EP0860341B1 - Method and device for operationd and/or control of systems for tilting of vehicle bodies - Google Patents

Method and device for operationd and/or control of systems for tilting of vehicle bodies Download PDF

Info

Publication number
EP0860341B1
EP0860341B1 EP97122497A EP97122497A EP0860341B1 EP 0860341 B1 EP0860341 B1 EP 0860341B1 EP 97122497 A EP97122497 A EP 97122497A EP 97122497 A EP97122497 A EP 97122497A EP 0860341 B1 EP0860341 B1 EP 0860341B1
Authority
EP
European Patent Office
Prior art keywords
tilt
tilting
car body
simulated
tilting system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97122497A
Other languages
German (de)
French (fr)
Other versions
EP0860341A1 (en
Inventor
Johannes Beike
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TZN FORSCHUNGS- UND ENTWICKLUNGSZENTRUM UNTERLUESS
Original Assignee
Tzn Forschungs- und Entwicklungszentrum Unterluess GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19753355A external-priority patent/DE19753355C2/en
Application filed by Tzn Forschungs- und Entwicklungszentrum Unterluess GmbH filed Critical Tzn Forschungs- und Entwicklungszentrum Unterluess GmbH
Publication of EP0860341A1 publication Critical patent/EP0860341A1/en
Application granted granted Critical
Publication of EP0860341B1 publication Critical patent/EP0860341B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61FRAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
    • B61F5/00Constructional details of bogies; Connections between bogies and vehicle underframes; Arrangements or devices for adjusting or allowing self-adjustment of wheel axles or bogies when rounding curves
    • B61F5/02Arrangements permitting limited transverse relative movements between vehicle underframe or bolster and bogie; Connections between underframes and bogies
    • B61F5/22Guiding of the vehicle underframes with respect to the bogies

Definitions

  • the invention relates to a method and a device for control and / or Regulation of a car body tilt system for a rail vehicle according to Preambles of claims 1 and 11.
  • a combination of regulation and control system is described in WO 96/02027 described.
  • the control system shown therein uses the angle of inclination Car body as a relevant parameter for the effective lateral acceleration.
  • a pilot control device is used to compare a target / actual comparison Presetting of the car body inclination made. The one to increase dynamics
  • the proposed pilot control relieves the control loop, but is not based on the tilt system / Tilt device adjusted yourself. An unwanted jump in the default Overriding / controlling the car body inclination can follow.
  • inclination values are determined that implement regulation or control.
  • the invention is based on the object of specifying a method for adjusting the inclination of a rail vehicle, in which comfort and / or safety in driving operation is produced in the best possible way. Another object is to provide an apparatus for performing the method.
  • the solution according to the invention takes up the idea of taking limit values with regard to comfort into account, which are equivalent to a comfort scale of a track elevation in accordance with CEN / TC 256 (European railways Committee for Standardization) as inclination setpoints for controlling or regulating a car body as a relevant variable according to Specify system limits and only allow a subsequent regulation within a positioning system of the car body to run within these limits. If at least one limit value for comfort and / or parameters describing the system would be exceeded, these tilt setpoints will be adjusted taking this at least one limit value into account and converted into adjusted tilt setpoints that are used to adjust a car body tilt system.
  • the tilting setpoints are adjusted according to the invention with the aid of a tilting setpoint adjuster upstream of the tilting system.
  • a signal that can be used to determine the limit values, taking into account a track elevation, can currently be generated from signals from the gyroscope and accelerometer. Such a method for generating an actuating signal from a sensor package is disclosed in DE 1970175.
  • the tilt setpoints are made up of a sensor package, of route response bars, one GPS receiver, determined from data stored in tabular form or similar specifications.
  • the movement behavior i.e. the tilt system states of the by its parameters like Mass moment of inertia etc. as well as the operating behavior of the control system such as spring and Due to this initially theoretical inclination setpoint, cylinder travel becomes one Research simulates.
  • tilt system states obtained from the simulation are then when at their Realization of limit values for comfort and / or parameters describing the system, such as for example, maximum spring or cylinder travel would be exceeded by maximum permissible tilt system states taking these limit values into account.
  • the permissible tilt system states are then turned up by an inverse simulation calculated back a permissible, adjusted tilt setpoint. This is done by a inverse image of the simulated tilt system in the computer.
  • the adjustment of the tilt setpoints only becomes active if a predefined one Limitation is addressed in the online simulated model of the tilt system.
  • the tilt setpoints determined in this way can be directly related to the body tilt or indirectly, i.e. from a control and / or regulation system.
  • the influencing factors of the dissatisfaction factor are acceleration and jerk in Car body and rolling speed of the car body. Depending on the application can be used to control and / or regulate the respective tilting system one of these influencing factors can be placed. In the sleeping car e.g. the jerk, im Dining car the roll speed can be set particularly low.
  • Another advantage of adjusting the setpoint is the reduction in wear and tear on the tilt system. The reliability of the tilt system is also increased.
  • the signals of the car body tilt angle once determined apply to everyone with a time delay following car bodies.
  • a real car body tilt system consisting of a car body 2, a bogie 3 with actuating system 4 and a car body suspension 5 is shown.
  • a sensor package 6, which is arranged on the bogie 3 in the case of a control system or on the car body suspension 5 of the car body 2 in the case of control (not shown), generates tilt setpoints for the real car body tilting system 1, for example a tilt angle setpoint ⁇ should , a tilting speed setpoint ⁇ gset and one Tilt acceleration setpoint ⁇ bset .
  • the tilting speed setpoint ⁇ g setpoint and the tilting acceleration setpoint ⁇ bsetpoint have functions that support the method.
  • tilt setpoints arrive at an online simulated model of a shown in FIG Tilt system 7, the output of which has an input E1 of a tilt condition limiter 8 is connected to the tilt condition limiter 8, the input 2 of which is connected to a Tolerance specification unit 9 is connected and to a tilt condition limiter 8 downstream inverted simulated tilting system 10, in order to then be adapted Tilt setpoints for adjusting the car body 2 to be provided. This can be done directly or indirectly via a subsequent control and / or Regulatory system.
  • the simulated tilt system 7 is the Tilt state limiter 8 and the inverse simulated tilt system 10 are combined.
  • the simulated tilt system 7 simulates the real vehicle body tilt system 1 and exists from a simulated control system controller 12 and a likewise simulated car body and car body suspension 13 and with simulated positioning system 14 (Fig. 3).
  • the inverse simulated tilt system 10 is the inverse image with several inverse Components of the simulated tilt system 7.
  • the number of inverse components results from the tilt system states to be limited to adapt the Tilt setpoints.
  • Adjusting the tilt setpoints causes the real body tilt system 1 is not driven into impermissible states (tilt system states), and thus the already influencing factors of the dissatisfaction factor mentioned are taken into account.
  • Neigesollwertanpasser 11 reach the desired tilt values generated should ⁇ , for example, from the sensor pack 6 as signals to the simulated tilting system 7.
  • should ⁇ example, from the inclination angle devoted simulated tilting system states are, for example, the acceleration of the control system, the kinematic deflection, the spring deformation Tilt acceleration.
  • the simulated actuator system controller 12 performs a desired / actual comparison of the adjusted tilting angle should ⁇ and a simulated current tilt angle ⁇ is off.
  • the signal resulting from the controller 12 reaches the simulated control system 14 and simultaneously sets the tilt system states.
  • These tilting system states generated by the simulated positioning system 14 are approximately identical to the tilting system states of the real vehicle body tilting system 1.
  • maximum permissible tilting system states are present at the tilting state limiter 8, which are stored in the tolerance specification unit 9 and reflect system-describing parameters and comfort values.
  • tilt system states generated in the simulated tilt system 7 smaller than the max. permissible tilt system states from the tolerance specification unit 9, these generated signals pass through the tilt state limiter 8 without being processed. There is only a comparison to determine the admissibility.
  • the unlimited signals at the output of the tilting state limiter 8 are then transformed back by the tilting system 10, which works inversely compared to the simulated tilting system 7, so that, for example, the original tilting angle ⁇ should be present in the same size / value as the tilting angle ⁇ ' should be the output signal of a simulated inverted tilting system 10 .
  • This tilt angle ⁇ ' is intended is then forwarded to the adjustment of the real car body tilt system 1 so that by means of inclination angle ⁇ ' should takes place of the real car body tilt system 1 a real adjustment.
  • the inclination state limiter 8 becomes active, only a maximum inclination system state having to be exceeded for activation.
  • the exceeded signals generated in the simulated tilt system 7 by the tilt state limiter 8 The limitation takes place for each tilt system state, so that a combination of the generated non-limited tilt system states of the simulated tilt system 7 and the limited, maximum permissible tilt system states from the tolerance specification unit 9 am Output of the tilt condition limiter 8 is present.
  • These limited tilting system states reach the inverse simulated tilting system 10.
  • this tilting system states are 'intended to ⁇ ' in adapted desired tilt values ⁇ Gsoll and ⁇ 'Bsoll transformed back and result in upper or lower boundary or adjustment lines for the desired tilt values ⁇ ' should ⁇ ' gsoll , and ⁇ ' bsoll .
  • 3 tilting system states limited, resulting 3 fit lines of the desired tilt values ⁇ 'should ⁇ ' Gsoll, ⁇ 'Bsoll due to the fact that, for each limited tilting system state, an inverse simulation performed and the respective fit line is calculated.
  • the resulting tilt setpoints which are determined by moving the adjustment lines, must not exceed a limit line, so that no unwanted tilt system state arises / or. entry.
  • a permissible spring adjustment of maximum 5 cm by means of an adapted tilt angle ⁇ ' should be increased to 6 cm because the tilt setpoints ⁇ should , ⁇ gsoll , and ⁇ bshould not adhere to the tolerance range of the tilting system state "permissible spring adjustment" and the resulting reference line, and, for example, only the adjustment line of the "kinematic deflection" would be optimally extended, the resulting spring adjustment would result in an increase in the dissatisfaction factor in addition to a possible destruction of the spring.
  • the so-adapted tilt values ⁇ 'should ⁇ ' g should and. ⁇ ' b should be used to adjust the real positioning system 4 of the real body tilt system 1.
  • the tilt setpoints ⁇ ' should , ⁇ ' g should and. ⁇ ' b should be placed in a ring buffer, not shown, for example.
  • the tilt setpoints are taken from the ring memory depending on the location and type of car body and fed to the respective control systems 4 of the car bodies 2 as a control and / or regulation variable.
  • FIG. 4 A matched tilt angle ⁇ 'is intended to ⁇ compared to the generated tilt angle of the sensor package 6 is shown in FIG. 4.
  • the forces acting on the sensor package 6 and measured there disturbances are limited so that the disturbance no longer with the subsequent real car body tilt system 1 real setting system 4 and real car body 2 can act.
  • the real actuating system 4 is no longer burdened by disturbance variables, and wear is reduced.
  • the tilt setpoints are continuously limited so that the predetermined maximum states are not exceeded.
  • the continuity results from the simulation of all tilt system states.
  • the adjusted tilt setpoints are sufficient to adjust the real car body in such a way that a track camber adjustment when a track camber angle ⁇ 0 occurs is quickly ensured by avoiding delayed filtering and a loss of driving comfort is avoided.
  • this tilt condition is also simulated Tilt system 7 limits, so that the tilt system states in the real car body tilt system 1 and in the simulated tilt system 7 are approximately identical.
  • the maximum permissible tilt system states are in the form of the tolerance specification unit 9 of data deposited.
  • the simulated tilt system 7 is shown as a physical model.
  • a current mathematical calculation is carried out for the sampling points (for example by an integral function).
  • the calculated tilt system states are not stored as data. They are currently being determined and evaluated.
  • reverse Tilt system 10 also does a current mathematical calculation, however inverse to the tilt system 7. (For a mathematical integral function that would be inverse calculation a differential function.)
  • the tolerance specification unit 9 is also a direct component of the Tilt setpoint adjuster 11 and how it can be integrated in the associated computer.
  • the maximum incline system states can be stored in tables that also take the track structure into account. These path-dependent maximum inclination system states are assigned to a route coding and can be used for control or regulation when driving through this coded route. The method and the device for tilt control / regulation can thus be used by constant maximum values of the tilt system states even when there is no data or only for certain areas.

