in a perhydrolysis reaction to produce a peroxyacid. Generally peroxyacid bleach precursors may be represented as
    Figure 00050001
    where L is a leaving group and X is essentially any functionality, such that on perhydroloysis the structure of the peroxyacid produced is
    Figure 00050002
  • Peroxyacid bleach precursor compounds are preferably incorporated at a level of from 0.5% to 20% by weight, more preferably from 1% to 15% by weight, most preferably from 1.5% to 10% by weight of the detergent compositions.
  • Suitable peroxyacid bleach precursor compounds typically contain one or more Nor O-acyl groups, which precursors can be selected from a wide range of classes. Suitable classes include anhydrides, esters, imides, lactams and acylated derivatives of imidazoles and oximes. Examples of useful materials within these classes are disclosed in GB-A-1586789. Suitable esters are disclosed in GB-A-836988, 864798, 1147871, 2143231 and EP-A-0170386.
  • Leaving groups
  • The leaving group, hereinafter L group, must be sufficiently reactive for the perhydrolysis reaction to occur within the optimum time frame (e.g., a wash cycle). However, if L is too reactive, this activator will be difficult to stabilize for use in a bleaching composition.
  • Preferred L groups are selected from the group consisting of:
    Figure 00060001
    Figure 00060002
    Figure 00060003
    Figure 00060004
    Figure 00060005
    and mixtures thereof, wherein R 1 is an alkyl, aryl, or alkaryl group containing from 1 to 14 carbon atoms, R3 is an alkyl chain containing from 1 to 8 carbon atoms, R4 is H or R3, and Y is H or a solubilizing group. Any of R1, R3 and R4 may be substituted by essentially any functional group including, for example alkyl, hydroxy, alkoxy, halogen, amine, nitrosyl, amide and ammonium or alkyl ammmonium groups
  • The preferred solubilizing groups are -SO3 -M+, -CO2 -M+, -SO4 -M+, -N+(R3)4X- and O<--N(R3)3 and most preferably -SO3 -M+ and -CO2 -M+ wherein R3 is an alkyl chain containing from 1 to 4 carbon atoms, M is a cation which provides solubility to the bleach activator and X is an anion which provides solubility to the bleach activator. Preferably, M is an alkali metal, ammonium or substituted ammonium cation, with sodium and potassium being most preferred, and X is a halide, hydroxide, methylsulfate or acetate anion.
  • Alkyl percarboxylic acid bleach precursors
  • Alkyl percarboxylic acid bleach precursors form percarboxylic acids on perhydrolysis. Preferred precursors of this type provide peracetic acid on perhydrolysis.
  • Preferred alkyl percarboxylic precursor compounds of the imide type include the N-,N,N1N1 tetra acetylated alkylene diamines wherein the alkylene group contains from 1 to 6 carbon atoms, particularly those compounds in which the alkylene group contains 1, 2 and 6 carbon atoms. Tetraacetyl ethylene diamine (TAED) is particularly preferred.
  • Other preferred alkyl percarboxylic acid precursors include sodium 3,5,5-tri-methyl hexanoyloxybenzene sulfonate (iso-NOBS), sodium nonanoyloxybenzene sulfonate (NOBS), sodium acetoxybenzene sulfonate (ABS) and pentaacetyl glucose.
  • Amide substituted alkyl peroxyacid precursors
  • Amide substituted alkyl peroxyacid precursor compounds are suitable herein, including those of the following general formulae:
    Figure 00070001
    wherein R1 is an alkyl group with from 1 to 14 carbon atoms, R2 is an alkylene group containing from 1 to 14 carbon atoms, and R5 is H or an alkyl group containing 1 to 10 carbon atoms and L can be essentially any leaving group. Most preferably R1 is an alkyl group with 9 carbon atoms, R2 is an alkylene group containing 4 carbon atoms, R5 is H, thus the organic peroxyacid released on perhydrolysis is a nonyl amide of peroxy adipic acid (NAPAA). Amide substituted bleach activator compounds of this type are described in EP-A-0170386.
  • Perbenzoic acid precursor
  • Perbenzoic acid precursor compounds provide perbenzoic acid on perhydrolysis. Suitable O-acylated perbenzoic acid precursor compounds include the substituted and unsubstituted benzoyl oxybenzene sulfonates, and the benzoylation products of sorbitol, glucose, and all saccharides with benzoylating agents, and those of the imide type including N-benzoyl succinimide, tetrabenzoyl ethylene diamine and the N-benzoyl substituted ureas. Suitable imidazole type perbenzoic acid precursors include N-benzoyl imidazole and N-benzoyl benzimidazole. Other useful N-acyl group-containing perbenzoic acid precursors include N-benzoyl pyrrolidone, dibenzoyl taurine and benzoyl pyroglutamic acid.
  • Suitable N-acylated lactam perbenzoic acid precursors have the formula:
    Figure 00080001
    wherein n is from 0 to 8, preferably from 0 to 2, and R6 is an aryl, alkoxyaryl or alkaryl group containing from 1 to 12 carbon atoms, or a substituted phenyl group containing from 6 to 18 carbon atoms. preferably a benzoyl group.
  • Cationic peroxyacid precursors
  • Cationic peroxyacid precursor compounds produce cationic peroxyacids on perhydrolysis.
  • Typically, cationic peroxyacid precursors are formed by substituting the peroxyacid part of a suitable peroxyacid precursor compound with a positively charged functional group, such as an ammonium or alkyl ammmonium group, preferably an ethyl or methyl ammonium group. Cationic peroxyacid precursors are typically present in the solid detergent compositions as a salt with a suitable anion, such as a halide ion.
  • The peroxyacid precursor compound to be so cationically substituted may be a perbenzoic acid, or substituted derivative thereof, precursor compound as described hereinbefore. Alternatively, the peroxyacid precursor compound may be an alkyl percarboxylic acid precursor compound or an amide substituted alkyl peroxyacid precursor as described hereinafter
  • Cationic peroxyacid precursors are described in U.S. Patents 4,904,406; 4,751,015; 4,988,451; 4,397,757; 5,269,962; 5,127,852; 5,093.022; 5,106,528; U.K. 1.382,594; EP 475,512, 458,396 and 284,292; and in JP 87-318,332.
  • Examples of preferred cationic peroxyacid precursors are described in UK Patent Application No. 9407944.9 and US Patent Application Nos. 08/298903, 08/298650, 08/298904 and 08/298906.
  • Suitable cationic peroxyacid precursors include any of the ammonium or alkyl ammonium substituted alkyl or benzoyl oxybenzene sulfonates, N-acylated caprolactams, and monobenzoyltetraacetyl glucose benzoyl peroxides. Preferred cationic peroxyacid precursors of the N-acylated caprolactam class include the trialkyl ammonium methylene benzoyl caprolactams and the trialkyl ammonium methylene alkyl caprolactams.
  • Benzoxazin organic peroxyacid precursors
  • Also suitable are precursor compounds of the benzoxazin-type, as disclosed for example in EP-A-332,294 and EP-A-482,807, particularly those having the formula:
    Figure 00090001
    wherein R1 is H, alkyl, alkaryl, aryl, or arylalkyl.
  • Preformed organic peroxyacid
  • The organic peroxyacid bleaching system may contain, in addition to, or as an alternative to, an organic peroxyacid bleach precursor compound, a preformed organic peroxyacid , typically at a level of from 1% to 15% by weight, more preferably from 1% to 10% by weight of the composition.
  • A preferred class of organic peroxyacid compounds are the amide substituted compounds of the following general formulae:
    Figure 00100001
    or
    Figure 00100002
    wherein R1 is an alkyl, aryl or alkaryl group with from 1 to 14 carbon atoms, R2 is an alkylene, arylene, and alkarylene group containing from 1 to 14 carbon atoms, and R5 is H or an alkyl, aryl, or alkaryl group containing 1 to 10 carbon atoms. Amide substituted organic peroxyacid compounds of this type are described in EP-A-0170386.
  • Other organic peroxyacids include diacyl and tetraacylperoxides, especially diperoxydodecanedioc acid, diperoxytetradecanedioc acid and diperoxyhexadecanedioc acid. Mono- and diperazelaic acid, mono- and diperbrassylic acid and N-phthaloylaminoperoxicaproic acid are also suitable herein.
  • Strength of the organic peroxyacid - 'dye-bleaching protocol'
  • In accord with the invention the release to a wash solution of a stronger organic peroxyacid is delayed relative to the release of a weaker organic peroxyacid.
  • For the purposes of the present invention the strength of the organic peroxyacid is assessed by reference to the 'peroxyacid dye-bleaching' protocol now described. In essence, this protocol compares the kinetics of bleaching action of the organic peroxyacid on a representative dyestuff under controlled conditions of pH and temperature.
  • In accord with the protocol, a first solution is made up containing 0.5M of an organic peroxyacid precursor compound in distilled water (or a mixture of distilled water/spectrometric grade ethanol for poorly water-soluble precursor compounds).
  • A second solution is made in three stages. In the first stage 0.3 mg EDTA, and 0.277g uncoated sodium percarbonate are added to 100ml of distilled water. The resulting peroxide solution, which is equivalent to a 0.025M solution of active oxygen, is buffered to pH 10.5 using an appropriate buffering agent (e. g. sodium carbonate). In the second stage 18mg of Direct Blue No. I is added to 100ml of distilled water together with buffering agent to give a constant pH of 10.5. In the third stage, the peroxide solution is mixed with the dye solution.
  • The kinetics of bleaching action are measured spectrometrically as follows. Initially, 20 microlitres of the first solution are added to a 1 cm polystyrene cuvette placed within the spectrometer, then 4ml of the second solution is added by an autopipette. The time of addition of the second solution is taken to be time = 0, and the rate of bleaching of the dye is measured over a 1800 second run time. The wavelength measured is 596 nm, and the spectrometer is preferably a HP 8452 A (tradename) diode array spectrophotometer, although other suitable spectrometers within the knowledge of the skilled person could be used. Spectrophotometric measurements are typically taken at 0.5 second intervals and the readings processed using known single cell kinetics software.
  • With the given levels of organic peroxyacid and dye components the dye bleaching action will follow essentially first order kinetics. Thus, by fitting the data to an appropriate first order kinetics (i.e. exponential) curve a rate constant may be obtained for the organic peroxyacid.
  • Comparison of the rate constants gives a measure of the strength of the organic peroxyacid, a stronger acid having a higher first order rate constant.
  • A bleaching effectiveness ratio, which compares the bleaching strength of two organic peroxyacids, may be defined as the rate constant for the stronger organic peroxyacid divided by the rate constant for the weaker organic peroxyacid. According to a preferred aspect of the invention, the bleaching effectiveness ratio is preferably at least 1.1, more preferably at least 1.3, most preferably at least 1.5.
  • Relative release kinetics
  • In an essential aspect of the invention a means is provided for delaying the release to a wash solution of a stronger organic peroxyacid relative to the release of a weaker organic peroxyacid.
  • Said means may comprise a means for delaying the release of the stronger peroxyacid to the wash solution. Alternatively said means may comprise a means for enhancing the rate of release of the weaker organic peroxyacid to the wash solution.
  • Delayed rate of release - means
  • The delayed release means can include coating the stronger organic peroxyacid bleach precursor compound with a coating or mixture of coatings designed to provide the delayed release. The coating may therefore, for example, comprise a poorly water soluble material, or be a coating of sufficient thickness that the kinetics of dissolution of the thick coating provide the controlled rate of release.
  • The coating material may be applied using various methods. Any coating material is typically present at a weight ratio of coating material to bleach of from 1:99 to 1:2, preferably from 1:49 to 1:9.
  • Suitable coating materials include triglycerides (e.g. partially) hydrogenated vegetable oil, soy bean oil, cotton seed oil) mono or diglycerides, microcrystalline waxes, gelatin, cellulose, fatty acids and any mixtures thereof.
  • Other suitable coating materials can comprise the alkali and alkaline earth metal sulphates, silicates and carbonates, including calcium carbonate.
  • Preferred as a coating material is sodium silicate of SiO2 : Na2O ratio from 1.6 : 1 to 3.4 : 1, preferably 2.8 : 1, applied as an aqueous solution to give a level of from 2% to 10%, (normally from 3% to 5%) of silicate solids by weight of the percarbonate. Magnesium silicate can also be included in the coating.
  • Any inorganic salt coating materials may be combined with organic binder materials to provide composite inorganic salt/organic binder coatings. Suitable binders include the C10-C20 alcohol ethoxylates containing from 5 - 100 moles of ethylene oxide per mole of alcohol and more preferably the C15-C20 primary alcohol ethoxylates containing from 20 - 100 moles of ethylene oxide per mole of alcohol.
  • Other preferred binders include certain polymeric materials. Polyvinylpyrrolidones with an average molecular weight of from 12,000 to 700,000 and polyethylene glycols (PEG) with an average molecular weight of from 600 to 10.000 are examples of such polymeric materials. Copolymers of maleic anhydride with ethylene, methylvinyl ether or methacrylic acid. the maleic anhydride constituting at least 20 mole percent of the polymer are further examples of polymeric materials useful as binder agents. These polymeric materials may be used as such or in combination with solvents such as water, propylene glycol and the above mentioned C10-C20 alcohol ethoxylates containing from 5 - 100 moles of ethylene oxide per mole. Further examples of binders include the C10-C20 mono- and diglycerol ethers and also the C10-C20 fatty acids.
  • Cellulose derivatives such as methylcellulose, carboxymethylcellulose, ethyl hydroxyethylcellulose and hydroxyethylcellulose, and homo- or co-polymeric polycarboxylic acids or their salts are other examples of binders suitable for use herein.
  • One method for applying the coating material involves agglomeration. Preferred agglomeration processes include the use of any of the organic binder materials described hereinabove. Any conventional agglomerator/mixer may be used including, but not limted to pan, rotary drum and vertical blender types. Molten coating compositions may also be applied either by being poured onto, or spray atomized onto a moving bed of bleaching agent.
  • Other means of providing the required delayed release include mechanical means for altering the physical characteristics of the bleach to control its solubility and rate of release. Suitable protocols could include compaction, mechanical injection, manual injection, and adjustment of the solubility of the bleach compound by selection of particle size of any particulate component.
  • Whilst the choice of particle size will depend both on the composition of the particulate component, and the desire to meet the desired delayed release kinetics, it is desirable that the particle size should be more than 500 micrometers, preferably having an average particle diameter of from 800 to 1200 micrometers.
