EP0859966A2 - Method for fixing the position, with respect to the direction and range, of a target with an ultrasonic transducer - Google Patents

Method for fixing the position, with respect to the direction and range, of a target with an ultrasonic transducer

Info

Publication number
EP0859966A2
EP0859966A2 EP96945703A EP96945703A EP0859966A2 EP 0859966 A2 EP0859966 A2 EP 0859966A2 EP 96945703 A EP96945703 A EP 96945703A EP 96945703 A EP96945703 A EP 96945703A EP 0859966 A2 EP0859966 A2 EP 0859966A2
Authority
EP
European Patent Office
Prior art keywords
signal
swfn
signals
measurement
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP96945703A
Other languages
German (de)
French (fr)
Inventor
Valentin Magori
Peter-Christian Eccardt
Heinrich Ruser
Martin Vossiek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0859966A2 publication Critical patent/EP0859966A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/296Acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/06Systems determining the position data of a target
    • G01S15/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/539Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section

Definitions

  • the invention relates to a method for determining the location and distance of a measurement object with an ultrasound transducer.
  • the object of the invention is to provide a method for determining the position and direction of a measurement object with a single, stationary ultrasound transducer.
  • the object is achieved by a method according to claim 1.
  • the measurement rate can be increased due to the short signal duration.
  • the method according to claim 7, in which a neural network is used offers the advantage that the evaluation rules and similarity criteria need not be known explicitly, but can be learned by the neural network in a training phase.
  • the fuzzy logic used in claim 10 to compare the filter signals has the advantage of being easily adaptable to the ambient conditions. Furthermore, the fuzzy logic is associated with a high degree of flexibility.
  • the method according to claim 11, in which a neural network is used to compare the filter signals, offers the advantage that the evaluation rules and similarity criteria do not have to be known explicitly, but can be learned by the neural network in a training phase.
  • Narrow-band signal components with different frequencies which are transmitted sequentially (compare claim 12), have the advantage over the broadband transmission signal that subsequent narrowband filtering to split the broadband received signal can be omitted.
  • FIG. 1 shows the dependency of an RU 80 converter on the excitation frequency and the solid angle
  • FIG. 2 shows the spectral transfer function of the RU 80 converter with the send / receive direction 0 °
  • FIG. 3 shows the spectral transfer function of the RU 80 converter with a send / receive direction of -3 °
  • FIG. 4 shows the spectral transfer function of the RU 80 converter with a send / receive direction of -6 °
  • Figure 5 shows the spectral transfer function of the RU 80 converter with a send / receive direction of -10 °.
  • FIG. 6 shows an exemplary measuring arrangement
  • FIG. 8 shows the directional characteristic of the RU 80 converter at 75 kHz
  • FIG. 9 shows the directional characteristic of the RU 80 converter at 80 kHz
  • FIG. 10 shows the directional characteristic of the RU 80 converter at 91 kHz
  • FIG. 11 four evaluation results of the Wiener filtering with a rod as a measurement object
  • FIG. 12 four evaluation results of the Wiener filtering with a plate as a measurement object.
  • FIG. 13 shows an example of the shape of a broadband transmitter
  • FIG. 14 shows a block diagram of a possible embodiment of the method according to the invention.
  • FIG. 15 shows a block diagram of a second possible embodiment of the method according to the invention.
  • the diagram relates to a razor-sharp ultrasonic transducer of the type RU-80, as described in the article V. Magori et al, Ultrasonic Presence Sensors with Wide Range and High Local Resolution, IEEE Transactions and Ultrasonics, Ferroelectrics and Frequency Control, Vol. UFFC-34, No. 2, March 1987.
  • the RU converter consists of a composite of a piezoceramic and a material with low acoustic impedance. This transducer is tuned in such a way that the radial resonance of the piezoceramic interferes constructively with the thickness resonance of the composite of ceramic and matching material. By attaching an aluminum ring, the thickness resonance is continued beyond the diameter of the piezoceramic. Due to the large transducer diameter compared to the wavelength, it is possible to achieve a very good directivity of the ultrasonic transducer.
  • the ultrasonic transducer described has the global maximum at a solid angle of 0 ° and a resonance frequency of approximately 80 kHz.
  • the converter has different eigenmodes which can be described by the superposition of fundamental and harmonics of the radial and thickness resonances.
  • the transducer was tuned so that there is a surface deflection on the useful frequency Edge slightly decreasing amplitude and constant phase without disturbing overlaps with radial resonances resulted.
  • the converter is usually operated in the narrow band on the useful mode (79 kHz) in order to achieve a defined directional behavior with little sidelobes.
  • vibration modes which surface deflection differs fundamentally from the forms of vibration at the useful frequency.
  • the directional diagrams resulting from the surface deflections of the ultrasonic transducer, cf. Figures 8, 9 and 10 are thus strongly dependent on the signal frequency. 8, 9 and 10, the radiation angle and the amplitude in the radial direction are plotted on the circumference.
  • the directional behavior shown in FIG. 8 is obtained at a transmission signal frequency of 75 kHz.
  • the main lobe of the measured ultrasonic transducer is approximately 3 °. Furthermore two side lobes are formed at approx. 10 and 355 °. If the converter is operated at 80 kHz, cf. 9, the amplitudes of the secondary maxima increase. The directional characteristic decreases. If the ultrasonic transducer is operated at 91 kHz, cf. Figure 10, the number of secondary sound lobes increases significantly. A clear main sound lobe is no longer given.
  • FIGS. 2 to 5 show the measured spectrum of the ultrasonic transducer, which results from the arrangement of a reflector at a solid angle of 0, 3, 6 or 10 degrees. The measured spectra differ significantly.
  • a reflector R is positioned at different spatial angles ⁇ with respect to the ultrasonic transducer USW
  • a sine burst with a sudden change in frequency is advantageous if the vibration modes of the ultrasonic transducer are far apart. The loss of energy can thereby be reduced.
  • a possible excitation signal is shown in FIG. 13.
  • the converter can be excited sequentially with a number of n sine bursts of different frequencies.
  • the advantage here is that by evaluating and comparing the n sequential received signal components of different frequencies (which correspond to a broadband signal in total), one can deduce the solid angle of the reflection, provided that the frequency-dependent directional behavior of the transducer is known.
  • the converter of the type RU80 has a usable transmission behavior for the frequency range from 70 to 90 kHz. Its resonance frequency is 80 kHz.
  • a reference object R is set up at a defined location in relation to the ultrasound transducer USW, ie the distance of the reference object to the ultrasound transducer USW and the spatial angle ⁇ are known.
  • the ultrasound transducer USW is excited with a broadband signal SS, also called a transmission signal, and is thus caused to emit ultrasound waves.
  • the ultrasound waves are partially reflected on the reference object R and received again by the ultrasound transducer USW.
  • This received signal which is also referred to as a reflected reference signal SROn, is used together with the location of the reference object.
  • SROn number of stored reference signals
  • the ultrasound transducer USW is in turn prompted with the broadband transmission signal SS to emit ultrasound waves, which are partially reflected on the measurement object MO and received by the ultrasound transducer USW.
  • This received ultrasound signal SMO is fed to Wiener filters WFn as an input signal.
  • the transfer functions of the Wiener filter WFn are characterized by the reference signals SROn.
  • the number n of reference signals SROn determines the number of Wiener filters WFn to which the measurement signal SMO is fed.
  • the filter output signals SWFn present at the Wiener filter outputs are then compared with a target signal W ( ⁇ ), which corresponds to the window function (will be explained in more detail below).
  • the filter output signals SWFn can also be compared with a so-called reference filter output signal SARef.
  • a reference signal SROn is fed to a Wiener filter WFn, the transfer function of which is specified by precisely this reference signal SROn.
  • the measurement signal SMO can also be fed to a Wiener filter, the transfer function of which is predetermined by this measurement signal.
  • the basic aim here is to generate a reference output signal SARef at the output of the Wiener filter, with which the filter output signals SWFn present at the other Wiener filter outputs can be compared.
  • the filter output signals SWFn can be compared with the target signal W ( ⁇ ) or the reference output signal SARef, for example by means of fuzzy logic (see FIG. 14) or a neural network (see FIG. 15).
  • Width of the filter output signal SWFn whereby not the entire width of the filter output signal, but the width of the main peak, which contains the global maximum, is used.
  • Possible evaluation strategies are a suitable weighting of these features, a combined evaluation with the next bar classifier or fuzzy rules or an assignment to object classes (membership classes) in neural networks.
  • the features that can be used to compare the filter output signals SWFn with the target signal W ( ⁇ ) or the reference output signal SARef are to be related to the respective application. Depending on the application, further features may have to be used.
  • the proposed Wiener filter acts like a matched filter for large signals and as a correlation filter for small signals (noise). If the measurement signal SMO corresponds to the reference signal SROn, this results in a maximum narrow output signal SWFn at the output of the Wiener filter.
  • the filter output signal SWFn which comes closest to the target signal W ( ⁇ ) or the reference output signal SARef, is used to infer the reference signal SROn relevant for generating this filter output signal SWFn. Since the location is also stored for this reference signal SROn, the location is thus determined.
  • the Wiener filter has the following transfer function I ( ⁇ ):
  • the quotient ⁇ s / ⁇ n as a measure of the signal-to-noise ratio can be for the frequency range of interest, which is determined by the adapted window function W ( ⁇ ) is cut out to be assumed to be constant.
  • FIG. 7 shows the signals as they are generated successively in time.
  • the pulse response of the ultrasound transducer USW in the time domain and below in the frequency domain is shown in FIG. 7 above. Again below this, the transfer function of the Wiener filter is shown as an example. It is characterized by the reference signal SROn.
  • the bottom diagram shows the filter output signal SWFn in the time domain after the Wiener filtering.
  • a reference object R is set up at a defined location with respect to the ultrasound transducer USW, i.e. the distance of the reference object to the ultrasonic transducer USW and the solid angle ⁇ are known.
  • the ultrasound transducer USW is now excited with a narrow-band signal SS, also called a transmission signal, and is thus caused to emit ultrasound waves.
  • SS narrow-band signal
  • the converter sequentially sends out a number of n sine bursts of different frequencies.
  • the ultrasonic waves are partially reflected on the reference object R and received again by the ultrasonic transducer USW.
  • the received signal has a total of a broadband signal.
  • the shape of the measurement signal SMO and the shapes of the reference signals SROn can be used directly for evaluation. A Wiener filter is no longer necessary. Based on the shape of the reference signal SROn, which comes closest to the shape of the measurement signal SMO, the location of the measurement object can be concluded.
  • An intelligent ultrasound level sensor with directionally selective echo evaluation can be implemented as an application.
  • fixed targets and deposits on the wall can be recognized in a silo.
  • the method can also be used in robotics, for example for obstacle detection in the direction of travel and to the side thereof.
  • the method can also be used in traffic engineering for vehicles as a reversing protection or as a parking aid.
  • the method can also be used to determine the position of an object on a conveyor belt.

