EP0847606A2 - Optical semiconductor component with deep ridged waveguide - Google Patents

Optical semiconductor component with deep ridged waveguide

Info

Publication number
EP0847606A2
EP0847606A2 EP97936626A EP97936626A EP0847606A2 EP 0847606 A2 EP0847606 A2 EP 0847606A2 EP 97936626 A EP97936626 A EP 97936626A EP 97936626 A EP97936626 A EP 97936626A EP 0847606 A2 EP0847606 A2 EP 0847606A2
Authority
EP
European Patent Office
Prior art keywords
waveguide
ridge
semiconductor component
optical
optical semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP97936626A
Other languages
German (de)
French (fr)
Inventor
Kaspar Dütting
Edgar Kühn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel Lucent SAS
Original Assignee
Alcatel SA
Alcatel Alsthom Compagnie Generale dElectricite
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel SA, Alcatel Alsthom Compagnie Generale dElectricite filed Critical Alcatel SA
Publication of EP0847606A2 publication Critical patent/EP0847606A2/en
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1228Tapered waveguides, e.g. integrated spot-size transformers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12097Ridge, rib or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/18Semiconductor lasers with special structural design for influencing the near- or far-field
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3421Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers layer structure of quantum wells to influence the near/far field
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3428Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers layer orientation perpendicular to the substrate

