EP0852001A1 - Improved fluid meter comprising a repulsive magnetic drive - Google Patents

Improved fluid meter comprising a repulsive magnetic drive

Info

Publication number
EP0852001A1
EP0852001A1 EP96931861A EP96931861A EP0852001A1 EP 0852001 A1 EP0852001 A1 EP 0852001A1 EP 96931861 A EP96931861 A EP 96931861A EP 96931861 A EP96931861 A EP 96931861A EP 0852001 A1 EP0852001 A1 EP 0852001A1
Authority
EP
European Patent Office
Prior art keywords
driven
driven part
driving
meter
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP96931861A
Other languages
German (de)
French (fr)
Inventor
Lionel Haudebert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Itron Soluciones de Medida Espana SA
Schlumberger SA
Original Assignee
Itron Soluciones de Medida Espana SA
Schlumberger SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Itron Soluciones de Medida Espana SA, Schlumberger SA filed Critical Itron Soluciones de Medida Espana SA
Publication of EP0852001A1 publication Critical patent/EP0852001A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/007Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus comprising means to prevent fraud
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/02Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using mechanical means
    • G01D5/06Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using mechanical means acting through a wall or enclosure, e.g. by bellows, by magnetic coupling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/06Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects using rotating vanes with tangential admission
    • G01F1/075Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects using rotating vanes with tangential admission with magnetic or electromagnetic coupling to the indicating device
    • G01F1/0755Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects using rotating vanes with tangential admission with magnetic or electromagnetic coupling to the indicating device with magnetic coupling only in a mechanical transmission path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/06Indicating or recording devices
    • G01F15/065Indicating or recording devices with transmission devices, e.g. mechanical
    • G01F15/066Indicating or recording devices with transmission devices, e.g. mechanical involving magnetic transmission devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F3/00Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow
    • G01F3/02Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow with measuring chambers which expand or contract during measurement
    • G01F3/04Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow with measuring chambers which expand or contract during measurement having rigid movable walls
    • G01F3/06Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow with measuring chambers which expand or contract during measurement having rigid movable walls comprising members rotating in a fluid-tight or substantially fluid-tight manner in a housing
    • G01F3/08Rotary-piston or ring-piston meters