Abstract

The invention relates to a method for fixing the position, with respect to direction and range, of a target using an ultrasonic transducer. The advantage of this measuring method is that it operates using only one ultrasonic transducer. A directionally selective sensor system can be produced with a minimum amount of technical outlay by activating the transducer in different operating modes.

Description

Beschreibungdescription
Verfahren zur richtungs- und entfernungsmaßigen Ortsbestim¬ mung eines Meßobjekts mit einem UltraschallwandlerMethod for determining the location and direction of a measurement object with an ultrasound transducer
Die Erfindung betrifft ein Verfahren zur richtungs- und ent- fernungsmaßigen Ortsbestimmung eines Meßobjekts mit einem Ul¬ traschallwandler.The invention relates to a method for determining the location and distance of a measurement object with an ultrasound transducer.
Aus V. Magori, H. Walker, Ultrasonic Presece Sensors with Wi¬ de Range and High Local Resolution, IEEE Transactions on Ul¬ trasonics, Ferroelectrics, and Frequency Control, Vol. UFFC- 34, Nr. 2, März 1987 ist bekannt, einen sogenannten RU 80 Ul¬ traschallwandler als Näherungssensor zu verwenden. Typische Anwendungen hierfür sind Objektdetektion, Objekthöhenbestim- mung, Überwachung von Fliesbändern, Kollisionskontrolle, Füllstandsmessung oder Erkennung der Anwesenheit von Perso¬ nen. Für diese Anwendungsfälle ist ein sogenannter rieht- scharfer Ultraschallwandler, beispielsweise der in der Druck- schrift beschriebene RU 80 Wandler geeignet. Typisch für die¬ sen Wandler ist die schmale Hauptschallkeule von ca. 5°, wie sie aus Figur 6 der Druckschrift zu entnehmen ist.From V. Magori, H. Walker, Ultrasonic Presece Sensors with Wi¬ de Range and High Local Resolution, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. UFFC-34, No. 2, March 1987 is known, to use a so-called RU 80 ultrasonic transducer as a proximity sensor. Typical applications for this are object detection, object height determination, monitoring of assembly lines, collision control, level measurement or detection of the presence of people. A so-called rear-sharp ultrasonic transducer, for example the RU 80 transducer described in the publication, is suitable for these applications. The narrow main sound lobe of approximately 5 °, as can be seen from FIG. 6 of the publication, is typical of this transducer.
Soll jedoch nicht nur die entfernungs- sondern auch die rich- tungsmaßige Bestimmung des Orts des Meßobjekts erfolgen, so ist, wie in A. Macovski, „Ultrasonic Imaging Using Arrays, Proceedings of the IEEE, Vol. 67, Nr. 4, API, beschrieben, ein Ultraschallwandler-Array, wie beispielsweise in Figur l der Druckschrift gezeigt, zu verwenden. Ein derartiges Array hat den Nachteil, daß es aus mehreren Einzelwandlern beteht, die getrennt betrieben werden müssen. Hierdurch ergibt sich neben dem hohen Kostenaufwand eine komplexe Ansteuerung und ein erhöhter Platzbedarf aufgrund der Bauform des Sensors. Die Montage ist komplizierter als die eines Einzelwandlersy- stems. Weiterhin ist ein Scan-System, das mechanisch bewegte Wandler verwendet aus E. Krestel, Bildgebende Systeme für die medizi¬ nische Diagnostik, 2 ed. Berlin, München: Siemens AG, 1988, bekannt. Nachteilig ist hier neben dem Aufwand zur mechani- sehen Bewegung der Wandler, der Verschleiß und die damit ver¬ bundene Störanfälligkeit bzw. der notwendige Wartungsaufwand.However, if the location of the measurement object is not only to be determined in terms of distance, but also in terms of direction, then, as in A. Macovski, “Ultrasonic Imaging Using Arrays, Proceedings of the IEEE, Vol. 67, No. 4, API, described to use an ultrasonic transducer array, such as shown in Figure 1 of the document. Such an array has the disadvantage that it consists of several individual converters that have to be operated separately. In addition to the high cost, this results in complex control and an increased space requirement due to the design of the sensor. The assembly is more complicated than that of a single converter system. Furthermore, a scan system that uses mechanically moved transducers is known from E. Krestel, Imaging Systems for Medical Diagnostics, 2 ed. Berlin, Munich: Siemens AG, 1988. In addition to the effort for the mechanical movement of the transducers, the disadvantages here are the wear and tear and the associated susceptibility to faults and the necessary maintenance effort.
Die Aufgabe der Erfindung ist es, ein Verfahren zur rich¬ tungs- und entfernungsmäßigen Ortsbestimmung eines Meßobjek- tes mit einem einzigen, stationären Ultraschallwandler anzu¬ geben.The object of the invention is to provide a method for determining the position and direction of a measurement object with a single, stationary ultrasound transducer.
Die Montage und Anordnung eines derartigen Systems kann vor¬ teilhafter Weise prinzipiell gleichartig wie bei konventio- nellen Ultraschall-Einzelwandlersystemen erfolgen.The assembly and arrangement of such a system can advantageously be carried out in principle in the same way as with conventional ultrasonic single-transducer systems.
Im Gegensatz zu einem Phased-Array ist der Platzbedarf gerin¬ ger und die Ansteureung einfacher.In contrast to a phased array, the space requirement is less and the control is simpler.
Die Aufgabe wird durch ein Verfahren gemäß dem Patentanspruch 1 gelöst.The object is achieved by a method according to claim 1.
Vorteilhafte Weiterbildungen ergeben sich aus den Unteran¬ sprüchen.Advantageous further developments result from the subclaims.
Wird gemäß Anspruch 2 ein breitbandiges Sendesignal benutzt, kann die Meßrate aufgrund der kurzen Signaldauer erhöht wer¬ den.If a broadband transmission signal is used according to claim 2, the measurement rate can be increased due to the short signal duration.
Es ist von Vorteil, zur Bestimmung der Ähnlichkeit des Ziel¬ signals und des Filterausgangssignals die im Anspruch 5 ange¬ gebenen Ähnlichkeitskriterien heranzuziehen, da diese durch elektronische Meßschaltungen (siehe z.B. U. Tietze und C. Schenk, Halbleiter-Schaltungstechnik, 9. Auflage Berlin, Hei- delberg, New York: Springer-Verlag, 1990, S. 852-885) oder auch per Software einfach bestimmbar sind und eine hohe Aus¬ sagekraft aufweisen. Die im Anspruch 6 zur Bestiiπmung des dem Zielsignal am näch¬ sten kommenden Filterausgangssignal herangezogene Fuzzy-Logik hat den Vorteil einer einfachen Adaptierbarkeit an die Umge- bungsbedingungen. Weiterhin ist mit der Fuzzy-Logik eine hohe Flexibilität verbunden.It is advantageous to use the similarity criteria specified in claim 5 to determine the similarity of the target signal and the filter output signal, since these are determined by electronic measuring circuits (see, for example, U. Tietze and C. Schenk, semiconductor circuit technology, 9th edition Berlin , Heidelberg, New York: Springer-Verlag, 1990, pp. 852-885) or can also be easily determined by software and are highly informative. The fuzzy logic used in claim 6 to determine the filter output signal that comes closest to the target signal has the advantage of being easily adaptable to the ambient conditions. Furthermore, the fuzzy logic is highly flexible.
Das Verfahren nach Anspruch 7, bei dem ein Neuronales Netz herangezogen wird, bietet den Vorteil, daß die Bewertungsre- geln und Ähnlichkeitskriterien nicht explizit bekannt sein müssen, sondern in einer Trainingsphase vom Neuronalen Netz erlernt werden können.The method according to claim 7, in which a neural network is used, offers the advantage that the evaluation rules and similarity criteria need not be known explicitly, but can be learned by the neural network in a training phase.