Definitions

  • the invention relates to an optical semiconductor element according to patent claim 1.
  • Optical semiconductor components are used in digital optical communication e.g. used as transmitter or receiver components and coupled to optical waveguides of a carrier plate or to optical fibers.
  • optical semiconductor components with a deep ribbed waveguide are used in the transmission of messages for the highest bit repetition frequencies, since they have the highest frequency bandwidth compared to optical semiconductor components with other types of waveguides due to their low electrical capacity.
  • a deep rib waveguide is an optical waveguide which is formed from a mesa-shaped rib resting on a substrate and contains waveguide layers in the rib which have a higher refractive index than the substrate.
  • the rib contains optically active semiconductor layers and thus a zone which contains the transition from p-doped to n-doped semiconductor material.
  • the rib a few ⁇ m wide, is laterally surrounded by electrically non-conductive material with a significantly lower refractive index, e.g. Air or polyimide.
  • a flat rib waveguide is understood to mean an optical waveguide in which at least some of the existing waveguide layers are below a mesa-shaped rib that is a few ⁇ m wide is arranged.
  • the optically active semiconductor layers are not part of the rib, as a result of which the zone which contains the transition from p-doped to n-doped semiconductor material is not laterally limited to the rib which is a few ⁇ m wide.
  • the mode field of the light wave in the semiconductor component is expanded adiabatically along the direction of light propagation.
  • waveguides are used in optical semiconductor components which have a transition region in which the waveguide or individual layers of the waveguide lie in the lateral direction, that is the direction in the substrate plane perpendicular to the direction of light propagation, or in the vertical direction, that is the direction perpendicular taper or widen to the substrate plane, along a longitudinal direction of the waveguide.
  • a transition area is also called a taper.
  • a vertical taper denotes a transition region in which the layer thickness of a semiconductor layer increases or decreases
  • a lateral taper denotes a transition region in which the width of a waveguide increases or decreases along a longitudinal direction.
  • the semiconductor component described has a higher capacitance than semiconductor components with a deeply etched rib waveguide, in particular in the actively operated transition region.
  • higher modes than the basic mode are excited in a rib waveguide, in which the mode field adaptation is carried out mainly by an actively operated lateral taper, so that such a waveguide loses unimodality.
  • the object of the invention is to provide an optical semiconductor component which is suitable for the highest transmission rates and which enables a loss-free coupling to an optical fiber or an optical waveguide.
  • FIGS. 1 to 4. Two exemplary embodiments of an optical semiconductor component according to the invention are described below with reference to FIGS. 1 to 4. Show it:
  • FIG. 2 shows the same section as FIG. 1 and additionally the qualitative course of the mode field of a light wave guided in the waveguide on both sides of a transition area
  • Figure 3 is a plan view of the semiconductor device of the first embodiment and Figure 4 is a plan view of a semiconductor device in a second embodiment.
  • An optical semiconductor component has a deep rib waveguide with a first waveguide core arranged on a substrate.
  • the first waveguide core has one or more optically active semiconductor layers.
  • a first transition region serves to adapt the mode field of a light wave guided in the rib waveguide to the mode field of a light wave in an optical fiber or an optical waveguide located on a carrier plate.
  • a basic idea of the invention is to use a lateral taper to adapt the mode field of a light wave guided in the rib waveguide; this is a layer whose layer thickness decreases in the first transition region along a longitudinal direction of the rib waveguide, but this lateral taper is independent of the layer thickness structuring of the one or more optically active semiconductor layers.
  • the rib waveguide contains a second waveguide core, the layer thickness of which decreases in the first transition region in order to adapt the mode field along the longitudinal direction.
  • An advantage of the invention is that the adaptation of the mode field in the first transition region is independent of a variation in the layer thickness of the first waveguide core along the longitudinal direction of the rib waveguide. Since the energy band gap of the optically active semiconductor layers is determined by their layer thickness and material composition, the adaptation of the mode field is independent of the energy band gap of the optically active semiconductor layers.
  • the optical semiconductor component can be active, i.e. controlled light-amplifying or light-absorbing waveguide areas and passive, i.e. Have light-transmitting waveguide areas.
  • FIG. 1 shows a section through an optical semiconductor component BEI according to the invention in a first exemplary embodiment.
  • the section runs perpendicular to the plane of a substrate SUB along a longitudinal direction L of a deep rib waveguide RIDGE.
  • the deep rib waveguide RIDGE is arranged on the substrate SUB and contains, applied one above the other, a buffer layer BUF, a first waveguide core MQW, a second waveguide core BULK, a cover layer DS and a metal contact layer MK.
  • the first and the second waveguide core MQW, BULK each have a refractive index that is greater than the refractive indices of the cover layer DS, the buffer layer BUF and the substrate SUB. As a result, a light wave is mainly guided in the two waveguide cores MQW, BULK.
  • the first waveguide core MQW contains one or more optically active semiconductor layers.
  • Optically active semiconductor layers represent the transition from p-doped to n-doped semiconductor material and are distinguished by the fact that they interact with a light wave guided in the ribbed waveguide RIDGE. Electron transitions between the valence and conduction bands of the one or more optically active semiconductor layers are induced, either in the form of absorption or induced emission of light. A light wave is thereby amplified or absorbed, the amplification or attenuation factor being adjustable by selecting an injection current or an applied voltage.
  • the one or more optically active semiconductor layers are preferably a semiconductor layer package with a multi-quantum well structure, that is a semiconductor layer package made of semiconductor layers with alternating large and small bandgap energy.
  • Band gap energy is to be understood as the energetic difference between the valence band and the conduction band of the material from which the layer consists.
  • the layer thickness of the second waveguide core BULK decreases along the longitudinal direction L of the rib waveguide RIDGE. This causes the mode field of a light wave guided in the fin waveguide to be widened.
  • the increase in the second waveguide core BULK along the longitudinal direction L of the rib waveguide RIDGE is done steadily.
  • the light wave guided in the ridge waveguide RIDGE is then scattered and absorbed particularly little in the first transition region UBL.
  • the increase in the layer thickness of the second waveguide core BULK along the longitudinal direction L of the rib waveguide RIDGE can be linear, as in the first exemplary embodiment, or, for example, exponential.
  • the course of the mode field of a light wave guided in the ribbed waveguide RIDGE is drawn qualitatively on both sides of the first transition region UBL.
  • the amount of the electric field vector of the light wave is plotted in the longitudinal direction L of the rib waveguide RIDGE and a position coordinate perpendicular to the substrate plane.
  • the mode field of the light wave is widened by the decrease in the layer thickness of the second waveguide core BULK. The reason for this is that the light wave is no longer guided in the waveguide core BULK tapering along the first transition region UBL and more and more escapes into the surrounding semiconductor material of cover layer DS, substrate SUB and buffer layer PUF.
  • the optical semiconductor component BEI in the first exemplary embodiment has an end face F from which light signals emerge or through which light signals can enter the optical semiconductor component BEI.
  • An optical fiber or an optical waveguide located on a carrier plate can be coupled to this end face F.
  • the second waveguide core BULK is designed in such a way that its layer thickness decreases along the longitudinal direction L of the rib waveguide RIDGE towards the end face F.
  • the layer thickness of the individual semiconductor layers of the multi-quantum well structure decreases in a second transition region UB2 along the longitudinal direction L of the rib waveguide RIDGE.
  • the layer thickness of the individual semiconductor layers decreases in the same direction in which the layer thickness of the second waveguide core BULK also decreases.
  • the energy pool of a mutli-quantum well structure and thus the wavelength at which the multi-quantum well structure is optically active depends essentially on the layer thickness of its individual semiconductor layers. Due to the decrease in the layer thickness of the individual semiconductor layers in the transition region UB2, the wavelength at which the multi-quantum well structure is optically active shifts to shorter wavelengths.
  • the optical semiconductor component BEI has an active waveguide region AKT, in which the semiconductor layers have a greater layer thickness, and a passive waveguide region PAS, in which the semiconductor layers have a smaller layer thickness.
  • a metal contact layer MK is only applied to the rib waveguide RIDGE in the active waveguide region AKT.
  • the second transition region UB2 is advantageously arranged such that it overlaps at least partially with the first transition region UB1. As a result, the overall length of the semiconductor component BEI is shorter. However, it is advantageous if the second transition region UB2 is arranged in the longitudinal direction L partially in front of or in the front part of the first transition region UBl, since the active waveguide region AKT, which must be operated by injecting a current, does not then cover the entire first Transition area UBl extends, whereby the power requirement is reduced and the electrical capacity is reduced.
  • an optical semiconductor component according to the invention is that the adaptation of the mode field of a light wave in the first transition region UBL of the semiconductor component is independent of a change in the energy band gap of the optically active semiconductor layers or the multi-quantum well structure. As a result, it can be achieved that an optical semiconductor component according to the invention operates independently of polarization, i.e. that it processes light signals with different polarization directions in the same way.
  • substrate SUB, buffer layer BUF and cover layer DS consist of a semiconductor of the III / V connection type, such as InP or G ⁇ As.
  • the two waveguide cores MQW, BULK consist of ternary or quaternary mixed crystals from elements of main groups III and V, such as InGaAsP, InGaAs or InGaAlP.
  • compounds of elements of main groups II and VI, IV and IV or I and VII are also suitable for the semiconductor component, depending on the wavelength at which the semiconductor component is to operate.
  • the optical semiconductor component BEI according to the invention has, in addition to minimized coupling losses when coupled to an optical fiber or an optical waveguide of a carrier plate, the additional advantage that an adjustment between the semiconductor component and the fiber or carrier plate is simplified, since higher adjustment tolerances are permissible for a low-loss coupling in conventional optical semiconductor components with a deep rib waveguide.
  • the coupling losses only increase by about 1 dB.
  • no microlenses are required when coupling to an optical fiber and simple single-mode optical fibers with a flat end can be used.
  • FIG. 3 shows a top view of the semiconductor component BEI in the first exemplary embodiment.
  • the substrate SUB can be seen, on which the deep ridge waveguide RIDGE lies.
  • the RIDGE rib waveguide has the shape of a mesa stripe.
  • the layer thickness of the second waveguide core BULK decreases along the longitudinal direction L.
  • the layer thickness of the individual layers of the multi-quantum well structure of the first waveguide core MQW decreases in the longitudinal direction L, as a result of which the rib waveguide RIDGE has an active AKT and a passive PAS waveguide region.
  • the width of the rib waveguide RIDGE increases along the longitudinal direction L towards the end face F. This causes an additional expansion of the mode field of a light wave guided in the RIDGE rib waveguide, in particular in the lateral direction.
  • the third transition region UB3 is arranged such that it is at least largely behind the second transition region UB2 in the longitudinal direction L and partially overlaps with the first transition region UB1.
  • the third transition region UB3, in which the rib waveguide RIDGE widens laterally, is located completely or at least largely in the passive waveguide region PAS, and no modes of higher order can be excited as a result, even with strong lateral broadening.
  • the RIDGE rib waveguide is therefore single-mode.
  • the particular advantage of the broadening of the RIDGE ribbed waveguide is that an emerging light wave with a suitable dimensioning of the broadening has a symmetrical mode field, as a result of which coupling losses are minimized.
  • FIG. 4 shows a top view of an optical semiconductor component BE2 according to the invention in a second exemplary embodiment. It has the same vertical layer structure shown in FIG. 1 as the semiconductor component BE I in the first exemplary embodiment.
  • the substrate SUB is shown with the deep ridge waveguide RIDGE arranged thereon.
  • the layer thickness of the second waveguide core BULK decreases along the longitudinal direction L.
  • the layer thickness of the individual layers of the multi-quantum well structure of the first waveguide core MQW decreases in the longitudinal direction L, as a result of which the rib waveguide RIDGE has an active AKT and a passive PAS waveguide region.
  • the rib waveguide RIDGE has a termination in the form of an integrated cylindrical lens LENS on its end face F.
  • the base area of this integrated cylindrical lens LENS can be hyperbolic, parabolic or in the form of a circular segment.
  • the LENS cylinder lens causes an additional expansion of the mode field of the light wave.
  • the mode field of the emerging light wave is symmetrical, ie that the emerging light wave creates a circular light spot instead of an elliptical one. Coupling losses are minimal in this version with a symmetrical mode field.

Abstract

Digital optical telecommunication uses optical semiconductor components having a transition region for the expansion of the mode field of a light wave in order to reduce losses when coupling to an optical fibre or an optical waveguide of a supporting plate. An optical semiconductor component (BE1; BE2) contains a deep ridged waveguide (RIDGE) with a surfacing (DS) disposed on a substrate (SUB). The ridged waveguide (RIDGE) has a first (MQW) and a second (BULK) waveguide centre. The first waveguide centre (MQW) contains one or more optically active semiconductor layers. In a first transition region (UB1) the layer thickness of the second waveguide centre (BULK) decreases along a longitudinal direction (L) of the ridged waveguide (RIDGE). As a result, a light wave guided in the optical semiconductor component (BE1; BE2) is diverted into the surfacing (DS) and substrate (SUB) semiconductor material surrounding the waveguide centre, whereby its mode field is expanded.