  • Additional protocols for providing the means of delayed release include the suitable choice of any other components of the detergent composition matrix such that when the composition is introduced to the wash solution the ionic strength environment therein provided enables the required delayed release kinetics to be achieved.
  • Enhanced rate of release - means
  • All suitable means for enhancing the rate of release of the weaker organic peroxyacid to the wash solution are envisaged.
  • The enhanced release means can include coating the weaker organic peroxyacid component with a coating designed to provide the enhanced release. The coating may therefore, for example, comprise a highly, or even effervescently, water soluble material.
  • Other means of providing the required enhanced release could include mechanical means for altering the physical characteristics of the weaker organic peroxyacid to enhance its solubility and rate of release.
  • A suitable protocol could include deliberate selection of the particle size of the weaker organic peroxyacid component. The choice of particle size will depend both on the composition of the particulate component, and the desire to meet the desired enhanced release kinetics.
  • Delayed release - kinetic parameters
  • The release of the stronger organic peroxyacid relative to that of the weaker organic peroxyacid component is such that, in the T50 test method herein described, the T50 value for the weaker organic peroxyacid component is at least 120 seconds less than the T50 value for the stronger organic peroxyacid component. According to a preferred aspect, the time (T50) to achieve a concentration that is 50% of the ultimate concentration of said weaker organic peroxyacid is less than 60 seconds, preferably less than 50 seconds, more preferably less than 40 seconds, and the time (T50) to achieve a concentration that is 50% of the ultimate concentration of said stronger organic peroxyacid is more than 120 seconds, preferably from 180 to 480 seconds, more preferably from 240 to 360 seconds.
  • Delayed release - test method
  • The delayed release kinetics herein are defined with respect to a 'TA test method' which measures the time to achieve A% of the ultimate concentration/level of that component when a composition containing the component is dissolved according to the standard conditions now set out.
  • The standard conditions involve a 1 litre glass beaker filled with 1000 ml of distilled water at 20°C, to which 10g of composition is added. The contents of the beaker are agitated using a magnetic stirrer set at 100 rpm. The magnetic stirrer is pea/ovule-shaped having a maximum dimension of 1.5cm and a minimum dimension of 0.5cm. The ultimate concentration/level is taken to be the concentration/level attained 10 minutes after addition of the composition to the water-filled beaker.
  • Suitable analytical methods are chosen to enable a reliable determination of the incidental, and ultimate in solution concentrations of the component of concern, subsequent to the addition of the composition to the water in the beaker.
  • Such analytical methods can include those involving a continuous monitoring of the level of concentration of the component, including for example photometric and conductrimetric methods.
  • Alternatively, methods involving removing titres from the solution at set time intervals, stopping the disssolution process by an appropriate means such as by rapidly reducing the temperature of the titre, and then determining the concentration of the component in the titre by any means such as chemical titrimetric methods, can be employed.
  • Suitable graphical methods, including curve fitting methods, can be employed, where appropriate, to enable calculation of the the TA value from raw analytical results.
  • The particular analytical method selected for determining the concentration of the component, will depend on the nature of that component, and of the nature of the composition containing that component.
  • Additional detergent components
  • The detergent compositions of the invention may also contain additional detergent components. The precise nature of these additional components, and levels of incorporation thereof will depend on the physical form of the composition. and the nature of the cleaning operation for which it is to be used.
  • The compositions of the invention may for example, be formulated as hand and machine laundry detergent compositions, including laundry additive compositions and compositions suitable for use in the pretreatment of stained fabrics and machine dishwashing compositions.
  • When formulated as compositions suitable for use in a machine washing method, eg: machine laundry and machine dishwashing methods, the compositions of the invention preferably contain one or more additional detergent components selected from surfactants, builders, enzymes, heavy metal ion sequestrants, organic polymeric compounds, suds suppressors, lime soap dispersants, soil suspension and anti-redeposition agents and corrosion inhibitors. Laundry compositions can also contain, as additional detergent components, softening agents.
  • Surfactant
  • The detergent compositions of the invention may contain as an optional detergent component a surfactant selected from anionic, cationic, nonionic ampholytic, amphoteric and zwitterionic surfactants and mixtures thereof.
  • The surfactant is typically present at a level of from 0.1% to 60% by weight. More preferred levels of incorporation of surfactant are from 1% to 35% by weight, most preferably from 1% to 20% by weight.
  • The surfactant is preferably formulated to be compatible with any enzyme components present in the composition. In liquid or gel compositions the surfactant is most preferably formulated such that it promotes, or at least does not degrade, the stability of any enzyme in these compositions.
  • A typical listing of anionic. nonionic, ampholytic, and zwitterionic classes, and species of these surfactants, is given in U.S.P. 3,929.678 issued to Laughlin and Heuring on December 30, 1975. Further examples are given in "Surface Active Agents and Detergents" (Vol. I and II by Schwartz, Perry and Berch). A list of suitable cationic surfactants is given in U.S.P. 4,259,217 issued to Murphy on March 31, 1981.
  • Where present, ampholytic, amphoteric and zwitteronic surfactants are generally used in combination with one or more anionic and/or nonionic surfactants.
  • Anionic surfactant
  • Essentially any anionic surfactants useful for detersive purposes can be included in the compositions. These can include salts (including, for example, sodium, potassium, ammonium, and substituted ammonium salts such as mono-, di- and triethanolamine salts) of the anionic sulfate, sulfonate, carboxylate and sarcosinate surfactants.
  • Other anionic surfactants include the isethionates such as the acyl isethionates, N-acyl taurates, fatty acid amides of methyl tauride, alkyl succinates and sulfosuccinates, monoesters of sulfosuccinate (especially saturated and unsaturated C12-C18 monoesters) diesters of sulfosuccinate (especially saturated and unsaturated C6-C14 diesters), N-acyl sarcosinates. Resin acids and hydrogenated resin acids are also suitable, such as rosin, hydrogenated rosin, and resin acids and hydrogenated resin acids present in or derived from tallow oil.
  • Anionic sulfate surfactant
  • Anionic sulfate surfactants suitable for use herein include the linear and branched primary alkyl sulfates, alkyl ethoxysulfates, fatty oleyl glycerol sulfates, alkyl phenol ethylene oxide ether sulfates, the C5-C17 acyl-N-(C1-C4 alkyl) and -N-(C1-C2 hydroxyalkyl) glucamine sulfates, and sulfates of alkylpolysaccharides such as the sulfates of alkylpolyglucoside (the nonionic nonsulfated compounds being described herein).
  • Alkyl ethoxysulfate surfactants are preferably selected from the group consisting of the C6-C18 alkyl sulfates which have been ethoxylated with from about 0.5 to about 20 moles of ethylene oxide per molecule. More preferably, the alkyl ethoxysulfate surfactant is a C6-C18 alkyl sulfate which has been ethoxylated with from about 0.5 to about 20, preferably from about 0.5 to about 5, moles of ethylene oxide per molecule.
  • Anionic sulfonate surfactant
  • Anionic sulfonate surfactants suitable for use herein include the salts of C5-C20 linear alkylbenzene sulfonates, alkyl ester sulfonates, C6-C22 primary or secondary alkane sulfonates, C6-C24 olefin sulfonates, sulfonated polycarboxylic acids, alkyl glycerol sulfonates, fatty acyl glycerol sulfonates, fatty oleyl glycerol sulfonates, and any mixtures thereof.
  • Anionic carboxylate surfactant
  • Anionic carboxylate surfactants suitable for use herein include the alkyl ethoxy carboxylates, the alkyl polyethoxy polycarboxylate surfactants and the soaps ('alkyl carboxyls'), especially certain secondary soaps as described herein.
  • Preferred alkyl ethoxy carboxylates for use herein include those with the formula RO(CH2CH20)x CH2C00-M+ wherein R is a C6 to C18 alkyl group, x ranges from O to 10, and the ethoxylate distribution is such that, on a weight basis, the amount of material where x is 0 is less than about 20 %, and the amount of material where x is greater than 7, is less than about 25 %, the average x is from about 2 to 4 when the average R is C13 or less, and the average x is from about 3 to 10 when the average R is greater than C13, and M is a cation, preferably chosen from alkali metal, alkaline earth metal, ammonium, mono-, di-, and tri-ethanol-ammonium, most preferably from sodium, potassium, ammonium and mixtures thereof with magnesium ions.
  • The preferred alkyl ethoxy carboxylates are those where R is a C12 to C18 alkyl group.
  • Alkyl polyethoxy polycarboxylate surfactants suitable for use herein include those having the formula RO-(CHR1-CHR2-O)-R3 wherein R is a C6 to C18 alkyl group, x is from 1 to 25, R1 and R2 are selected from the group consisting of hydrogen, methyl acid radical, succinic acid radical, hydroxysuccinic acid radical, and mixtures thereof, wherein at least one R1 or R2 is a succinic acid radical or hydroxysuccinic acid radical, and R3 is selected from the group consisting of hydrogen, substituted or unsubstituted hydrocarbon having between 1 and 8 carbon atoms, and mixtures thereof.
  • Anionic secondary soap surfactant
  • Preferred soap surfactants are secondary soap surfactants which contain a carboxyl unit connected to a secondary carbon. The secondary carbon can be in a ring structure, e.g. as in p-octyl benzoic acid, or as in alkyl-substituted cyclohexyl carboxylates. The secondary soap surfactants should preferably contain no ether linkages, no ester linkages and no hydroxyl groups. There should preferably be no nitrogen atoms in the head-group (amphiphilic portion). The secondary soap surfactants usually contain 11-15 total carbon atoms, although slightly more (e.g., up to 16) can be tolerated, e.g. p-octyl benzoic acid.
  • The following general structures further illustrate some of the preferred secondary soap surfactants:
  • A. A highly preferred class of secondary soaps comprises the secondary carboxyl materials of the formula R3 CH(R4)COOM, wherein R3 is CH3(CH2)x and R4 is CH3(CH2)y, wherein y can be O or an integer from 1 to 4, x is an integer from 4 to 10 and the sum of (x + y) is 6-10, preferably 7-9, most preferably 8.
  • B. Another preferred class of secondary soaps comprises those carboxyl compounds wherein the carboxyl substituent is on a ring hydrocarbyl unit, i.e., secondary soaps of the formula R5-R6-COOM, wherein R5 is C7-C10, preferably C8-C9, alkyl or alkenyl and R6 is a ring structure, such as benzene, cyclopentane and cyclohexane. (Note: R5 can be in the ortho, meta or para position relative to the carboxyl on the ring.)
  • C. Still another preferred class of secondary soaps comprises secondary carboxyl compounds of the formula CH3(CHR)k-(CH2)m-(CHR)n-CH(COOM)(CHR)o-(CH2)p-(CHR)q-CH3, wherein each R is C1-C4 alkyl, wherein k, n, o, q are integers in the range of 0-8, provided that the total number of carbon atoms (including the carboxylate) is in the range of 10 to 18.
  • In each of the above formulas A, B and C, the species M can be any suitable, especially water-solubilizing, counterion.
  • Especially preferred secondary soap surfactants for use herein are water-soluble members selected from the group consisting of the water-soluble salts of 2-methyl-1-undecanoic acid, 2-ethyl-1-decanoic acid, 2-propyl-1-nonanoic acid, 2-butyl-1-octanoic acid and 2-pentyl-1-heptanoic acid.
  • Alkali metal sarcosinate surfactant
  • Other suitable anionic surfactants are the alkali metal sarcosinates of formula R-CON (R1)CH2COOM, wherein R is a C5-C17 linear or branched alkyl or alkenyl group, R1 is a C1-C4 alkyl group and M is an alkali metal ion. Preferred examples are the myristyl and oleyl methyl sarcosinates in the form of their sodium salts.
  • Nonionic surfactant
  • Essentially any anionic surfactants useful for detersive purposes can be included in the compositions. Exemplary, non-limiting classes of useful nonionic surfactants are listed below.
  • Nonionic polyhydroxy fatty acid amide surfactant
  • Polyhydroxy fatty acid amides suitable for use herein are those having the structural formula R2CONR1Z wherein: R1 is H, C1-C4 hydrocarbyl, 2-hydroxy ethyl, 2-hydroxy propyl, or a mixture thereof, preferable C1-C4 alkyl, more preferably C1 or C2 alkyl, most preferably C1 alkyl (i.e., methyl); and R2 is a C5-C31 hydrocarbyl, preferably straight-chain C5-C19 alkyl or alkenyl, more preferably straight-chain C9-C17 alkyl or alkenyl, most preferably straight-chain C11-C17 alkyl or alkenyl, or mixture thereof; and Z is a polyhydroxyhydrocarbyl having a linear hydrocarbyl chain with at least 3 hydroxyls directly connected to the chain, or an alkoxylated derivative (preferably ethoxylated or propoxylated) thereof. Z preferably will be derived from a reducing sugar in a reductive amination reaction; more preferably Z is a glycityl.
  • Nonionic condensates of alkyl phenols
  • The polyethylene, polypropylene, and polybutylene oxide condensates of alkyl phenols are suitable for use herein. In general, the polyethylene oxide condensates are preferred. These compounds include the condensation products of alkyl phenols having an alkyl group containing from about 6 to about 18 carbon atoms in either a straight chain or branched chain configuration with the alkylene oxide.
  • Nonionic ethoxylated alcohol surfactant
  • The alkyl ethoxylate condensation products of aliphatic alcohols with from about 1 to about 25 moles of ethylene oxide are suitable for use herein. The alkyl chain of the aliphatic alcohol can either be straight or branched, primary or secondary, and generally contains from 6 to 22 carbon atoms. Particularly preferred are the condensation products of alcohols having an alkyl group containing from 8 to 20 carbon atoms with from about 2 to about 10 moles of ethylene oxide per mole of alcohol.
  • Nonionic ethoxylated/propoxylated fatty alcohol surfactant
  • The ethoxylated C6-C18 fatty alcohols and C6-C18 mixed ethoxylated/propoxylated fatty alcohols are suitable surfactants for use herein, particularly where water soluble. Preferably the ethoxylated fatty alcohols are the C10-C18 ethoxylated fatty alcohols with a degree of ethoxylation of from 3 to 50, most preferably these are the C12-C18 ethoxylated fatty alcohols with a degree of ethoxylation from 3 to 40. Preferably the mixed ethoxylated/propoxylated fatty alcohols have an alkyl chain length of from 10 to 18 carbon atoms, a degree of ethoxylation of from 3 to 30 and a degree of propoxylation of from 1 to 10.
  • Nonionic EO/PO condensates with propylene glycol