Die im Anspruch 10 zum Vergleich der Filtersignale herangezo- gene Fuzzy-Logik hat den Vorteil einer einfachen Adaptierbar¬ keit an die Umgebungsbedingungen. Weiterhin ist mit der Fuz¬ zy-Logik eine hohe Flexibilität verbunden.The fuzzy logic used in claim 10 to compare the filter signals has the advantage of being easily adaptable to the ambient conditions. Furthermore, the fuzzy logic is associated with a high degree of flexibility.
Das Verfahren nach Anspruch 11, bei dem ein Neuronales Netz zum Vergleich der Filtersignale herangezogen wird, bietet den Vorteil, daß die Bewertungsregeln und Ähnlichkeitskriterien nicht explizit bekannt sein müssen, sondern in einer Trai¬ ningsphase vom Neuronalen Netz erlernt werden können.The method according to claim 11, in which a neural network is used to compare the filter signals, offers the advantage that the evaluation rules and similarity criteria do not have to be known explicitly, but can be learned by the neural network in a training phase.
Schmalbandige Signalanteile mit verschiedenen Frequenzen, die sequentiell ausgesendet werden (vergleiche Anspruch 12) , ha¬ ben gegenüber dem breitbandigen Sendesignal den Vorteil, daß eine anschließende schmalbandige Filterung zur Zerlegung des breitbandigen Empfangssignals entfallen kann.Narrow-band signal components with different frequencies, which are transmitted sequentially (compare claim 12), have the advantage over the broadband transmission signal that subsequent narrowband filtering to split the broadband received signal can be omitted.
Die Erfindung wird im folgenden anhand mehrerer Figuren näher erläutert. Es zeigtThe invention is explained in more detail below with reference to several figures. It shows
Figur l die Abhängigkeit eines RU 80 Wandlers bezogen auf die Anregungsfrequenz und den Raumwinkel, Figur 2 die spektrale Übertragungsfunktion des RU 80 Wandlers bei der Sende-/Empfangsrichtung 0°,FIG. 1 shows the dependency of an RU 80 converter on the excitation frequency and the solid angle, FIG. 2 shows the spectral transfer function of the RU 80 converter with the send / receive direction 0 °,
Figur 3 die spektrale Übertragungsfunktion des RU 80 Wandlers bei einer Sende-/Empfangsrichtung von -3°,FIG. 3 shows the spectral transfer function of the RU 80 converter with a send / receive direction of -3 °,
Figur 4 die spektrale Übertragungsfunktion des RU 80 Wandlers bei einer Sende-/Empfangsrichtung von -6°,FIG. 4 shows the spectral transfer function of the RU 80 converter with a send / receive direction of -6 °,
Figur 5 die spektrale Übertragungsfunktion des RU 80 Wandlers bei einer Sende-/Empfangsrichtung von -10°.Figure 5 shows the spectral transfer function of the RU 80 converter with a send / receive direction of -10 °.
Figur 6 eine exemplarische Meßanordnung,FIG. 6 shows an exemplary measuring arrangement,
Figur 7 oben die Impulsantwort des Wandlers im Zeitbereich, im zweiten Diagramm von oben die Repräsentation im Frequenzbereich, im dritten Diagramm von oben die Übertragungsfunktion des Wiener-Filters und unten das Empfangssignal nach Wiener-Filterung im Zeitbereich,7 above the impulse response of the converter in the time domain, in the second diagram from above the representation in the frequency domain, in the third diagram from above the transfer function of the Wiener filter and below the received signal after Wiener filtering in the time domain,
Figur 8 die Richtcharakteristik des RU 80 Wandlers bei 75 kHz,FIG. 8 shows the directional characteristic of the RU 80 converter at 75 kHz,
Figur 9 die Richtcharakteristik des RU 80 Wandlers bei 80 kHz,FIG. 9 shows the directional characteristic of the RU 80 converter at 80 kHz,
Figur 10 die Richtcharakteristik des RU 80 Wandlers bei 91 kHz,FIG. 10 shows the directional characteristic of the RU 80 converter at 91 kHz,
Figur 11 vier Auswertungsergebnisse der Wiener-Filterung bei einer Stange als Meßobjekt,FIG. 11 four evaluation results of the Wiener filtering with a rod as a measurement object,
Figur 12 vier Auswertungsergebnisse der Wiener-Filterung bei einer Platte als Meßobjekt.FIG. 12 four evaluation results of the Wiener filtering with a plate as a measurement object.
Figur 13 beispielhaft die Form eines breitbandigen Sen¬ desinais, Figur 14 ein Blockschaltbild einer möglichen Ausgestaltungs- form des erfindungsgemäßen Verfahrens, undFIG. 13 shows an example of the shape of a broadband transmitter, FIG. 14 shows a block diagram of a possible embodiment of the method according to the invention, and
Figur 15 ein Blockschaltbild einer zweiten möglichen Ausge¬ staltungsform des erfindungsgemäßen Verfahrens.FIG. 15 shows a block diagram of a second possible embodiment of the method according to the invention.
Bei dem in Figur l dargestellten dreidimensionalen Diagramm sind auf den beiden Abszissen die Frequenz in kHz bzw. der Raumwinkel in Grad angegeben. Auf der Ordinate ist die Ampli¬ tude angetragen.In the three-dimensional diagram shown in FIG. 1, the frequency in kHz and the solid angle in degrees are indicated on the two abscissas. The amplitude is plotted on the ordinate.
Das Diagramm bezieht sich auf einen richtscharfen Ultra¬ schallwandler des Typs RU-80, wie er in dem Artikel V. Magori et al, Ultrasonic Presence Sensors with Wide Range and High Local Resolution, IEEE Transactions and Ultrasonics, Ferro- electrics and Frequency Control, Vol. UFFC-34, Nr. 2, März 1987 beschrieben ist. Der RU-Wandler besteht aus einem Ver¬ bund aus einer Piezokeramik und einem Material niedriger aku- stischer Impedanz. Dieser Wandler ist so abgestimmt, daß die Radialresonanz der Piezokeramik mit der Dickenresonanz des Verbunds aus Keramik und Anpaßmaterial konstruktiv interfer- riert. Durch Anbringung eines Aluminiumrings wird die Dicken¬ resonanz über den Durchmesser der Piezokeramik hinaus fortge- setzt. Durch den im Vergleich zur Wellenlänge großen Wandler¬ durchmesser ist es möglich, eine sehr gute Richtwirkung des Ultraschallwandlers zu erreichen.The diagram relates to a razor-sharp ultrasonic transducer of the type RU-80, as described in the article V. Magori et al, Ultrasonic Presence Sensors with Wide Range and High Local Resolution, IEEE Transactions and Ultrasonics, Ferroelectrics and Frequency Control, Vol. UFFC-34, No. 2, March 1987. The RU converter consists of a composite of a piezoceramic and a material with low acoustic impedance. This transducer is tuned in such a way that the radial resonance of the piezoceramic interferes constructively with the thickness resonance of the composite of ceramic and matching material. By attaching an aluminum ring, the thickness resonance is continued beyond the diameter of the piezoceramic. Due to the large transducer diameter compared to the wavelength, it is possible to achieve a very good directivity of the ultrasonic transducer.
Aus dem Diagramm ist entnehmbar, daß der beschriebene Ultra- schallwandler bei einem Raumwinkel von 0° und einer Resonanz¬ frequenz von ca. 80 kHz das globale Maximum aufweist. Wie aus dem Diagramm ersichtlich ist, weist der Wandler unterschied¬ liche Eigenmoden auf, die durch die Überlagerung von Grund - und Oberschwingungen der Radial- und Dickenresonanzen be- schrieben werden können. Der Wandler wurde so abgestimmt, daß sich auf der Nutzfrequenz eine Oberflächenauslenkung mit zum Rand hin leicht abfallender Amplitude und konstanter Phase ohne störende Überlagerungen mit Radialresonanzen ergab.It can be seen from the diagram that the ultrasonic transducer described has the global maximum at a solid angle of 0 ° and a resonance frequency of approximately 80 kHz. As can be seen from the diagram, the converter has different eigenmodes which can be described by the superposition of fundamental and harmonics of the radial and thickness resonances. The transducer was tuned so that there is a surface deflection on the useful frequency Edge slightly decreasing amplitude and constant phase without disturbing overlaps with radial resonances resulted.