Description

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Steuerung und/oder Regelung eines Wagenkasten-Neigesystems bei einem Schienenfahrzeug nach den Oberbegriffen der Patentansprüche 1 und 11.The invention relates to a method and a device for control and / or Regulation of a car body tilt system for a rail vehicle according to Preambles of claims 1 and 11.

Bei steigendem Mobilitätsbedürfnis kann der schienengebundene Personenverkehr nur dann eine bedeutende Rolle einnehmen, wenn neben der Transporterhöhung auch eine deutliche Verkürzung der Reisezeit eintritt. Dies bedeutet eine Steigerung der Geschwindigkeit dieser Fahrzeuge. Für das Fahren mit höheren Geschwindigkeiten sind die Strecken insbesondere in Kurvendurchfahrten nicht ausgelegt. Eine Erhöhung der Geschwindigkeit beim Durchfahren von Kurven bewirkt daher eine Erhöhung der Querbeschleunigung im Wagen, was wiederum eine Belastung der Personen mit sich bringt.When mobility needs increase, rail-bound passenger transport can only do so play an important role if, in addition to the increase in transport, a significant one Shortening the travel time occurs. This means an increase in the speed of this Vehicles. The routes are special for driving at higher speeds not designed for cornering. An increase in speed at Driving through bends therefore increases the lateral acceleration in the car, which in turn puts a burden on people.

Um diesen störenden Querbeschleunigungen entgegenzuwirken, gibt es vielfältige Verfahren und Vorrichtungen, die auf das Fahrzeug selbst oder Teile davon aktiv oder passiv einwirken. Bei einer aktiven Einwirkung wird die Neigung des Wagenkastens eines Fahrzeuges während der Kurvenfahrt eingestellt oder verändert, d.h., gegenüber der Richtung der Schwerkraft bzw. gegenüber der als horizontal verlaufenden Erdoberfläche. Bei einer passiven Einwirkung erfolgt die Neigung des Wagenkastens durch Ausnutzung der Pendelung des Wagenkastens.There are various methods to counteract these disruptive lateral accelerations and devices that are active or passive on the vehicle itself or parts thereof act. With an active action, the inclination of the car body becomes one Vehicle is set or changed during cornering, i.e. compared to Direction of gravity or against the horizontal surface of the earth. In the case of a passive action, the body is inclined by using it the oscillation of the car body.