  • The condensation products of ethylene oxide with a hydrophobic base formed by the condensation of propylene oxide with propylene glycol are suitable for use herein. The hydrophobic portion of these compounds preferably has a molecular weight of from about 1500 to about 1800 and exhibits water insolubility. Examples of compounds of this type include certain of the commercially-available Pluronic™ surfactants, marketed by BASF.
  • Nonionic EO condensation products with propylene oxide/ethylene diamine adducts
  • The condensation products of ethylene oxide with the product resulting from the reaction of propylene oxide and ethylenediamine are suitable for use herein. The hydrophobic moiety of these products consists of the reaction product of ethylenediamine and excess propylene oxide, and generally has a molecular weight of from about 2500 to about 3000. Examples of this type of nonionic surfactant include certain of the commercially available Tetronic™ compounds, marketed by BASF.
  • Nonionic alkylpolysaccharide surfactant
  • Suitable alkylpolysaccharides for use herein are disclosed in U.S. Patent 4,565,647, Llenado, issued January 21, 1986, having a hydrophobic group containing from about 6 to about 30 carbon atoms, preferably from about 10 to about 16 carbon atoms and a polysaccharide, e.g., a polyglycoside, hydrophilic group containing from about 1.3 to about 10, preferably from about 1.3 to about 3, most preferably from about 1.3 to about 2.7 saccharide units. Any reducing saccharide containing 5 or 6 carbon atoms can be used, e.g., glucose, galactose and galactosyl moieties can be substituted for the glucosyl moieties. (Optionally the hydrophobic group is attached at the 2-, 3-, 4-, etc. positions thus giving a glucose or galactose as opposed to a glucoside or galactoside.) The intersaccharide bonds can be, e.g., between the one position of the additional saccharide units and the 2-, 3-, 4-, and/or 6- positions on the preceding saccharide units.
  • The preferred alkylpolyglycosides have the formula R2O(CnH2nO)t(glycosyl)x wherein R2 is selected from the group consisting of alkyl, alkylphenyl, hydroxyalkyl, hydroxyalkylphenyl, and mixtures thereof in which the alkyl groups contain from 10 to 18, preferably from 12 to 14, carbon atoms; n is 2 or 3; t is from 0 to 10, preferably 0, and X is from 1.3 to 8, preferably from 1.3 to 3, most preferably from 1.3 to 2.7. The glycosyl is preferably derived from glucose.
  • Nonionic fatty acid amide surfactant
  • Fatty acid amide surfactants suitable for use herein are those having the formula: R6CON(R7)2 wherein R6 is an alkyl group containing from 7 to 21, preferably from 9 to 17 carbon atoms and each R7 is selected from the group consisting of hydrogen, C1-C4 alkyl, C1-C4 hydroxyalkyl, and -(C2H4O)xH, where x is in the range of from 1 to 3.
  • Amphoteric surfactant
  • Suitable amphoteric surfactants for use herein include the amine oxide surfactants and the alkyl amphocarboxylic acids.
  • A suitable example of an alkyl aphodicarboxylic acid for use herein is Miranol(TM) C2M Conc. manufactured by Miranol, Inc., Dayton, NJ.
  • Amine Oxide surfactant
  • Amine oxides useful herein include those compounds having the formula R3(OR4)xN0(R5)2 wherein R3 is selected from an alkyl, hydroxyalkyl, acylamidopropoyl and alkyl phenyl group, or mixtures thereof, containing from 8 to 26 carbon atoms, preferably 8 to 18 carbon atoms; R4 is an alkylene or hydroxyalkylene group containing from 2 to 3 carbon atoms, preferably 2 carbon atoms, or mixtures thereof; x is from 0 to 5, preferably from 0 to 3; and each R5 is an alkyl or hydyroxyalkyl group containing from I to 3, preferably from 1 to 2 carbon atoms, or a polyethylene oxide group containing from 1 to 3, preferable 1, ethylene oxide groups. The R5 groups can be attached to each other, e.g., through an oxygen or nitrogen atom, to form a ring structure.
  • These amine oxide surfactants in particular include C10-C18 alkyl dimethyl amine oxides and C8-C18 alkoxy ethyl dihydroxyethyl amine oxides. Examples of such materials include dimethyloctylamine oxide, diethyldecylamine oxide, bis-(2-hydroxyethyl)dodecylamine oxide, dimethyldodecylamine oxide, dipropyltetradecylamine oxide, methylethylhexadecylamine oxide, dodecylamidopropyl dimethylamine oxide, cetyl dimethylamine oxide, stearyl dimethylamine oxide, tallow dimethylamine oxide and dimethyl-2-hydroxyoctadecylamine oxide. Preferred are C10-C18 alkyl dimethylamine oxide, and C10-18 acylamido alkyl dimethylamine oxide.
  • Zwitterionic surfactant
  • Zwitterionic surfactants can also be incorporated into the detergent compositions hereof. These surfactants can be broadly described as derivatives of secondary and tertiary amines, derivatives of heterocyclic secondary and tertiary amines, or derivatives of quaternary ammonium, quaternary phosphonium or tertiary sulfonium compounds. Betaine and sultaine surfactants are exemplary zwitterionic surfactants for use herein.
  • Betaine surfactant
  • The betaines useful herein are those compounds having the formula R(R')2N+R2COO- wherein R is a C6-C18 hydrocarbyl group, preferably a C10-C16 alkyl group or C10-16 acylamido alkyl group, each R1 is typically C1-C3 alkyl, preferably methyl,m and R2 is a C 1-C5 hydrocarbyl group, preferably a C1-C3 alkylene group, more preferably a C1-C2 alkylene group. Examples of suitable betaines include coconut acylamidopropyldimethyl betaine; hexadecyl dimethyl betaine; C12-14 acylamidopropylbetaine; C8-14 acylamidohexyldiethyl betaine; 4[C14-16 acylmethylamidodieihylammonio]-1-carboxybutane; C16-18 acylamidodimethylbetaine; C12-16 acylamidopentanediethyl-betaine; [C12-16 acylmethylamidodimethylbetaine. Preferred betaines are C12-18 dimethyl-ammonio hexanoate and the C10-18 acylamidopropane (or ethane) dimethyl (or diethyl) betaines. Complex betaine surfactants are also suitable for use herein.
  • Sultaine surfactant
  • The sultaines useful herein are those compounds having the formula (R(R1)2N+R2SO3 - wherein R is a C6-C18 hydrocarbyl group, preferably a C10-C16 alkyl group, more preferably a C12-C13 alkyl group, each R1 is typically C1-C3 alkyl, preferably methyl, and R2 is a C1-C6 hydrocarbyl group, preferably a C1-C3 alkylene or, preferably, hydroxyalkylene group.
  • Ampholytic surfactant
  • Ampholytic surfactants can be incorporated into the detergent compositions herein. These surfactants can be broadly described as aliphatic derivatives of secondary or tertiary amines, or aliphatic derivatives of heterocyclic secondary and tertiary amines in which the aliphatic radical can be straight chain or branched.
  • Cationic surfactants
  • Cationic surfactants can also be used in the detergent compositions herein. Suitable cationic surfactants include the quaternary ammonium surfactants selected from mono C6-C16, preferably C6-C10 N-alkyl or alkenyl ammonium surfactants wherein the remaining N positions are substituted by methyl, hydroxyethyl or hydroxypropyl groups.
  • Water-soluble builder compound
  • The detergent compositions of the present invention contain as a preferred optional component a water-soluble builder compound, typically present at a level of from 1% to 80% by weight, preferably from 10% to 70% by weight, most preferably from 20% to 60% by weight of the composition.
  • Suitable water-soluble builder compounds include the water soluble monomeric polycarboxylates, or their acid forms, homo or copolymeric polycarboxylic acids or their salts in which the polycarboxylic acid comprises at least two carboxylic radicals separated from each other by not more that two carbon atoms, carbonates, bicarbonates, borates, phosphates, silicates and mixtures of any of the foregoing.
  • The carboxylate or polycarboxylate builder can be momomeric or oligomeric in type although monomeric polycarboxylates are generally preferred for reasons of cost and performance.
  • Suitable carboxylates containing one carboxy group include the water soluble salts of lactic acid, glycolic acid and ether derivatives thereof. Polycarboxylates containing two carboxy groups include the water-soluble salts of succinic acid, malonic acid, (ethylenedioxy) diacetic acid, maleic acid, diglycolic acid, tartaric acid, tartronic acid and fumaric acid, as well as the ether carboxylates and the sulfinyl carboxylates. Polycarboxylates containing three carboxy groups include, in particular, water-soluble citrates, aconitrates and citraconates as well as succinate derivatives such as the carboxymethyloxysuccinates described in British Patent No. 1,379,241, lactoxysuccinates described in British Patent No. 1.389.732, and aminosuccinates described in Netherlands Application 7205873. and the oxypolycarboxylate materials such as 2-oxa-1,1,3-propane tricarboxylates described in British Patent No. 1,387,447.
  • Polycarboxylates containing four carboxy groups include oxydisuccinates disclosed in British Patent No. 1,261,829, 1,1,2,2-ethane tetracarboxylates, 1,1,3,3-propane tetracarboxylates and 1,1,2,3-propane tetracarboxylates. Polycarboxylates containing sulfo substituents include the sulfosuccinate derivatives disclosed in British Patent Nos. 1,398,421 and 1,398,422 and in U.S. Patent No. 3,936,448, and the sulfonated pyrolysed citrates described in British Patent No. 1,439,000.
  • Alicyclic and heterocyclic polycarboxylates include cyclopentane-cis,cis,cis-tetracarboxylates, cyclopentadienide pentacarboxylates, 2,3,4,5-tetrahydrofuran - cis, cis, cis-tetracarboxylates, 2,5-tetrahydrofuran - cis - dicarboxylates, 2,2,5,5-tetrahydrofuran - tetracarboxylates, 1,2,3,4,5,6-hexane - hexacarboxylates and carboxymethyl derivatives of polyhydric alcohols such as sorbitol, mannitol and xylitol. Aromatic polycarboxylates include mellitic acid, pyromellitic acid and the phthalic acid derivatives disclosed in British Patent No. 1,425,343.
  • Of the above, the preferred polycarboxylates are hydroxycarboxylates containing up to three carboxy groups per molecule, more particularly citrates.
  • The parent acids of the monomeric or oligomeric polycarboxylate chelating agents or mixtures thereof with their salts, e.g. citric acid or citrate/citric acid mixtures are also contemplated as useful builder components.
  • Borate builders, as well as builders containing borate-forming materials that can produce borate under detergent storage or wash conditions can also be used but are not preferred at wash conditions less that about 50°C, especially less than about 40°C.
  • Examples of carbonate builders are the alkaline earth and alkali metal carbonates, including sodium carbonate and sesqui-carbonate and mixtures thereof with ultra-fine calcium carbonate as disclosed in German Patent Application No. 2,321,001 published on November 15, 1973.
  • Specific examples of water-soluble phosphate builders are the alkali metal tripolyphosphates, sodium, potassium and ammonium pyrophosphate, sodium and potassium and ammonium pyrophosphate, sodium and potassium orthophosphate, sodium polymeta/phosphate in which the degree of polymerization ranges from about 6 to 21, and salts of phytic acid.
  • Suitable silicates include the water soluble sodium silicates with an SiO2: Na2O ratio of from 1.0 to 2.8, with ratios of from 1.6 to 2.4 being preferred, and 2.0 ratio being most preferred. The silicates may be in the form of either the anhydrous salt or a hydrated salt. Sodium silicate with an SiO2: Na2O ratio of 2.0 is the most preferred silicate.
  • Silicates are preferably present in the detergent compositions in accord with the invention at a level of from 5% to 50% by weight of the composition, more preferably from 10% to 40% by weight.
  • Partially soluble or insoluble builder compound
  • The detergent compositions of the present invention may contain a partially soluble or insoluble builder compound, typically present at a level of from 1% to 80% by weight, preferably from 10% to 70% by weight, most preferably from 20% to 60% weight of the composition.
  • Examples of partially water soluble builders include the crystalline layered silicates. Examples of largely water insoluble builders include the sodium aluminosilicates.
  • Crystalline layered sodium silicates have the general formula NaMSixO2x+1.yH2O wherein M is sodium or hydrogen, x is a number from 1.9 to 4 and y is a number from 0 to 20. Crystalline layered sodium silicates of this type are disclosed in EP-A-0164514 and methods for their preparation are disclosed in DE-A-3417649 and DE-A-3742043. For the purpose of the present invention, x in the general formula above has a value of 2, 3 or 4 and is preferably 2. The most preferred material is δ-Na2Si2O5, available from Hoechst AG as NaSKS-6.
  • The crystalline layered sodium silicate material is preferably present in granular detergent compositions as a particulate in intimate admixture with a solid, water-soluble ionisable material. The solid, water-soluble ionisable material is selected from organic acids, organic and inorganic acid salts and mixtures thereof.
  • Suitable aluminosilicate zeolites have the unit cell formula Naz[(AlO2)z(SiO2)y]. XH2O wherein z and y are at least 6; the molar ratio of z to y is from 1.0 to 0.5 and x is at least 5, preferably from 7.5 to 276, more preferably from 10 to 264. The aluminosilicate material are in hydrated form and are preferably crystalline, containing from 10% to 28%, more preferably from 18% to 22% water in bound form.
  • The aluminosilicate ion exchange materials can be naturally occurring materials, but are preferably synthetically derived. Synthetic crystalline aluminosilicate ion exchange materials are available under the designations Zeolite A, Zeolite B, Zeolite P, Zeolite X, Zeoilte MAP, Zeolite HS and mixtures thereof. Zeolite A has the formula Na 12[AlO2)12(SiO2)12].xH2O wherein x is from 20 to 30, especially 27. Zeolite X has the formula Na86 [(AlO2)86(SiO2)106]. 276 H2O.
  • Heavy metal ion sequestrant
  • The detergent compositions of the invention may contain as a preferred optional component a heavy metal ion sequestrant. By heavy metal ion sequestrant it is meant herein components which act to sequester (chelate) heavy metal ions. These components may also have calcium and magnesium chelation capacity, but preferentially they show selectivity to binding heavy metal ions such as iron, manganese and copper.
  • Heavy metal ion sequestrants are generally present at a level of from 0.005% to 20%. preferably from 0.1% to 10%. more preferably from 0.25% to 7.5% and most preferably from 0.5% to 5% by weight of the compositions.
  • Heavy metal ion sequestrants, which are acidic in nature, having for example phosphonic acid or carboxylic acid functionalities, may be present either in their acid form or as a complex/salt with a suitable counter cation such as an alkali or alkaline metal ion, ammonium, or substituted ammonium ion, or any mixtures thereof. Preferably any salts/complexes are water soluble. The molar ratio of said counter cation to the heavy metal ion sequestrant is preferably at least 1:1.
  • Suitable heavy metal ion sequestrants for use herein include nitrilotriacetic acid and polyaminocarboxylic acids such as ethylenediaminotetracetic acid. ethylenetriamine pentacetic acid, ethylenediamine disuccinic acid, ethylenediamine diglutaric acid, 2-hydroxypropylenediamine disuccinic acid or any salts thereof.
  • Especially preferred is ethylenediamine-N,N'-disuccinic acid (EDDS) or the alkali metal, alkaline earth metal, ammonium, or substituted ammonium salts thereof, or mixtures thereof. Preferred EDDS compounds are the free acid form and the sodium or magnesium salt or complex thereof. Examples of such preferred sodium salts of EDDS include Na2EDDS and Na3EDDS. Examples of such preferred magnesium complexes of EDDS include MgEDDS and Mg2EDDS.