Üblicherweise wird der Wandler schmalbandig auf dem Nutzmode (79 kHz) betrieben, um ein definiertes nebenkeulenarmes Richtverhalten zu erlangen.The converter is usually operated in the narrow band on the useful mode (79 kHz) in order to achieve a defined directional behavior with little sidelobes.
Neben dem Nutzmode gibt es auch Schwingungsmodi, deren Ober- flächenauslenkung sich grundlegend von den Schwingungsformen bei der Nutzfrequenz unterscheiden.In addition to the useful mode, there are also vibration modes whose surface deflection differs fundamentally from the forms of vibration at the useful frequency.
Die sich aus den Oberflächenauslenkungen des Ultraschallwand¬ lers ergebenden Richtdiagramme, vgl. Figur 8, 9 und 10, εind somit stark abhängig von der Signalfrequenz. In den Diagram- men Figur 8, 9 und 10 ist auf dem Kreisumfang jeweils der Ab¬ strahlwinkel und in radialer Richtung die Amplitude angetra¬ gen. Bei einer Sendesignalfrequenz von 75 kHz ergibt sich das in Figur 8 gezeigte Richtverhalten. Die Hauptkeule des ver¬ messenen Ultraschallwandlers liegt bei ca. 3°. Weiterhin wer- den zwei Nebenkeulen bei ca. 10 und 355° gebildet. Wird der Wandler bei 80 kHz betrieben, vgl. Figur 9, so nehmen die Amplituden der Nebenmaxima zu. Die Richtcharakteristik nimmt ab. Wird der Ultraschallwandler bei 91 kHz betrieben, vgl. Figur 10, so nimmt die Zahl der Nebenschallkeulen erheblich zu. Eine eindeutige Hauptschallkeule ist nicht mehr gegeben.The directional diagrams resulting from the surface deflections of the ultrasonic transducer, cf. Figures 8, 9 and 10 are thus strongly dependent on the signal frequency. 8, 9 and 10, the radiation angle and the amplitude in the radial direction are plotted on the circumference. The directional behavior shown in FIG. 8 is obtained at a transmission signal frequency of 75 kHz. The main lobe of the measured ultrasonic transducer is approximately 3 °. Furthermore two side lobes are formed at approx. 10 and 355 °. If the converter is operated at 80 kHz, cf. 9, the amplitudes of the secondary maxima increase. The directional characteristic decreases. If the ultrasonic transducer is operated at 91 kHz, cf. Figure 10, the number of secondary sound lobes increases significantly. A clear main sound lobe is no longer given.
In den Figuren 2 bis 5 ist das gemessene Spektrum des Ultra¬ schallwandlers dargestellt, welches sich aus der Anordnung eines Reflektors unter einem Raumwinkel von 0, 3, 6 bzw. 10 Grad ergibt. Die gemessenen Spektren unterscheiden sich si¬ gnifikant.FIGS. 2 to 5 show the measured spectrum of the ultrasonic transducer, which results from the arrangement of a reflector at a solid angle of 0, 3, 6 or 10 degrees. The measured spectra differ significantly.
Die Kenntnis der aus unterschiedlichen Raumwinkeln erwarteten Übertragungsspektren wird zur Richtungsbestimmung verwendet. Mögliche Vorgehensweisen zur Selektion werden im folgenden beschrieben. Ein Reflektor R wird unter verschiedenen Raum¬ winkeln φ bezogen auf den Ultraschallwandler USW positio- niert, vergleiche Figur 6. Die Signalanregung erfolgt durch einen Sinusburst mit einer über die Zeit kontinuierlich geän¬ derter (= chirp) oder sprunghaft geänderter Frequenz (= fre¬ quency Hop Codes) . Ein Sinusburst mit sprunghaft geänderter Freqeunz ist dann von Vorteil, wenn die Schwingungsmoden des Ultraschallwandlers weit auseinanderliegen. Der Energiever¬ lust läßt sich dadurch verkleinern. Ein mögliches Anregungs- signal ist in Figur 13 gezeigt.Knowledge of the transmission spectra expected from different solid angles is used to determine the direction. Possible selection procedures are described below. A reflector R is positioned at different spatial angles φ with respect to the ultrasonic transducer USW The signal is excited by a sine burst with a frequency that changes continuously over time (= chirp) or changes suddenly (= frequency hop codes). A sine burst with a sudden change in frequency is advantageous if the vibration modes of the ultrasonic transducer are far apart. The loss of energy can thereby be reduced. A possible excitation signal is shown in FIG. 13.
Ebenso kann der Wandler sequentiell mit einer Anzahl von n Sinusbursts unterschiedlicher Frequenz angeregt werden. Der Vorteil liegt hier darin, daß durch Auswertung und Vergleich der n sequentiellen Empfangssignalanteile unterschiedlicher Frequenz (die in Summe einem breitbandigen Signal entspre- chen) , auf den Raumwinkel der Reflexion geschlossen werden kann, sofern das frequenzabhängige Richtverhalten des Wandler bekannt ist.Likewise, the converter can be excited sequentially with a number of n sine bursts of different frequencies. The advantage here is that by evaluating and comparing the n sequential received signal components of different frequencies (which correspond to a broadband signal in total), one can deduce the solid angle of the reflection, provided that the frequency-dependent directional behavior of the transducer is known.
Der Wandler vom Typ RU80 weist für den Frequenzbereich von 70 bis 90 kHz ein nutzbares Übertragungsverhalten auf. Seine Re¬ sonanzfrequenz liegt bei 80 kHz.The converter of the type RU80 has a usable transmission behavior for the frequency range from 70 to 90 kHz. Its resonance frequency is 80 kHz.
Ausführungsbeispiel 1:Example 1:
Vergleiche hierzu die Figuren 14 und 15. Das erfindungsgemäße Verfahren arbeitet wie folgt:Compare FIGS. 14 and 15. The method according to the invention works as follows:
Ein Referenzobjekt R wird gegenüber dem Ultraschallwandler USW an einem definierten Ort aufgestellt, d.h. die Entfernung des Referenzobjekts zum Ultraschallwandler USW und der Raum¬ winkel φ sind bekannt. Nun wird der Ultraschallwandler USW mit einem breitbandigen Signal SS, auch Sendesignal genannt, angeregt und somit zur Abstrahlung von Ultraschallwellen ver¬ anlaßt. Die Ultraschallwellen werden teilweise am Referenzob- jekt R reflektiert und vom Ultraschallwandler USW wieder emp¬ fangen. Dieses Empfangssignal, das auch als reflektiertes Re¬ ferenzsignal SROn bezeichnet wird, wird zusammen mit dem Ort des Referenzobjekts gespeichert. Der oben beschriebene Vor¬ gang wird für verschiedene Orte wiederholt. Somit ergeben sich n Referenzsignale SROn (n = Anzahl der gespeicherten Re¬ ferenzsignale) , die später zur Parameterwahl der Wiener- Filter herangezogen werden.A reference object R is set up at a defined location in relation to the ultrasound transducer USW, ie the distance of the reference object to the ultrasound transducer USW and the spatial angle φ are known. Now the ultrasound transducer USW is excited with a broadband signal SS, also called a transmission signal, and is thus caused to emit ultrasound waves. The ultrasound waves are partially reflected on the reference object R and received again by the ultrasound transducer USW. This received signal, which is also referred to as a reflected reference signal SROn, is used together with the location of the reference object. The procedure described above is repeated for different locations. This results in n reference signals SROn (n = number of stored reference signals), which will later be used to select the parameters of the Wiener filter.