Description

Optisches Hαlbleiterbαuelement mit tiefem Rippenwellenleiter Optical semiconductor element with deep ribbed waveguide
Die Erfindung betrifft ein optisches Hαlbleiterbαuelement gemäß Patentanspruch 1 .The invention relates to an optical semiconductor element according to patent claim 1.
Optische Halbleiterbauelemente werden in der digitalen optischen Nachrichtenübertragung z.B. als Sender- oder Empfängerbauelemente eingesetzt und an optische Wellenleiter einer Trägerplatte oder an optische Fasern angekoppelt. Insbesondere werden optische Halbleiterbauelemente mit tiefem Rippenwellenleiter in der Nachrichtenübertragung für höchste Bitfolgefrequenzen eingesetzt, da sie aufgrund ihrer niedrigen elektrischen Kapazität im Vergleich zu optischen Halbleiterbauelementen mit anderen Wellenleitertypen über die höchste Frequenzbandbreite verfügen.Optical semiconductor components are used in digital optical communication e.g. used as transmitter or receiver components and coupled to optical waveguides of a carrier plate or to optical fibers. In particular, optical semiconductor components with a deep ribbed waveguide are used in the transmission of messages for the highest bit repetition frequencies, since they have the highest frequency bandwidth compared to optical semiconductor components with other types of waveguides due to their low electrical capacity.
Ein tiefer Rippenwellenleiter ist ein optischer Wellenleiter, der aus einer einem Substrat aufliegenden, mesaförmigen Rippe gebildet ist und in der Rippe Wellenleiterschichten enthält, die einen höheren Brechungsindex aufweisen als das Substrat. Insbesondere bei aktiv, d. h. gesteuert Licht absorbierend oder verstärkend betriebenen, tiefen Rippenwellenleitern enthält die Rippe optisch aktive Halbleiterschichten und damit eine Zone, welche den Übergang von p- dotiertem zu n-dotiertem Halbleitermaterial enthält. Die einige μm breite Rippe ist seitlich von elektrisch nichtleitendem Material mit deutlich kleinerem Brechungsindex umgeben, wie z.B. Luft oder Polyimid.A deep rib waveguide is an optical waveguide which is formed from a mesa-shaped rib resting on a substrate and contains waveguide layers in the rib which have a higher refractive index than the substrate. Especially when active, H. Controlled light-absorbing or amplifying deep rib waveguides, the rib contains optically active semiconductor layers and thus a zone which contains the transition from p-doped to n-doped semiconductor material. The rib, a few μm wide, is laterally surrounded by electrically non-conductive material with a significantly lower refractive index, e.g. Air or polyimide.
Im Gegensatz dazu wird unter einem flachen Rippenwellenleiter ein optischer Wellenleiter verstanden, bei dem zumindest ein Teil der vorhandenen Wellenleiterschichten unterhalb einer einige μm breiten mesaförmigen Rippe angeordnet ist. Insbesondere bei aktiv betriebenen, flachen Rippenwellenleitern sind die optisch aktiven Halbleiterschichten nicht Teil der Rippe, wodurch die Zone, die den Übergang von p-dotiertem zu n-dortiertem Halbleitermaterial enthält, seitlich nicht auf die einige μm breite Rippe begrenzt ist.In contrast, a flat rib waveguide is understood to mean an optical waveguide in which at least some of the existing waveguide layers are below a mesa-shaped rib that is a few μm wide is arranged. Particularly in the case of actively operated, flat rib waveguides, the optically active semiconductor layers are not part of the rib, as a result of which the zone which contains the transition from p-doped to n-doped semiconductor material is not laterally limited to the rib which is a few μm wide.
Damit eine in einem optischen Halbleiterbauelement geführte Lichtwelle möglichst verlustfrei in einen optischen Wellenleiter oder in eine optische Faser eingekoppelt wird, ist es notwendig, daß das Modenfeld der Lichtwelle in dem Halbleiterbauelement an das Modenfeld einer Lichtwelle in dem optischen Wellenleiter oder der optischen Faser angepaßt ist. Dazu wird das Modenfeld der im Halbleiterbauelement geführten Lichtwelle entlang der Lichtausbreitungsrichtung adiabatisch aufgeweitet.In order for a light wave guided in an optical semiconductor component to be coupled into an optical waveguide or an optical fiber with as little loss as possible, it is necessary for the mode field of the light wave in the semiconductor component to be matched to the mode field of a light wave in the optical waveguide or the optical fiber. For this purpose, the mode field of the light wave guided in the semiconductor component is expanded adiabatically along the direction of light propagation.
Zur Anpassung des Modenfeldes werden in optischen Halbleiterbauelementen Wellenleiter verwendet, die einen Übergangsbereich aufweisen, in welchem sich der Wellenleiter oder einzelne Schichten des Wellenleiters in lateraler Richtung, das ist die Richtung in Substratebene senkrecht zur Lichtausbreitungsrichtung, oder in vertikaler Richtung, das ist die Richtung senkrecht zur Substratebene, entlang einer Längsrichtung des Wellenleiters verjüngen oder aufweiten. Ein solcher Übergangsbereich wird auch als Taper bezeichnet. Insbesondere bezeichnet ein vertikaler Taper einen Übergangsbereich, in welchem die Schichtdicke einer Halbleiterschicht zu- oder abnimmt und ein lateraler Taper einen Übergangsbereich, in welchem die Breite eines Wellenleiters entlang einer Längsrichtung zu- oder abnimmt.In order to adapt the mode field, waveguides are used in optical semiconductor components which have a transition region in which the waveguide or individual layers of the waveguide lie in the lateral direction, that is the direction in the substrate plane perpendicular to the direction of light propagation, or in the vertical direction, that is the direction perpendicular taper or widen to the substrate plane, along a longitudinal direction of the waveguide. Such a transition area is also called a taper. In particular, a vertical taper denotes a transition region in which the layer thickness of a semiconductor layer increases or decreases and a lateral taper denotes a transition region in which the width of a waveguide increases or decreases along a longitudinal direction.
In dem Artikel "Compact InGaAsP / InP laser diodes with integrated mode expander for efficient coupling to flat-ended singlemode fibre" (T. Brenner et al, Electron. Lett Vol.31 No.7 1 995, S. 1443- 1445) ist ein optisches Halbleiterbauelement mit flachem Rippenwellenleiter beschrieben. Es enthält eine optisch aktive Wellenleiterschicht sowie einen auf dieser Wellenleiterschicht angeordneten Rippenwellenleiter. Die Schichtdicke der optisch aktiven Wellenleiterschicht nimmt in einem Übergangsbereich entlang einer Längsrichtung des Rippenwellenleiters in Richtung einer Austrittsfacette des Bauelementes ab und der Rippenwellenleiter weitet sich lateral in Richtung der Austrittsfacette auf. Der Rippenwellenleiter einschließlich das Übergαngsbereiches sind mit Elektroden ausgerüstet und werden durch Anlegen einer Spannung aktiv betrieben.In the article "Compact InGaAsP / InP laser diodes with integrated mode expander for efficient coupling to flat-ended singlemode fiber" (T. Brenner et al, Electron. Lett Vol.31 No.7 1 995, pp. 1443-1445) describes an optical semiconductor component with a flat ribbed waveguide. It contains an optically active waveguide layer and a rib waveguide arranged on this waveguide layer. The layer thickness of the optically active waveguide layer decreases in a transition region along a longitudinal direction of the rib waveguide in the direction of an exit facet of the component, and the rib waveguide widens laterally in the direction of the exit facet. The rib waveguide including that Transition areas are equipped with electrodes and are actively operated by applying a voltage.