  • Other suitable heavy metal ion sequestrants for use herein are iminodiacetic acid derivatives such as 2-hydroxyethyl diacetic acid or glyceryl imino diacetic acid, described in EP-A-317,542 and EP-A-399,133.
  • The iminodiacetic acid-N-2-hydroxypropyl sulfonic acid and aspartic acid N-carboxymethyl N-2-hydroxypropyl-3-sulfonic acid sequestrants described in EP-A-516,102 are also suitable herein. The β-alanine-N,N'-diacetic acid, aspartic acid-N,N'-diacetic acid, aspartic acid-N-monoacetic acid and iminodisuccinic acid sequestrants described in EP-A-509,382 are also suitable.
  • EP-A-476,257 describes suitable amino based sequestrants. EP-A-510,331 describes suitable sequestrants derived from collagen, keratin or casein. EP-A-528,859 describes a suitable alkyl iminodiacetic acid sequestrant. Dipicolinic acid and 2-phosphonobutane-1,2,4-tricarboxylic acid are alos suitable. Glycinamide-N,N'-disuccinic acid (GADS) is also suitable.
  • Organic polymeric compound
  • Organic polymeric compounds are particularly preferred components of the detergent compositions in accord with the invention. By organic polymeric compound it is meant essentially any polymeric organic compound commonly used as dispersants, and anti-redeposition and soil suspension agents in detergent compositions.
  • Organic polymeric compound is typically incorporated in the detergent compositions of the invention at a level of from 0.1% to 30%, preferably from 0.5% to 15%, most preferably from 1% to 10% by weight of the compositions.
  • Examples of organic polymeric compounds include the water soluble organic homo- or co-polymeric polycarboxylic acids or their salts in which the polycarboxylic acid comprises at least two carboxyl radicals separated from each other by not more than two carbon atoms. Polymers of the latter type are disclosed in GB-A-1,596,756. Examples of such salts are polyacrylates of MWt 2000-5000 and their copolymers with maleic anhydride, such copolymers having a molecular weight of from 20,000 to 100,000, especially 40,000 to 80,000.
  • Other suitable organic polymeric compounds include the polymers of acrylamide and acrylate having a molecular weight of from 3,000 to 100,000, and the acrylate/fumarate copolymers having a molecular weight of from 2,000 to 80,000.
  • The polyamino compounds are useful herein including those derived from aspartic acid such as those disclosed in EP-A-305282, EP-A-305283 and EP-A-351629.
  • Terpolymers containing monomer units selected from maleic acid, acrylic acid, polyaspartic acid and vinyl alcohol, particularly those having an average molecular weight of from 5,000 to 10,000 are also suitable herein.
  • Other organic polymeric compounds suitable for incorporation in the detergent compositions herein include cellulose derivatives such as methylcellulose, carboxymethylcellulose and hydroxyethylcellulose.
  • Further useful organic polymeric compounds are the polyethylene glycols, particularly those of molecular weight 1000-10000, more particularly 2000 to 8000 and most preferably about 4000.
  • Bleach catalyst
  • The compositions optionally contain a transition metal containing bleach catalyst. One suitable type of bleach catalyst is a catalyst system comprising a heavy metal cation of defined bleach catalytic activity, such as copper, iron or manganese cations, an auxiliary metal cation having little or no bleach catalytic activity, such as zinc or aluminum cations, and a sequestrant having defined stability constants for the catalytic and auxiliary metal cations, particularly ethylenediaminetetraacetic acid, ethylenediaminetetra(methylenephosphonic acid) and water-soluble salts thereof. Such catalysts are disclosed in U.S. Pat..4,430.243.
  • Other types of bleach catalysts include the manganese-based complexes disclosed in U.S. Pat. 5,246.621 and U.S. Pat. 5,244,594. Preferred examples of these catalysts include MnIV 2(u-O)3(1,4,7-trimethyl-1,4,7-triazacyciononane)2-(PF6)2, MnIII 2(u-O)1(u-OAc)2(1,4,7-trimethyl-1,4,7-triazacyclononane)2-(ClO4)2, MnIV 4(u-O)6(1,4,7-triazacyclononane)4-(ClO4)2, MnIIIMnIV 4(u-O)1(u-OAc)2-(1,4,7-trimethyl-1,4,7-triazacyclononane)2-(ClO4)3, and mixtures thereof. Others are described in European patent application publication no. 549,272. Other ligands suitable for use herein include 1,5,9-trimethyl-1,5,9-triazacyclododecane, 2-methyl-1,4,7-triazacyclononane, 2-methyl-1,4,7-triazacyclononane, 1,2,4,7-tetramethyl-1,4,7-triazacyclononane, and mixtures thereof.
  • For examples of suitable bleach catalysts see U.S. Pat. 4,246,612 and U.S. Pat. 5,227,084. See also U.S. Pat. 5,194,416 which teaches mononuclear manganese (IV) complexes such as Mn(1,4,7-trimethyl-1,4,7-triazacyclononane)(OCH3)3-(PF6). Still another type of bleach catalyst, as disclosed in U.S. Pat. 5,114,606, is a water-soluble complex of manganese (III), and/or (IV) with a ligand which is a non-carboxylate polyhydroxy compound having at least three consecutive C-OH groups. Other examples include binuclear Mn complexed with tetra-N-dentate and bi-N-dentate ligands, including N4MnIII(u-O)2MnIVN4)+and [Bipy2MnIII(u-O)2MnIVbipy2]-(ClO4)3.
  • Further suitable bleach catalysts are described, for example, in European patent application No. 409,131 (cobalt complex catalysts), European patent applications, publication nos. 384,503, and 306,089 (metallo-porphyrin catalysts), U.S. 4,728,455 (manganese/multidentate ligand catalyst), U.S. 4,711,748 and European patent application, publication no. 224,952, (absorbed manganese on aluminosilicate catalyst), U.S. 4,601,845 (aluminosilicate support with manganese and zinc or magnesium salt), U.S. 4,626,373 (manganese/ligand catalyst), U.S. 4,119,557 (ferric complex catalyst), German Pat. specification 2,054,019 (cobalt chelant catalyst) Canadian 866,191 (transition metal-containing salts), U.S. 4,430,243 (chelants with manganese cations and non-catalytic metal cations), and U.S. 4,728,455 (manganese gluconate catalysts).
  • Enzyme
  • A preferred component of the detergent compositions is an enzyme.
  • Suitable enzymes include the commercially available lipases, amylases, neutral and alkaline proteases, cellulases, pectinases, lactases and peroxidases, that is enzymes having lipolytic, amylolytic, proteolytic, cellulolytic, pectolytic, lactolytic and peroxidolytic activity respectively, conventionally incorporated into detergent compositions. Suitable enzymes are discussed in US Patents 3,519,570 and 3,533,139.
  • Protease enzymes are especially preferred as the enzyme component. Preferred commercially available protease enzymes include those sold under the tradenames Alcalase, Savinase, Primase, Durazym, and Esperase by Novo Industries A/S (Denmark), those sold under the tradename Maxatase, Maxacal and Maxapem by Gist-Brocades, those sold by Genencor International, and those sold under the tradename Opticlean and Optimase by Solvay Enzymes. Protease enzyme may be incorporated into the compositions in accordance with the invention at a level of from 0.0001% to 4% active enzyme by weight of the composition.
  • Preferred amylases include, for example, α-amylases obtained from a special strain of B licheniformis, described in more detail in GB-1,269,839 (Novo). Preferred commercially available amylases include for example, those sold under the tradename Rapidase by Gist-Brocades, and those sold under the tradename Termamyl and BAN by Novo Industries A/S. Amylase enzyme may be incorporated into the composition in accordance with the invention at a level of from 0.0001% to 4% active enzyme by weight of the composition.
  • Lipolytic enzyme (lipase) which are also preferred may be present at levels of active lipolytic enzyme of from 0.0001% to 4% active enzyme by weight, preferably 0.001% to 1% by weight. most preferably from 0.001% to 0.5% by weight of the compositions.
  • The lipase may be fungal or bacterial in origin being obtained, for example. from a lipase producing strain of Humicola sp., Thermomyces sp. or Pseudomonas sp. including Pseudomonas pseudoalcaligenes or Pseudomas fluorescens. Lipase from chemically or genetically modified mutants of these strains are also useful herein.
  • A preferred lipase is derived from Pseudomonas pseudoalcaligenes, which is described in Granted European Patent, EP-B-0218272.
  • Another preferred lipase herein is obtained by cloning the gene from Humicola lanuginosa and expressing the gene in Aspergillus oryza, as host, as described in European Patent Application, EP-A-0258 068, which is commercially available from Novo Industri A/S, Bagsvaerd, Denmark, under the trade name Lipolase. This lipase is also described in U.S. Patent 4,810,414, Huge-Jensen et al, issued March 7, 1989.
  • Enzyme Stabilizing System
  • Preferred enzyme-containing compositions herein may comprise from about 0.001% to about 10%, preferably from about 0.005% to about 8%,most preferably from about 0.01% to about 6%, by weight of an enzyme stabilizing system. The enzyme stabilizing system can be any stabilizing system which is compatible with the detersive enzyme. Such stabilizing systems can comprise calcium ion, boric acid, propylene glycol, short chain carboxylic acid, boronic acid, and mixtures thereof. Such stabilizing systems can also comprise reversible enzyme inhibitors, such as reversible protease inhibitors.
  • The compositions herein may further comprise from 0 to about 10%, preferably from about 0.01% to about 6% by weight, of chlorine bleach scavengers, added to prevent chlorine species present in many water supplies from attacking and inactivating the enzymes, especially under alkaline conditions. While chlorine levels in water may be small, typically in the range from about 0.5 ppm to about 1.75 ppm, the available chlorine in the total volume of water that comes in contact with the enzyme during washing is usually large; accordingly, enzyme stability in-use can be problematic.
  • Suitable chlorine scavenger anions are widely available, and are illustrated by salts containing ammonium cations or sulfite, bisulfite, thiosulfite, thiosulfate, iodide, etc. Antioxidants such as carbamate, ascorbate, etc., organic amines such as ethylenediaminetetracetic acid (EDTA) or alkali metal salt thereof, monoethanolamine (MEA), and mixtures thereof can likewise be used. Other conventional scavengers such as bisulfate, nitrate, chloride, sources of hydrogen peroxide such as sodium perborate tetrahydrate. sodium perborate monohydrate and sodium percarbonate, as well as phosphate, condensed phosphate, acetate, benzoate, citrate, formate, lactate, malate, tartrate, salicylate, etc. and mixtures thereof can be used if desired.
  • Lime soap dispersant compound
  • The compositions of the invention may contain a lime soap dispersant compound, which has a lime soap dispersing power (LSDP), as defined hereinafter of no more than 8, preferably no more than 7, most preferably no more than 6. The lime soap dispersant compound is preferably present at a level of from 0.1% to 40% by weight, more preferably 1% to 20% by weight, most preferably from 2% to 10% by weight of the compositions.
  • A lime soap dispersant is a material that prevents the precipitation of alkali metal, ammonium or amine salts of fatty acids by calcium or magnesium ions. A numerical measure of the effectiveness of a lime soap dispersant is given by the lime soap dispersing power (LSDP) which is determined using the lime soap dispersion test as described in an article by H.C. Borghetty and C.A. Bergman, J. Am. Oil. Chem. Soc., volume 27, pages 88-90, (1950). This lime soap dispersion test method is widely used by practitioners in this art field being referred to , for example, in the following review articles; W.N. Linfield, Surfactant Science Series, Volume 7, p3; W.N. Linfield, Tenside Surf. Det. , Volume 27, pages 159-161, (1990); and M.K. Nagarajan, W.F. Masler, Cosmetics and Toiletries, Volume 104, pages 71-73, (1989). The LSDP is the % weight ratio of dispersing agent to sodium oleate required to disperse the lime soap deposits formed by 0.025g of sodium oleate in 30ml of water of 333ppm CaCO3 (Ca:Mg=3:2) equivalent hardness.
  • Surfactants having good lime soap dispersant capability will include certain amine oxides, betaines, sulfobetaines, alkyl ethoxysulfates and ethoxylated alcohols.
  • Exemplary surfactants having a LSDP of no more than 8 for use in accord with the invention include C16-C18 dimethyl amine oxide, C12-C18 alkyl ethoxysulfates with an average degree of ethoxylation of from 1-5, particularly C12-C15 alkyl ethoxysulfate surfactant with a degree of ethoxylation of about 3 (LSDP=4), and the C13-C15 ethoxylated alcohols with an average degree of ethoxylation of either 12 (LSDP=6) or 30, sold under the trade names Lutensol A012 and Lutensol A030 respectively, by BASF GmbH.
  • Polymeric lime soap dispersants suitable for use herein are described in the article by M.K. Nagarajan and W.F. Masler. to be found in Cosmetics and Toiletries, Volume 104, pages 71-73, (1989). Examples of such polymeric lime soap dispersants include certain water-soluble salts of copolymers of acrylic acid, methacrylic acid or mixtures thereof, and an acrylamide or substituted acrylamide, where such polymers typically have a molecular weight of from 5,000 to 20,000.
  • Suds suppressing system
  • The detergent compositions of the invention, when formulated for use in machine washing compositions, preferably comprise a suds suppressing system present at a level of from 0.01% to 15%, preferably from 0.05% to 10%, most preferably from 0.1% to 5% by weight of the composition.
  • Suitable suds suppressing systems for use herein may comprise essentially any known antifoam compound, including, for example silicone antifoam compounds and 2-alkyl alcanol antifoam compounds.
  • By antifoam compound it is meant herein any compound or mixtures of compounds which act such as to depress the foaming or sudsing produced by a solution of a detergent composition, particularly in the presence of agitation of that solution.
  • Particularly preferred antifoam compounds for use herein are silicone antifoam compounds defined herein as any antifoam compound including a silicone component. Such silicone antifoam compounds also typically contain a silica component. The term "silicone" as used herein, and in general throughout the industry, encompasses a variety of relatively high molecular weight polymers containing siloxane units and hydrocarbyl group of various types. Preferred silicone antifoam compounds are the siloxanes, particularly the polydimethylsiloxanes having trimethylsilyl end blocking units.
  • Other suitable antifoam compounds include the monocarboxylic fatty acids and soluble salts thereof. These materials are described in US Patent 2,954,347, issued September 27, 1960 to Wayne St. John. The monocarboxylic fatty acids, and salts thereof, for use as suds suppressor typically have hydrocarbyl chains of 10 to 24 carbon atoms, preferably 12 to 18 carbon atoms. Suitable salts include the alkali metal salts such as sodium, potassium, and lithium salts, and ammonium and alkanolammonium salts.
  • Other suitable antifoam compounds include, for example, high molecular weight fatty esters (e.g. fatty acid triglycerides), fatty acid esters of monovalent alcohols, aliphatic C18-C40 ketones (e.g. stearone) N-alkylated amino triazines such as tri- to hexa-alkylmelamines or di- to tetra alkyldiamine chlortriazines formed as products of cyanuric chloride with two or three moles of a primary or secondary amine containing I to 24 carbon atoms, propylene oxide, bis stearic acid amide and monostearyl di-alkali metal (e.g. sodium, potassium, lithium) phosphates and phosphate esters.