Wird nun in den Strahlengang des Ultraschallwandlers USW ein Meßobjekt MO gebracht, dessen Ort noch unbekannt ist, wird der Ultraschallwandler USW wiederum mit dem breitbandigen Sendesignal SS dazu veranlaßt, Ultraschallwellen auszusenden, welche teilweise am Meßobjekt MO reflektiert und vom Ultra¬ schallwandler USW empfangen werden. Dieses empfangene Ultra¬ schallsignal SMO wird Wiener-Filtern WFn als Eingangssignal zugeführt. Die Übertragungsfunktionen der Wiener-Filter WFn sind durch die Referenzsignale SROn gekennzeichnet. Die An¬ zahl n der Referenzsignale SROn bestimmt die Anzahl der Wie¬ ner-Filter WFn, denen das Meßsignal SMO zugeführt wird.If a measurement object MO, the location of which is still unknown, is now brought into the beam path of the ultrasound transducer USW, the ultrasound transducer USW is in turn prompted with the broadband transmission signal SS to emit ultrasound waves, which are partially reflected on the measurement object MO and received by the ultrasound transducer USW. This received ultrasound signal SMO is fed to Wiener filters WFn as an input signal. The transfer functions of the Wiener filter WFn are characterized by the reference signals SROn. The number n of reference signals SROn determines the number of Wiener filters WFn to which the measurement signal SMO is fed.
Die an den Wiener-Filterausgängen anliegenden Filterausgangs- Signale SWFn werden anschließend mit einem Zielsignal W(ω), welches der Fensterfunktion entspricht (wird im folgenden noch näher erläutert) verglichen.The filter output signals SWFn present at the Wiener filter outputs are then compared with a target signal W (ω), which corresponds to the window function (will be explained in more detail below).
An Stelle des Vergleichs der Filterausgangssignale SWFn mit dem Zielsignal W(ω) können die Filterausgangssignale SWFn auch mit einem sogenannten Referensfilterausgangssignal SARef verglichen werden. Dabei wird ein Referenzsignal SROn einem Wiener-Filter WFn zugeführt, dessen Übertragungsfunktion durch genau dieses Referenzsignal SROn vorgegeben ist. Alter- nativ kann auch das Meßsignal SMO einem Wiener-Filter zuge¬ führt werden, dessen Übertragungsfunktion durch dieses Meßsi¬ gnal vorgegeben ist. Ziel hierbei ist grundsätzlich, ein Re¬ ferenzausgangssignal SARef am Ausgang des Wiener-Filters zu erzeugen, mit dem die an den anderen Wiener-Filterausgängen anliegenden Filterausgangssignale SWFn verglichen werden kön¬ nen. Der Vergleich der Filterausgangssignale SWFn mit dem Zielsi¬ gnal W(ω) bzw. dem Referenzausgangssignal SARef kann bei¬ spielsweise mittels einer Fuzzy-Logik (vergleiche Figur 14) oder einem neuronalen Netzwerk (vergleiche Figur 15) erfol¬ gen.Instead of comparing the filter output signals SWFn with the target signal W (ω), the filter output signals SWFn can also be compared with a so-called reference filter output signal SARef. In this case, a reference signal SROn is fed to a Wiener filter WFn, the transfer function of which is specified by precisely this reference signal SROn. Alternatively, the measurement signal SMO can also be fed to a Wiener filter, the transfer function of which is predetermined by this measurement signal. The basic aim here is to generate a reference output signal SARef at the output of the Wiener filter, with which the filter output signals SWFn present at the other Wiener filter outputs can be compared. The filter output signals SWFn can be compared with the target signal W (ω) or the reference output signal SARef, for example by means of fuzzy logic (see FIG. 14) or a neural network (see FIG. 15).
Merkmale, die zum Vergleich des Zielsignals W(ω) bzw. des Re- ferenzausgangssignales SARef mit den Filterausgangssignalen SWFn verwendet werden können, sind folgende:Features that can be used to compare the target signal W (ω) or the reference output signal SARef with the filter output signals SWFn are as follows:
l. Symmetrie des Filterausgangssignales SWFn, wobei die Sym¬ metrieachse in das Hauptmaximum des Filterausgangssignals SWFn zu legen ist.l. Symmetry of the filter output signal SWFn, the axis of symmetry being placed in the main maximum of the filter output signal SWFn.
2. Breite des Filterausgangssignals SWFn, wobei dazu nicht die gesamte Breite des Filterausgangssignals, sondern die Breite des Hauptpeeks, welcher das globale Maximum beinhal¬ tet, herangezogen wird.2. Width of the filter output signal SWFn, whereby not the entire width of the filter output signal, but the width of the main peak, which contains the global maximum, is used.
3. Die Fläche unter der Hüllkurve des Filterausgangssignals SWFn.3. The area under the envelope of the filter output signal SWFn.
4. Der Quotient aus der Fläche unter dem Hauptpeek zum Rest der Fläche des Filterausgangssignals,4. The quotient from the area under the main peek to the rest of the area of the filter output signal,
5. Auswertung in Fensterbereichen bei mehreren Reflektoren,5. Evaluation in window areas with several reflectors,
6. Höhe und zeitliche Lage weiterer Nebenmaxima im Filteraus¬ gangssignal,6. The level and position of further secondary maxima in the filter output signal,
7. Mittelwert im Signal-und Rauschbereich,7. mean value in the signal and noise range,
8. Mittelwert für das gesamte Empfangssignal.8. Average value for the entire received signal.
Mögliche Auswertestrategien sind eine geeignete Wichtung die¬ ser Merkmale, eine kombinierte Auswertung mit nächster- Nach- bar-Klassifikator bzw. Fuzzy-Regeln oder eine Zuordnung zu Objektklassen (Zugehörigkeitsklassen) in Neuronalen Netzen.Possible evaluation strategies are a suitable weighting of these features, a combined evaluation with the next bar classifier or fuzzy rules or an assignment to object classes (membership classes) in neural networks.
Die Merkmale, die zum Vergleich der Filterausgangssignale SWFn mit dem Zielsignal W(ω) bzw. dem Referenzausgangssignal SARef herangezogen werden können, sind auf den jeweiligen An¬ wendungsfall zu beziehen. Je nach Anwendungsfall sind eventu¬ ell weitere Merkmale heranzuziehen.The features that can be used to compare the filter output signals SWFn with the target signal W (ω) or the reference output signal SARef are to be related to the respective application. Depending on the application, further features may have to be used.
Das vorgeschlagene Wiener-Filter wirkt für große Signale wie ein matched Filter, für kleine Signale (Rauschen) wie ein Korrelationsfilter. Damit ergibt sich bei Übereinstimmung deε Meßsignals SMO mit dem Referenzsignal SROn ein maximal schma- leε Ausgangssignal SWFn am Ausgang des Wiener-Filters.The proposed Wiener filter acts like a matched filter for large signals and as a correlation filter for small signals (noise). If the measurement signal SMO corresponds to the reference signal SROn, this results in a maximum narrow output signal SWFn at the output of the Wiener filter.
Über das Filterausgangssignal SWFn, das dem Zielsignal W(ω) bzw. dem Referenzausgangssignal SARef am nächsten kommt, wird auf das zur Erzeugung dieses Filterausgangssignals SWFn rele¬ vante Referenzsignal SROn geschlossen. Da zu diesem Referenz- signal SROn auch der Ort gespeichert ist, ist die Bestimmung des Ortes damit vollzogen.The filter output signal SWFn, which comes closest to the target signal W (ω) or the reference output signal SARef, is used to infer the reference signal SROn relevant for generating this filter output signal SWFn. Since the location is also stored for this reference signal SROn, the location is thus determined.
Das Wiener-Filter besitzt folgende Übertragungsfunktion I (ω) :The Wiener filter has the following transfer function I (ω):
Kω) = S*(ω) • W(ω)Kω) = S * (ω) • W (ω)
S(ω) S (ω) + — Φ-* ΦS (ω) S (ω) + - Φ- * Φ
wobei:in which:
S (ω) = Frequenzantwort deε Ultraεchallwandlers, φs = spektrale Leistungsdichte des Signales, Φn = spektrale Leistungsdichte des Rauschens,S (ω) = frequency response of the ultrasonic transducer, φ s = spectral power density of the signal, Φ n = spectral power density of the noise,
S*(ω) = konjugiert komplexe Frequenzantwort des Wandlers, W(ω) = Fensterfunktion = ZielfunktionS * (ω) = conjugate complex frequency response of the converter, W (ω) = window function = target function