Definitions

  • the invention relates to a fluid meter comprising a member for measuring the volume of fluid passing through said meter and a magnetic drive of the repulsion type consisting of a so-called driving part linked to said measuring member and a so-called driven part, both being located opposite each other and movable in rotation about an axis, and during normal operation, the movement of the driving part causing the driven part to rotate.
  • Fluid meters with magnetic drive generally consist of a measuring chamber to which are connected a supply and an evacuation of fluid and in which is installed a device for measuring the volume of fluid which is set in rotational movement around an axis when the fluid circulates in said measurement chamber.
  • the measuring member transmits its rotational movement to a totalizer which is separated from the latter by a sealed wall, by means of a magnetic drive consisting, on the one hand, of a so-called driving part linked to said measuring member and, on the other hand, a so-called driven part placed on the other side of said sealed wall with respect to the driving part.
  • the driven part of the magnetic drive is linked to one (or more) gear train (s) of the totalizer and is set in motion under the action of magnetic forces generated by the driving and driven parts and the rotational movement of the measuring device.
  • gear train s
  • the magnetic drive is of the face-to-face and repulsion type, that is to say that the driving and driven parts are axially aligned along an axis and mobile in rotation around this axis. These parts are opposite one another, and operate according to the principle of magnetic repulsion, a north pole or a south pole of a magnet of one of the parts cooperating with a pole of the same kind of a magnet from the other party.
  • the Applicant has thus been able to observe on installed water meters whose axis of the driving and driven parts is not vertical, that sometimes the acceleration of the measuring member, due for example to instantaneous water consumption very important, and therefore the acceleration of the driving part of the magnetic drive is such that the driven part of said magnetic drive cannot follow the movement of the driving part.
  • the Applicant has also been able to observe this dropout phenomenon on counters in which the weight of the driven part is less than the magnetic repulsion force developed by the driving and driven parts, when the torque transmitted by the magnetic drive is zero and for which the axis of said driving and driven parts of the magnetic drive occupies a vertical position.
  • Document DE 32 32 649 discloses a water meter with magnetic drive comprising a turbine equipped with the driving part of the magnetic drive, the driven part of said magnetic drive being carried by a shaft aligned with the axis of the turbine and positioned on the other side of a sealed wall.
  • the driving part of the magnetic drive is connected to the axis of the turbine by means of a spring wound around said axis and which has the function of delaying the acceleration of the turbine in response to a rapid increase in the flow rate. of water, by absorbing the acceleration energy of said turbine before its transmission to the driving part.
  • the acceleration energy of the turbine is absorbed by the spring.
  • Also known from document DE 24 55 266 is a fluid meter equipped with a spring which aims to ensure an exact magnetic drive during a sudden acceleration of the turbine in order to avoid the stall phenomenon.
  • the spring has the function of absorbing the acceleration energy of the turbine before its transmission to the driving part.
  • the counter described in this document has the same drawbacks as that described in the first document.
  • the presence of these springs in the counters described in these documents can cause vibration phenomena which affect the proper functioning of the counters.
  • the present invention therefore aims to solve simply and effectively the problem associated with the phenomenon of the stall of the magnetic drive of the fluid meters, when this phenomenon appears.
  • the present invention thus relates to a fluid meter comprising a member for measuring the volume of fluid passing through said meter and a magnetic drive of the repulsion type consisting of a so-called driving part linked to said measuring member and a so-called driven part. , both being located opposite one another and movable in rotation about an axis, and during normal operation, the movement of the driving part causing the driven part to rotate, characterized in that the driven part can move along of the axis and, when said driven part does not follow the movement of the driving part, it is subjected to the action of magnetic forces of variable axial repulsion on the part of the latter which tend to move it away, the part driven being, in this remote position, subjected to the action of an elastic part which, when it deforms, tends to bring said driven part closer to the driving part, the driven part being thus alternately subjected to forces in opposite directions until said driven part acquires the same speed of rotation as that of the driving part.
  • the driven part is connected to a shaft aligned with the axis and one end of which, opposite to that near which said driven part is located, comes into contact with the elastic part. In order not to create excessively high friction during contact between the end of the axis and the elastic piece, said end of the axis forms a point.
  • the tip is in contact with a flat surface of the elastic piece.
  • the elastic part has a stiffness K verifying the relationship:
  • Nd represents the minimum speed of rotation of the driving part from which the driven part no longer follows the movement of said driving part in the case where the driving part is subjected to a strong acceleration and when the elastic part is not present
  • N1 and N2 respectively represent the number of dipole magnets of the driving and driven parts
  • max (N1, N2) denotes the greater of the two numbers N1 and N2.
  • the calibration of the elastic part is included in the field
  • the elastic piece is for example a flexible strip.
  • the elastic piece can also be a spring. According to still other preferred characteristics of the invention:
  • the axial displacement of the driven part is greater than 8% of the axial distance between the driving and driven parts when the latter have the same speed of rotation, 1338 PC17FR96 / 01443
  • the stop is integral with the shaft of the driven part and cooperates with a fixed part of said counter
  • the stop is arranged diametrically opposite the driven part with respect to the elastic piece in order to limit the deformation of said elastic piece.
  • the measuring member is for example a turbine whose axis of rotation coincides with the axis of rotation of the driving and driven parts.
  • the fluid meter may be of the single jet or multiple jet type.
  • the measuring member can, for example, move inside a measuring chamber in a cyclic movement by trapping a volume of fluid determined during each cycle.
  • FIG. 1 is a schematic view in longitudinal section of a fluid meter according to an embodiment of the invention
  • FIG. 1a is an enlarged schematic view of part of the fluid meter of FIG. 1 on which the end 52b of the shaft 52 and the elastic part 60 are shown,
  • FIG. 2 is a schematic view in longitudinal section of a fluid meter according to another embodiment of the invention.
  • a single jet water meter comprises a measuring member 12 which is in the form of a turbine disposed inside a measuring chamber 14 and which is rotated about a longitudinal axis XX 'under the action of a flow of water in said chamber.
  • the water meter of Figure 1 is installed in a position such that the longitudinal axis XX "is horizontal.
  • the measurement chamber 14 is connected to a water supply 16 and to a water discharge 18 which are offset with respect to the section plane of FIG. 1.
  • the turbine 12 is formed by a central hub 20 to which are attached several blades 22 regularly distributed around its periphery.
  • the central hub 20 is extended at one of its so-called lower ends by a collar 20a.
  • the function of this flange is to promote the lifting of the turbine 12 at high flow rates, that is to say for example greater than 200 l / h, so as not to degrade the point of the pivot 24 on which said turbine rests and which contributes to giving the meter its sensitivity to low flow rates.
  • the central hub 20 is extended at its opposite end called the upper end by a shaft 20b which is equipped with a magnet support 26 constituting the driving part of the magnetic drive of the counter.
  • the measurement chamber 14 is delimited by two opposite end walls 28, 30 of which one of these walls 28 receives in its central part, the magnet support 26.
  • the shaft 20b is guided in rotation around a pivot 31 secured to the wall 28.
  • Radial ribs 32 are fixed to the wall 28 by means of a wall element 34 drilled in the middle to receive the shaft 20b of the hub of the turbine 12.
  • the other opposite end wall 30 receives an element wall 36 on which the pivot 24 is mounted and to which radial ribs 38 are fixed.
  • the water meter 10 also includes a totalizer 40 disposed above the measurement chamber 14, when the axis XX 'of said meter is vertical, and delimited at its lower part by a partition 42.
  • a mobile magnet holder 44 is disposed inside the totalizer 40 and constitutes the driven part of the magnetic drive of the counter.
  • the driving part and the driven part are arranged opposite one another and are movable in rotation around the axis of rotation XX ′ of the turbine 12.
  • the partition 42 and the end wall 28 provide between them a space 46 of generally annular shape surrounding the driving part 26 of the magnetic drive.
  • Another part made of magnetic material 50 of the same shape but inverted with respect to the part 48 is placed around the driven part 44.
  • the two half-cups 48, 50 thus form a protection of the driving and led parts vis-à-vis a magnetic field external to the meter.
  • the driving and driven parts are respectively each made up of an even number N1, N2 of dipole magnets, for example equal to two.
  • the magnetic drive is of the repulsive type, that is to say when the north pole of one of the magnets of the driving part 26 is located opposite a north pole of one of the magnets of the driven part 44 as a result of a rotational movement of the turbine 12, the poles of the same type repel each other which imposes a rotational movement on said driven part, thus ensuring the transmission of the movement of the turbine.
  • the driven part 44 of the magnetic drive is integral with a shaft 52 aligned with the longitudinal axis XX '.
  • the shaft 52 is rotatably mounted by one of its ends 52a in a housing 54 of the partition 42 acting as a bearing.
  • the driven part 44 also has a degree of freedom in axial translation and can therefore move along the longitudinal axis.
  • the axial displacement of the driven part 44 is limited by the presence of a so-called axial stop 56 which is integral with the shaft 52 and which comes into contact, after a predetermined stroke of said driven part, with a plate 58.
  • This stop is for example formed by a sleeve molded onto the shaft 52.
  • the plate 58 has in alignment with the longitudinal axis XX 1 an element 58a projecting in the direction of the axial stop 56 and which forms a seat for said stop when the latter is in contact with said element 58a.
  • the driving part 26 of the magnetic drive rotates the driven part 44, the driving and driven parts have the same speed of rotation and are spaced apart from the another, for an average axial position of the turbine between the pivots 24 and 31, of an average axial distance also called mean air gap.
  • the stop can also be placed behind the elastic piece 60 in order to further limit the deformation of this piece.
  • the plate 58 has at the center of the projecting element 58a an orifice 58b allowing the passage of the end 52b of the shaft 52.
  • An elastically deformable piece 60 of stiffness K having the form of a strip is disposed on the other side of the plate 58 relative to the driven part 44.
  • the flexible strip 60 of substantially constant thickness is in the form of a flat central portion 60c which connects two end portions 60a and 60b which are also flat and parallel to one another.
  • the central portion 60c forms with each end portion 60a, 60b an angle which varies during the compression of the strip.
  • the strip 60 is fixed for example by gluing by its end 60a to a support 62 integral with the totalizer 40.
  • the part 60 could also be a spring or any other elastically deformable means.
  • the strip 60 rests by its opposite end 60b against the plate 58 in line with the orifice 58b so as to be in contact with the end 52b of the shaft 52 when the driven part 44 of the magnetic drive moves axially .
  • the end 52b of the shaft 52 is in contact with the elastic part 60.
  • the end 52b of the shaft 52 which is in contact with the elastic part 60 preferably forms a point thus making it possible to minimize the mechanical contact and therefore to not not introduce friction which would adversely affect the sensitivity of the meter and the effectiveness of the invention.
  • the end 52b is in contact with a flat surface of the elastic part.
  • the resistive torque offered by the totalizer is considered to be relatively low compared to the stresses due to the accelerations of the driving part.
  • such a resistant torque is of the order of one fifth to one tenth of the torque transmissible by the magnetic drive when the turbine 12 rotates at high speed and this regardless of the position of the longitudinal axis XX 'of said turbine.
  • the turbine is subjected to sudden acceleration due for example to the opening of a valve, the movement acquired by the driving part 26 of the magnetic drive cannot be transmitted to the driven part 44 and the phenomenon known as dropout occurs.
  • the minimum speed of rotation of the driving part from which the driven part no longer follows the rotational movement of said driving part is denoted Nd, in the absence of the elastic part. This stalling phenomenon results in a relative movement of rotation of the driving part with respect to the driven part, which results in a variable repulsion force F between said parts.
  • This effort varies substantially sinusoidally between two minimum values Fm and maximum FM as a function of the relative angular position of the driving and driven parts.
  • Fm and FM are a function of the geometry of the driving and driven parts of the magnetic drive and of the materials which compose them and have an axial direction.
  • the value Fm corresponds to the magnetic repulsion force generated by the magnetic drive when the latter does not transmit torque.
  • the mass M of the driven part is such that the weight of said driven part is greater than the minimum magnetic repulsion force Fm generated by the magnetic drive.
  • the invention also applies to a fluid meter whose weight of the driven part of the magnetic drive is lower than the minimum magnetic repulsion force Fm and for which the longitudinal axis XX 'of the turbine can occupy any position.
  • the driving part 26 of the magnetic drive rotates at high speed and, due to the force F of magnetic repulsion, the driven part 44 moves away from said driving part.
  • the driven part of the magnetic drive remains held in abutment in a position remote from the driving part under the action of the magnetic repulsion force.
  • the flexible strip 60 when the driven part 44 moves away from the driving part 26 under the action of the repulsion force F, the latter elastically deforms said strip when the repulsion force is greater than the setting value of the strip until the deformation force of the latter is greater than the force F.
  • the driven part 44 then undergoes an action on the part of the compressed strip which tends to bring the driven part towards the driving part. This back-and-forth movement allows a transfer of kinetic energy of rotation between the driving and driven parts.
  • the driven part is pushed back again towards the strip 60 under the action of the repulsion force and, in a similar manner to what has just been described, the deformation force of the strip pushes the said driven part again. towards the leading part.
  • a new transfer of energy occurs between said driving and driven parts and the driven part thus acquires an increasing kinetic energy of rotation. After a few axial "bounces" of the driven part, it acquires the speed of rotation of the driving part and then succeeds in following its rotational movement.
  • the axial displacement of the driven part 44 is at least equal to 8% of the mean air gap previously defined so that the axial rebounds have a sufficient amplitude to allow a good transfer of energy.
  • the possible axial displacement is equal to 30% of the average air gap.
  • the setting T of said part is preferably between the values 0.7 x (Fm + FM) / 2 and 1, 3 (Fm + FM) / 2
  • stiffness K of the elastic piece 60 it is also preferable for the stiffness K of the elastic piece 60 to verify the following relationship:
  • K 6.5 N / m
  • the flexible strip 60 is for example made of beryllium copper.
  • FIG. 2 represents another well-known type of water meter in which the measuring member is a piston referenced 70 which moves inside a measuring chamber 72 in a rotary movement around the pivot 74.
  • a magnetic drive 76 of the repulsion type comprises, on the one hand, a driving part 78 which is subject to the piston 70 via a so-called central portion of the piston of generally cylindrical shape and called the piston tail 80, and, on the other hand, a driven part 82 which is connected to a shaft 84.
  • the driving parts 78 and driven 82 of the magnetic drive are located opposite one another and are aligned along the axis XX '.
  • the water flow symbolized by the arrow F enters the water meter by the water supply 86, is introduced into the measurement chamber 72 by a first passage 87 and sets in motion the piston 70.
  • a predetermined volume of water taken from the flow coming from the inlet 86 is trapped between said piston and the inner wall 72a of the measurement chamber 72 and is rejected towards the evacuation of water 88 via a second passage 89.
  • the driving part 78 rotates the driven part 82 of the magnetic drive.
  • the counter is placed in a position such that the axis XX 'is horizontal.
  • the inlet 86 and the water outlet 88 have been shown vertically but they could also be horizontal.
  • the shaft 84 is moved to the right of the figure and comes into contact with an elastic piece 90 having for example the shape of a flexible strip and which performs the same function as that of the piece 60 described with reference in Figures 1 and 1a. Consequently, all that has already been described in relation to these figures and which relates to the problem of detaching the magnetic drive from the counter remains valid and will not be repeated.
  • the invention also applies to other types of fluid meters and in particular to gas meters.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Electromagnetism (AREA)
  • Measuring Volume Flow (AREA)

Abstract

A fluid meter (10) including a unit (12) for measuring the fluid volume passing through said meter and a repulsive magnetic drive consisting of a driving portion (26) connected to said measuring unit, and a driven portion (44), both of said portions being located opposite one another and rotatable about an axis XX'. During normal operation, the motion of the driving portion (26) rotates the driven portion (44). The driven portion (44) is movable along said axis, and when said driven portion does not follow the motion of the driving portion (26), it is subjected to variable axial magnetic repulsion forces from said driving portion, which forces act to space it apart therefrom. In the spaced-apart position, the driven portion (44) is acted upon by a resilient member (60) that, when bent, urges said driven portion towards the driving portion, whereby the driven portion is alternately subjected to opposite forces until it reaches the same rotation speed as the driving portion.