Ein aktives Verfahren und eine zugehörige Vorrichtung zur Regelung der Neigung eines Fahrzeug-Wagenkastens beschreibt die DE 44 16 586 A1. Dabei werden alle Bewegungsgrößen eines schienengebundenen Fahrzeuges erfaßt und für die Neigungsregelung, d.h. die Drehung des Wagenkastens um seine Längs- oder Rollachse berücksichtigt. Die Messung der Bewegungsgrößen erfolgt dort am Wagenkasten wo diese Größen kompensiert und geregelt werden sollen.An active method and an associated device for controlling the inclination of a Vehicle body is described in DE 44 16 586 A1. In doing so, everyone Movement quantities of a rail-bound vehicle recorded and for the Tilt control, i.e. the rotation of the car body about its longitudinal or rolling axis considered. The movement quantities are measured on the car body where they are Sizes to be compensated and regulated.

Aus der DE 27 05 221 A1 ist eine Anordnung zur Steuerung einer Neigungsvorrichtung bekannt. Hierbei werden zusätzlich die Gierwinkelgeschwindigkeit und die Fahrgeschwindigkeit gemessen, in einen Wert für einen Querbeschleunigungsanteil umgewandelt und als Steuersignal an eine Neigungsvorrichtung übertragen. Wegen der Nichtberücksichtigung der im System vorhandenen weiteren Bezugsgrößen wie z.B. Wagenkastenmasse kann es hierbei zu einer Übersteuerung der Neigungsvorrichtung kommen,DE 27 05 221 A1 describes an arrangement for controlling an inclination device known. In addition, the yaw rate and the Driving speed measured, in a value for a lateral acceleration component converted and transmitted as a control signal to a tilt device. Because of the Not taking into account the other reference values available in the system, e.g. Car body mass can overdrive the inclination device come,

Eine Kombination von Regelungs- und Steuerungssystem wird in der WO 96/02027 beschrieben. Das darin aufgezeigte Regelungssystem nützt den Neigungswinkel des Wagenkastens als relevante Größe für die wirksame Querbeschleunigung. Der Neigungswinkel für die Wagenkastenneigung wird dabei aus der Zentrifugalbeschleunigung in der Horizontalebene gebildet. Über eine Vorsteuereinrichtung wird über Soll/Ist Vergleich eine Voreinstellung der Wagenkastenneigung vorgenommen. Die zur Dynamikerhöhung vorgeschlagene Vorsteuerung entlastet den Regelkreis, ist aber nicht auf das Neigesystem/ Neigungsvorrichtung selbst abgestimmt. Einem ungewollten Sprung bei der Voreinstellung kann eine Überregelung/-steuerung der Wagenkastenneigung folgen.A combination of regulation and control system is described in WO 96/02027 described. The control system shown therein uses the angle of inclination Car body as a relevant parameter for the effective lateral acceleration. The angle of inclination for the car body inclination, the centrifugal acceleration in the Horizontal plane formed. A pilot control device is used to compare a target / actual comparison Presetting of the car body inclination made. The one to increase dynamics The proposed pilot control relieves the control loop, but is not based on the tilt system / Tilt device adjusted yourself. An unwanted jump in the default Overriding / controlling the car body inclination can follow.

Bei allen vorliegenden Lösungen werden Neigungswerte ermittelt, die eine Regelung oder Steuerung realisieren.
Der Erfindung liegt die Aufgabe zugrunde ein Verfahren zur Neigungsverstellung eines Schienenfahrzeuges anzugeben, bei dem ein Komfort und/oder die Sicherheit im Fahrbetrieb bestmöglich hergestellt wird. Eine weitere Aufgabe besteht darin, eine Vorrichtung zur Durchführung des Verfahrens anzugeben.
In all of the present solutions, inclination values are determined that implement regulation or control.
The invention is based on the object of specifying a method for adjusting the inclination of a rail vehicle, in which comfort and / or safety in driving operation is produced in the best possible way. Another object is to provide an apparatus for performing the method.

Diese Aufgaben werden durch die im Patentanspruch 1 und im Patentanspruch 11 enthaltenen Merkmale gelöst. These tasks are achieved by the in claim 1 and in claim 11 included features solved.

Die erfindungsgemäße Lösung greift dabei die Idee auf, Grenzwerte hinsichtlich Komfort zu berücksichtigen, die in äquivalenter Weise einen Komfortmaßstab einer Gleisüberhöhung gemäß CEN/TC 256 (Eisebahnwesen-EU-Komitee für Normung) als Neigesollwerte zur Steuerung oder Regelung eines Wagenkastens als relevante Größe nach den Systemgrenzen vorgeben und eine nachfolgende Regelung innerhalb eines Stellsystems des Wagenkastens nur in diesen Grenzen ablaufen zu lassen. Diese Neigesollwerte werden dann, wenn zumindest ein Grenzwert für Komfort und/oder das System beschreibende Parameter überschritten würde, unter Berücksichtigung dieses zumindest einen Grenzwertes angepaßt und in angepaßte Neigesollwerte überführt werden, die zur Verstellung eines Wagenkasten-Neigesystems genutzt werden.
Um ein Neigesystem, bestehend aus einem Stellsystem, einem Wagenkasten und einer Wagenfederung nicht in unzulässige Zustände zu fahren, erfolgt eine Anpassung der Neigesollwerte erfindungsgemäß mit Hilfe eines vor das Neigesystem vorgeschalteten Neigesollwertanpassers. Ein nutzbares Signal zur Bestimmung der Grenzwerte unter Berücksichtigung einer Gleisüberhöhung läßt sich derzeit aus Signalen von Kreisel und Beschleunigungsaufnehmer erzeugen. In der DE 1970175 wird ein solches Verfahren zur Generierung eines Stellsignals aus einem Sensorpaket offenbart.
The solution according to the invention takes up the idea of taking limit values with regard to comfort into account, which are equivalent to a comfort scale of a track elevation in accordance with CEN / TC 256 (European Railways Committee for Standardization) as inclination setpoints for controlling or regulating a car body as a relevant variable according to Specify system limits and only allow a subsequent regulation within a positioning system of the car body to run within these limits. If at least one limit value for comfort and / or parameters describing the system would be exceeded, these tilt setpoints will be adjusted taking this at least one limit value into account and converted into adjusted tilt setpoints that are used to adjust a car body tilt system.
In order not to drive a tilting system consisting of an adjusting system, a car body and a truck suspension into impermissible states, the tilting setpoints are adjusted according to the invention with the aid of a tilting setpoint adjuster upstream of the tilting system. A signal that can be used to determine the limit values, taking into account a track elevation, can currently be generated from signals from the gyroscope and accelerometer. Such a method for generating an actuating signal from a sensor package is disclosed in DE 1970175.

Vorteilhafte Ausführungen sind in den Unteransprüchen dargestellt.Advantageous designs are presented in the subclaims.

Die Neigesollwerte werden aus einem Sensorpaket, aus Strecken-Antwortbarken, einem GPS-Empfänger, aus in Tabellenform abgelegte Daten oder ähnlichen Vorgaben ermittelt.The tilt setpoints are made up of a sensor package, of route response bars, one GPS receiver, determined from data stored in tabular form or similar specifications.

Das Bewegungsverhalten, d.h. die Neigesystemzustände des durch seine Parameter wie Masseträgheitsmoment etc. sowie das Betriebsverhalten des Stellsystems wie Feder- und Zylinderwege wird dazu aufgrund dieses zunächst theoretischen Neigesollwertes in einem Recher simuliert.The movement behavior, i.e. the tilt system states of the by its parameters like Mass moment of inertia etc. as well as the operating behavior of the control system such as spring and Due to this initially theoretical inclination setpoint, cylinder travel becomes one Research simulates.