Der Quotient Φs/φn als Maß für das Signal-zu-Rauschverhältnis kann für den interessierenden Frequenzbereich, der durch die angepaßte Fensterfunktion W(ω) herausgeschhnitten wird, als konstant angenommen werden.The quotient Φs / φ n as a measure of the signal-to-noise ratio can be for the frequency range of interest, which is determined by the adapted window function W (ω) is cut out to be assumed to be constant.
In Figur 7 sind die Signale, wie sie zeitlich aufeinanderfol- gend erzeugt werden, dargestellt. In Figur 7 oben ist die Im¬ pulsantwort des Ultraschallwandlers USW im Zeitbereich und darunter im Frequenzbereich gezeigt. Wiederum darunter ist beispielhaft die Übertragungsfunktion des Wienerfilters dar¬ gestellt. Sie ist durch das Referenzsignal SROn geprägt. Das unterste Diagramm zeigt das Filterausgangssignal SWFn im Zeitbereich nach der Wiener-Filterung.FIG. 7 shows the signals as they are generated successively in time. The pulse response of the ultrasound transducer USW in the time domain and below in the frequency domain is shown in FIG. 7 above. Again below this, the transfer function of the Wiener filter is shown as an example. It is characterized by the reference signal SROn. The bottom diagram shows the filter output signal SWFn in the time domain after the Wiener filtering.
Ausführungsbeispiel 2:Example 2:
Wie beim Ausführungsbeispiel 1 wird ein Referenzobjekt R ge¬ genüber dem Ultraschallwandler USW an einem definierten Ort aufgestellt, d.h. die Entfernung des Referenzobjekts zum Ul¬ traschallwandler USW und der Raumwinkel φ sind bekannt.As in embodiment 1, a reference object R is set up at a defined location with respect to the ultrasound transducer USW, i.e. the distance of the reference object to the ultrasonic transducer USW and the solid angle φ are known.
Anders als beim Ausführungsbeispiel 1 wird nun der Ultra¬ schallwandler USW mit einem schmalbandigen Signal SS, auch Sendesignal genannt, angeregt und somit zur Abstrahlung von Ultraschallwellen veranlaßt. Das heißt der Wandler sendet se¬ quentiell eine Anzahl von n Sinusbursts unterschiedlicher Frequenz aus.In contrast to exemplary embodiment 1, the ultrasound transducer USW is now excited with a narrow-band signal SS, also called a transmission signal, and is thus caused to emit ultrasound waves. This means that the converter sequentially sends out a number of n sine bursts of different frequencies.
Die Ultraschallwellen werden teilweise am Referenzobjekt R reflektiert und vom Ultraschallwandler USW wieder empfangen. Das Empfangssignal weist Cdie in Summe einem breitbandigen Signal entsprechen, auf. Dieses Empfangssignal, das auch als reflektiertes Referenzsignal SROn bezeichnet wird, wird zu¬ sammen mit dem Ort des Referenzobjekts gespeichert. Der oben beschriebene Vorgang wird für verschiedene Orte wiederholt. Somit ergeben sich n Referenzsignale SROn (n = Anzahl der ge- speicherten Referenzsignale) , die später zur Parameterwahl der Wiener-Filter herangezogen werden. Wird nun in den Strahlengang des Ultraschallwandlers USW ein Meßobjekt MO gebracht, desεen Ort noch unbekannt ist, wird der Ultraschallwandler USW wiederum mit dem schmalbandigen Sendesignal SS dazu veranlaßt, Ultraschallwellen auszusenden, welche teilweise am Meßobjekt MO reflektiert und vom Ultra¬ schallwandler USW empfangen werden. Dieses empfangene Ultra¬ schallsignal SMO weist n sequentielle Empfangssignalanteile unterschiedlicher Frequenz auf.The ultrasonic waves are partially reflected on the reference object R and received again by the ultrasonic transducer USW. The received signal has a total of a broadband signal. This received signal, which is also referred to as the reflected reference signal SROn, is stored together with the location of the reference object. The above process is repeated for different locations. This results in n reference signals SROn (n = number of stored reference signals), which will later be used to select the parameters of the Wiener filter. If a measurement object MO is brought into the beam path of the ultrasound transducer USW whose location is still unknown, the ultrasound transducer USW is again prompted with the narrow-band transmission signal SS to emit ultrasound waves, which are partially reflected on the measurement object MO and received by the ultrasound transducer USW. This received ultrasonic signal SMO has n sequential received signal components of different frequencies.
Zur Auswertung können direkt die Form des Meßsignals SMO und die Formen der Referenzsignale SROn verwendet werden. Ein Wiener-Filter ist nicht mehr notwendig. Anhand der Form des Referenzsignals SROn, die der Form des Meßsignals SMO am nächsten kommt, kann auf den Ort des Meßobjekts geschlossen werden.The shape of the measurement signal SMO and the shapes of the reference signals SROn can be used directly for evaluation. A Wiener filter is no longer necessary. Based on the shape of the reference signal SROn, which comes closest to the shape of the measurement signal SMO, the location of the measurement object can be concluded.
Auswertungskriterien hierfür können sein:Evaluation criteria for this can be:
1. Differenz des Betragsεektrums zwischen Referenzsignal SROn und Meßsignal SMO.1. Difference in the magnitude spectrum between the reference signal SROn and the measurement signal SMO.
2. Differenz der charakteristischen Amplituden (zum Beispiel die drei ausgeprägtesten Amplituden, die durch die Schwin¬ gungsmoden des Ultraschallwandlers gegeben sind) .2. Difference in the characteristic amplitudes (for example the three most pronounced amplitudes which are given by the vibration modes of the ultrasound transducer).
3. Signalbreite des Meßsignals SMO bezogen auf die Signal¬ breiten der Referenzsignale SROn3. Signal width of the measurement signal SMO based on the signal widths of the reference signals SROn
4. Grundεätzlich alle Charakteristika, die die Form der Si- gnale beschreiben.4. Basically all characteristics that describe the form of the signals.
Ausfürhrungsbeispiel 3:Execution example 3:
Es kann breitbandig gesendet und schmalbandig gefiltert wer- den. Der Vorteil besteht darin, daß gegenüber dem Ausfüh¬ rungsbeispiel 2 schneller gemessen werden kann, weil die Sen- deεignaldauer kürzer wird. Allerdingε ist eine schmalbandige Filterung zur Frequenztrennung notwendig. Die Anzahl der Fil¬ ter hängt von der Anwendung ab.It can be sent in broadband and filtered in narrowband. The advantage is that compared to embodiment 2, measurements can be carried out more quickly because the transmission signal duration is shorter. However, it is a narrow band Filtering for frequency separation necessary. The number of filters depends on the application.
Erkannt werden können Einzelreflektoren in unterschiedlichen Winkeln.Individual reflectors can be recognized at different angles.
Als Anwendungsfall ist ein intelligenter Ultraschall-Füll- standssenεor mit richtungεselektiver Echobewertung realisier- bar. So können beispielsweise in einem Silo Festziele und Ab¬ lagerungen an der Wand erkannt werden können.An intelligent ultrasound level sensor with directionally selective echo evaluation can be implemented as an application. For example, fixed targets and deposits on the wall can be recognized in a silo.
Weiterhin ist das Verfahren in der Robotik, beispielsweise zur Hinderniserkennung in Fahrtrichtung und seitlich dazu, verwendbar.The method can also be used in robotics, for example for obstacle detection in the direction of travel and to the side thereof.
Ebenso kann das Verfahren in der Verkehrstechnik bei Fahrzeu¬ gen als Rückfahrschutz oder als Einparkhilfe eingeεetzt wer¬ den.The method can also be used in traffic engineering for vehicles as a reversing protection or as a parking aid.
Auch zur Bestimmung der Lage eines Objekts auf einem Förder¬ band kann das Verfahren herangezogen werden. The method can also be used to determine the position of an object on a conveyor belt.