Description

COMPTEUR DE FLUIDE AMÉLIORÉ COMPORTANT UN ENTRAINEMENT MAGNÉTIQUE DU TYPE Λ RÉPULSIONIMPROVED FLUID METER COMPRISING A MAGNETIC DRIVE OF THE REPELLENT TYPE
L'invention est relative à un compteur de fluide comprenant un organe de mesure de volume de fluide traversant ledit compteur et un entraînement magnétique du type à répulsion constitué d'une partie dite menante liée audit organe de mesure et d'une partie dite menée, toutes deux étant situées en vis-à-vis l'une de l'autre et mobiles en rotation autour d'un axe, et lors d'un fonctionnement normal, le mouvement de la partie menante entraînant en rotation la partie menée. Les compteurs de fluide à entraînement magnétique sont généralement constitués d'une chambre de mesure à laquelle sont raccordées une amenée et une évacuation de fluide et dans laquelle est installé un organe de mesure de volume de fluide qui est mis en mouvement de rotation autour d'un axe lorsque le fluide circule dans ladite chambre de mesure. L'organe de mesure transmet son mouvement de rotation à un totalisateur qui est séparé de celui-ci par une paroi étanche, au moyen d'un entraînement magnétique constitué, d'une part, d'une partie dite menante liée audit organe de mesure et, d'autre part, d'une partie dite menée placée de l'autre côté de ladite paroi étanche par rapport à la partie menante.The invention relates to a fluid meter comprising a member for measuring the volume of fluid passing through said meter and a magnetic drive of the repulsion type consisting of a so-called driving part linked to said measuring member and a so-called driven part, both being located opposite each other and movable in rotation about an axis, and during normal operation, the movement of the driving part causing the driven part to rotate. Fluid meters with magnetic drive generally consist of a measuring chamber to which are connected a supply and an evacuation of fluid and in which is installed a device for measuring the volume of fluid which is set in rotational movement around an axis when the fluid circulates in said measurement chamber. The measuring member transmits its rotational movement to a totalizer which is separated from the latter by a sealed wall, by means of a magnetic drive consisting, on the one hand, of a so-called driving part linked to said measuring member and, on the other hand, a so-called driven part placed on the other side of said sealed wall with respect to the driving part.
La partie menée de l'entraînement magnétique est liée à un (ou plusieurs) train(s) d'engrenages du totalisateur et est mise en mouvement sous l'action des forces magnétiques engendrées par les parties menante et menée et du mouvement de rotation de l'organe de mesure. Dans certains compteurs tels que celui décrit dans le documentThe driven part of the magnetic drive is linked to one (or more) gear train (s) of the totalizer and is set in motion under the action of magnetic forces generated by the driving and driven parts and the rotational movement of the measuring device. In some meters such as the one described in the document
DE 1 423 884 l'entraînement magnétique est de type face à face et à répulsion, c'est-à-dire que les parties menante et menée sont alignées axialement le long d'un axe et mobiles en rotation autour de cet axe. Ces parties sont en vis-à-vis l'une de l'autre, et fonctionnent suivant le principe de la répulsion magnétique, un pôle nord ou un pôle sud d'un aimant d'une des parties coopérant avec un pôle de même nature d'un aimant de l'autre partie.DE 1 423 884 the magnetic drive is of the face-to-face and repulsion type, that is to say that the driving and driven parts are axially aligned along an axis and mobile in rotation around this axis. These parts are opposite one another, and operate according to the principle of magnetic repulsion, a north pole or a south pole of a magnet of one of the parts cooperating with a pole of the same kind of a magnet from the other party.
Parmi ces compteurs, quelques uns d'entre eux sont caractérisés par un totalisateur qui présente un couple mécanique résistant de faible valeur par rapport aux sollicitations dues aux accélérations de la partie menante. Lorsque de tels compteurs sont installés sur site, par exemple chez un usager, ceux-ci ne sont pas toujours placés dans une position telle que l'axe des parties menante et menée soit disposé verticalement.Among these counters, some of them are characterized by a totalizer which has a resistant mechanical torque of low value compared to the stresses due to accelerations of the driving part. When such meters are installed on site, for example at a user's home, these are not always placed in a position such that the axis of the driving and driven parts is arranged vertically.
La Demanderesse a ainsi pu constater sur des compteurs d'eau installés dont l'axe des parties menante et menée n'est pas vertical, que parfois l'accélération de l'organe de mesure, due par exemple à une consommation d'eau instantanée très importante, et donc l'accélération de la partie menante de l'entraînement magnétique est telle que la partie menée dudit entraînement magnétique ne peut pas suivre le mouvement de la partie menante.The Applicant has thus been able to observe on installed water meters whose axis of the driving and driven parts is not vertical, that sometimes the acceleration of the measuring member, due for example to instantaneous water consumption very important, and therefore the acceleration of the driving part of the magnetic drive is such that the driven part of said magnetic drive cannot follow the movement of the driving part.
On assiste alors à un phénomène dit de décrochage, c'est-à-dire que la partie menée de l'entraînement magnétique n'est plus entraînée en rotation et de ce fait le totalisateur n'affiche plus le volume d'eau qui traverse le compteur.We are then witnessing a phenomenon known as stall, that is to say that the driven part of the magnetic drive is no longer rotated and therefore the totalizer no longer displays the volume of water passing through the counter.
La Demanderesse a également pu constater ce phénomène de décrochage sur des compteurs dans lesquels le poids de la partie menée est inférieur à l'effort de répulsion magnétique développé par les parties menante et menée, lorsque le couple transmis par l'entrainemeπt magnétique est nul et pour lesquels l'axe des dites parties menante et menée de l'entraînement magnétique occupe une position verticale.The Applicant has also been able to observe this dropout phenomenon on counters in which the weight of the driven part is less than the magnetic repulsion force developed by the driving and driven parts, when the torque transmitted by the magnetic drive is zero and for which the axis of said driving and driven parts of the magnetic drive occupies a vertical position.
On connaît d'après le document DE 32 32 649 un compteur d'eau à entraînement magnétique comprenant une turbine équipée de la partie menante de l'entraînement magnétique, la partie menée dudit entraînement magnétique étant portée par un arbre aligné avec l'axe de la turbine et positionné de l'autre côté d'une paroi étanche. La partie menante de l'entraînement magnétique est reliée à l'axe de la turbine par l'intermédiaire d'un ressort enroulé autour dudit axe et qui a pour fonction de retarder l'accélération de la turbine en réponse à une augmentation rapide du débit d'eau, en absorbant l'énergie d'accélération de ladite turbine avant sa transmission à la partie menante.Document DE 32 32 649 discloses a water meter with magnetic drive comprising a turbine equipped with the driving part of the magnetic drive, the driven part of said magnetic drive being carried by a shaft aligned with the axis of the turbine and positioned on the other side of a sealed wall. The driving part of the magnetic drive is connected to the axis of the turbine by means of a spring wound around said axis and which has the function of delaying the acceleration of the turbine in response to a rapid increase in the flow rate. of water, by absorbing the acceleration energy of said turbine before its transmission to the driving part.
Ce ressort empêche ainsi le phénomène de décrochage évoqué ci- dessus. Il est aussi mentionné dans ce document que le ressort peut de manière alternative être placé entre la partie menée de l'entraînement magnétique et l'arbre.This spring thus prevents the dropout phenomenon mentioned above. It is also mentioned in this document that the spring can alternatively be placed between the driven part of the magnetic drive and the shaft.
Selon ce document, l'énergie d'accélération de la turbine est absorbée par ie ressort.According to this document, the acceleration energy of the turbine is absorbed by the spring.
Cependant, lorsque la turbine est soumise trop longtemps à une accélération, l'énergie d'accélération emmagasinée par le ressort se libère et vient se superposer à l'accélération de ladite turbine, favorisant ainsi le phénomène de décrochage que l'on cherchait à éviter.However, when the turbine is subjected to an acceleration for too long, the acceleration energy stored by the spring is released and is superimposed on the acceleration of said turbine, thus favoring the stall phenomenon which it was sought to avoid. .
En outre, l'incorporation d'un tel ressort dans le compteur rend plus difficile l'assemblage dudit compteur.In addition, the incorporation of such a spring in the counter makes it more difficult to assemble said counter.
On connaît également d'après le document DE 24 55 266 un compteur de fluide équipé d'un ressort qui vise à assurer un entraînement magnétique exact lors d'une accélération brutale de la turbine en vue d'éviter le phénomène de décrochage.Also known from document DE 24 55 266 is a fluid meter equipped with a spring which aims to ensure an exact magnetic drive during a sudden acceleration of the turbine in order to avoid the stall phenomenon.