Die aus der Simulation erhaltenen Neigesystemzustände werden dann, wenn bei ihrer Realisierung Grenzwerte für Komfort und/oder das System beschreibende Parameter, wie beispielsweise maximale Feder- oder Zylinderwege, überschritten würden, durch maximal zulässige diese Grenzwerte berücksichtigende Neigesystemzustände ersetzt.The tilt system states obtained from the simulation are then when at their Realization of limit values for comfort and / or parameters describing the system, such as for example, maximum spring or cylinder travel would be exceeded by maximum permissible tilt system states taking these limit values into account.

Aus den zulässigen Neigesystemzuständen wird dann durch eine inverse Simulation auf einen zulässigen, angepaßten Neigesollwert zurückgerechnet. Dieses erfolgt durch ein inverses Abbild des simulierten Neigesystems im Rechner.The permissible tilt system states are then turned up by an inverse simulation calculated back a permissible, adjusted tilt setpoint. This is done by a inverse image of the simulated tilt system in the computer.

Die Anpassung der Neigesollwerte wird jedoch nur aktiv, wenn eine vorgegebene Begrenzung in dem online simulierten Modell des Neigesystems angesprochen wird. Das bedeutet, daß das erfindungsgemäße Verfahren die Neigesollwerte nur anpaßt (begrenzt), wenn ein Neigesystemzustand, beispielsweise die Stellbeschleunigung oder Einflußgrößen des Unzufriedenheitsfaktors, außerhalb des Bereiches zulässiger Neigesystemzustände liegt. Innerhalb dieser Toleranzbereiche erfolgt kein Eingriff in die Sollwertvorgabe für das Neigesystem. Die Dynamik und die Leistungsfähigkeit des Neigesystems werden daher voll ausgenutzt. Die so ermittelten Neigesollwerte können direkt zur Wagenkastenneigung oder indirekt, d.h., von einem Steuerungs- und /oder zur Regelungssystem, genutzt werden.However, the adjustment of the tilt setpoints only becomes active if a predefined one Limitation is addressed in the online simulated model of the tilt system. The means that the method according to the invention only adapts (limits) the tilt setpoints, if a tilt system state, for example the actuating acceleration or influencing variables of the dissatisfaction factor is outside the range of permissible tilt system states. Within these tolerance ranges there is no intervention in the setpoint specification for the Tilt system. The dynamics and performance of the tilt system are therefore full exploited. The tilt setpoints determined in this way can be directly related to the body tilt or indirectly, i.e. from a control and / or regulation system.

Die Einflußgrößen des Unzufriedenheitsfaktors sind Beschleunigung und Ruck im Wagenkasten und Rolldrehgeschwindigkeit des Wagenkastens. Je nach Anwendungsfall kann zur Steuerung und/oder Regelung des jeweiligen Neigesystems eine Gewichtung auf eine dieser Einflußgrößen gelegt werden. Im Schlafwagen kann z.B. der Ruck, im Speisewagen die Rolldrehgeschwindigkeit besonders klein gestellt werden.The influencing factors of the dissatisfaction factor are acceleration and jerk in Car body and rolling speed of the car body. Depending on the application can be used to control and / or regulate the respective tilting system one of these influencing factors can be placed. In the sleeping car e.g. the jerk, im Dining car the roll speed can be set particularly low.

Ein weiterer Vorteil der Sollwertanpassung ist die Reduzierung der Verschleißerscheinungen des Neigesystems.
Auch wird die Ausfallsicherheit des Neigesystems erhöht.
Another advantage of adjusting the setpoint is the reduction in wear and tear on the tilt system.
The reliability of the tilt system is also increased.

Die Signale des einmal ermittelten Wagenkastenneigewinkels gelten zeitverzögert für alle nachfolgenden Wagenkästen.The signals of the car body tilt angle once determined apply to everyone with a time delay following car bodies.

Die Erfindung wird nun im Folgenden anhand von einem Ausführungsbeispiel mit Zeichnung näher erläutert. The invention will now be described in the following using an exemplary embodiment Drawing explained in more detail.

Es zeigen:

Fig. 1
schematische Darstellung eines Wagenkastens
Fig. 2
ein Blockschaltbild zur Neigungssteuerung des Wagenkastens,
Fig. 3
ein Blockschaltbild eines simulierten Neigesystems,
Fig. 4
eine Darstellung eines gemessenen Wagenkastenneigungswinkels in Gegenüberstellung mit einem angepaßten Wagenkastenneigungswinkel
Show it:
Fig. 1
schematic representation of a car body
Fig. 2
a block diagram for tilt control of the car body,
Fig. 3
a block diagram of a simulated tilt system,
Fig. 4
a representation of a measured car body tilt angle in comparison with an adapted car body tilt angle

In Fig. 1 ist ein reales Wagenkasten-Neigesystem 1, bestehend aus einem Wagenkasten 2, einem Drehgestell 3 mit Stellsystem 4 und einer Wagenkastenfederung 5, dargestellt. Ein Sensorpaket 6, das bei einer Steuerung am Drehgestell 3 oder bei Regelung (nicht dargestellt) an der Wagenkastenfederung 5 des Wagenkastens 2 angeordnet ist, generiert für das reale Wagenkasten-Neigesystem 1 Neigesollwerte, beispielsweise einen Neigewinkelsollwert soll, einen Neigegeschwindigkeitssollwert gsoll und einen Neigebeschleunigungssollwert bsoll. Dabei besitzen der Neigegegeschwindigkeitssoll-wert g soll sowie der Neigebeschleunigungssollwert bsoll für das Verfahren unterstützende Funktionen.In Fig. 1, a real car body tilt system 1, consisting of a car body 2, a bogie 3 with actuating system 4 and a car body suspension 5 is shown. A sensor package 6, which is arranged on the bogie 3 in the case of a control system or on the car body suspension 5 of the car body 2 in the case of control (not shown), generates tilt setpoints for the real car body tilting system 1, for example a tilt angle setpoint  should , a tilting speed setpointgset and one Tilt acceleration setpointbset . The tilting speed setpoint  g setpoint and the tilting acceleration setpoint  bsetpoint have functions that support the method.

Diese Neigesollwerte gelangen an ein in Fig. 2 dargestelltes online simuliertes Modell eines Neigesystems 7, dessen Ausgang mit einem Eingang E1 eines Neigezustandsbegrenzers 8 verbunden ist, an den Neigezustandsbegrenzer 8, dessen Eingang 2 mit einer Toleranzvorgabeeinheit 9 verbunden ist und an ein dem Neigezustandsbegrenzer 8 nachgeschaltetes inverses simuliertes Neigesystem 10, um dann als angepaßte Neigesollwerte zur Verstellung des Wagenkastens 2 zur Verfügung gestellt zu werden. Dies kann direkt erfolgen oder indirekt über ein nachfolgendes Steuerungs- und/oder Regelungssystem.These tilt setpoints arrive at an online simulated model of a shown in FIG Tilt system 7, the output of which has an input E1 of a tilt condition limiter 8 is connected to the tilt condition limiter 8, the input 2 of which is connected to a Tolerance specification unit 9 is connected and to a tilt condition limiter 8 downstream inverted simulated tilting system 10, in order to then be adapted Tilt setpoints for adjusting the car body 2 to be provided. This can be done directly or indirectly via a subsequent control and / or Regulatory system.