Claims

Patentansprüche claims
1. Verfahren zur richtungs- und entfernungsmäßigen Ortsbe- εtimmung eines Meßobjekts mit einem Ultraschallwandler,1. Method for determining the direction and distance of a measurement object with an ultrasound transducer,
1.1 bei dem zur Referenzmessung l.l.l der Ultraschallwandler (USW) mit einem Sendesignal (SS) angeregt wird,1.1 in which the ultrasonic transducer (USW) is excited with a transmission signal (SS) for reference measurement l.l.l,
1.1.2 ein von einem Referenzobjekt (RO) reflektiertes Refe¬ renzsignal (SROn) am Ultraschallwandler (USW) empfangen und mit dem zugehörigen Ort gespeichert wird, 1.1.3 die Schritte 1.1.1 und 1.1.2 für verεchiedene Orte des Referenzobjekts (RO) wiederholt werden,1.1.2 a reference signal (SROn) reflected by a reference object (RO) is received at the ultrasound transducer (USW) and stored with the associated location, 1.1.3 steps 1.1.1 and 1.1.2 for different locations of the reference object (RO ) be repeated,
1.2 bei dem der Ultraschallwandler (USW) mit dem Sendeεi- gnal (SS) angeregt wird,1.2 in which the ultrasound transducer (USW) is excited with the transmission signal (SS),
1.3 bei dem daε vom Meßobjekt (MO) reflektierte Meßsignal (SMO) am Ultraschallwandler (USW) empfangen und gespeichert wird,1.3 when the measurement signal (SMO) reflected by the measurement object (MO) is received and stored on the ultrasound transducer (USW),
1.4 bei dem durch eine Auswertung der Form des Meßsignals (SMO) und der Formen der Referenzsignale (SROn) auf die Richtung und die Entfernung geschlossen wird.1.4 in which an evaluation of the shape of the measurement signal (SMO) and the shapes of the reference signals (SROn) is used to infer the direction and the distance.
2. Verfahren nach Anspruch 1, bei dem daε Sendesignal (SS) ein breitbandiges Signal ist.2. The method according to claim 1, in which the transmission signal (SS) is a broadband signal.
3. Verfahren nach Anspruch 1 oder 2, bei dem die Auswertung der Form deε Meßsignals (SMO) und der Formen der Referenzsignale (SROn) dadurch geschiet, daß die Form des Meßsignals (SMO) mit den Formen der Referenz¬ signale (SROn) verglichen wird. 3. The method according to claim 1 or 2, in which the evaluation of the shape of the measurement signal (SMO) and the shapes of the reference signals (SROn) occurs in that the shape of the measurement signal (SMO) is compared with the shapes of the reference signal (SROn) becomes.
4. Verfahren nach Anspruch 1 oder 2, bei dem die Auswertung der Form deε Meßsignals (SMO) und der Formen der Referenzsignale (SROn) dadurch geschiet,4. The method as claimed in claim 1 or 2, in which the evaluation of the shape of the measurement signal (SMO) and the shape of the reference signals (SROn) occurs as a result,
- daß mittels dem Meßsignal (SMO) , das Wiener-Filtern (WFn) zugeführt wird, deren Übertragungseigenschaften durch je¬ weils eineε der Referenzsignale (SROn) vorgegeben sind, Filterausgangεεignale (SWFn) gebildet werden,that filter output signals (SWFn) are formed by means of the measurement signal (SMO) supplied to Wiener filter (WFn), the transmission properties of which are predetermined by one of the reference signals (SROn),
- daß über dasjenige Referenzsignal (SROn) , das zu demjeni¬ gen Filterausgangssignal (SWFn) korrespondiert, das einem Zielsignal (W(ω)) am nächsten kommt, auf den Ort des Meßob¬ jekts (MO) geschloεεen wird.- That the reference signal (SROn) that corresponds to the filter output signal (SWFn) that comes closest to a target signal (W (ω)) is used to infer the location of the measurement object (MO).
5. Verfahren nach Anεpruch 4, bei dem zur Bestimmung des dem Zielεignal (W(ω)) am näch- εten kommenden Filterausgangssignals (SWFn) die Symmetrie der Filterausgangssignale (SWFn) zu deren Maximum oder/und die Breite der AusgangsSignale (SWFn) um deren Maximum oder/und die Fläche unter der Hüllkurve des Ausgangεεignals (SWFn) oder/und der Quotient aus Fläche unter dem Maximum zum Rest der Fläche der Ausgangεεignale (SWFn) herangezogen wird.5. The method according to claim 4, in which the symmetry of the filter output signals (SWFn) is maximized and / or the width of the output signals (SWFn) is determined in order to determine the filter output signal (SWFn) that comes closest to the target signal (W (ω)) whose maximum or / and the area under the envelope of the output signal (SWFn) or / and the quotient of area below the maximum to the rest of the area of the output signals (SWFn) is used.
6. Verfahren nach Anεpruch 4 oder 5, bei dem mittels einer Fuzzy-Logik das dem Zielεignal (W(ω)) am nächsten kommende Filterausgangssignal (SWFn) bestimmt wird.6. Method according to claim 4 or 5, in which the filter output signal (SWFn) closest to the target signal (W (ω)) is determined by means of fuzzy logic.
7. Verfahren nach Anspruch 4 oder 5, bei dem mittels einem Neuronalen Netzwerk das dem Zielsi¬ gnal (W(ω)) am nächεten kommenden Filterauεgangεεignal (SWFn) beεtimmt wird. 7. The method according to claim 4 or 5, in which by means of a neural network the target signal (W (ω)) coming next filter output signal (SWFn) is determined.
8. Verfahren nach Anspruch 2,8. The method according to claim 2,
- bei dem das Meßsignal (SMO) mit mehreren schmalbandigen Filtern gefiltert und die Filtersignale (SMOn) gespeichert werden, - bei dem die Filtersignale (SMOn) untereinander und mit dem Riehtverhalten deε Wandlers in Bezug gesetzt werden, um so auf den Ort des Meßobjekts (MO) zu schließen.- in which the measurement signal (SMO) is filtered with several narrow-band filters and the filter signals (SMOn) are stored, - in which the filter signals (SMOn) are related to one another and to the behavior of the transducer in order to determine the location of the measurement object ( MO) to close.
9. Verfahren nach Anspruch 8, bei dem zum Vergleich der Filtersignale (SMOn) die zeitli- ehe Lage und/oder die Amplitude und/oder die Fläche unter der Hüllkurve des Meßsignals (SMO) herangezogen wird.9. The method according to claim 8, in which the time-related position and / or the amplitude and / or the area under the envelope of the measurement signal (SMO) is used to compare the filter signals (SMOn).
10. Verfahren nach Anspruch 8 oder 9, bei dem mittels einer Fuzzy-Logik der Vergleich der Filter¬ signale(SMOn) durchgeführt wird, um εo auf den Ort deε Meß- Objekts (MO) zu schließen.10. The method according to claim 8 or 9, in which the comparison of the filter signals (SMOn) is carried out by means of fuzzy logic in order to conclude εo on the location of the measurement object (MO).
11. Verfahren nach Anspruch 8 oder 9, bei dem mittels eines Neuronalen Netzes der Vergleich der Filtersignale (SMOn) durchgeführt wird, um εo auf den Ort deε Meßobjektε (MO) zu εchließen.11. The method according to claim 8 or 9, in which the comparison of the filter signals (SMOn) is carried out by means of a neural network in order to conclude εo on the location of the measurement object (MO).
12. Verfahren nach Anspruch l oder 3 - 7, bei dem das Sendeεignal (SS) εequentiell auftretende schmalbandige Signalanteile aufweiεt, welche εich durch ih¬ re Frequenz unterεcheiden. 12. The method according to claim 1 or 3 - 7, in which the transmission signal (SS) has narrow-band signal components which occur sequentially and which differ by their frequency.
EP96945703A 1995-11-07 1996-11-04 Method for fixing the position, with respect to the direction and range, of a target with an ultrasonic transducer Withdrawn EP0859966A2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE1995141459 DE19541459A1 (en) 1995-11-07 1995-11-07 Method for determining the direction and distance of a measurement object with an ultrasonic transducer
DE19541459 1995-11-07
PCT/DE1996/002095 WO1997017624A2 (en) 1995-11-07 1996-11-04 Method for fixing the position, with respect to the direction and range, of a target with an ultrasonic transducer