De façon analogue à ce qui a été mentionné ci-dessus en référence au document DE 32 32 649, le ressort a pour fonction d'absorber l'énergie d'accélération de la turbine avant sa transmission à la partie menante. Le compteur décrit dans ce document présente les mêmes inconvénients que celui décrit dans le premier document. En outre, la présence de ces ressorts dans les compteurs décrits dans ces documents peuvent engendrer des phénomènes vibratoires nuisant au bon fonctionnement des compteurs.Analogously to what was mentioned above with reference to document DE 32 32 649, the spring has the function of absorbing the acceleration energy of the turbine before its transmission to the driving part. The counter described in this document has the same drawbacks as that described in the first document. In addition, the presence of these springs in the counters described in these documents can cause vibration phenomena which affect the proper functioning of the counters.
La présente invention vise donc à résoudre simplement et efficacement le problème lié au phénomène du décrochage de l'entraînement magnétique des compteurs de fluide, lorsque ce phénomène apparaît.The present invention therefore aims to solve simply and effectively the problem associated with the phenomenon of the stall of the magnetic drive of the fluid meters, when this phenomenon appears.
La présente invention a ainsi pour objet un compteur de fluide comprenant un organe de mesure de volume de fluide traversant ledit compteur et un entraînement magnétique du type à répulsion constitué d'une partie dite menante liée audit organe de mesure et d'une partie dite menée, toutes deux étant situées en vis-à-vis l'une de l'autre et mobiles en rotation autour d'un axe, et lors d'un fonctionnement normal, le mouvement de la partie menante entraînant en rotation la partie menée, caractérisé en ce que la partie menée peut se déplacer le long de l'axe et, lorsque ladite partie menée ne suit pas le mouvement de la partie menante, elle est soumise à l'action de forces magnétiques de répulsion axiales variables de la part de cette dernière qui tendent à l'en éloigner, la partie menée étant, dans cette position éloignée, soumise à l'action d'une pièce élastique qui, lorsqu'elle se déforme, tend à rapprocher ladite partie menée de la partie menante, la partie menée étant ainsi alternativement soumise à des efforts de sens opposé jusqu'à ce que ladite partie menée acquiert la même vitesse de rotation que celle de la partie menante.The present invention thus relates to a fluid meter comprising a member for measuring the volume of fluid passing through said meter and a magnetic drive of the repulsion type consisting of a so-called driving part linked to said measuring member and a so-called driven part. , both being located opposite one another and movable in rotation about an axis, and during normal operation, the movement of the driving part causing the driven part to rotate, characterized in that the driven part can move along of the axis and, when said driven part does not follow the movement of the driving part, it is subjected to the action of magnetic forces of variable axial repulsion on the part of the latter which tend to move it away, the part driven being, in this remote position, subjected to the action of an elastic part which, when it deforms, tends to bring said driven part closer to the driving part, the driven part being thus alternately subjected to forces in opposite directions until said driven part acquires the same speed of rotation as that of the driving part.
Lorsque la partie menée de l'entraînement magnétique est soumise à l'action des forces de répulsion magnétiques variables dirigées dans un sens opposé à la partie menante, ladite partie menée vient déformer la pièce élastique. Lorsque les forces de répulsion magnétique décroissent, la partie menée est alors dirigée vers la partie menante sous l'action de l'effort de déformation de la pièce élastique puis est à nouveau soumise à l'action des forces de répulsion variables dirigées vers la pièce élastique. Ces mouvements de va-et-vient axiaux que l'on peut assimiler à des rebonds, permettent un transfert d'énergie cinétique de rotation entre les parties menante et menée et, au bout de quelques rebonds, la partie menée acquiert la vitesse de rotation qui lui permet de suivre à nouveau le mouvement de la partie menante. Contrairement à l'invention exposée ci-dessus, aucun des compteurs de l'art antérieur précédemment décrit ne permet de résoudre efficacement le problème lié au phénomène de décrochage lorsque ce phénomène se produit dans un entraînement magnétique. Il a d'ailleurs même été mentionné plus haut que les compteurs de fluide cités dans les documents DE 32 32 649 et DE 24 55 266 n'évitent pas toujours le phénomène de décrochage et, lorsqu'il se produit, ne proposent aucune solution pour y remédier. Préférentiellement, la partie menée est reliée à un arbre aligné avec l'axe et dont une extrémité, opposée à celle à proximité de laquelle se situe ladite partie menée, vient en contact avec la pièce élastique. Afin de ne pas créer de frottements trop élevés lors du contact entre l'extrémité de l'axe et la pièce élastique, ladite extrémité de l'axe forme une pointe.When the driven part of the magnetic drive is subjected to the action of variable magnetic repulsion forces directed in a direction opposite to the driving part, said driven part deforms the elastic part. When the magnetic repulsion forces decrease, the driven part is then directed towards the driving part under the action of the deformation force of the elastic part then is again subjected to the action of the variable repulsion forces directed towards the part elastic. These axial back-and-forth movements which can be likened to rebounds, allow a transfer of kinetic energy of rotation between the driving and driven parts and, after a few rebounds, the driven part acquires the speed of rotation which allows him to follow the movement of the leading part again. Contrary to the invention described above, none of the counters of the prior art described above makes it possible to effectively solve the problem linked to the stall phenomenon when this phenomenon occurs in a magnetic drive. It has also been mentioned above that the fluid meters cited in documents DE 32 32 649 and DE 24 55 266 do not always avoid the dropout phenomenon and, when it occurs, offer no solution for remediate. Preferably, the driven part is connected to a shaft aligned with the axis and one end of which, opposite to that near which said driven part is located, comes into contact with the elastic part. In order not to create excessively high friction during contact between the end of the axis and the elastic piece, said end of the axis forms a point.
Pour réduire ces frottements, il est également préférable que la pointe soit en contact avec une surface plane de la pièce élastique.To reduce this friction, it is also preferable that the tip is in contact with a flat surface of the elastic piece.
Selon une caractéristique préférée de l'invention, la pièce élastique présente une raideur K vérifiant la relation :According to a preferred characteristic of the invention, the elastic part has a stiffness K verifying the relationship:
où M représente la masse de la partie menée, Nd représente la vitesse de rotation minimale de la partie menante à partir de laquelle la partie menée ne suit plus le mouvement de ladite partie menante dans le cas où la partie menante est soumise à une forte accélération et lorsque la pièce élastique n'est pas présente, N1 et N2 représentent respectivement le nombre d'aimants dipolaires des parties menante et menée et max(N1 ,N2) désigne le plus grand des deux nombres N1 et N2.where M represents the mass of the driven part, Nd represents the minimum speed of rotation of the driving part from which the driven part no longer follows the movement of said driving part in the case where the driving part is subjected to a strong acceleration and when the elastic part is not present, N1 and N2 respectively represent the number of dipole magnets of the driving and driven parts and max (N1, N2) denotes the greater of the two numbers N1 and N2.
Selon une autre caractéristique préférée de l'invention, le tarage de la pièce élastique est compris dans le domaineAccording to another preferred characteristic of the invention, the calibration of the elastic part is included in the field
Fm + FM ι_ 30 %, où Fm et FM désignent respectivement les 2 Fm + FM ι_ 30%, where Fm and FM respectively designate the 2
forces minimale et maximale de répulsion magnétique lorsque la partie menée ne suit plus le mouvement de la partie menante.minimum and maximum magnetic repulsion forces when the driven part no longer follows the movement of the driving part.
La pièce élastique est par exemple une lamelle souple. La pièce élastique peut également être un ressort. Selon encore d'autres caractéristiques préférées de l'invention :The elastic piece is for example a flexible strip. The elastic piece can also be a spring. According to still other preferred characteristics of the invention:
- une butée limite le déplacement axial de la partie menée,- a stop limits the axial movement of the driven part,
- le déplacement axial de la partie menée est supérieur à 8 % de la distance axiale entre les parties menante et menée lorsque celles-ci ont une même vitesse de rotation, 1338 PC17FR96/01443the axial displacement of the driven part is greater than 8% of the axial distance between the driving and driven parts when the latter have the same speed of rotation, 1338 PC17FR96 / 01443
- la butée est solidaire de l'arbre de la partie menée et coopère avec une partie fixe dudit compteur,the stop is integral with the shaft of the driven part and cooperates with a fixed part of said counter,
- la butée est disposée de manière diamétralement opposée à la partie menée par rapport à la pièce élastique afin de limiter la déformation de ladite pièce élastique.- The stop is arranged diametrically opposite the driven part with respect to the elastic piece in order to limit the deformation of said elastic piece.
L'organe de mesure est par exemple une turbine dont l'axe de rotation est confondu avec l'axe de rotation des parties menante et menée.The measuring member is for example a turbine whose axis of rotation coincides with the axis of rotation of the driving and driven parts.