Als Neigesollwertanpasser 11 sind dabei das simulierte Neigesystems 7, der Neigezustandsbegrenzer 8 sowie das inverse simulierte Neigesystem 10 zusammengefaßt. Das simulierte Neigsystem 7 simuliert das reale Wagenkasten-Neigesystem 1 und besteht aus einem simulierten Stellsystemregler 12 und einem gleichfalls simulierten Wagenkasten und Wagenkastenfederung 13 und mit simuliertem Stellsystem 14 (Fig. 3). As the tilt setpoint adjuster 11, the simulated tilt system 7 is the Tilt state limiter 8 and the inverse simulated tilt system 10 are combined. The simulated tilt system 7 simulates the real vehicle body tilt system 1 and exists from a simulated control system controller 12 and a likewise simulated car body and car body suspension 13 and with simulated positioning system 14 (Fig. 3).

Das inverse simulierte Neigesystem 10 ist das inverse Abbild mit mehreren inversen Komponenten des simulierten Neigesystems 7. Die Anzahl der inversen Komponenten ergibt sich aus den zu begrenzenden Neigesystemzuständen zur Anpassung der Neigesollwerte.The inverse simulated tilt system 10 is the inverse image with several inverse Components of the simulated tilt system 7. The number of inverse components results from the tilt system states to be limited to adapt the Tilt setpoints.

Die Anpassung der Neigesollwerte bewirkt, daß das reale Wagenkasten-Neigesystems 1 nicht in unzulässige Zustände (Neigesystemzustände) gefahren wird, und somit die bereits erwähnten Einflußgrößen des Unzufriedenheitsfaktors berücksichtigt werden.Adjusting the tilt setpoints causes the real body tilt system 1 is not driven into impermissible states (tilt system states), and thus the already influencing factors of the dissatisfaction factor mentioned are taken into account.

Das Verfahren läuft dabei wie folgt ab:The procedure is as follows:

Im Neigesollwertanpasser 11 gelangen die generierten Neigesollwerte soll, beispielsweise aus dem Sensorpaketes 6 als Signale an das simulierte Neigesystem 7. Die sich beispielsweise aus dem Neigungswinkel soll ergebenen simulierten Neigesystemzustände sind dabei z.B. die Beschleunigung des Stellsystems, die kinematische Auslenkung, die Federdeformation, die Neigebeschleunigung.In Neigesollwertanpasser 11 reach the desired tilt values generated should , for example, from the sensor pack 6 as signals to the simulated tilting system 7. should  example, from the inclination angle devoted simulated tilting system states are, for example, the acceleration of the control system, the kinematic deflection, the spring deformation Tilt acceleration.

Der simulierte Stellsystemregler 12 führt einen Soll/Ist- Vergleich zwischen dem einzustellenden Neigewinkel soll und einem simulierten momentanen Neigewinkel ist aus. Das aus dem Regler 12 resultierende Signal gelangt auf das simulierte Stellsystem 14 und stellt simultan die Neigesystemzustände ein. Diese, durch das simulierte Stellsystem 14 erzeugten Neigesystemzustände sind näherungsweise identisch mit den Neigesystemzuständen des realen Wagenkasten-Neigesystems 1. Am Neigungszustandsbegrenzer 8 liegen gleichfalls maximal zulässige Neigesystemzustände an, die in der Toleranzvorgabeeinheit 9 abgelegt sind und systembeschreibende Parameter sowie Komfortwerte widerspiegeln.The simulated actuator system controller 12 performs a desired / actual comparison of the adjusted tilting angle should  and a simulated current tilt angle  is off. The signal resulting from the controller 12 reaches the simulated control system 14 and simultaneously sets the tilt system states. These tilting system states generated by the simulated positioning system 14 are approximately identical to the tilting system states of the real vehicle body tilting system 1. Likewise, maximum permissible tilting system states are present at the tilting state limiter 8, which are stored in the tolerance specification unit 9 and reflect system-describing parameters and comfort values.

Sind die im simulierten Neigesystem 7 generierten Neigesystemzustände kleiner als die max. zulässigen Neigesystemzustände aus der Toleranzvorgabeeinheit 9, so durchlaufen diese generierten Signale den Neigezustandsbegrenzer 8 ohne bearbeitet zu werden. Es erfolgt lediglich ein Vergleich zur Feststellung der Zulässigkeit. Die unbegrenzten Signale am Ausgang des Neigezustandsbegrenzers 8 werden dann von dem, dem simulierten Neigesystem 7 gegenüber invers arbeitenden Neigesystem 10 zurücktransformiert, so daß z.B. der ursprüngliche Neigeswinkel soll in gleicher Größe/Wert als Neigewinkel 'soll als Ausgangssignal eines simulierten inversen Neigesystems 10 anliegt. Dieser Neigewinkel 'soll wird danach zur Verstellung des realen Wagenkasten-Neigesystem 1 weitergeleitet, so daß mittels Neigungswinkel 'soll eine reale Verstellung des realen Wagenkasten-Neigesystems 1 erfolgt.Are the tilt system states generated in the simulated tilt system 7 smaller than the max. permissible tilt system states from the tolerance specification unit 9, these generated signals pass through the tilt state limiter 8 without being processed. There is only a comparison to determine the admissibility. The unlimited signals at the output of the tilting state limiter 8 are then transformed back by the tilting system 10, which works inversely compared to the simulated tilting system 7, so that, for example, the original tilting angle  should be present in the same size / value as the tilting angle  ' should be the output signal of a simulated inverted tilting system 10 . This tilt angle  'is intended is then forwarded to the adjustment of the real car body tilt system 1 so that by means of inclination angle ' should takes place of the real car body tilt system 1 a real adjustment.

Wird jedoch beim Vergleich im Neigungszustandsbegrenzer 8 eine positive Differenz ermittelt, d.h. sind die im Neigesystem 7 generierten Signale größer als die durch die Toleranzvorgabeeinheit 9 vorgegebenen, wird der Neigezustandsbegrenzer 8 aktiv, wobei zur Aktivierung nur ein maximaler Neigesystemzustand überschritten sein muß. Es erfolgt eine Begrenzung der im simulierten Neigesystem 7 generierten überschrittenen Signale durch den Neigezustandsbegrenzer 8. Die Begrenzung erfolgt dabei für jeden Neigesystemzustand, so daß eine Kombination aus den generierten nichtbegrenzten Neigesystemzuständen des simulierten Neigesystems 7 und den begrenzten, maximal zulässigen Neigesystemzuständen aus der Toleranzvorgabeeinheit 9 am Ausgang des Neigezustandsbegrenzers 8 anliegen. Diese begrenzten Neigesystemzustände gelangen auf das inverse simulierte Neigesystem 10. Dort werden diese Neigesystemzustände in angepaßte Neigesollwerte 'soll, 'gsoll, und 'bsoll zurücktransformiert und ergeben obere oder untere Begrenzungs- bzw. Anpassungslinien für die Neigesollwerte 'soll, 'gsoll, und 'bsoll. Werden beispielsweise 3 Neigesystemzustände begrenzt, so ergeben sich 3 Anpassungslinien der Neigesollwerte 'soll, 'gsoll, 'bsoll bedingt dadurch, daß für jeden begrenzten Neigesystemzustand eine inverse Simulation durchgeführt und die jeweilige Anpassungslinie errechnet wird. Die resultierenden Neigesollwerte, die durch Abfahren der Anpassungslinien ermittelt werden, dürfen keine Begrenzungslinie überschreiten, damit kein ungewollter Neigesystemzustand auf-/bzw. eintritt.If, however, a positive difference is determined in the inclination state limiter 8, that is to say the signals generated in the inclination system 7 are greater than those specified by the tolerance specification unit 9, the inclination state limiter 8 becomes active, only a maximum inclination system state having to be exceeded for activation. There is a limitation of the exceeded signals generated in the simulated tilt system 7 by the tilt state limiter 8. The limitation takes place for each tilt system state, so that a combination of the generated non-limited tilt system states of the simulated tilt system 7 and the limited, maximum permissible tilt system states from the tolerance specification unit 9 am Output of the tilt condition limiter 8 is present. These limited tilting system states reach the inverse simulated tilting system 10. There, this tilting system states are 'intended to ' in adapted desired tilt values  Gsoll and  'Bsoll transformed back and result in upper or lower boundary or adjustment lines for the desired tilt values ' should  ' gsoll , and  ' bsoll . For example, 3 tilting system states limited, resulting 3 fit lines of the desired tilt values  'should ' Gsoll,'Bsoll due to the fact that, for each limited tilting system state, an inverse simulation performed and the respective fit line is calculated. The resulting tilt setpoints, which are determined by moving the adjustment lines, must not exceed a limit line, so that no unwanted tilt system state arises / or. entry.