  • A preferred suds suppressing system comprises
  • (a) antifoam compound, preferably silicone antifoam compound, most preferably a silicone antifoam compound comprising in combination
  • (i) polydimethyl siloxane, at a level of from 50% to 99%, preferably 75% to 95% by weight of the silicone antifoam compound; and
  • (ii) silica, at a level of from 1% to 50%, preferably 5% to 25% by weight of the silicone/silica antifoam compound;
  • wherein said silica/silicone antifoam compound is incorporated at a level of from 5% to 50%, preferably 10% to 40% by weight;
  • (b) a dispersant compound. most preferably comprising a silicone glycol rake copolymer with a polyoxyalkylene content of 72-78% and an ethylene oxide to propylene oxide ratio of from 1:0.9 to 1:1.1, at a level of from 0.5% to 10%, preferably 1% to 10% by weight; a particularly preferred silicone glycol rake copolymer of this type is DCO544, commercially available from DOW Coming under the tradename DCO544;
  • (c) an inert carrier fluid compound, most preferably comprising a C16-C18 ethoxylated alcohol with a degree of ethoxylation of from 5 to 50, preferably 8 to 15, at a level of from 5% to 80%, preferably 10% to 70%, by weight;
  • A highly preferred particulate suds suppressing system is described in EP-A-0210731 and comprises a silicone antifoam compound and an organic carrier material having a melting point in the range 50°C to 85°C, wherein the organic carrier material comprises a monoester of glycerol and a fatty acid having a carbon chain containing from 12 to 20 carbon atoms. EP-A-0210721 discloses other preferred particulate suds suppressing systems wherein the organic carrier material is a fatty acid or alcohol having a carbon chain containing from 12 to 20 carbon atoms, or a mixture thereof, with a melting point of from 45°C to 80°C.
  • Polymeric dye transfer inhibiting agents
  • The detergent compositions herein may also comprise from 0.01% to 10 %, preferably from 0.05% to 0.5% by weight of polymeric dye transfer inhibiting agents.
  • The polymeric dye transfer inhibiting agents are preferably selected from polyamine N-oxide polymers, copolymers of N-vinylpyrrolidone and N-vinylimidazole, polyvinylpyrrolidonepolymers or combinations thereof.
  • a) Polyamine N-oxide polymers
  • Polyamine N-oxide polymers suitable for use herein contain units having the following structure formula:
    Figure 00400001
    wherein P is a polymerisable unit, and A is
    Figure 00400002
    -O-, -S-, -N-; x is O or 1;
    R are aliphatic, ethoxylated aliphatics, aromatic, heterocyclic or alicyclic groups or any combination thereof whereto the nitrogen of the N-O group can be attached or wherein the nitrogen of the N-O group is part of these groups.
  • The N-O group can be represented by the following general structures :
    Figure 00400003
    wherein R1, R2, and R3 are aliphatic groups, aromatic, heterocyclic or alicyclic groups or combinations thereof, x or/and y or/and z is 0 or 1 and wherein the nitrogen of the N-O group can be attached or wherein the nitrogen of the N-O group forms part of these groups. The N-O group can be part of the polymerisable unit (P) or can be attached to the polymeric backbone or a combination of both.
  • Suitable polyamine N-oxides wherein the N-O group forms part of the polymerisable unit comprise polyamine N-oxides wherein R is selected from aliphatic, aromatic, alicyclic or heterocyclic groups. One class of said polyamine N-oxides comprises the group of polyamine N-oxides wherein the nitrogen of the N-O group forms part of the R-group. Preferred polyamine N-oxides are those wherein R is a heterocyclic group such as pyrridine, pyrrole, imidazole, pyrrolidine, piperidine, quinoline, acridine and derivatives thereof.
  • Other suitable polyamine N-oxides are the polyamine oxides whereto the N-O group is attached to the polymerisable unit. A preferred class of these polyamine N-oxides comprises the polyamine N-oxides having the general formula (I) wherein R is an aromatic.heterocyclic or alicyclic groups wherein the nitrogen of the N-O functional group is part of said R group. Examples of these classes are polyamine oxides
    wherein R is a heterocyclic compound such as pyrridine, pyrrole, imidazole and derivatives thereof.
  • The polyamine N-oxides can be obtained in almost any degree of polymerisation. The degree of polymerisation is not critical provided the material has the desired water-solubility and dye-suspending power. Typically, the average molecular weight is within the range of 500 to 1000,000.
  • b) Copolymers of N-vinylpyrrolidone and N-vinylimidazole
  • Suitable herein are coploymers of N-vinylimidazole and N-vinylpyrrolidone having an average molecular weight range of from 5,000 to 50,000. The preferred copolymers have a molar ratio of N-vinylimidazole to N-vinylpyrrolidone from 1 to 0.2.
  • c) Polyvinylpyrrolidone
  • The detergent compositions herein may also utilize polyvinylpyrrolidone ("PVP") having an average molecular weight of from 2,500 to 400,000. Suitable polyvinylpyrrolidones are commercially vailable from ISP Corporation, New York, NY and Montreal, Canada under the product names PVP K-15 (viscosity molecular weight of 10,000), PVP K-30 (average molecular weight of 40,000), PVP K-60 (average molecular weight of 160,000), and PVP K-90 (average molecular weight of 360,000). PVP K-15 is also available from ISP Corporation. Other suitable polyvinylpyrrolidones which are commercially available from BASF Cooperation include Sokalan HP 165 and Sokalan HP 12.
  • d) Polyvinyloxazolidone
  • The detergent compositions herein may also utilize polyvinyloxazolidones as polymeric dye transfer inhibiting agents. Said polyvinyloxazolidones have an average molecular weight of from 2,500 to 400,000.
  • e) Polyvinylimidazole
  • The detergent compositions herein may also utilize polyvinylimidazole as polymeric dye transfer inhibiting agent. Said polyvinylimidazoles preferably have an average molecular weight of from 2,500 to 400,000.
  • Optical brightener
  • The detergent compositions herein also optionally contain from about 0.005% to 5% by weight of certain types of hydrophilic optical brighteners.
  • Hydrophilic optical brighteners useful herein include those having the structural formula:
    Figure 00420001
    wherein R1 is selected from anilino, N-2-bis-hydroxyethyl and NH-2-hydroxyethyl; R2 is selected from N-2-bis-hydroxyethyl, N-2-hydroxyethyl-N-methylamino, morphilino, chloro and amino; and M is a salt-forming cation such as sodium or potassium.
  • When in the above formula, R1 is anilino, R2 is N-2-bis-hydroxyethyl and M is a cation such as sodium, the brightener is 4,4',-bis[(4-anilino-6-(N-2-bis-hydroxyethyl)-s-triazine-2-yl)amino]-2,2'-stilbenedisulfonic acid and disodium salt. This particular brightener species is commercially marketed under the tradename Tinopal-UNPA-GX by Ciba-Geigy Corporation. Tinopal-UNPA-GX is the preferred hydrophilic optical brightener useful in the detergent compositions herein.
  • When in the above formula, R1 is anilino, R2 is N-2-hydroxyethyl-N-2-methylamino and M is a cation such as sodium, the brightener is 4.4'-bis[(4-anilino-6-(N-2-hydroxyethyl-N-methylamino)-s-triazine-2-yl)amino]2,2'-stilbenedisulfonic acid disodium salt. This particular brightener species is commercially marketed under the tradename Tinopal 5BM-GX by Ciba-Geigy Corporation.
  • When in the above formula, R1 is anilino, R2 is morphilino and M is a cation such as sodium, the brightener is 4,4'-bis[(4-anilino-6-morphilino-s-triazine-2-yl)amino]2,2'-stilbenedisulfonic acid, sodium salt. This particular brightener species is commercially marketed under the tradename Tinopal AMS-GX by Ciba Geigy Corporation.
  • Softening agents
  • Fabric softening agents can also be incorporated into laundry detergent compositions in accordance with the present invention. These agents may be inorganic or organic in type. Inorganic softening agents are exemplified by the smectite clays disclosed in GB-A-1 400 898. Organic fabric softening agents include the water insoluble tertiary amines as disclosed in GB-A-1 514 276 and EP-B-0 011 340.
  • Levels of smectite clay are normally in the range from 5% to 15%, more preferably from 8% to 12% by weight, with the material being added as a dry mixed component to the remainder of the formulation. Organic fabric softening agents such as the water-insoluble tertiary amines or dilong chain amide materials are incorporated at levels of from 0.5% to 5% by weight, normally from 1% to 3% by weight, whilst the high molecular weight polyethylene oxide materials and the water soluble cationic materials are added at levels of from 0.1% to 2%, normally from 0.15% to 1.5% by weight.
  • Other optional ingredients
  • Other optional ingredients suitable for inclusion in the compositions of the invention include perfumes, colours and filler salts, with sodium sulfate being a preferred filler salt.
  • Form of the compositions
  • The detergent compositions of the invention can be formulated in any desirable form such as powders, granulates, pastes, liquids and gels. The compositions are preferably not in tablet-form. Most preferably, the compositions are in granular form.
  • Liquid compositions
  • The detergent compositions of the present invention may be formulated as liquid detergent compositions. Such liquid detergent compositions typically comprise from 94% to 35% by weight, preferably from 90% to 40% by weight, most preferably from 80% to 50% by weight of a liquid carrier, e.g., water, preferably a mixture of water and organic solvent.
  • Gel compositions
  • The detergent compositions of the present invention may also be in the form of gels. Such compositions are typically formulated with polyakenyl polyether having a molecular weight of from about 750,000 to about 4,000,000.
  • Solid compositions
  • The detergent compositions of the invention are preferably in the form of solids, such as powders and granules. Granular form is preferred.
  • The particle size of the components of granular compositions in accordance with the invention should preferably be such that no more that 5% of particles are greater than 1.4mm in diameter and not more than 5% of particles are less than 0.15mm in diameter.
  • The bulk density of granular detergent compositions in accordance with the present invention typically have a bulk density of at least 450 g/litre, more usually at least 600 g/litre and more preferably from 650 g/litre to 1200 g/litre.
  • Bulk density is measured by means of a simple funnel and cup device consisting of a conical funnel moulded rigidly on a base and provided with a flap valve at its lower extremity to allow the contents of the funnel to be emptied into an axially aligned cylindrial cup disposed below the funnel. The funnel is 130 mm and 40 mm at its respective upper and lower extremities. It is mounted so that the lower extremity is 140 mm above the upper surface of the base. The cup has an overall height of 90 mm, an internal height of 87 mm and an internal diameter of 84 mm. Its nominal volume is 500 ml.
  • To carry out a measurement, the funnel is filled with powder by hand pouring, the flap valve is opened and powder allowed to overfill the cup. The filled cup is removed from the frame and excess powder removed from the cup by passing a straight edged implement e.g. a knife, across its upper edge. The filled cup is then weighed and the value obtained for the weight of powder doubled to provide the bulk density in g/litre. Replicate measurements are made as required.
  • Making processes - granular compositions
  • In general, granular detergent compositions in accordance with the present invention can be made via a variety of methods including dry mixing, spray drying, agglomeration and granulation.
  • Washing methods
  • The compositions of the invention may be used in essentially any washing or cleaning method, including machine laundry and dishwashing methods.
  • Machine dishwashing method
  • A preferred machine dishwashing method comprises treating soiled articles selected from crockery, glassware, hollowware and cutlery and mixtures thereof, with an aqueous liquid having dissolved or dispensed therein an effective amount of a machine dishwashing composition in accord with the invention. By an effective amount of the machine dishwashing composition it is typically meant from 8g to 60g of product dissolved or dispersed in a wash solution of volume from 3 to 10 litres, as are typical product dosages and wash solution volumes commonly employed in conventional machine dishwashing methods.
  • Machine laundry methods
  • Machine laundry methods herein comprise treating soiled laundry with an aqueous wash solution in a washing machine having dissolved or dispensed therein an effective amount of a machine laundry detergent composition in accord with the invention. The detergent can be added to the wash solution either via the dispenser drawer of the washing machine or by a dispensing device. By an effective amount of the detergent composition it is typically meant from 40g to 300g of product dissolved or dispersed in a wash solution of volume from 5 to 65 litres, as are typical product dosages and wash solution volumes commonly employed in conventional machine laundry methods.
  • In a preferred washing method herein a dispensing device containing an effective amount of detergent product is introduced into the drum of a, preferably front-loading, washing machine before the commencement of the wash cycle.
  • The dispensing device is a container for the detergent product which is used to deliver the product directly into the drum of the washing machine. Its volume capacity should be such as to be able to contain sufficient detergent product as would normally be used in the washing method.
  • Once the washing machine has been loaded with laundry the dispensing device containing the detergent product is placed inside the drum. At the commencement of the wash cycle of the washing machine water is introduced into the drum and the drum periodically rotates. The design of the dispensing device should be such that it permits containment of the dry detergent product but then allows release of this product during the wash cycle in response to its agitation as the drum rotates and also as a result of its immersion in the wash water.
  • To allow for release of the detergent product during the wash the device may possess a number of openings through which the product may pass. Alternatively, the device may be made of a material which is permeable to liquid but impermeable to the solid product, which will allow release of dissolved product. Preferably, the detergent product will be rapidly released at the start of the wash cycle thereby providing transient localised high concentrations of components such as water-soluble builder and heavy metal ion sequestrant components in the drum of the washing machine at this stage of the wash cycle.
  • Preferred dispensing devices are reusable and are designed in such a way that container integrity is maintained in both the dry state and during the wash cycle. Especially preferred dispensing devices for use in accord with the invention have been described in the following patents; GB-B-2, 157, 717, GB-B-2, 157, 718, EP-A-0201376, EP-A-0288345 and EP-A-0288346. An article by J.Bland published in Manufacturing Chemist, November 1989, pages 41-46 also describes especially preferred dispensing devices for use with granular laundry products which are of a type commonly know as the "granulette".