Das beschriebene Halbleiterbauelement weist eine höhere Kapazität auf, als Halbleiterbauelemente mit tief geätztem Rippenwellenleiter, insbesondere in dem aktiv betriebenen Übergangsbereich. Zudem werden in einem Rippenwellenleiter, in welchem die Modenfeldanpassung hauptsächlich durch einen aktiv betriebenen lateralen Taper erfolgt, höhere Moden als der Grundmode angeregt, so daß ein solcher Wellenleiter die Einmodigkeit verliert.The semiconductor component described has a higher capacitance than semiconductor components with a deeply etched rib waveguide, in particular in the actively operated transition region. In addition, higher modes than the basic mode are excited in a rib waveguide, in which the mode field adaptation is carried out mainly by an actively operated lateral taper, so that such a waveguide loses unimodality.
Aufgabe der Erfindung ist es, ein optisches Halbleiterbauelement anzugeben, welches für höchste Übertragungsraten geeignet ist und eine möglichst verlustfreie Kopplung an eine optische Faser oder einen optischen Wellenleiter ermöglicht.The object of the invention is to provide an optical semiconductor component which is suitable for the highest transmission rates and which enables a loss-free coupling to an optical fiber or an optical waveguide.
Die Aufgabe wird gelöst durch die Merkmale des Patentanspruchs 1 . Vorteilhafte Ausgestaltungen sind den abhängigen Patenansprϋchen zu entnehmen.The object is achieved by the features of patent claim 1. Advantageous configurations can be found in the dependent patent claims.
Anhand der Figuren 1 bis 4 werden nachfolgend zwei Ausführungsbeispiele eines erfindungsgemäßen optischen Halbleiterbauelementes beschrieben. Es zeigen:Two exemplary embodiments of an optical semiconductor component according to the invention are described below with reference to FIGS. 1 to 4. Show it:
Figur 1 einen Schnitt durch ein erfindungsgemäßes optisches1 shows a section through an optical according to the invention
Halbleiterbauelement in einem ersten Ausführungsbeispiel entlang einer Längsrichtung eines Wellenleiters senkrecht zu der Substratebene,Semiconductor component in a first exemplary embodiment along a longitudinal direction of a waveguide perpendicular to the substrate plane,
Figur 2 denselben Schnitt wie Figur 1 sowie zusätzlich den qualitativen Verlauf des Modenfeldes einer in dem Wellenleiter geführten Lichtwelle auf beiden Seiten eines Übergangsbereiches,FIG. 2 shows the same section as FIG. 1 and additionally the qualitative course of the mode field of a light wave guided in the waveguide on both sides of a transition area,
Figur 3 eine Draufsicht auf das Halbleiterbauelement des ersten Ausführungsbeispiels und Figur 4 eine Draufsicht auf ein Halbleiterbauelement in einem zweiten Ausführungsbeispiel.Figure 3 is a plan view of the semiconductor device of the first embodiment and Figure 4 is a plan view of a semiconductor device in a second embodiment.
Ein erfindungsgemäßes optisches Halbleiterbauelement hat auf einem Substrat angeordnet einen tiefen Rippenwellenleiter mit einem ersten Wellenleiterkern. Der erste Wellenleiterkern besitzt eine oder mehrere optisch aktive Halbleiterschichten. Ein erster Übergangsbereich dient dazu, das Modenfeld einer in dem Rippenwellenleiter geführten Lichtwelle an das Modenfeld einer Lichtwelle in einer optischen Faser oder einem auf einer Trägerplatte befindlichen optischen Wellenleiter anzupassen. Eine Grundidee der Erfindung ist, zur Anpassung des Modenfeldes einer in dem Rippenwellenleiter geführten Lichtwelle einen lateralen Taper zu verwenden, das ist eine Schicht, deren Schichtdicke in dem ersten Übergangsbereich entlang einer Längsrichtung des Rippenwellenleiters abnimmt, diesen lateralen Taper jedoch unabhängig von der Schichtdickenstrukturierung der einen oder mehrerem optisch aktiven Halbleiterschichten auszuführen. Dazu enthält der Rippenwellenleiter einen zweiten Wellenleiterkern, dessen Schichtdicke in dem ersten Übergangsbereich zur Anpassung des Modenfeldes entlang der Längsrichtung abnimmt.An optical semiconductor component according to the invention has a deep rib waveguide with a first waveguide core arranged on a substrate. The first waveguide core has one or more optically active semiconductor layers. A first transition region serves to adapt the mode field of a light wave guided in the rib waveguide to the mode field of a light wave in an optical fiber or an optical waveguide located on a carrier plate. A basic idea of the invention is to use a lateral taper to adapt the mode field of a light wave guided in the rib waveguide; this is a layer whose layer thickness decreases in the first transition region along a longitudinal direction of the rib waveguide, but this lateral taper is independent of the layer thickness structuring of the one or more optically active semiconductor layers. For this purpose, the rib waveguide contains a second waveguide core, the layer thickness of which decreases in the first transition region in order to adapt the mode field along the longitudinal direction.
Ein Vorteil der Erfindung besteht darin, daß die Anpassung des Modenfeldes in dem ersten Übergangsbereich unabhängig von einer Variation der Schichtdicke des ersten Wellenleiterkernes entlang der Längsrichtung des Rippenwellenleiters ist. Da die Energiebandlϋcke der optisch aktiven Halbleiterschichten durch deren Schichtdicke und Materialzusammensetzung bestimmt ist, ist die Anpassung des Modenfeldes unabhängig von der Energiebandlücke der optisch aktiven Halbleiterschichten. Dadurch kann das optische Halbleiterbauelement aktive, d.h. gesteuert lichtverstärkende oder lichtabsorbierende Wellenleiterbereiche und passive, d.h. Licht unverstärkt weiterleitende Wellenleiterbereiche haben.An advantage of the invention is that the adaptation of the mode field in the first transition region is independent of a variation in the layer thickness of the first waveguide core along the longitudinal direction of the rib waveguide. Since the energy band gap of the optically active semiconductor layers is determined by their layer thickness and material composition, the adaptation of the mode field is independent of the energy band gap of the optically active semiconductor layers. As a result, the optical semiconductor component can be active, i.e. controlled light-amplifying or light-absorbing waveguide areas and passive, i.e. Have light-transmitting waveguide areas.