Le compteur de fluide peut être du type à jet unique ou à jet multiple. L'organe de mesure peut par exemple se déplacer à l'intérieur d'une chambre de mesure suivant un mouvement cyclique en emprisonnant un volume de fluide déterminé à chaque cycle.The fluid meter may be of the single jet or multiple jet type. The measuring member can, for example, move inside a measuring chamber in a cyclic movement by trapping a volume of fluid determined during each cycle.
D'autres caractéristiques et avantages apparaîtront au cours de la description qui va suivre donnée uniquement à titre d'exemple et faite en référence aux dessins annexés sur lesquels :Other characteristics and advantages will appear during the description which follows, given solely by way of example and made with reference to the appended drawings in which:
- la figure 1 est une vue schématique en coupe longitudinale d'un compteur de fluide selon un mode de réalisation de l'invention,FIG. 1 is a schematic view in longitudinal section of a fluid meter according to an embodiment of the invention,
- la figure 1a est une vue schématique agrandie d'une partie du compteur de fluide de la figure 1 sur laquelle sont représentées l'extrémité 52b de l'arbre 52 et la pièce élastique 60,FIG. 1a is an enlarged schematic view of part of the fluid meter of FIG. 1 on which the end 52b of the shaft 52 and the elastic part 60 are shown,
- la figure 2 est une vue schématique en coupe longitudinale d'un compteur de fluide selon un autre mode de réalisation de l'invention.- Figure 2 is a schematic view in longitudinal section of a fluid meter according to another embodiment of the invention.
Comme représenté sur la figure 1 et désigné dans son ensemble par la référence générale notée 10, un compteur d'eau à jet unique comprend un organe de mesure 12 qui se présente sous la forme d'une turbine disposée à l'intérieur d'une chambre de mesure 14 et qui est mise en rotation autour d'un axe longitudinal XX' sous l'action d'un écoulement d'eau dans ladite chambre.As shown in FIG. 1 and designated as a whole by the general reference noted 10, a single jet water meter comprises a measuring member 12 which is in the form of a turbine disposed inside a measuring chamber 14 and which is rotated about a longitudinal axis XX 'under the action of a flow of water in said chamber.
Le compteur d'eau de la figure 1 est installé dans une position telle que l'axe longitudinal XX" est horizontal.The water meter of Figure 1 is installed in a position such that the longitudinal axis XX "is horizontal.
La chambre de mesure 14 est raccordée à une amenée d'eau 16 et à une évacuation d'eau 18 qui sont décalées par rapport au plan de coupe de la figure 1.The measurement chamber 14 is connected to a water supply 16 and to a water discharge 18 which are offset with respect to the section plane of FIG. 1.
La turbine 12 est formée d'un moyeu central 20 auquel sont rattachées plusieurs pales 22 régulièrement réparties à sa périphérie. Le moyeu central 20 se prolonge à une de ses extrémités dite inférieure par une collerette 20a. La fonction de cette collerette est de favoriser le soulèvement de la turbine 12 aux débits élevés, c'est-à-dire par exemple supérieurs à 200 l/h, afin de ne pas dégrader la pointe du pivot 24 sur laquelle repose ladite turbine et qui contribue à conférer au compteur sa sensibilité aux faibles débits.The turbine 12 is formed by a central hub 20 to which are attached several blades 22 regularly distributed around its periphery. The central hub 20 is extended at one of its so-called lower ends by a collar 20a. The function of this flange is to promote the lifting of the turbine 12 at high flow rates, that is to say for example greater than 200 l / h, so as not to degrade the point of the pivot 24 on which said turbine rests and which contributes to giving the meter its sensitivity to low flow rates.
Le moyeu central 20 se prolonge à son extrémité opposée dite supérieure par un arbre 20b qui est équipé d'un support d'aimants 26 constituant la partie menante de l'entraînement magnétique du compteur.The central hub 20 is extended at its opposite end called the upper end by a shaft 20b which is equipped with a magnet support 26 constituting the driving part of the magnetic drive of the counter.
La chambre de mesure 14 est délimitée par deux parois d'extrémités opposées 28, 30 dont l'une de ces parois 28 reçoit dans sa partie centrale, le support d'aimants 26. L'arbre 20b est guidé en rotation autour d'un pivot 31 solidaire de la paroi 28.The measurement chamber 14 is delimited by two opposite end walls 28, 30 of which one of these walls 28 receives in its central part, the magnet support 26. The shaft 20b is guided in rotation around a pivot 31 secured to the wall 28.
Des nervures radiales 32 sont fixées à la paroi 28 par l'intermédiaire d'un élément de paroi 34 percé en son milieu pour recevoir l'arbre 20b du moyeu de la turbine 12. L'autre paroi d'extrémité opposée 30 reçoit un élément de paroi 36 sur lequel est monté le pivot 24 et auquel sont fixées des nervures radiales 38.Radial ribs 32 are fixed to the wall 28 by means of a wall element 34 drilled in the middle to receive the shaft 20b of the hub of the turbine 12. The other opposite end wall 30 receives an element wall 36 on which the pivot 24 is mounted and to which radial ribs 38 are fixed.
Le compteur d'eau 10 comprend également un totalisateur 40 disposé au dessus de la chambre de mesure 14, lorsque l'axe XX' dudit compteur est vertical, et délimité à sa partie inférieure par une cloison 42.The water meter 10 also includes a totalizer 40 disposed above the measurement chamber 14, when the axis XX 'of said meter is vertical, and delimited at its lower part by a partition 42.
Pour la clarté de l'exposé, seuls quelques éléments du totalisateur 40 sont représentés sur la figure 1.For the sake of clarity, only a few elements of the totalizer 40 are shown in FIG. 1.
Un mobile porte aimants 44 est disposé à l'intérieur du totalisateur 40 et constitue la partie menée de l'entraînement magnétique du compteur. La partie menante et la partie menée sont disposées en vis-à-vis l'une de l'autre et sont mobiles en rotation autour de l'axe de rotation XX' de la turbine 12.A mobile magnet holder 44 is disposed inside the totalizer 40 and constitutes the driven part of the magnetic drive of the counter. The driving part and the driven part are arranged opposite one another and are movable in rotation around the axis of rotation XX ′ of the turbine 12.
La cloison 42 et la paroi d'extrémité 28 ménagent entre elles un espace 46 de forme générale annulaire entourant la partie menante 26 de l'entraînement magnétique.The partition 42 and the end wall 28 provide between them a space 46 of generally annular shape surrounding the driving part 26 of the magnetic drive.
Une pièce en matériau magnétique 48 ayant la forme d'une demi- coupelle évidée dans sa partie centrale pour laisser passer la partie menante 26 et la partie centrale déformée de la paroi d'extrémité 28 est disposée à l'intérieur de l'espace annulaire 46 de façon à entourer ladite partie menante.A piece of magnetic material 48 having the shape of a half-cup hollowed out in its central part to let the part pass driving 26 and the deformed central part of the end wall 28 is disposed inside the annular space 46 so as to surround said driving part.
Une autre pièce en matériau magnétique 50 de même forme mais renversée par rapport à la pièce 48 est disposée autour de la partie menée 44.Another part made of magnetic material 50 of the same shape but inverted with respect to the part 48 is placed around the driven part 44.
Les deux demi-coupelles 48, 50 forment ainsi une protection des parties menante et menée vis-à-vis d'un champ magnétique extérieur au compteur.The two half-cups 48, 50 thus form a protection of the driving and led parts vis-à-vis a magnetic field external to the meter.
Les parties menante et menée sont respectivement constituées chacune d'un nombre N1 , N2 pair d'aimants dipolaires par exemple égal à deux.The driving and driven parts are respectively each made up of an even number N1, N2 of dipole magnets, for example equal to two.
L'entraînement magnétique est de type répulsif, c'est-à-dire que lorsque le pôle nord d'un des aimants de la partie menante 26 est situé en face d'un pôle nord d'un des aimants de la partie menée 44 par suite d'un mouvement de rotation de la turbine 12, les pôles de même type se repoussent ce qui impose un mouvement de rotation à ladite partie menée, assurant ainsi la transmission du mouvement de la turbine.The magnetic drive is of the repulsive type, that is to say when the north pole of one of the magnets of the driving part 26 is located opposite a north pole of one of the magnets of the driven part 44 as a result of a rotational movement of the turbine 12, the poles of the same type repel each other which imposes a rotational movement on said driven part, thus ensuring the transmission of the movement of the turbine.
La partie menée 44 de l'entraînement magnétique est solidaire d'un arbre 52 aligné avec l'axe longitudinal XX'.The driven part 44 of the magnetic drive is integral with a shaft 52 aligned with the longitudinal axis XX '.
L'arbre 52 est monté à rotation par une de ses extrémités 52a dans un logement 54 de la cloison 42 faisant office de palier. La partie menée 44 possède également un degré de liberté en translation axiale et peut donc se déplacer suivant l'axe longitudinalThe shaft 52 is rotatably mounted by one of its ends 52a in a housing 54 of the partition 42 acting as a bearing. The driven part 44 also has a degree of freedom in axial translation and can therefore move along the longitudinal axis.
XX'.XX '.
Toutefois, le déplacement axial de la partie menée 44 est limité par la présence d'une butée dite axiale 56 qui est solidaire de l'arbre 52 et qui vient en contact, après une course prédéterminée de ladite partie menée, avec une platine 58. Cette butée est par exemple formée par un manchon surmoulé sur l'arbre 52.However, the axial displacement of the driven part 44 is limited by the presence of a so-called axial stop 56 which is integral with the shaft 52 and which comes into contact, after a predetermined stroke of said driven part, with a plate 58. This stop is for example formed by a sleeve molded onto the shaft 52.