  • Especially preferred dispensing devices are disclosed in European Patent Application Publication Nos. 0343069 & 0343070. The latter Application discloses a device comprising a flexible sheath in the form of a bag extending from a support ring defining an orifice, the orifice being adapted to admit to the bag sufficient product for one washing cycle in a washing process. A portion of the washing medium flows through the orifice into the bag, dissolves the product, and the solution then passes outwardly through the orifice into the washing medium. The support ring is provided with a masking arrangemnt to prevent egress of wetted, undissolved, product, this arrangement typically comprising radially extending walls extending from a central boss in a spoked wheel configuration, or a similar structure in which the walls have a helical form.
  • Examples
  • In the detergent compositions, the abbreviated component identifications have the following meanings:
  • Abbreviations used in Examples
  • In the detergent compositions, the abbreviated component identifications have the following meanings:
  • LAS
    : Sodium linear C12 alkyl benzene sulfonate
    TAS
    : Sodium tallow alkyl sulfate
    C45AS
    : Sodium C 14-C15 linear alkyl sulfate
    CxyEzS
    : Sodium C1x-C1y branched alkyl sulfate condensed with z moles of ethylene oxide
    C45E7
    : A C14-15 predominantly linear primary alcohol condensed with an average of 7 moles of ethylene oxide
    C25E3
    : A C12-15 branched primary alcohol condensed with an average of 3 moles of ethylene oxide
    C25E5
    : A C12-15 branched primary alcohol condensed with an average of 5 moles of ethylene oxide
    CEQ
    : R1COOCH2CH2.N+(CH3)3 with R1 = C11-C13
    QAS
    : R2.N+(CH3)2(C2H4OH) with R2 = C12 - C14
    Soap
    : Sodium linear alkyl carboxylate derived from an 80/20 mixture of tallow and coconut oils.
    TFAA
    : C16-C18 alkyl N-methyl glucamide
    TPKFA
    : C12-C14 topped whole cut fatty acids
    STPP
    : Anhydrous sodium tripolyphosphate
    Zeolite A
    : Hydrated Sodium Aluminosilicate of formula Na12(AlO2SiO2)12. 27H2O having a primary particle size in the range from 0.1 to 10 micrometers
    NaSKS-6
    : Crystalline layered silicate of formula δ -Na2Si2O5
    Citric acid
    : Anhydrous citric acid
    Carbonate
    : Anhydrous sodium carbonate with a particle size between 200µm and 900µm
    Bicarbonate
    : Anhydrous sodium bicarbonate with a particle size distribution between 400µm and 1200µm
    Silicate
    : Amorphous Sodium Silicate (SiO2:Na2O; 2.0 ratio)
    Sodium sulfate
    : Anhydrous sodium sulfate
    Citrate
    : Tri-sodium citrate dihydrate of activity 86.4% with a particle size distribution between 425µm and 850 µm
    MA/AA
    : Copolymer of 1:4 maleic/acrylic acid, average molecular weight about 70,000.
    CMC
    : Sodium carboxymethyl cellulose
    Protease
    : Proteolytic enzyme of activity 4KNPU/g sold by NOVO Industries A/S under the tradename Savinase
    Alcalase
    : Proteolytic enzyme of activity 3AU/g sold by NOVO Industries A/S
    Cellulase
    : Cellulytic enzyme of activity 1000 CEVU/g sold by NOVO Industries A/S under the tradename Carezyme
    Amylase
    : Amylolytic enzyme of activity 60KNU/g sold by NOVO Industries A/S under the tradename Termamyl 60T
    Lipase
    : Lipolytic enzyme of activity 100kLU/g sold by NOVO Industries A/S under the tradename Lipolase
    Endolase
    : Endoglunase enzyme of activity 3000 CEVU/g sold by NOVO Industries A/S
    PB4
    : Sodium perborate tetrahydrate of nominal formula NaBO2.3H2O.H2O2
    PB 1
    : Anhydrous sodium perborate bleach of nominal formula NaBO2.H2O2
    Percarbonate
    : Sodium Percarbonate of nominal formula 2Na2CO3.3H2O2
    NOBS
    : Nonanoyloxybenzene sulfonate in the form of the sodium salt.
    TAED
    : Tetraacetylethylenediamine - in particulate form, designed to have a T50 value, as defined herein, of less than 60 seconds
    DTPMP
    : Diethylene triamine penta (methylene phosphonate), marketed by Monsanto under the Trade name Dequest 2060
    Photoactivated
    : Sulfonated Zinc Phthlocyanine encapsulated in bleach dextrin soluble polymer
    Brightener 1
    : Disodium 4,4'-bis(2-sulphostyryl)biphenyl
    Brightener 2
    : Disodium 4,4'-bis(4-anilino-6-morpholino-1.3.5-triazin-2-yl)amino) stilbene-2:2'-disulfonate.
    HEDP
    : 1,1-hydroxyethane diphosphonic acid
    PVNO
    : Polyvinylpyridine N-oxide
    PVPVI
    : Copolymer of polyvinylpyrolidone and vinylimidazole
    SRP 1
    : Sulfobenzoyl end capped esters with oxyethylene oxy and terephtaloyl backbone
    SRP 2
    : Diethoxylated poly (1, 2 propylene terephtalate) short block polymer
    Silicone antifoam
    : Polydimethylsiloxane foam controller with siloxane-oxyalkylene copolymer as dispersing agent with a ratio of said foam controller to said dispersing agent of 10: 1 to 100: 1.
    Nonionic
    : C13-C15 mixed ethoxylated/propoxylated fatty alcohol with an average degree of ethoxylation of 3.8 and an average degree of propoxylation of 4.5 sold under the tradename Plurafac LF404 by BASF Gmbh (low foaming)
    Metasilicate
    : Sodium metasilicate (SiO2:Na2O ratio = 1.0)
    Phosphate
    : Sodium tripolyphosphate
    480N
    : Random copolymer of 3:7 acrylic/methacrylic acid, average molecular weight about 3,500
    NAPAA precursor particle
    : Coated particle containing an amide substituted precursor particle alkyl peroxyacid precursor compound capable of releasing on perhydrolysis a nonyl amide of peroxy adipic acid (NAPAA), wherein the coating comprises sodium silicate (2.0 ratio) present at a weight ratio relative to the precursor compound of 3 : 97. The particle is designed to have a T50 value, as defined herein, of at least 180 seconds.
    NOBS particle
    : Particle formed by agglomerating sodium nonanoyloxybenzene sulfonate (NOBS) with citric acid and polyethylene glycol (PEG) of Mw=4,000 with a weight ratio of components of NOBS:citric acid:PEG of 75:10:15, coated with an external coating of citric acid at a weight ratio of agglomerate: citric acid coating of 95:5, designed to have a T50, as defined herein of > 180 seconds.
    Benzoyl Caprolactam particle
    : Benzoyl caprolactam particle formed by agglomerating the precursor compound with citric acid and polyethylene glycol (PEG) of Mw=4,000, with a weight ratio of components of precursor compound: citric acid:PEG of 63:21:16, coated with an external coating of citric acid at a weight ratio of agglomerate:citric acid coating of 95:5, designed to have a T50, as defined herein, of > 180 seconds.
    Cationic Caprolactam
    : Particle containing p-(N,N,N triethylammoniummethyl) benzoyl particle caprolactam chloride precursor compound formed by agglomerating the precursor compound with citric acid and polyethylene glycol (PEG) of Mw=4,000, with a weight ratio of components of precursor compound: citric acid:PEG of 63:21:16, coated with an external coating of citric acid at a weight ratio of agglomerate:citric acid coating of 95:5, designed to have a T50, as defined herein, of > 180 seconds.
    DAP particle
    : Coated particle containing diperoxydodecanedioc acid, wherein the coating comprises sodium silicate (2.4 ratio) at a coating level of 5%. The T50 of the particle is designed to be greater than 200 seconds.
    Bismuth nitrate
    : Bismuth nitrate salt
    Paraffin
    : Paraffin oil sold under the tradename Winog 70 by Wintershall.
    BSA
    : Amylolytic enzyme sold under the tradename LE17 by Novo Industries A/S (approx 1% enzyme activity)
    Sulphate
    : Anhydrous sodium sulphate.
    pH
    : Measured as a 1% solution in distilled water at 20°C.
    Examples
  • In the following Examples all levels are quoted as % by weight of the composition:
  • Example 1
  • The following laundry detergent compositions A to F were prepared in accord with the invention:
    A B C D E F
    LAS 8.0 8.0 8.0 8.0 8.0 8.0
    C25E3 3.4 3.4 3.4 3.4 3.4 3.4
    CEQ - 0.8 - - 0.8 -
    QAS - - 0.8 - - 0.8
    Zeolite A 18.1 18.1 18.1 18.1 18.1 18.1
    Carbonate 13.0 13.0 13.0 27.0 27.0 27.0
    Silicate 1.4 1.4 1.4 3.0 3.0 3.0
    Sodium sulfate 26.1 26.1 26.1 26.1 26.1 26.1
    PB4 9.0 9.0 9.0 9.0 9.0 9.0
    NAPAA precursor particle 0.8 0.6 0.4 1.0 0.5 1.0
    TAED 0.7 0.9 0.6 1.0 1.5 1.5
    DETPMP 0.25 0.25 0.25 0.25 0.25 0.25
    HEDP 0.3 0.3 0.3 0.3 0.3 0.3
    Protease 0.26 0.26 0.26 0.26 0.26 0.26
    Amylase 0.1 0.1 0.1 0.1 0.1 0.1
    MA/AA 0.3 0.3 0.3 0.3 0.3 0.3
    CMC 0.2 0.2 0.2 0.2 0.2 0.2
    Photoactivated bleach (ppm) 15 ppm 15 ppm 15 ppm 15 ppm 15 ppm 15 ppm
    Brightener 1 0.09 0.09 0.09 0.09 0.09 0.09
    Perfume 0.3 0.3 0.3 0.3 0.3 0.3
    Silicone antifoam 0.5 0.5 0.5 0.5 0.5 0.5
    Misc/minors to 100%
    Density in g/litre 850 850 850 850 850 850
  • The following T50 values (in seconds) were obtained for each of products A to D:
    T50 A B C D E F
    TAED <60 <60 <60 <60 <60 <60
    NAPAA precursor particle >180 >180 >180 >180 >180 >180
  • Example 2
  • The following granular laundry detergent compositions G to I (composition I is not within the scope of claim 1) of bulk density 750 g/litre were prepared in accord with the invention:
    G H I
    LAS 5.25 5.61 4.76
    TAS 1.25 1.86 1.57
    C45AS - 2.24 3.89
    C25AE3S - 0.76 1.18
    C45E7 3.25 - 5.0
    C25E3 - 5.5 -
    CEQ 0.8 2.0 2.0
    STPP 19.7 - -
    Zeolite A - 19.5 19.5
    NaSKS-6/citric acid (79:21 ) - 10.6 10.6
    Carbonate 6.1 21.4 21.4
    Bicarbonate - 2.0 2.0
    Silicate 6.8 - -
    Sodium sulfate 39.8 - 14.3
    PB4 5.0 12.7 -
    TAED 0.5 1.0 1.0
    Benzoyl caprolactam particle 0.5 1.0 0.5
    DETPMP 0.25 0.2 0.2
    HEDP - 0.3 0.3
    Protease 0.26 0.85 0.85
    Lipase 0.15 0.15 0.15
    Cellulase 0.28 0.28 0.28
    Amylase 0.1 0.1 0.1
    MA/AA 0.8 1.6 1.6
    CMC 0.2 0.4 0.4
    Photoactivated bleach (ppm) 15 ppm 27 ppm 27 ppm
    Brightener 1 0.08 0.19 0.19
    Brightener 2 - 0.04 0.04
    Perfume 0.3 0.3 0.3
    Silicone antifoam 0.5 2.4 2.4
    Minors/misc to 100%
  • Example 3
  • The following detergent formulations, according to the present invention were prepared, where J is a phosphorus-containing detergent composition, K is a zeolite-containing detergent composition and L is a compact detergent composition:
    J K L
    Blown Powder
    STPP 24.0 - 24.0
    Zeolite A - 24.0 -
    C45AS 9.0 6.0 13.0
    MA/AA 2.0 4.0 2.0
    LAS 6.0 8.0 11.0
    TAS 2.0 - -
    Silicate 7.0 3.0 3.0
    CMC 1.0 1.0 0.5
    Brightener 2 0.2 0.2 0.2
    Soap 1.0 1.0 1.0
    DTPMP 0.4 0.4 0.2
    Spray On
    C45E7 2.5 2.5 2.0
    C25E3 2.5 2.5 2.0
    Silicone antifoam 0.3 0.3 0.3
    Perfume 0.3 0.3 0.3
    Dry additives
    Carbonate 6.0 13.0 15.0
    PB4 18.0 18.0 10.0
    PB1 4.0 4.0 0
    TAED 2.0 1.5 1.0
    Cationic caprolactam particle 1.0 0.5 1.0
    Photoactivated bleach 0.02 0.02 0.02
    Protease 1.0 1.0 1.0
    Lipase 0.4 0.4 0.4
    Amylase 0.25 0.30 0.15
    Dry mixed sodium sulfate 3.0 3.0 5.0
    Balance (Moisture & Miscellaneous) 100.0 100.0 100.0
    Density (g/litre) 630 670 670
  • Example 4
  • The following machine dishwashing compositions were prepared in accord with the invention.
    M N O P Q R S
    Citrate 15.0 15.0 15.0 15.0 15.0 15.0 -
    480N 6.0 6.0 6.0 6.0 6.0 6.0 -
    Carbonate 17.5 17.5 17.5 17.5 17.5 17.5 -
    Phosphate - - - - - - 38.0
    Silicate (as SiO2) 8.0 8.0 8.0 8.0 8.0 8.0 14.0
    Metasilicate (as SiO2) 1.2 1.2 1.2 1.2 1.2 1.2 2.5
    PB1 (AvO) 1.2 1.2 1.5 1.5 1.5 2.2 1.2
    TAED 1.5 1.2 1.0 2.0 2.5 2.8 1.0
    Benzoyl caprolactam particle 0.5 1.0 1.2 0.8 0.6 0.4 1.0
    Paraffin 0.5 0.5 0.5 0.5 0.5 0.5 0.5
    Bismuth nitrate - 0.2 0.2 0.2 0.3 0.4 0.2
    Protease 2.0 2.0 2.0 2.0 2.0 2.0 2.0
    Amylase 1.5 1.5 1.5 1.5 1.5 1.5 -
    BSA - - - - - - 1.5
    DETPMP 0.13 0.13 - - - 0.4 0.2
    HEDP - 1.0 1.0 1.0 - - -
    EDTA - - - 0.5 0.5 - -
    Sulphate 23.0 22.8 22.4 22.7 22.2 21.5 0.3
    misc inc moisture to balance
    pH (1% solution) 10.7 10.7 10.7 10.7 10.7 10.7 11.0
  • Example 5
  • The following detergent formulations, according to the present invention were prepared: (wherein compositions V and W are not within the scope of claim 1)
    T U V* W
    LAS 20.0 14.0 24.0 22.0
    QAS 0.7 1.0 - 0.7
    TFAA - 1.0 - -
    C25E5/C45E7 - 2.0 - 0.5
    C45E3S - 2.5 - -
    STPP 30.0 18.0 30.0 22.0
    Silicate 9.0 5.0 10.0 8.0
    Carbonate 13.0 7.5 - 5.0
    Bicarbonate - 7.5 - -
    DTPMP 0.7 1.0 - -
    SRP 1 0.3 0.2 - 0.1
    MA/AA 2.0 1.5 2.0 1.0
    CMC 0.8 0.4 0.4 0.2
    Protease 0.8 1.0 0.5 0.5
    Amylase 0.8 0.4 - 0.25
    Lipase 0.2 0.1 0.2 0.1
    Cellulase 0.15 0.05 - -
    Photoactivated bleach (ppm) 70ppm 45ppm - 10ppm
    Brightener 1 0.2 0.2 0.08 0.2
    PB1 6.0 2.0 - -
    NOBS particle 2.0 1.0 0.5 1.0
    TAED 1.0 1.0 2.0 2.0
    Balance (Moisture and Miscellaneous) 100 100 100 100
  • Example 6
  • The following detergent formulations, according to the present invention were prepared:
    X Y Z
    Blown Powder
    Zeolite A 30.0 22.0 6.0
    Sodium sulfate 19.0 5.0 7.0
    MA/AA 3.0 3.0 6.0
    LAS 14.0 12.0 22.0
    C45AS 8.0 7.0 7.0
    Silicate - 1.0 5.0
    Soap - - 2.0
    Brightener 1 0.2 0.2 0.2
    Carbonate 8.0 16.0 20.0
    DTPMP - 0.4 0.4
    Spray On
    C45E7 1.0 1.0 1.0
    Dry additives
    PVPVI/PVNO 0.5 0.5 0.5
    Protease 1.0 1.0 1.0
    Lipase 0.4 0.4 0.4
    Amylase 0.1 0.1 0.1
    Cellulase 0.1 0.1 0.1
    NOBS particle 2.0 - 2.5
    DAP particle 1.0 3.0 -
    TAED 2.0 3.0 3.0
    PB1 1.0 5.0 6.0
    Sodium sulfate - 6.0 -
    Balance (Moisture and Miscellaneous) 100 100 100
  • Example 7
  • The following high density and bleach-containing detergent formulations, according to the present invention were prepared:
    AA AB AC
    Blown Powder
    Zeolite A 15.0 15.0 13.0
    Sodim sulfate 0.0 5.0 0.0
    LAS 3.0 3.0 3.0
    QAS - 1.5 1.5
    DTPMP 0.4 0.4 0.4
    CMC 0.4 0.4 0.4
    MA/AA 4.0 2.0 2.0
    Agglomerates
    LAS 5.0 5.0 5.0
    TAS 2.0 2.0 1.0
    Silicate 3.0 3.0 4.0
    Zeolite A 8.0 8.0 8.0
    Carbonate 8.0 8.0 4.0
    Spray On
    Perfume 0.3 0.3 0.3
    C45E7 2.0 2.0 2.0
    C25E3 2.0 - -
    Dry additives
    Citrate 5.0 - 2.0
    Bicarbonate - 3.0 -
    Carbonate 8.0 15.0 10.0
    TAED 4.0 2.0 2.0
    NAPAA precursor particle 2.0 1.0 3.0
    PB 1 14.0 7.0 10.0
    Polyethylene oxide of MW 5,000,000 - - 0.2
    Bentonite clay - - 10.0
    Protease 1.0 1.0 1.0
    Lipase 0.4 0.4 0.4
    Amylase 0.6 0.6 0.6
    Cellulase 0.6 0.6 0.6
    Silicone antifoam 5.0 5.0 5.0
    Dry additives
    Sodium sulfate 0.0 3.0 0.0
    Balance (Moisture and Miscellaneous) 100.0 100.0 100.0
    Density (g/litre) 850 850 850
  • Example 8
  • The following high density detergent formulations, according to the present invention were prepared:
    AD AE
    Agglomerate
    C45AS 11.0 14.0
    Zeolite A 15.0 6.0
    Carbonate 4.0 8.0
    MA/AA 4.0 2.0
    CMC 0.5 0.5
    DTPMP 0.4 0.4
    Spray On
    C25E5 5.0 5.0
    Perfume 0.5 0.5
    Dry Adds
    HEDP 0.5 0.3
    SKS 6 13.0 10.0
    Citrate 3.0 1.0
    TAED 2.0 3.0
    NAPAA precursor particle 3.0 4.0
    Percarbonate 20.0 20.0
    SRP 1 0.3 0.3
    Protease 1.4 1.4
    Lipase 0.4 0.4
    Cellulase 0.6 0.6
    Amylase 0.6 0.6
    Silicone antifoam 5.0 5.0
    Brightener 1 0.2 0.2
    Brightener 2 0.2 -
    Balance (Moisture and Miscellaneous) 100 100
    Density (g/litre) 850 850