Publications (1)

Publication Number Publication Date
EP0859966A2 true EP0859966A2 (en) 1998-08-26

Family

ID=7776829

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96945703A Withdrawn EP0859966A2 (en) 1995-11-07 1996-11-04 Method for fixing the position, with respect to the direction and range, of a target with an ultrasonic transducer

Country Status (4)

Country Link
EP (1) EP0859966A2 (en)
JP (1) JPH11504430A (en)
DE (1) DE19541459A1 (en)
WO (1) WO1997017624A2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6684696B2 (en) 2000-08-17 2004-02-03 Vega Grieshaber, Kg Filling-level measuring device that evaluates echo signals
DE102010015077B4 (en) * 2010-04-15 2013-01-31 Valeo Schalter Und Sensoren Gmbh Method for detecting an object, driver assistance device and vehicle with a driver assistance device
DE102010028829A1 (en) 2010-05-11 2011-11-17 Robert Bosch Gmbh Method and device for determining the position of an object relative to a vehicle, in particular a motor vehicle, for use in a driver assistance system of the vehicle
CN101907708B (en) * 2010-07-23 2013-03-20 哈尔滨工程大学 Method for measuring target echo bright spots
DE102014222076A1 (en) * 2014-10-29 2016-05-04 Robert Bosch Gmbh Object features coded on signal form
DE102015201770B3 (en) * 2015-02-02 2016-05-25 Robert Bosch Gmbh Device for determining the position of an object relative to a vehicle
DE102015007641B4 (en) * 2015-06-17 2018-12-13 Baumer Electric Ag Method for measuring the distance of an object by means of an ultrasonic sensor
GB201514249D0 (en) 2015-08-12 2015-09-23 Trw Ltd Processing received radiation reflected from a target
GB2557357B (en) 2016-12-08 2022-09-07 Trw Ltd Processing a signal representitive of at least one physical property of a physical system
DE102018214294B4 (en) * 2018-08-23 2022-07-14 Vitesco Technologies GmbH Method for operating a fluid sensor device and fluid sensor device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4052559A (en) * 1976-12-20 1977-10-04 Rockwell International Corporation Noise filtering device
DE3932499A1 (en) * 1989-09-28 1991-04-11 Siemens Ag Position measurement of parts by ultrasonic echo signal evaluation - using transmission signal shaped or relaxation profile of correctly positioned part
DE4406525C2 (en) * 1994-02-28 1996-10-24 Siemens Ag Method for determining the position of an object relative to the background using ultrasound

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9717624A3 *

Also Published As

Publication number Publication date
DE19541459A1 (en) 1997-05-15
WO1997017624A2 (en) 1997-05-15
JPH11504430A (en) 1999-04-20
WO1997017624A3 (en) 1997-08-14

Similar Documents

Publication Publication Date Title
DE19756730B4 (en) A method, apparatus and applications for combining transmit wave functions to obtain a synthetic waveform in an ultrasound imaging system
DE4406525C2 (en) Method for determining the position of an object relative to the background using ultrasound
DE19932246C2 (en) Radar for the precise determination of false targets
EP0533220B1 (en) Target distinction method, especially for HPRF Doppler radar
DE102015006032B4 (en) Ultrasonic detection device and detection method therefor
WO1997017624A2 (en) Method for fixing the position, with respect to the direction and range, of a target with an ultrasonic transducer
DE10195735T5 (en) Ultrasonic transducer system and method for harmonic imaging
DE19734180A1 (en) Pulsing receiver e.g. for ultrasonic diagnostic apparatus
EP1028323A2 (en) Method for signal generation and processing in pulse radars
EP0882244A1 (en) Method for the formation of radiated beams in direction finder systems
EP1001275B1 (en) Apparatus for determining the angle of incidence of incoming time limited sound waves
DE102020008021A1 (en) Process for broadband transmission and reception of complex ultrasonic bursts in the vicinity of vehicles
DE102020008022A1 (en) Method for emitting ultrasonic bursts with distance-dependent 2l / c shortening of the ultrasonic burst distance
DE102020008025A1 (en) Device for receiving more complex ultrasonic bursts with several ultrasonic transducers
DE102020008019A1 (en) Device for emitting ultrasonic bursts with increased bandwidth
DE102020008031A1 (en) Device for receiving ultrasonic bursts with a common ultrasonic reception signal from several ultrasonic transducers
DE102020008028A1 (en) Device for emitting an ultrasonic burst, in which the bandwidth is greater than the bandwidth of an ultrasonic transducer
DE102020008020A1 (en) Method for changing the amplitude of an ultrasonic burst as a function of the distance
DE102020008034A1 (en) Method for emitting ultrasonic bursts with decreasing ultrasonic burst spacing with decreasing distance
DE102020008024A1 (en) Method of increasing the ultrasonic burst length as a function of the distance
DE102020008023A1 (en) Device for emitting ultrasonic bursts with a common control signal for the ultrasonic transducers
DE102020008029A1 (en) Method for emitting several ultrasonic bursts with a distance-dependent ultrasonic burst spacing
DE102020008033A1 (en) Method for emitting an ultrasonic burst with a distance-dependent number of ultrasonic instantaneous frequencies
DE102020008017A1 (en) Method for transmitting more complex ultrasonic bursts with two ultrasonic transducers
DE102020008027A1 (en) Device for transmitting and receiving ultrasonic bursts by means of triangularly arranged ultrasonic transducers

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980420

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE FR GB LI

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20000711