In Figur 1 ist ein Schnitt durch ein erfindungsgemäßes optisches Halbleiterbauelement BEI in einem ersten Ausführungsbeispiel gezeigt. Der Schnitt verläuft senkrecht zu der Ebene eines Substrates SUB entlang einer Längsrichtung L eines tiefen Rippenwellenleiters RIDGE. Der tiefe Rippenwellenleiter RIDGE ist auf dem Substrat SUB angeordnet, und enthält übereinander aufgebracht eine Pufferschicht BUF, einen ersten Wellenleiterkern MQW, einen zweiten Wellenleiterkern BULK, eine Deckschicht DS und eine Metallkontaktschicht MK.FIG. 1 shows a section through an optical semiconductor component BEI according to the invention in a first exemplary embodiment. The section runs perpendicular to the plane of a substrate SUB along a longitudinal direction L of a deep rib waveguide RIDGE. The deep rib waveguide RIDGE is arranged on the substrate SUB and contains, applied one above the other, a buffer layer BUF, a first waveguide core MQW, a second waveguide core BULK, a cover layer DS and a metal contact layer MK.
Der erste und der zweite Wellenleiterkern MQW, BULK weisen jeweils einen Brechungsindex auf, der größer ist, als die Brechungsindices der Deckschicht DS, der Pufferschicht BUF und des Substrates SUB. Dadurch wird eine Lichtwelle haupsächlich in den beiden Wellenleiterkernen MQW, BULK geführt.The first and the second waveguide core MQW, BULK each have a refractive index that is greater than the refractive indices of the cover layer DS, the buffer layer BUF and the substrate SUB. As a result, a light wave is mainly guided in the two waveguide cores MQW, BULK.
Der erste Wellenleiterkern MQW enthält eine oder mehrere optisch aktive Halbleiterschichten. Optisch aktive Halbleiterschichten stellen den Übergang von p-dotiertem zu n-dotiertem Halbleitermaterial dar und zeichnen sich dadurch aus, daß sie mit einer in dem Rippenwellenleiter RIDGE geführten Lichtwelle in Wechselwirkung treten. Dabei werden Elektronenübergänge zwischen Valenz- und Leitungsband der einen oder mehreren optisch aktiven Halbleiterschichten induziert, entweder in Form von Absorption oder induzierter Emission von Licht. Eine Lichtwelle wird dadurch verstärkt oder absorbiert, wobei der Verstärkungs- bzw. Abschwächungsfaktor durch Wahl eines Injektionsstromes bzw. einer angelegten Spannung einstellbar ist.The first waveguide core MQW contains one or more optically active semiconductor layers. Optically active semiconductor layers represent the transition from p-doped to n-doped semiconductor material and are distinguished by the fact that they interact with a light wave guided in the ribbed waveguide RIDGE. Electron transitions between the valence and conduction bands of the one or more optically active semiconductor layers are induced, either in the form of absorption or induced emission of light. A light wave is thereby amplified or absorbed, the amplification or attenuation factor being adjustable by selecting an injection current or an applied voltage.
Vorzugsweise handelt es sich bei den einen oder mehreren optisch aktiven Halbleiterschichten um ein Halbleiterschichtpaket mit Multi-Quantumwell- Struktur, das ist ein Halbleiterschichtpaket aus Halbleiterschichten mit abwechselnd einer großen und einer kleinen Bandabstandsenergie. Unter Bandabstandsenergie ist dabei der energetische Unterschied zwischen Valenz- und Leitungsband des Materials, aus dem die Schicht besteht zu verstehen.The one or more optically active semiconductor layers are preferably a semiconductor layer package with a multi-quantum well structure, that is a semiconductor layer package made of semiconductor layers with alternating large and small bandgap energy. Band gap energy is to be understood as the energetic difference between the valence band and the conduction band of the material from which the layer consists.
In einem ersten Übergangsbereich UBl nimmt die Schichtdicke des zweiten Wellenleiterkernes BULK entlang der Längsrichtung L des Rippenwellenleiters RIDGE ab. Dies bewirkt, daß das Modenfeld einer in dem Rippenwellenleiter geführten Lichtwelle aufgeweitet wird.In a first transition region UBL, the layer thickness of the second waveguide core BULK decreases along the longitudinal direction L of the rib waveguide RIDGE. This causes the mode field of a light wave guided in the fin waveguide to be widened.
Von besonderem Vorteil ist es, wenn die Zunahme des zweiten Wellenleiterkernes BULK entlang der Längsrichtung L des Rippenwellenleiters RIDGE stetig erfolgt. Die in dem Rippenwellenleiter RIDGE geführte Lichtwelle wird dann in dem ersten Übergangsbereich UBl besonders wenig gestreut und absorbiert. Die Zunahme der Schichtdicke des zweiten Wellenleiterkemes BULK entlang der Längsrichtung L des Rippenwellenleiters RIDGE kann wie in dem ersten Ausführungsbeispiel linear erfolgen oder beispielsweise aber exponentiell.It is particularly advantageous if the increase in the second waveguide core BULK along the longitudinal direction L of the rib waveguide RIDGE is done steadily. The light wave guided in the ridge waveguide RIDGE is then scattered and absorbed particularly little in the first transition region UBL. The increase in the layer thickness of the second waveguide core BULK along the longitudinal direction L of the rib waveguide RIDGE can be linear, as in the first exemplary embodiment, or, for example, exponential.
In Figur 2 ist zusätzlich zu dem Schnitt aus Figur 1 der Verlauf des Modenfeldes einer in dem Rippenwellenleiter RIDGE geführten Lichtwelle auf beiden Seiten des ersten Übergangsbereiches UBl qualitativ gezeichnet. Dabei ist in der Längsrichtung L des Rippenwellenleiters RIDGE beispielsweise der Betrag des elektrischen Feldvektors der Lichtwelle aufgetragen und senkrecht zur Substratebene eine Ortskoordinate. Aus den gezeigten Diagrammen wird deutlich, daß das Modenfeld der Lichtwelle durch die Abnahme der Schichtdicke des zweiten Wellenleiterkernes BULK aufgeweitet wird. Der Grund dafür liegt darin, daß die Lichtwelle in dem sich entlang des ersten Übergangsbereiches UBl verjüngenden Wellenleiterkern BULK nicht mehr geführt wird und mehr und mehr in das umgebende Halbleitermaterial von Deckschicht DS, Substrat SUB und Bufferschicht PUF ausweicht.In FIG. 2, in addition to the section from FIG. 1, the course of the mode field of a light wave guided in the ribbed waveguide RIDGE is drawn qualitatively on both sides of the first transition region UBL. In this case, for example, the amount of the electric field vector of the light wave is plotted in the longitudinal direction L of the rib waveguide RIDGE and a position coordinate perpendicular to the substrate plane. It is clear from the diagrams shown that the mode field of the light wave is widened by the decrease in the layer thickness of the second waveguide core BULK. The reason for this is that the light wave is no longer guided in the waveguide core BULK tapering along the first transition region UBL and more and more escapes into the surrounding semiconductor material of cover layer DS, substrate SUB and buffer layer PUF.
Das optische Halbleiterbauelement BEI im ersten Ausführungsbeispiel weist eine Stirnseite F auf, aus der Lichtsignale austreten oder durch welche Lichtsignale in das optische Halbleiterbauelement BEI eintreten können. An dieser Stirnseite F ist eine optische Faser oder ein auf einer Trägerplatte befindlicher optischer Wellenleiter ankoppelbar. Zu diesem Zweck ist der zweite Wellenleiterkem BULK so ausgebildet, daß dessen Schichtdicke entlang der Längsrichtung L des Rippenwellenleiters RIDGE zu der Stirnseite F hin abnimmt.The optical semiconductor component BEI in the first exemplary embodiment has an end face F from which light signals emerge or through which light signals can enter the optical semiconductor component BEI. An optical fiber or an optical waveguide located on a carrier plate can be coupled to this end face F. For this purpose, the second waveguide core BULK is designed in such a way that its layer thickness decreases along the longitudinal direction L of the rib waveguide RIDGE towards the end face F.