Plus précisément, la platine 58 possède dans l'alignement de l'axe longitudinal XX1 un élément 58a saillant en direction de la butée axiale 56 et qui forme un siège pour ladite butée lorsque celle-ci est en contact avec ledit élément 58a. Lorsque la turbine 12 est animée d'un mouvement de rotation régulier, la partie menante 26 de l'entraînement magnétique entraîne en rotation la partie menée 44, les parties menante et menée ont même vitesse de rotation et sont écartées l'une de l'autre, pour une position axiale moyenne de la turbine entre les pivots 24 et 31 , d'une distance axiale moyenne appelée également entrefer moyen.More specifically, the plate 58 has in alignment with the longitudinal axis XX 1 an element 58a projecting in the direction of the axial stop 56 and which forms a seat for said stop when the latter is in contact with said element 58a. When the turbine 12 is driven in a regular rotational movement, the driving part 26 of the magnetic drive rotates the driven part 44, the driving and driven parts have the same speed of rotation and are spaced apart from the another, for an average axial position of the turbine between the pivots 24 and 31, of an average axial distance also called mean air gap.
Selon une variante de l'invention non représentée sur les figures, la butée peut également être placée derrière la pièce élastique 60 afin de limiter en outre la déformation de cette pièce. La platine 58 présente au centre de l'élément saillant 58a un orifice 58b permettant le passage de l'extrémité 52b de l'arbre 52.According to a variant of the invention not shown in the figures, the stop can also be placed behind the elastic piece 60 in order to further limit the deformation of this piece. The plate 58 has at the center of the projecting element 58a an orifice 58b allowing the passage of the end 52b of the shaft 52.
Une pièce elastiquement deformable 60 de raideur K ayant la forme d'une lamelle est disposée de l'autre côté de la platine 58 par rapport à la partie menée 44. La lamelle souple 60 d'épaisseur sensiblement constante se présente sous la forme d'une portion centrale plane 60c qui relie deux portions d'extrémités 60a et 60b également planes et parallèles entre elles.An elastically deformable piece 60 of stiffness K having the form of a strip is disposed on the other side of the plate 58 relative to the driven part 44. The flexible strip 60 of substantially constant thickness is in the form of a flat central portion 60c which connects two end portions 60a and 60b which are also flat and parallel to one another.
La portion centrale 60c forme avec chaque portion d'extrémité 60a, 60b un angle qui varie au cours de la compression de la lamelle. La lamelle 60 est fixée par exemple par collage par son extrémité 60a sur un support 62 solidaire du totalisateur 40.The central portion 60c forms with each end portion 60a, 60b an angle which varies during the compression of the strip. The strip 60 is fixed for example by gluing by its end 60a to a support 62 integral with the totalizer 40.
La pièce 60 pourrait également être un ressort ou tout autre moyen elastiquement deformable.The part 60 could also be a spring or any other elastically deformable means.
La lamelle 60 repose par son extrémité opposée 60b contre la platine 58 au droit de l'orifice 58b de manière à se trouver en contact avec l'extrémité 52b de l'arbre 52 lorsque la partie menée 44 de l'entraînement magnétique se déplace axialement.The strip 60 rests by its opposite end 60b against the plate 58 in line with the orifice 58b so as to be in contact with the end 52b of the shaft 52 when the driven part 44 of the magnetic drive moves axially .
Durant le fonctionnement normal de l'entraînement magnétique, lorsque l'axe XX' du compteur est horizontal (fig 1 a), l'extrémité 52b de l'arbre 52 est au contact de la pièce élastique 60. Il existe un jeu résiduel entre l'extrémité 52a de l'arbre 52 et le fond du logement 54. L'extrémité 52b de l'arbre 52 qui est en contact avec la pièce élastique 60 forme de préférence une pointe permettant ainsi de minimiser le contact mécanique et donc de ne pas introduire de frottement qui affecterait de manière préjudiciable la sensibilité du compteur et l'efficacité de l'invention. Il est également préférable que l'extrémité 52b soit en contact avec une surface plane de la pièce élastique. Dans ce compteur, le couple résistant offert par le totalisateur est considéré comme relativement faible par rapport aux sollicitations dues aux accélérations de la partie menante.During normal operation of the magnetic drive, when the axis XX ′ of the counter is horizontal (FIG. 1 a), the end 52b of the shaft 52 is in contact with the elastic part 60. There is a residual clearance between the end 52a of the shaft 52 and the bottom of the housing 54. The end 52b of the shaft 52 which is in contact with the elastic part 60 preferably forms a point thus making it possible to minimize the mechanical contact and therefore to not not introduce friction which would adversely affect the sensitivity of the meter and the effectiveness of the invention. It is also preferable that the end 52b is in contact with a flat surface of the elastic part. In this counter, the resistive torque offered by the totalizer is considered to be relatively low compared to the stresses due to the accelerations of the driving part.
Par exemple, un tel couple résistant est de l'ordre de un cinquième à un dixième du couple transmissible par l'entraînement magnétique lorsque la turbine 12 tourne à grande vitesse et ceci quelle que soit la position de l'axe longitudinal XX' de ladite turbine. Lorsque la turbine est soumise à une accélération brutale en raison par exemple de l'ouverture d'une vanne, le mouvement acquis par la partie menante 26 de l'entraînement magnétique ne peut pas être transmis à la partie menée 44 et le phénomène dit de décrochage se produit. La vitesse de rotation minimale de la partie menante à partir de laquelle la partie menée ne suit plus le mouvement de rotation de ladite partie menante est notée Nd, en l'absence de la pièce élastique. Ce phénomène de décrochage se traduit par un mouvement relatif de rotation de la partie menante par rapport à la partie menée, ce qui se traduit par un effort de répulsion F variable entre lesdites parties. Cet effort varie de manière sensiblement sinusoïdale entre deux valeurs minimale Fm et maximale FM en fonction de la position angulaire relative des parties menante et menée. Ces valeurs fixes Fm et FM sont fonction de la géométrie des parties menante et menée de l'entraînement magnétique et des matériaux qui les composent et possèdent une direction axiale.For example, such a resistant torque is of the order of one fifth to one tenth of the torque transmissible by the magnetic drive when the turbine 12 rotates at high speed and this regardless of the position of the longitudinal axis XX 'of said turbine. When the turbine is subjected to sudden acceleration due for example to the opening of a valve, the movement acquired by the driving part 26 of the magnetic drive cannot be transmitted to the driven part 44 and the phenomenon known as dropout occurs. The minimum speed of rotation of the driving part from which the driven part no longer follows the rotational movement of said driving part is denoted Nd, in the absence of the elastic part. This stalling phenomenon results in a relative movement of rotation of the driving part with respect to the driven part, which results in a variable repulsion force F between said parts. This effort varies substantially sinusoidally between two minimum values Fm and maximum FM as a function of the relative angular position of the driving and driven parts. These fixed values Fm and FM are a function of the geometry of the driving and driven parts of the magnetic drive and of the materials which compose them and have an axial direction.
La valeur Fm correspond à l'effort de répulsion magnétique engendré par l'entrainement magnétique lorsque celui-ci ne transmet pas de couple.The value Fm corresponds to the magnetic repulsion force generated by the magnetic drive when the latter does not transmit torque.
Ces valeurs sont par exemple obtenues par simulation numérique sur ordinateur en modelisant l'entrainement magnétique mais peuvent également être obtenues au moyen de capteurs d'effort placés sur les parties menante et menée.These values are for example obtained by digital simulation on a computer by modeling the magnetic drive but can also be obtained by means of force sensors placed on the driving and driven parts.
Dans ce compteur, la masse M de la partie menée est telle que le poids de ladite partie menée est supérieur à l'effort de répulsion magnétique minimale Fm engendré par l'entraînement magnétique.In this counter, the mass M of the driven part is such that the weight of said driven part is greater than the minimum magnetic repulsion force Fm generated by the magnetic drive.
On notera que l'invention s'applique également à un compteur de fluide dont le poids de la partie menée de l'entraînement magnétique est inférieur à l'effort de répulsion magnétique minimal Fm et pour lequel l'axe longitudinal XX' de la turbine peut occuper n'importe quelle position.It will be noted that the invention also applies to a fluid meter whose weight of the driven part of the magnetic drive is lower than the minimum magnetic repulsion force Fm and for which the longitudinal axis XX 'of the turbine can occupy any position.
Lorsque le phénomène de décrochage s'est produit, la partie menante 26 de l'entraînement magnétique tourne à grande vitesse et, en raison de l'effort F de répulsion magnétique, la partie menée 44 s'écarte de ladite partie menante.When the phenomenon of stalling has occurred, the driving part 26 of the magnetic drive rotates at high speed and, due to the force F of magnetic repulsion, the driven part 44 moves away from said driving part.