Würde beispielsweise eine zulässige Federverstellung von maximal 5 cm durch einen angepaßten Neigewinkel 'soll auf 6 cm erhöht werden, weil die Neigesollwerte soll,  gsoll, und  bsoll nicht den Toleranzbereich des Neigesystemzustandes "zulässige Federverstellung" und die daraus resultierende Bezugslinie einhalten, und beispielsweise nur die Anpassungslinie der "kinematischen Auslenkung" optimal ausgefahren werden würde, hätte die daraus resultierende Federverstellung neben einer möglichen Zerstörung der Feder die Erhöhung des Unzufriedenheitsfaktors zur Folge.
Die so angepaßten Neigesollwerte 'soll, 'g soll und. 'b soll werden zur Verstellung des reale Stellsystem 4 des realen Wagenkasten-Neigesystems 1 verwendet.
If, for example, a permissible spring adjustment of maximum 5 cm by means of an adapted tilt angle  ' should be increased to 6 cm because the tilt setpoints  should ,  gsoll , and  bshould not adhere to the tolerance range of the tilting system state "permissible spring adjustment" and the resulting reference line, and, for example, only the adjustment line of the "kinematic deflection" would be optimally extended, the resulting spring adjustment would result in an increase in the dissatisfaction factor in addition to a possible destruction of the spring.
The so-adapted tilt values  'should ' g should and.  ' b should be used to adjust the real positioning system 4 of the real body tilt system 1.

Die Neigesollwerte 'soll, 'g soll und. 'b soll werden dabei beispielsweise in einen nicht näher dargestellten Ringspeicher gegeben. Entsprechend der Zuggeschwindigkeit v und den Abständen der Fahrgestelle werden die Neigesollwerte ortsabhängig und wagenkastentypabhängig aus dem Ringspeicher entnommen und als Steuerung- und/oder Regelungsgröße den jeweiligen Stellsystemen 4 der Wagenkästen 2 zugeführt.The tilt setpoints  ' should , ' g should and.  ' b should be placed in a ring buffer, not shown, for example. Depending on the train speed v and the spacing of the chassis, the tilt setpoints are taken from the ring memory depending on the location and type of car body and fed to the respective control systems 4 of the car bodies 2 as a control and / or regulation variable.

Einen angepaßten Neigewinkel 'soll im Vergleich zum generierten Neigewinkel soll aus dem Sensorpaket 6 zeigt Fig. 4. Die auf das Sensorpaket 6 einwirkenden und dort gemessenen Störgrößen werden begrenzt, so daß die Störgrößen nicht mehr auf das nachfolgende reale Wagenkasten-Neigesystem 1 mit realem Stellsystem 4 und realem Wagenkasten 2 wirken können. Dadurch wird das reale Stellsystem 4 nicht mehr durch Störgrößen belastet, der Verschleiß wird reduziert.A matched tilt angle  'is intended to  compared to the generated tilt angle of the sensor package 6 is shown in FIG. 4. The forces acting on the sensor package 6 and measured there disturbances are limited so that the disturbance no longer with the subsequent real car body tilt system 1 real setting system 4 and real car body 2 can act. As a result, the real actuating system 4 is no longer burdened by disturbance variables, and wear is reduced.

Durch die inverse Onlinesimulation des Wagenkasten-Neigesystems 1 durch den Neigesollwertanpasser 11 werden die Neigesollwerte kontinuierlich begrenzt, so daß die vorgegebenen maximalen Zustände nicht überschritten werden. Die Kontinuität ergibt sich aus der Simulation aller Neigesystemzustände. Die angepaßten Neigesollwerte sind ausreichend, den realen Wagenkasten derart zu verstellen, daß auch eine Gleisüberhöhungsanpassung bei Auftreten eines Gleisüberhöhungswinkels 0 durch Vermeidung von verzögernden Filterungen schnell gewährleistet und eine Fahrkomforteinbuße vermieden wird.Through the inverse online simulation of the car body tilt system 1 by the tilt setpoint adjuster 11, the tilt setpoints are continuously limited so that the predetermined maximum states are not exceeded. The continuity results from the simulation of all tilt system states. The adjusted tilt setpoints are sufficient to adjust the real car body in such a way that a track camber adjustment when a track camber angle  0 occurs is quickly ensured by avoiding delayed filtering and a loss of driving comfort is avoided.

Wird ein Neigezustand begrenzt, so wird dieser Neigezustand auch im simulierten Neigesystem 7 begrenzt, so daß die Neigesystemzustände im realen Wagenkasten-Neigesystem 1 und im simulierten Neigesystem 7 näherungsweise identisch sind. If a tilt condition is limited, this tilt condition is also simulated Tilt system 7 limits, so that the tilt system states in the real car body tilt system 1 and in the simulated tilt system 7 are approximately identical.

Die maximal zulässigen Neigesystemzustände sind in der Toleranzvorgabeeinheit 9 in Form von Daten hinterlegt. Das simulierte Neigesystem 7 ist als physikalisches Modell dargestellt. Es erfolgt jeweils eine aktuelle mathematische Berechnung für die Abtastpunkte (beispielsweise durch eine Integralfunktion). Die berechneten Neigesystemzustände sind nicht als Daten hinterlegt. Sie werden aktuell ermittelt und ausgewertet. Im inversen Neigesystem 10 erfolgt gleichfalls eine aktuelle mathematische Berechnung, jedoch gegenüber dem Neigesystem 7 invers. (Bei einer mathematischen Integralfunktion wäre die inverse Berechnung eine Differentialfunktion.)The maximum permissible tilt system states are in the form of the tolerance specification unit 9 of data deposited. The simulated tilt system 7 is shown as a physical model. A current mathematical calculation is carried out for the sampling points (for example by an integral function). The calculated tilt system states are not stored as data. They are currently being determined and evaluated. In reverse Tilt system 10 also does a current mathematical calculation, however inverse to the tilt system 7. (For a mathematical integral function that would be inverse calculation a differential function.)