In einer besonders vorteilhaften Ausführung der Erfindung nimmt die Schichtdicke der einzelnen Halbleiterschichten der Multi-Quantumwell-Struktur in einem zweiten Übergangsbereich UB2 entlang der Längsrichtung L des Rippenwellenleiters RIDGE ab. Die Abnahme der Schichtdicke der einzelnen Halbleiterschichten erfolgt in derselben Richtung, in der auch die Schichtdicke des zweiten Wellenleiterkernes BULK abnimmt. Die Energiebαndlϋcke einer Mutli-Quαntumwell-Struktur und damit die Wellenlänge, bei der die Multi-Quantumwell-Struktur optisch aktiv ist, hängt wesentlich von der Schichtdicke ihrer einzelnen Halbleiterschichten ab. Durch die Abnahme der Schichtdicke der einzelnen Halbleiterschichten in dem Übergangsbereich UB2 verschiebt sich die Wellenlänge, bei der die Multi- Quantumwell-Struktur optisch aktiv ist, zu kürzen Wellenlängen. Dadurch ist es möglich, einen Teil des Rippenwellenleiters passiv, d. h. Licht unverstärkt weiterleitend, zu betreiben. Das optische Halbleiterbauelement BEI weist einen aktiven Weilenleiterbereich AKT, in dem die Halbleiterschichten eine größere Schichtdicke haben, und einen passiven Wellenleiterbereich PAS, in dem die Halbleiterschichten eine kleinere Schichtdicke haben, auf. Eine Metallkontaktschicht MK ist nur in dem aktiven Wellenleiterbereich AKT auf dem Rippenwellenleiter RIDGE aufgebracht.In a particularly advantageous embodiment of the invention, the layer thickness of the individual semiconductor layers of the multi-quantum well structure decreases in a second transition region UB2 along the longitudinal direction L of the rib waveguide RIDGE. The layer thickness of the individual semiconductor layers decreases in the same direction in which the layer thickness of the second waveguide core BULK also decreases. The energy pool of a mutli-quantum well structure and thus the wavelength at which the multi-quantum well structure is optically active depends essentially on the layer thickness of its individual semiconductor layers. Due to the decrease in the layer thickness of the individual semiconductor layers in the transition region UB2, the wavelength at which the multi-quantum well structure is optically active shifts to shorter wavelengths. This makes it possible to operate a part of the rib waveguide passively, ie to transmit light unamplified. The optical semiconductor component BEI has an active waveguide region AKT, in which the semiconductor layers have a greater layer thickness, and a passive waveguide region PAS, in which the semiconductor layers have a smaller layer thickness. A metal contact layer MK is only applied to the rib waveguide RIDGE in the active waveguide region AKT.
Vorteilhafterweise ist der zweite Übergangsbereich UB2 so angeordnet, daß er zumindest teilweise mit dem ersten Übergangsbereich UBl überlappt. Dadurch wird eine insgesamt kürzere Baulänge des Halbleiterbauelementes BEI erreicht. Es ist jedoch von Vorteil, wenn der zweite Übergangsbereich UB2 in der Längsrichtung L teilweise vor oder im vorderen Teil des ersten Übergangsbereiches UBl angeordnet ist, da der aktive Wellenleiterbereich AKT, der durch Injektion eines Stromes betrieben werden muß, sich dann nicht über den ganzen ersten Übergangsbereich UBl erstreckt, wodurch der Strombedarf reduziert und die elektrische Kapazität verringert ist.The second transition region UB2 is advantageously arranged such that it overlaps at least partially with the first transition region UB1. As a result, the overall length of the semiconductor component BEI is shorter. However, it is advantageous if the second transition region UB2 is arranged in the longitudinal direction L partially in front of or in the front part of the first transition region UBl, since the active waveguide region AKT, which must be operated by injecting a current, does not then cover the entire first Transition area UBl extends, whereby the power requirement is reduced and the electrical capacity is reduced.
Der besondere Vorteil eines erfindungsgemäßen optischen Halbleiterbauelementes liegt darin, daß die Anpassung des Modenfeldes einer Lichtwelle in dem ersten Übergangsbereich UBl des Halbleiterbauelementes unabhängig ist von einer Änderung in der Energiebandlücke der optisch aktiven Halbleiterschichten bzw. der Multi-Quantumwell-Struktur. Dadurch ist vor allem erreichbar, daß ein erfindungsgemäßes optisches Halbleiterbauelement polarisationsunabhängig arbeitet, d.h. daß es Lichtsignale mit unterschiedlicher Polarisationsrichtung in gleicher weise verarbeitet.The particular advantage of an optical semiconductor component according to the invention is that the adaptation of the mode field of a light wave in the first transition region UBL of the semiconductor component is independent of a change in the energy band gap of the optically active semiconductor layers or the multi-quantum well structure. As a result, it can be achieved that an optical semiconductor component according to the invention operates independently of polarization, i.e. that it processes light signals with different polarization directions in the same way.
Im ersten Ausfϋhrungsbeispiel bestehen Substrat SUB, Pufferschicht BUF und Deckschicht DS aus einem Halbleiter vom lll/V- Verbindungstyp, wie InP oder GαAs. Die beiden Wellenleiterkerne MQW, BULK bestehen aus ternären oder quatemären Mischkristallen aus Elementen der Hauptgruppen III und V, wie InGaAsP, InGaAs oder InGaAlP. Es eignen sich für das Halbleiterbauelement jedoch auch Verbindungen jeweils aus Elementen der Haupgruppen II und VI, IV und IV oder I und VII, je nachdem, bei welcher Wellenlänge das Halbleiterbauelement arbeiten soll.In the first exemplary embodiment, substrate SUB, buffer layer BUF and cover layer DS consist of a semiconductor of the III / V connection type, such as InP or GαAs. The two waveguide cores MQW, BULK consist of ternary or quaternary mixed crystals from elements of main groups III and V, such as InGaAsP, InGaAs or InGaAlP. However, compounds of elements of main groups II and VI, IV and IV or I and VII are also suitable for the semiconductor component, depending on the wavelength at which the semiconductor component is to operate.