Dans un compteur de l'art antérieur dans lequel l'axe longitudinal est horizontal, la partie menée de l'entraînement magnétique reste maintenue en butée dans une position éloignée de la partie menante sous l'action de l'effort de répulsion magnétique. Au contraire, dans le compteur selon la présente invention, en raison de la présence de la lamelle souple 60, lorsque la partie menée 44 s'écarte de la partie menante 26 sous l'action de l'effort de répulsion F, celle-ci vient déformer elastiquement ladite lamelle lorsque l'effort de répulsion est supérieur à la valeur de tarage de la lamelle jusqu'à ce que l'effort de déformation de cette dernière soit supérieur à l'effort F. La partie menée 44 subit alors une action de la part de la lamelle comprimée qui tend à ramener la partie menée vers la partie menante. Ce mouvement de va-et-vient permet un transfert d'énergie cinétique de rotation entre les parties menante et menée. La partie menée est repoussée une nouvelle fois vers la lamelle 60 sous l'action de l'effort de répulsion et, de façon analogue à ce qui vient d'être décrit, l'effort de déformation de la lamelle pousse de nouveau ladite partie menée vers la partie menante. Un nouveau transfert d'énergie se produit entre lesdites parties menante et menée et la partie menée acquiert ainsi une énergie cinétique de rotation de plus en plus grande. Après quelques "rebonds" axiaux de la partie menée, celle-ci acquiert la vitesse de rotation de la partie menante et réussit alors à suivre son mouvement de rotation.In a counter of the prior art in which the longitudinal axis is horizontal, the driven part of the magnetic drive remains held in abutment in a position remote from the driving part under the action of the magnetic repulsion force. On the contrary, in the counter according to the present invention, due to the presence of the flexible strip 60, when the driven part 44 moves away from the driving part 26 under the action of the repulsion force F, the latter elastically deforms said strip when the repulsion force is greater than the setting value of the strip until the deformation force of the latter is greater than the force F. The driven part 44 then undergoes an action on the part of the compressed strip which tends to bring the driven part towards the driving part. This back-and-forth movement allows a transfer of kinetic energy of rotation between the driving and driven parts. The driven part is pushed back again towards the strip 60 under the action of the repulsion force and, in a similar manner to what has just been described, the deformation force of the strip pushes the said driven part again. towards the leading part. A new transfer of energy occurs between said driving and driven parts and the driven part thus acquires an increasing kinetic energy of rotation. After a few axial "bounces" of the driven part, it acquires the speed of rotation of the driving part and then succeeds in following its rotational movement.
Le déplacement axial de la partie menée 44 est au minimum égal à 8 % de l'entrefer moyen précédemment défini afin que les rebonds axiaux aient une amplitude suffisante pour permettre un bon transfert d'énergie. Par exemple, le déplacement axial possible est égal à 30 % de l'entrefer moyen.The axial displacement of the driven part 44 is at least equal to 8% of the mean air gap previously defined so that the axial rebounds have a sufficient amplitude to allow a good transfer of energy. For example, the possible axial displacement is equal to 30% of the average air gap.
Afin de permettre à la pièce élastique 60 d'être plus efficace et donc d'accélérer la phase de réaccrochage, le tarage T de ladite pièce est de préférence compris entre les valeurs 0, 7 x (Fm + FM) / 2 et 1 , 3 (Fm + FM) / 2In order to allow the elastic part 60 to be more efficient and therefore to accelerate the re-hooking phase, the setting T of said part is preferably between the values 0.7 x (Fm + FM) / 2 and 1, 3 (Fm + FM) / 2
II est également préférable que la raideur K de la pièce élastique 60 vérifie la relation suivante :It is also preferable for the stiffness K of the elastic piece 60 to verify the following relationship:
où 1/(2 TU) la fréquence propre de la partie menée et de la pièce élastique et Nd x max (N1 , N2) représente la fréquence de la sollicitation axiale après le phénomène de décrochage, max (N1.N2) désignant le plus grand des deux nombres N1 et N2. Avec cette valeur de la raideur, on constate une meilleure stabilité ainsi qu'une meilleure répétabilité des performances de l'invention.where 1 / (2 TU) the natural frequency of the driven part and the elastic part and Nd x max (N1, N2) represents the frequency of the axial stress after the dropout phenomenon, max (N1.N2) designating the larger of the two numbers N1 and N2 . With this value of stiffness, there is better stability and better repeatability of the performance of the invention.
A titre d'exemple numérique, K = 6,5 N/mAs a numerical example, K = 6.5 N / m
M = 0,8 g Nd =12 tours/s Fm = 0,2.10"2NM = 0.8 g Nd = 12 turns / s Fm = 0.2.10 " 2 N
FM = 2,2.10-2N T = 1.1.10-2NFM = NT = 2 2,2.10- 1.1.10-2N
La lamelle souple 60 est par exemple réalisée en cuivre au béryllium.The flexible strip 60 is for example made of beryllium copper.
Il convient de noter que l'invention est particulièrement simple de conception et de mise en oeuvre par rapport aux compteurs d'eau de l'art antérieur cités dans les documents DE 32 32 649 et DE 24 55 266. De plus, la présence de la pièce élastique dans le compteur n'engendre pas de phénomène vibratoire susceptible de nuire au bon fonctionnement du compteur. Le compteur d'eau peut également être du type à jet multiple. La figure 2 représente un autre type de compteur d'eau bien connu dans lequel l'organe de mesure est un piston référencé 70 qui se déplace à l'intérieur d'une chambre de mesure 72 selon un mouvement rotatif autour du pivot 74.It should be noted that the invention is particularly simple in design and implementation with respect to the water meters of the prior art cited in documents DE 32 32 649 and DE 24 55 266. In addition, the presence of the elastic part in the meter does not generate any vibration phenomenon capable of affecting the proper functioning of the meter. The water meter can also be of the multiple jet type. FIG. 2 represents another well-known type of water meter in which the measuring member is a piston referenced 70 which moves inside a measuring chamber 72 in a rotary movement around the pivot 74.
Le pivot 74 est aménagé dans la partie formant le fond de la chambre de mesure 72 et est aligné suivant un axe longitudinal XX'. Un entrainemeπt magnétique 76 du type à répulsion comprend, d'une part, une partie menante 78 qui est assujettie au piston 70 par l'intermédiaire d'une portion dite centrale du piston de forme générale cylindrique et appelée queue de piston 80, et, d'autre part, d'une partie menée 82 qui est reliée à un arbre 84.The pivot 74 is arranged in the part forming the bottom of the measurement chamber 72 and is aligned along a longitudinal axis XX '. A magnetic drive 76 of the repulsion type comprises, on the one hand, a driving part 78 which is subject to the piston 70 via a so-called central portion of the piston of generally cylindrical shape and called the piston tail 80, and, on the other hand, a driven part 82 which is connected to a shaft 84.
Les parties menante 78 et menée 82 de l'entrainement magnétique sont situées en vis-à-vis l'une de l'autre et sont alignées le long de l'axe XX'.The driving parts 78 and driven 82 of the magnetic drive are located opposite one another and are aligned along the axis XX '.
L'écoulement d'eau symbolisé par la flèche F pénètre dans le compteur d'eau par l'amenée d'eau 86, est introduit dans la chambre de mesure 72 par un premier passage 87 et met en mouvement le piston 70. Lors d'un mouvement de rotation complet du piston 70, un volume d'eau prédéterminé prélevé sur l'écoulement issu de l'amenée 86 est emprisonné entre ledit piston et la paroi intérieure 72a de la chambre de mesure 72 et est rejeté vers l'évacuation d'eau 88 via un second passage 89. Pendant ce mouvement, la partie menante 78 entraine en rotation la partie menée 82 de l'entrainement magnétique.The water flow symbolized by the arrow F enters the water meter by the water supply 86, is introduced into the measurement chamber 72 by a first passage 87 and sets in motion the piston 70. During '' a complete rotational movement of the piston 70, a predetermined volume of water taken from the flow coming from the inlet 86 is trapped between said piston and the inner wall 72a of the measurement chamber 72 and is rejected towards the evacuation of water 88 via a second passage 89. During this movement, the driving part 78 rotates the driven part 82 of the magnetic drive.
Le compteur est placé dans une position telle que l'axe XX' est horizontal.The counter is placed in a position such that the axis XX 'is horizontal.
L'amenée 86 et l'évacuation d'eau 88 ont été représentées verticalement mais elles pourraient également être horizontales. Dans cette position, l'arbre 84 est déplacé vers la droite de la figure et vient en contact avec une pièce élastique 90 ayant par exemple la forme d'une lamelle souple et qui exerce la même fonction que celle de la pièce 60 décrite en référence aux figures 1 et 1a. Par conséquent, tout ce qui a déjà été décrit en relation avec ces figures et qui concerne le problème du décrochage de l'entrainement magnétique du compteur reste valable et ne sera pas répété. L'invention s'applique également à d'autres types de compteurs de fluide et notamment à des compteurs de gaz. The inlet 86 and the water outlet 88 have been shown vertically but they could also be horizontal. In this position, the shaft 84 is moved to the right of the figure and comes into contact with an elastic piece 90 having for example the shape of a flexible strip and which performs the same function as that of the piece 60 described with reference in Figures 1 and 1a. Consequently, all that has already been described in relation to these figures and which relates to the problem of detaching the magnetic drive from the counter remains valid and will not be repeated. The invention also applies to other types of fluid meters and in particular to gas meters.