Es versteht sich von selbst, daß die Toleranzvorgabeeinheit 9 auch direkter Bestandteil des Neigesollwertanpassers 11 sein kann und wie dieser im zugeigenen Rechner integrierbar ist.It goes without saying that the tolerance specification unit 9 is also a direct component of the Tilt setpoint adjuster 11 and how it can be integrated in the associated computer.

Bei vorliegenden Streckendaten können die maximalen Neigesystemzustände in Tabellen abgelegt werden, die auch den Gleisaufbau berücksichtigen. Diese wegabhängigen maximalen Neigesystemzustände werden dabei einer Streckencodierung zugeordnet und können beim Durchfahren dieser codierten Strecke zur Steuerung oder Regelung herangezogen werden.
Das Verfahren und die Vorrichtung zur Neigesteuerung/-regelung können somit durch konstante Maximalwerte der Neigesystemzustände selbst dann eingesetzt werden, wenn keine oder nur für bestimmte Bereiche Daten vorliegen.
With existing route data, the maximum incline system states can be stored in tables that also take the track structure into account. These path-dependent maximum inclination system states are assigned to a route coding and can be used for control or regulation when driving through this coded route.
The method and the device for tilt control / regulation can thus be used by constant maximum values of the tilt system states even when there is no data or only for certain areas.

Diese tabellarischen Daten werden häufig anstelle des Signales des Sensorpakes 6 genutzt bzw. als Kontrolle des erzeugten Signals. Auch ist die Verwendung eines GPS-Systems mit Empfänger oder die Nutzung von bekannten Antwortbarken zur aktuellen Standortsbestimmung möglich, wobei auch hierbei auf im Rechner abgelegte Streckendaten zurückgegriffen wird.These tabular data are often used instead of the signal from the sensor pack 6 or as a control of the generated signal. The use of a GPS system is also included Recipient or the use of known answer bars to the current Location determination possible, whereby here also route data stored in the computer is used.

Um den nicht berücksichtigten Bewegungsgrößen wie z.B. Seitenwinden entgegenzuwirken ist es möglich, eine zusätzliche Wankstabilisierung des Wagenkastens 2 vorzusehen. Mit dieser zusätzlichen aktiven Regelung wird der Winkel zum Wagenkasten 2 und dem Stellsystem 4 auf Null Grad geregelt. In order to ignore the movement variables, e.g. Counteract cross winds it is possible to provide additional roll stabilization of the car body 2. With this additional active regulation, the angle to the body 2 and the Control system 4 regulated to zero degrees.

BEZUGSZEICHENLISTEREFERENCE SIGN LIST

11
reales Wagenkasten-Neigesystemreal car body tilting system
22nd
WagenkastenCar body
33rd
Drehgestellbogie
44th
StellsvstemStellsvstem
55
WagenkastenfederungBody suspension
66
SensorpaketSensor package
77
simuliertes Neigesystemsimulated tilt system
88th
NeigezustandsbegrenzerTilt condition limiter
99
ToleranzvorgabeeinheitTolerance unit
1010th
inverses simuliertes Neigesysteminverse simulated tilt system
1111
NeigesollwertanpasserTilt setpoint adjuster
1212th
simulierter Stellsystemreglersimulated control system controller
1313
simulierter Wagenkasten mit Wagenkastenfederungsimulated car body with car body suspension
1414
simuliertes Stellsystemsimulated control system

Claims (17)

  1. Method for open- and/or closed-loop control of car body tilting systems in a rail vehicle in which tilt values for adjusting the car body tilting system are ascertained, characterised in that the said tilt values are adapted as desired tilt values (desired tilt angle value desired, desired tilt speed value s desired, desired tilt acceleration value a desired), in the event that at least one limit value for comfort and/or parameters describing the system were exceeded, taking this one limit value at least into account, and converted into adapted desired tilt values ('desired, 'a desired, 's desired), which are used to adjust the car body tilting system (1).
  2. Method according to claim 1, characterised in that the desired tilt value (desired, a desired, s desired) as theoretical desired tilt values produce simulated tilting system states in a computer, which states are replaced by maximum permitted tilting system states, which are determined from the limit values for comfort and/or the parameters describing the system, and these replaced tilting system states are calculated back by inverse simulation of the system stored in the computer describing the car body tilting system (1) to a permitted, adapted desired tilt value ('desired, 'a desired, 's desired).
  3. Method according to claim 1, characterised in that the desired tilt values (desired, a desired, s desired) area ascertained from a sensor unit (6).
  4. Method according to claim 1, characterised in that the desired tilt values (desired, a desired, s desired) are ascertained from tabulated line data.
  5. Method according to any one or more of the aforesaid claims 1 to 4, characterised in that the desired tilt values (desired, a desired, s desired) are transformed by a simulated tilting system (7) into related simulated tilting system states, these simulated tilting system states are compared with the maximum permitted tilting system states, which are stored in a tolerance specifying unit (9), and in the event of values outside the range of permitted tilting system states these are limited, and these limited tilting system states are transformed back in a simulated tilting system (10) working inversely compared with the simulated tilting system (7) into adapted desired tilt values ('desired, 'a desired, 's desired).
  6. Method according to any one or more of the aforesaid claims 1 to 5, characterised in that the adapted desired tilt values ('desired, 'a desired, 's desired) ascertained are used for all subsequent car body tilting systems (1) the respective car body type being taken into consideration.
  7. Method according to any one or more of the aforesaid claims 1 to 6, characterised in that roll stabilisation is used in addition.
  8. Method according to any one or more of the aforesaid claims 1 to 7, characterised in that influencing variables of a dissatisfaction factor are included in the tilting system states.
  9. Method according to any one or more of the aforesaid claims 1 to 8, characterised in that in addition to or instead of the maximum permitted tilting system states, way-dependent maximum tilting system states are also used, which are stored in a line coding system.
  10. Method according to any one or more of the aforesaid claims 1 to 9, characterised in that the desired tilt values contain desired values for a tilt angle (desired), tilt acceleration (a desired) or tilt speed (s desired).
  11. Device for open- and/or closed-loop control of car body tilting systems of a rail vehicle with a servo-system, characterised in that a desired tilt value adapter (11) is disposed ahead of at least one car body tilting system (1) and is connected directly or indirectly to this.
  12. Device according to claim 11, characterised in that the desired tilt value adapter (11) consists of a simulated tilting system (7) organised downstream of the car body tilting system (1), the output of the former system being connected to an input (E1) of a tilting state limiter (8), and of a simulated tilting system (10) connected in series to the tilting state limiter (8) but constructed inversely compared with the simulated tilting system (7).
  13. Device according to claim 12, characterised in that the simulated tilting system (7) consists of a simulated servo-system controller (12) and a simulated car body (13).
  14. Device according to any one or more of the aforesaid claims 11 to 13, characterised in that a tolerance specifying unit (9) is connected at the input (E2) of the tilting state limiter (8).
  15. Device according to any one or more of the aforesaid claims 11 to 14, characterised in that the desired tilt value adapter (11) and also the tolerance specifying unit (9) are integrated into a computer.
  16. Device according to any one or more of the aforesaid claims 11 to 15, characterised in that a sensor unit (6) is arranged on one bogie on the first car body for one travel direction and is connected electrically to the computer.
  17. Device according to any one or more of the aforesaid claims 11 to 15, characterised in that a GPS receiver is connected to the computer.
EP97122497A 1997-02-22 1997-12-19 Method and device for operationd and/or control of systems for tilting of vehicle bodies Expired - Lifetime EP0860341B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE19707174 1997-02-22
DE19707174 1997-02-22
DE19753355A DE19753355C2 (en) 1997-02-22 1997-12-02 Method and device for controlling and / or regulating car body tilting systems
DE19753355 1997-12-02