Das erfindungsgemäße optische Halbleiterbauelement BEI weist neben minimierten Kopplungsverlusten bei einer Ankopplung an eine optische Faser oder einen optischen Wellenleiter einer Trägerplatte den zusätzlichen Vorteil auf, daß eine Justierung zwischen Halbleiterbauelement und Faser bzw. Trägerplatte vereinfacht ist, da für eine verlustarme Kopplung höhere Justiertoleranzen zulässig sind als bei herkömmlichen optische Halbleiterbauelementen mit tiefem Rippenwellenleiter. So erhöhen sich bei dem Halbleiterbauelement BEI beispielsweise bei einer Dejustierung von 2 μm die Kopplungsverluste nur um etwa 1 dB. Desweiteren sind bei der Ankopplung an eine optische Faser keine Mikrolinsen erforderlich und es können einfache einmodige optische Fasern mit flachem Ende verwendet werden.The optical semiconductor component BEI according to the invention has, in addition to minimized coupling losses when coupled to an optical fiber or an optical waveguide of a carrier plate, the additional advantage that an adjustment between the semiconductor component and the fiber or carrier plate is simplified, since higher adjustment tolerances are permissible for a low-loss coupling in conventional optical semiconductor components with a deep rib waveguide. In the case of the semiconductor component BEI, for example, with a misalignment of 2 μm, the coupling losses only increase by about 1 dB. Furthermore, no microlenses are required when coupling to an optical fiber and simple single-mode optical fibers with a flat end can be used.
In Figur 3 ist eine Draufsicht auf das Halbleiterbauelement BEI des ersten Ausführungsbeispiels dargestellt. Es ist das Substrat SUB zu sehen, dem der tiefe Rippenwellenleiter RIDGE aufliegt. Der Rippenwellenleiter RIDGE hat die Form eines Mesastreifens.FIG. 3 shows a top view of the semiconductor component BEI in the first exemplary embodiment. The substrate SUB can be seen, on which the deep ridge waveguide RIDGE lies. The RIDGE rib waveguide has the shape of a mesa stripe.
In dem ersten Übergangsbereich UBl nimmt die Schichtdicke des zweiten Wellenleiterkemes BULK entlang der Längsrichtung L ab. In dem zweiten Übergangsbereich UB2 nimmt die Schichtdicke der einzelnen Schichten der Multi-Quantumwell-Struktur des ersten Wellenleiterkemes MQW in der Längsrichtung L ab, wodurch der Rippenwellenleiter RIDGE einen aktiven AKT und einen passiven PAS Wellenleiterbereich aufweist. In einem dritten Übergangsbereich nimmt die Breite des Rippenwellenleiters RIDGE entlang der Längsrichtung L zu der Stirnseite F hin zu. Dies bewirkt eine zusätzliche Aufweitung des Modenfeldes einer im Rippenwellenleiter RIDGE geführten Lichtwelle, insbesondere in lateraler Richtung. Der dritte Übergαngsbereich UB3 ist so angeordnet, daß er sich in der Längsrichtung L zumindest größtenteils hinter dem zweiten Übergangsbereich UB2 befindet und mit dem ersten Übergangsbereich UBl teilweise überlappt. Somit befindet sich der dritte Übergangsbereich UB3, in welchem sich der Rippenwellenleiter RIDGE lateral verbreitert, vollständig oder zumindest größtenteils in dem passiven Wellenleiterbereich PAS und es können dadurch auch bei starker lateraler Verbreiterung keine Moden höherer Ordnung angeregt werden. Der Rippenwellenleiter RIDGE ist somit einmodig.In the first transition region UBL, the layer thickness of the second waveguide core BULK decreases along the longitudinal direction L. In the second transition region UB2, the layer thickness of the individual layers of the multi-quantum well structure of the first waveguide core MQW decreases in the longitudinal direction L, as a result of which the rib waveguide RIDGE has an active AKT and a passive PAS waveguide region. In a third transition region, the width of the rib waveguide RIDGE increases along the longitudinal direction L towards the end face F. This causes an additional expansion of the mode field of a light wave guided in the RIDGE rib waveguide, in particular in the lateral direction. The third transition region UB3 is arranged such that it is at least largely behind the second transition region UB2 in the longitudinal direction L and partially overlaps with the first transition region UB1. Thus, the third transition region UB3, in which the rib waveguide RIDGE widens laterally, is located completely or at least largely in the passive waveguide region PAS, and no modes of higher order can be excited as a result, even with strong lateral broadening. The RIDGE rib waveguide is therefore single-mode.
Der besondere Vorteil der Verbreiterung des Rippenwellenleiters RIDGE liegt darin, daß eine austretende Lichtwelle bei geeigneter Dimensionierung der Verbreiterung ein symmetrisches Modenfeld hat, wodurch Kopplungsverluste minimiert sind.The particular advantage of the broadening of the RIDGE ribbed waveguide is that an emerging light wave with a suitable dimensioning of the broadening has a symmetrical mode field, as a result of which coupling losses are minimized.
Figur 4 zeigt eine Draufsicht auf ein erfindungsgemäßes optisches Halbleiterbauelement BE2 in einem zweiten Ausführungsbeispiel. Es weist dieselbe in Figur 1 dargestellte vertikale Schichtstruktur auf, wie das Halbleiterbauelement BE I im ersten Ausführungsbeispiel. Dargestellt ist das Substrat SUB mit dem darauf angeordneten tiefen Rippenwellenleiter RIDGE.FIG. 4 shows a top view of an optical semiconductor component BE2 according to the invention in a second exemplary embodiment. It has the same vertical layer structure shown in FIG. 1 as the semiconductor component BE I in the first exemplary embodiment. The substrate SUB is shown with the deep ridge waveguide RIDGE arranged thereon.
In dem ersten Übergangsbereich UBl nimmt die Schichtdicke des zweiten Wellenleiterkernes BULK entlang der Längsrichtung L ab. In dem zweiten Übergangsbereich UB2 nimmt die Schichtdicke der einzelnen Schichten der Multi-Quantumwell-Struktur des ersten Wellenleiterkernes MQW in der Längsrichtung L ab, wodurch der Rippenwellenleiter RIDGE einen aktiven AKT und einen passiven PAS Wellenleiterbereich aufweist.In the first transition region UBL, the layer thickness of the second waveguide core BULK decreases along the longitudinal direction L. In the second transition region UB2, the layer thickness of the individual layers of the multi-quantum well structure of the first waveguide core MQW decreases in the longitudinal direction L, as a result of which the rib waveguide RIDGE has an active AKT and a passive PAS waveguide region.
Der Rippenwellenleiter RIDGE weist an seiner Stirnseite F einen Abschluß in Form einer integrierten Zylinderlinse LENS auf. Die Grundfläche dieser integrierten Zylinderlinse LENS kann hyperbolisch, parabolisch oder in Form eines Kreissegmentes ausgebildet sein.The rib waveguide RIDGE has a termination in the form of an integrated cylindrical lens LENS on its end face F. The base area of this integrated cylindrical lens LENS can be hyperbolic, parabolic or in the form of a circular segment.
Der besondere Vorteil dieser Ausführung liegt darin, daß durch die Zylinderlinse LENS eine zusätzliche Aufweitung des Modenfeldes der Lichtwelle bewirkt wird. Mit einer geeigneten Form der Grundfläche der Zylinderlinse LENS läßt sich erreichen, daß das Modenfeld der austretenden Lichtwelle symmetrisch ist, d. h. daß die austretende Lichtwelle einen kreisrunden Lichtfleck erzeugt, anstelle eines elliptischen. Kopplungsverluste sind in dieser Ausführung mit symmetrischem Modenfeld minimal. The particular advantage of this design is that the LENS cylinder lens causes an additional expansion of the mode field of the light wave. With a suitable shape of the base of the cylindrical lens LENS it can be achieved that the mode field of the emerging light wave is symmetrical, ie that the emerging light wave creates a circular light spot instead of an elliptical one. Coupling losses are minimal in this version with a symmetrical mode field.