Claims (10)

  1. A detergent composition containing an organic peroxyacid bleaching system capable of releasing two different organic peroxyacid bleaches to a wash solution wherein said organic peroxyacid bleaching system contains a hydrogen peroxide source and a plurality of organic peroxyacid bleach precursor compounds, and wherein a means is provided for delaying the release to a wash solution of the stronger peroxyacid relative to the release of a weaker peroxyacid such that in the T50 test method herein described the time to achieve a concentration that is 50% of the ultimate concentration of said stronger peroxyacid is at least 120 seconds more than the time to achieve a concentration that is 50% of the ultimate concentration of said weaker peroxyacid, wherein the relative strength of the peroxyacids is measured - according to the 'dye bleaching protocol' described herein.
  2. A detergent composition according to Claim 1 wherein the time to achieve a concentration that is 50% of the ultimate concentration of the weaker peroxyacid is less than 60 seconds and the time to achieve a concentration that is 50% of the ultimate concentration of the stronger peroxyacid is more than 180 seconds.
  3. A detergent composition according to Claim 2 wherein the time to achieve a concentration that is 50% of the ultimate concentration of the stronger organic peroxyacid is from 240 to 480 seconds.
  4. A detergent composition according to Claim 1 wherein said organic peroxyacid bleaching system contains two organic peroxyacid bleach precursor compounds.
  5. A detergent composition according to Claims 1 or 4 wherein one organic peroxyacid precursor compound is an N-,N,N1N1 tetra acetylated alkylene diamine, preferably TAED.
  6. A detergent composition according to Claim 5 wherein a second organic peroxyacid precursor compound is an amide substituted alkyl peroxyacid precursor compounds selected from those of the following general formulae:
    Figure 00630001
    wherein R1 is an alkyl group with from 1 to 14 carbon atoms. R2 is an alkylene group containing from 1 to 14 carbon atoms, and R5 is H or an alkyl group containing 1 to 10 carbon atoms and L is a leaving group.
  7. A detergent composition according to any of Claims 1 to 6 wherein said hydrogen peroxide source is an inorganic perhydrate salt.
  8. A detergent composition according to any of Claim 7 wherein said inorganic perhydrate salt is sodium perborate tetrahydrate.
  9. A detergent composition according to any of Claims 1 to 8 which is in granular form.
  10. The use of a detergent composition according to any of Claims 1 to 9 in a laundry washing method wherein the detergent composition is delivered to the wash solution by means of a dispensing device introduced into the drum of a washing machine before the commencement of the wash.
EP96936561A 1995-10-12 1996-10-15 Detergents delivering a stronger organic peroxyacid bleach to a wash first followed by delivering a weaker peroxyacid Expired - Lifetime EP0861315B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GBGB9520921.9A GB9520921D0 (en) 1995-10-12 1995-10-12 Detergent compositions
GB9520921 1995-10-12
PCT/US1996/016566 WO1997013835A1 (en) 1995-10-12 1996-10-15 Detergents delivering a stronger organic peroxyacid bleach to a wash first followed by delivering a weaker peroxyacid