Publications (2)

Publication Number Publication Date
EP0860341A1 EP0860341A1 (en) 1998-08-26
EP0860341B1 true EP0860341B1 (en) 2001-05-02

Family

ID=26034207

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97122497A Expired - Lifetime EP0860341B1 (en) 1997-02-22 1997-12-19 Method and device for operationd and/or control of systems for tilting of vehicle bodies

Country Status (3)

Country Link
US (1) US6108596A (en)
EP (1) EP0860341B1 (en)
CA (1) CA2230072C (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6622635B2 (en) 1998-01-12 2003-09-23 Autran Corp. Automated transportation system
FR2831126B1 (en) * 2001-10-23 2004-05-28 Alstom METHOD FOR THE SECURITY CONTROL OF THE PENDULATION OF A RAIL VEHICLE
ITMI20130609A1 (en) * 2013-04-12 2014-10-13 Rolic Internat S A R L TROLLEY FOR ROPE TRANSPORTATION SYSTEMS AND ROPE TRANSPORTATION SYSTEM INCLUDING THIS TROLLEY
US10279823B2 (en) * 2016-08-08 2019-05-07 General Electric Company System for controlling or monitoring a vehicle system along a route
CN109030020B (en) * 2018-07-09 2024-02-20 山东交通学院 Bus rollover early warning test device
CN109035956A (en) * 2018-10-13 2018-12-18 南京吉目希自动化科技有限公司 A kind of command and control actual training device for the teaching of city rail telephone block system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4023753A (en) * 1974-11-22 1977-05-17 International Standard Electric Corporation Vehicle control system
SE396479B (en) 1976-02-09 1977-09-19 Westbeck Navitele Ab DEVICE FOR CONTROLLING A SLOPE DEVICE AT VEHICLE
US4123023A (en) * 1977-10-03 1978-10-31 General Motors Corporation System for controlling vehicle movement over a fixed guideway
IT1192338B (en) * 1978-12-21 1988-03-31 Wabco Westinghouse Spa SPEED CONTROL DEVICE FOR RAILWAY TRUCKS
US4270716A (en) * 1979-03-30 1981-06-02 Westinghouse Electric Corp. Transit vehicle speed control apparatus and method
US4302811A (en) * 1979-09-10 1981-11-24 General Electric Company Automatic train operation with position stop and velocity control
DE4416586A1 (en) 1994-05-11 1995-11-16 Stn Atlas Elektronik Gmbh Control of car body inclination
NL9400843A (en) * 1994-05-24 1996-01-02 Tno System for determining the stability of a vehicle.
IT1267626B1 (en) * 1994-11-25 1997-02-07 Microtecnica RAILWAY VEHICLE ROTATION CONTROL SYSTEM
DE19707175C2 (en) 1997-02-22 1999-09-02 Tzn Forschung & Entwicklung Method and device for determining an angle around the vehicle's longitudinal axis when cornering

Also Published As

Publication number Publication date
CA2230072C (en) 2004-08-10
US6108596A (en) 2000-08-22
CA2230072A1 (en) 1998-08-22
EP0860341A1 (en) 1998-08-26

Similar Documents

Publication Publication Date Title
EP3275705B1 (en) Method and device for controlling or regulating a driver's cab suspension
EP2214920B1 (en) Method and system for influencing the movement of a motor vehicle body, the chain of movements of which can be controlled or adjusted, and associated vehicle
DE102008053008A1 (en) Method and system for influencing the movement of a controllable in his movements vehicle structure of a motor vehicle and vehicle
EP3323699B1 (en) Method and device for controlling or regulating a cab suspension of a motor vehicle
DE102017125729A1 (en) Driver assistance system for an at least partially automatically moving motor vehicle, motor vehicle and method for regulating a driving dynamics
EP1451030B1 (en) Position adjustment of a vehicle car body
EP0860341B1 (en) Method and device for operationd and/or control of systems for tilting of vehicle bodies
DE102009009888A1 (en) Chassis regulating method for vehicle, involves producing control variable, computing control variable as vectorial variable, determining relative variables and modal separating relative variables from each other
EP0344445A2 (en) Vehicle suspension
EP2212133B1 (en) Method for influencing the movement of a motor vehicle body, the chain of movements of which can be controlled or adjusted
EP2052884B1 (en) Method and system for affecting the movement of a vehicle structure on a powered vehicle and vehicle controlled or regulated by its movement processes
DE102019213280B4 (en) Method of operating an adjustable roll stabilizer
EP2052885B1 (en) Method and system for affecting the movement of a vehicle structure on a powered vehicle and vehicle controlled or regulated by its movement processes
DE19753355C2 (en) Method and device for controlling and / or regulating car body tilting systems
DE102008052993B4 (en) Method and system for influencing the movement of a vehicle body of a motor vehicle and vehicle whose movement sequences can be controlled or regulated
EP2052888A2 (en) Method and system for affecting the movement of a vehicle structure on a powered vehicle and vehicle controlled or regulated by its movement processes
DE102008052996B4 (en) Method and system for influencing the movement of a vehicle body of a motor vehicle and vehicle whose movement sequences can be controlled or regulated
WO2005102745A1 (en) Method for driving stability control for a vehicle
DE102009000576B4 (en) Method and device for chassis control of a motor vehicle
DE102020100531B4 (en) Method, computer program product and system for relieving kinetosis of a vehicle occupant as well as a motor vehicle equipped therewith
DE102020205702B3 (en) Driving dynamics control of a vehicle by means of dampers
EP2052887B1 (en) Method and system for affecting the movement of a vehicle structure on a powered vehicle and vehicle controlled or regulated by its movement processes
WO2020254126A1 (en) Method, computer program product and system for mitigating motion sickness of a vehicle occupant, and a motor vehicle equipped with same
EP2361815B1 (en) Active coupling between undercarriage and body of a motor vehicle
EP2052886A2 (en) Method and system for affecting the movement of a vehicle structure on a powered vehicle and vehicle controlled or regulated by its movement processes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR IT LI SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19980722

AKX Designation fees paid

Free format text: CH DE FR IT LI SE

RBV Designated contracting states (corrected)

Designated state(s): CH DE FR IT LI SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: TZN FORSCHUNGS- UND ENTWICKLUNGSZENTRUM UNTERLUESS

17Q First examination report despatched

Effective date: 20000907

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

ITF It: translation for a ep patent filed

Owner name: CALVANI SALVI E VERONELLI S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR IT LI SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM & CO. PATENTANWAELTE

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59703467

Country of ref document: DE

Date of ref document: 20010607

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: TZN FORSCHUNGS- UND ENTWICKLUNGSZENTRUM UNTERLUESS

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: ANF-INDUSTRIE

Free format text: ANF-INDUSTRIE#PLACE DES ATELIERS, 1#59154 CRESPIN (FR) -TRANSFER TO- ANF-INDUSTRIE#PLACE DES ATELIERS, 1#59154 CRESPIN (FR)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20110104

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20101224

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20101214

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20101228

Year of fee payment: 14

Ref country code: DE

Payment date: 20101222

Year of fee payment: 14

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120831

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59703467

Country of ref document: DE

Effective date: 20120703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111220

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120703

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120102