Claims

REVENDICATIONS
1. Compteur de fluide (10) comprenant un organe de mesure (12) de volume de fluide traversant ledit compteur et un entraînement magnétique du type à répulsion constitué d'une partie dite menante (26) liée audit organe de mesure et d'une partie dite menée (44), toutes deux étant situées en vis-à-vis l'une de l'autre et mobiles en rotation autour d'un axe XX', et lors d'un fonctionnement normal, le mouvement de la partie menante (26) entraînant en rotation la partie menée (44), caractérisé en ce que la partie menée (44) peut se déplacer le long de l'axe et, lorsque ladite partie menée ne suit pas le mouvement de la partie menante(26), elle est soumise à l'action de forces magnétiques de répulsion axiales variables de la part de cette dernière qui tendent à l'en éloigner, la partie menée (44) étant, dans cette position éloignée, soumise à l'action d'une pièce élastique (60) qui, lorsqu'elle se déforme, tend à rapprocher ladite partie menée de la partie menante, la partie menée étant ainsi alternativement soumise à des efforts de sens opposé jusqu'à ce que ladite partie menée acquiert la même vitesse de rotation que celle de la partie menante.1. Fluid meter (10) comprising a member (12) for measuring the volume of fluid passing through said meter and a magnetic drive of the repulsion type consisting of a so-called driving part (26) linked to said measuring member and of a so-called driven part (44), both being located opposite one another and movable in rotation about an axis XX ', and during normal operation, the movement of the driving part (26) rotating the driven part (44), characterized in that the driven part (44) can move along the axis and, when said driven part does not follow the movement of the driving part (26) , it is subjected to the action of variable axial magnetic repulsion forces on the part of the latter which tend to move it away, the driven part (44) being, in this remote position, subjected to the action of a elastic piece (60) which, when it deforms, tends to bring said driven part closer to the men part ante, the driven part being thus alternately subjected to efforts in the opposite direction until said driven part acquires the same speed of rotation as that of the driving part.
2. Compteur selon la revendication 1 , dans lequel la partie menée (44) est reliée à un arbre (52) aligné avec l'axe XX' et dont une extrémité (52b), opposée à celle (52a) à proximité de laquelle se situe ladite partie menée, vient en contact avec la pièce élastique2. Meter according to claim 1, wherein the driven part (44) is connected to a shaft (52) aligned with the axis XX 'and one end (52b), opposite to that (52a) near which is locates said driven part, comes into contact with the elastic part
(60).(60).
3. Compteur selon la revendication 2, dans lequel l'extrémité (52b) en contact avec la pièce élastique (60) forme une pointe.3. Counter according to claim 2, in which the end (52b) in contact with the elastic piece (60) forms a point.
4. Compteur selon l'une des revendications 1 à 3, dans lequel le tarage T de la pièce élastique (60) est compris dans le domaine Fm + FM4. Counter according to one of claims 1 to 3, wherein the calibration T of the elastic piece (60) is included in the field Fm + FM
+ 30 %, où Fm et FM désignent respectivement les+ 30%, where Fm and FM respectively designate the
forces minimale et maximale de répulsion magnétique.minimum and maximum magnetic repulsion forces.
5. Compteur selon l'une des revendications 1 à 4, dans lequel la pièce élastique (60) présente une raideur K vérifiant la relation :5. Counter according to one of claims 1 to 4, in which the elastic piece (60) has a stiffness K verifying the relationship:
1/(2 π) V K/M < Nd x max (N1 , N2)1 / (2 π) V K / M <Nd x max (N1, N2)
où M représente la masse de la partie menée, Nd représente la vitesse de rotation minimale de la partie menante (26) à partir de laquelle la partie menée (44) ne suit plus le mouvement de ladite partie menante en l'absence de pièce élastique, N1 et N2 représentent respectivement le nombre d'aimants dipolaires des parties menante et menée et max(N1 ,N2) désigne le plus grand des deux nombres N1 et N2.where M represents the mass of the driven part, Nd represents the minimum speed of rotation of the driving part (26) from which the driven part (44) no longer follows the movement of said driving part in the absence of an elastic part , N1 and N2 respectively represent the number of dipole magnets of the driving and driven parts and max (N1, N2) denotes the larger of the two numbers N1 and N2.
6. Compteur selon l'une des revendications 1 à 5, dans lequel la pièce élastique (60) est une lamelle souple.6. Counter according to one of claims 1 to 5, wherein the elastic piece (60) is a flexible strip.
7. Compteur selon l'une des revendications 1 à 5, dans lequel la pièce élastique (60) est un ressort.7. Counter according to one of claims 1 to 5, wherein the elastic piece (60) is a spring.
8. Compteur selon l'une des revendications 1 à 7, dans lequel une butée limite le déplacement axial de la partie menée (44).8. Counter according to one of claims 1 to 7, in which a stop limits the axial movement of the driven part (44).
9. Compteur selon la revendication 8, dans lequel le déplacement axial de la partie menée (44) est supérieur à 8 % de la distance axiale entre les parties menante (26) et menée (44) lorsque celles- ci ont une même vitesse de rotation.9. Counter according to claim 8, in which the axial displacement of the driven part (44) is greater than 8% of the axial distance between the driving (26) and driven (44) parts when the latter have the same speed of rotation.
10. Compteur selon les revendications 2 et 8, dans lequel la butée (56) est solidaire de l'arbre (52) de la partie menée (44) et coopère avec une partie fixe (58a) dudit compteur. 10. Counter according to claims 2 and 8, wherein the stop (56) is integral with the shaft (52) of the driven part (44) and cooperates with a fixed part (58a) of said counter.
1 1. Compteur selon la revendication 8, dans lequel la butée est disposée de manière diamétralement opposée à la partie menée (44) par rapport à la pièce élastique (60) afin de limiter la déformation de ladite pièce élastique.1 1. A meter according to claim 8, wherein the stop is arranged diametrically opposite the driven part (44) relative to the elastic piece (60) in order to limit the deformation of said elastic piece.
12. Compteur selon l'une des revendications 1 à 1 1 , dans lequel l'organe de mesure est une turbine (12) dont l'axe de rotation XX' est confondu avec l'axe de rotation des parties menante (26) et menée (44).12. Meter according to claim 1, in which the measuring member is a turbine (12) whose axis of rotation XX 'coincides with the axis of rotation of the driving parts (26) and conducted (44).
13. Compteur selon la revendication 12, étant du type à jet unique.13. A meter according to claim 12, being of the single jet type.
14. Compteur selon la revendication 12, étant du type à jet multiple.14. Meter according to claim 12, being of the multiple jet type.
15. Compteur selon l'une des revendications 1 à 11 , dans lequel l'organe de mesure (70) se déplace à l'intérieur d'une chambre de mesure (72) suivant un mouvement cyclique en emprisonnant un volume de fluide déterminé à chaque cycle. 15. Counter according to one of claims 1 to 11, in which the measuring member (70) moves inside a measuring chamber (72) in a cyclic movement by trapping a volume of fluid determined at each cycle.
EP96931861A 1995-09-18 1996-09-17 Improved fluid meter comprising a repulsive magnetic drive Withdrawn EP0852001A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9510920 1995-09-18
FR9510920A FR2738911B1 (en) 1995-09-18 1995-09-18 IMPROVED FLUID METER COMPRISING A MAGNETIC DRIVE OF THE REPELLENT TYPE
PCT/FR1996/001443 WO1997011338A1 (en) 1995-09-18 1996-09-17 Improved fluid meter comprising a repulsive magnetic drive

Publications (1)

Publication Number Publication Date
EP0852001A1 true EP0852001A1 (en) 1998-07-08

Family

ID=9482659

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96931861A Withdrawn EP0852001A1 (en) 1995-09-18 1996-09-17 Improved fluid meter comprising a repulsive magnetic drive

Country Status (3)

Country Link
EP (1) EP0852001A1 (en)
FR (1) FR2738911B1 (en)
WO (1) WO1997011338A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19939177A1 (en) * 1999-08-20 2001-02-22 Electrowatt Tech Innovat Corp Flow meter
WO2007118200A2 (en) 2006-04-07 2007-10-18 Actaris Metering Systems Magnetic drive assembly for petroleum and lpg meter
CN105091969A (en) * 2015-08-04 2015-11-25 合肥精大仪表股份有限公司 Full thermal insulation elliptic gear flowmeter

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2915606A (en) * 1956-09-13 1959-12-01 Berthold A Knauth Mechanism for measuring linear flow in flowmeters as a function of rotary motion therein
DE1498420B2 (en) * 1965-12-16 1971-06-03 Pollux GmbH Wassermesser und Arma turenfabnk, 6700 Ludwigshafen MAGNETIC COUPLING FOR WATER METER
DE3232649C1 (en) * 1982-09-02 1983-12-22 Bopp & Reuther Gmbh, 6800 Mannheim Water meter
DE4128795A1 (en) * 1991-08-27 1993-03-04 Geraetewerk Babelsberg Gmbh DEVICE FOR DAMPED TRANSMISSION OF THE ROTATIONAL MOTION IN OVAL WHEEL METERS
DE9405709U1 (en) * 1994-04-11 1994-08-04 Landis & Gyr Holding GmbH, 60388 Frankfurt Magnetic coupling for water meters

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9711338A1 *

Also Published As

Publication number Publication date
FR2738911A1 (en) 1997-03-21
WO1997011338A1 (en) 1997-03-27
FR2738911B1 (en) 1997-11-14

Similar Documents

Publication Publication Date Title
EP0663717B1 (en) Magnetic coupling system for driving two rotating elements and fluid meter comprising such a system
EP1738229B1 (en) Crown for timepiece, comprising a disengaging device
EP2503641B1 (en) Actuating system for antenna reflector with deformable reflecting surface
FR2594547A1 (en) VIBRATING BAR STRENGTH TRANSDUCER HAVING A SINGLE INSULATING SPRING
CH709052A2 (en) Spiral balance, movement and timepiece.
FR2982715A1 (en) INDICATOR MODULE FOR A FLUID MOTION DASHBOARD
FR3046440A1 (en) AUBES BLOW MODULE WITH VARIABLE SHIFT FOR A TURBOMACHINE
WO1997011338A1 (en) Improved fluid meter comprising a repulsive magnetic drive
FR3018884A1 (en) DAMPING DEVICE FOR VEHICLE PROPULSION CHAIN
WO2017098123A1 (en) Magnetorheological braking or damping device
FR2764356A1 (en) DEVICE FOR TRANSMITTING PIVOTING LEVER AND VALVE MOVEMENTS INCLUDING SUCH A DEVICE
CH706701B1 (en) Automatic winding mechanism.
EP2313812A1 (en) Movement for a timepiece with an onboard automatic winding device
CA2839417A1 (en) Braking device for a wind turbine having a vertical axis
FR2500623A1 (en) EXTERNAL DETECTION VORTEX FLOWMETER
EP0774174B1 (en) Device affording magnetic protection
EP0300858A1 (en) Rotary tensioning device for a belt drive
EP0076189A1 (en) Flow meters with an axial turbine
FR2790521A1 (en) TORQUE TRANSMISSION MECHANISM FOR A COMPRESSOR USING AN ELASTIC RING FOR ITS ASSEMBLY
FR2488660A1 (en) FLUID PUMP OPERATING BY INERTIA OF THE FLUID CONTAINED IN A LOOP SUBJECT TO AN OSCILLATING MOTION
FR2517844A1 (en) ROTARY RETARDER DEVICE FOR GRAVITY TRANSFER INSTALLATION
FR2487028A1 (en) IMPROVEMENT TO FLUID-ACTIVATED CLUTCH AND BRAKING DEVICES
CH710817B1 (en) Watch movement with resonant regulator with magnetic interaction.
FR3071559A1 (en) ROTOR FOR DEVICE FOR RECOVERING THE HYDRAULIC ENERGY OF THE WAVE
FR2571441A1 (en) DEVICE FOR OBTAINING ROTATION MOVEMENT FROM THE ENERGY OF A FLUID IN MOTION

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980403

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE ES FR GB IT LI NL

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19980928

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19990526