Publications (3)

Publication Number Publication Date
EP0861315A1 EP0861315A1 (en) 1998-09-02
EP0861315A4 EP0861315A4 (en) 2000-01-19
EP0861315B1 true EP0861315B1 (en) 2004-08-04

Family

ID=10782212

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96936561A Expired - Lifetime EP0861315B1 (en) 1995-10-12 1996-10-15 Detergents delivering a stronger organic peroxyacid bleach to a wash first followed by delivering a weaker peroxyacid

Country Status (7)

Country Link
EP (1) EP0861315B1 (en)
AT (1) ATE272703T1 (en)
BR (1) BR9610927A (en)
DE (1) DE69633060T2 (en)
ES (1) ES2225891T3 (en)
GB (1) GB9520921D0 (en)
WO (1) WO1997013835A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2329187A (en) 1997-09-11 1999-03-17 Procter & Gamble Detergent composition containing an anionic surfactant system and a hydrophobic peroxy bleach
US7415983B2 (en) 2003-12-18 2008-08-26 Ecolab Inc. Method of cleaning articles in a dish machine using an acidic detergent
EP3810743B1 (en) 2018-06-15 2024-03-13 Ecolab USA Inc. Enhanced peroxygen stability using fatty acid in bleach activating agent containing peroxygen solid

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8711153D0 (en) * 1987-05-12 1987-06-17 Warwick International Ltd Bleach activator compositions
US5130045A (en) * 1987-10-30 1992-07-14 The Clorox Company Delayed onset active oxygen bleach composition
AU6949094A (en) * 1993-05-20 1994-12-20 Procter & Gamble Company, The Bleaching compounds comprising substituted benzoyl caprolactam bleach activators
US5405413A (en) * 1993-06-24 1995-04-11 The Procter & Gamble Co. Bleaching compounds comprising acyl valerolactam bleach activators
GB9407628D0 (en) * 1994-04-13 1994-06-08 Procter & Gamble Detergent compositions

Also Published As

Publication number Publication date
EP0861315A4 (en) 2000-01-19
ATE272703T1 (en) 2004-08-15
BR9610927A (en) 1999-02-17
EP0861315A1 (en) 1998-09-02
GB9520921D0 (en) 1995-12-13
ES2225891T3 (en) 2005-03-16
DE69633060D1 (en) 2004-09-09
DE69633060T2 (en) 2005-08-11
WO1997013835A1 (en) 1997-04-17

Similar Documents

Publication Publication Date Title
US5965505A (en) Detergents containing a heavy metal sequestrant and a delayed release peroxyacid bleach system
US6046149A (en) Detergent compositions
EP0755429B1 (en) Detergents containing a heavy metal sequestrant and a delayed release peroxyacid bleach system
US6207632B1 (en) Detergent composition comprising a cationic surfactant and a hydrophobic peroxyacid bleaching system
CA2286554A1 (en) Detergent particle
US5755992A (en) Detergents containing a surfactant and a delayed release peroxyacid bleach system
EP0755434B1 (en) Detergents containing a builder and a delayed release enzyme
US6313086B1 (en) Detergent compositions containing and effervescent
EP0755435A1 (en) Detergent compositions
US6559113B2 (en) Detergents containing a builder and a delayed released enzyme
WO1995028467A1 (en) Detergents containing an enzyme and a delayed release peroxyacid bleaching system
EP0866118A2 (en) Detergent particle
CA2261349C (en) A detergent composition
JP3174068B2 (en) Detergent composition
WO1997023593A1 (en) Detergent composition comprising enzyme and delayed release mechanism
GB2313603A (en) Detergent compositions
EP0861315B1 (en) Detergents delivering a stronger organic peroxyacid bleach to a wash first followed by delivering a weaker peroxyacid
EP0788538A1 (en) Detergents containing a surfactant and a delayed release peroxyacid bleach source
WO1998004661A1 (en) Detergent compositions
WO1995028466A1 (en) Detergents containing a surfactant and a delayed release enzyme
WO1995028465A1 (en) Detergents containing a builder and a delayed release peroxyacid bleach source
US6096703A (en) Process and composition for detergents
CA2269475C (en) Detergent compositions
EP0759056A1 (en) Detergent compositions
GB2307914A (en) Detergent compositions

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980414

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

A4 Supplementary search report drawn up and despatched

Effective date: 19991203

AK Designated contracting states

Kind code of ref document: A4

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

17Q First examination report despatched

Effective date: 20021210

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040804

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040804

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040804

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040804

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040804

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69633060

Country of ref document: DE

Date of ref document: 20040909

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041015

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041015

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041104

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041104

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041104

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2225891

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

ET Fr: translation filed
26N No opposition filed

Effective date: 20050506

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20050916

Year of fee payment: 10

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20061020

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20061031

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070501

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20070501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050104

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20071031

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20080630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20061003

Year of fee payment: 11

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20071016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071031

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071015

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090501

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120925

Year of fee payment: 17

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20131015

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131015