Claims

Patentansprüche claims
1 . Optisches Halbleiterbauelement (BEI ; BE2), das ein Substrat (SUB) und einen auf dem Substrat (SUB) angeordneten tiefen Rippenwellenleiter (RIDGE) mit einer Deckschicht (DS) hat, bei dem1 . Optical semiconductor component (BEI; BE2), which has a substrate (SUB) and a deep rib waveguide (RIDGE) arranged on the substrate (SUB) with a cover layer (DS), in which
- der Rippenwellenleiter (RIDGE) einen ersten (MQW) und einen zweiten (BULK) Wellenleiterkem enthält, deren Brechungsindices jeweils größer sind, als die Brechungsindices der Deckschicht (DS) und des Substrates (SUB),the rib waveguide (RIDGE) contains a first (MQW) and a second (BULK) waveguide core, the refractive indices of which are each greater than the refractive indices of the cover layer (DS) and the substrate (SUB),
- der erste Wellenleiterkern (MQW) eine oder mehrere optisch aktive Halbleiterschichten enthält und- The first waveguide core (MQW) contains one or more optically active semiconductor layers and
- die Schichtdicke des zweiten Wellenleiterkemes (BULK) in einem ersten Übergangsbereich (UBl ) entlang einer Längsrichtung (L) des Rippenwellenleiters (RIDGE) abnimmt.- The layer thickness of the second waveguide core (BULK) decreases in a first transition region (UBl) along a longitudinal direction (L) of the rib waveguide (RIDGE).
2. Optisches Halbleiterbaύelement (BEI ; BE2) gemäß Anspruch 1 , dadurch gekennzeichnet, daß es eine Stirnseite (F) für ein- oder austretende Lichtsignale aufweist und die Schichtdicke des zweiten Wellenleiterkemes (BULK) entlang der Längsrichtung (L) des Rippenwellenleiters zu der Stirnseite (F) hin abnimmt.2. Optical semiconductor component (BEI; BE2) according to claim 1, characterized in that it has an end face (F) for incoming or outgoing light signals and the layer thickness of the second waveguide core (BULK) along the longitudinal direction (L) of the ridge waveguide to the end face (F) decreases.
3. Optisches Halbleiterbauelement (BEI ; BE2) gemäß Anspruch 1 , dadurch gekennzeichnet, daß die Abnahme der Schichtdicke des zweiten Wellenleiterkemes (BULK) stetig erfolgt. 3. Optical semiconductor component (BEI; BE2) according to claim 1, characterized in that the decrease in the layer thickness of the second waveguide core (BULK) takes place continuously.
4. Optisches Hαlbleiterbαuelement (BE I ; BE2) gemäß Anspruch 1 , dadurch gekennzeichnet, daß es sich bei den einen oder mehren optisch aktiven Halbleiterschichten des ersten Wellenleiterkemes (MQW) um ein Halbleiterschichtpaket mit Multi-Quantumwell-Struktur handelt.4. Optical Hαlbleiterbαuelement (BE I; BE2) according to claim 1, characterized in that it is in the one or more optically active semiconductor layers of the first waveguide core (MQW) is a semiconductor layer package with multi-quantum well structure.
5. Optisches Halbleiterbauelement (BEI ; BE2) gemäß Anspruch 4, dadurch gekennzeichnet, daß die Dicke einzelner Schichten des Halbleiterschichtpaketes des ersten Wellenleiterkernes (MQW) in einem zweiten Übergangsbereich (UB2) entlang derselben Richtung (L) abnimmt, entlang der die Abnahme der Schichtdicke des zweiten Wellenleiterkernes (BULK) erfolgt.5. Optical semiconductor component (BEI; BE2) according to claim 4, characterized in that the thickness of individual layers of the semiconductor layer package of the first waveguide core (MQW) decreases in a second transition region (UB2) along the same direction (L) along which the decrease in the layer thickness of the second waveguide core (BULK).
6. Optisches Halbleiterbauelement (BEI ; BE2) gemäß Anspruch 1 , dadurch gekennzeichnet, daß die Breite des Rippenwellenleiters (RIDGE) in einem dritten Übergangsbereich (UB3) entlang derselben Richtung (L) zunimmt, entlang der die Abnahme der Schichtdicke des zweiten Wellenleiterkernes (BULK) erfolgt.6. Optical semiconductor component (BEI; BE2) according to claim 1, characterized in that the width of the rib waveguide (RIDGE) increases in a third transition region (UB3) along the same direction (L) along which the decrease in the layer thickness of the second waveguide core (BULK ) he follows.
7. Optisches Halbleiterbauelement (BEI ; BE2) gemäß Anspruch 2, dadurch gekennzeichnet, daß der Rippenwellenleiter (RIDGE) an der Stirnseite (F) einen Abschluß (LENS) in Form einer integrierten Zylinderlinse aufweist mit hyperbolischer, parabolischer oder kreissegmentförmiger Grundfläche. 7. Optical semiconductor component (BEI; BE2) according to claim 2, characterized in that the rib waveguide (RIDGE) on the end face (F) has a termination (LENS) in the form of an integrated cylindrical lens with a hyperbolic, parabolic or circular segment-shaped base.
EP97936626A 1996-06-28 1997-06-26 Optical semiconductor component with deep ridged waveguide Ceased EP0847606A2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19626113A DE19626113A1 (en) 1996-06-28 1996-06-28 Optical semiconductor component with a deep ribbed waveguide
DE19626113 1996-06-28
PCT/EP1997/003585 WO1998000894A2 (en) 1996-06-28 1997-06-26 Optical semiconductor component with deep ridged waveguide

Publications (1)

Publication Number Publication Date
EP0847606A2 true EP0847606A2 (en) 1998-06-17

Family

ID=7798379

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97936626A Ceased EP0847606A2 (en) 1996-06-28 1997-06-26 Optical semiconductor component with deep ridged waveguide

Country Status (5)

Country Link
US (1) US6181722B1 (en)
EP (1) EP0847606A2 (en)
JP (1) JPH11511911A (en)
DE (1) DE19626113A1 (en)
WO (1) WO1998000894A2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19626113A1 (en) 1996-06-28 1998-01-02 Sel Alcatel Ag Optical semiconductor component with a deep ribbed waveguide
JP2967737B2 (en) * 1996-12-05 1999-10-25 日本電気株式会社 Optical semiconductor device and its manufacturing method
US7164818B2 (en) * 2001-05-03 2007-01-16 Neophontonics Corporation Integrated gradient index lenses
US6253015B1 (en) * 2000-02-08 2001-06-26 Corning Incorporated Planar waveguides with high refractive index
AU2452302A (en) 2000-07-21 2002-02-05 Mark B Lyles Sunscreen formulations containing nucleic acids
US20030044118A1 (en) * 2000-10-20 2003-03-06 Phosistor Technologies, Inc. Integrated planar composite coupling structures for bi-directional light beam transformation between a small mode size waveguide and a large mode size waveguide
FR2816064B1 (en) * 2000-10-27 2003-03-07 Thomson Csf METHOD FOR PRODUCING A WAVEGUIDE, IN PARTICULAR OPTICAL, AND OPTICAL COUPLING DEVICE COMPRISING SUCH A GUIDE
US6873638B2 (en) * 2001-06-29 2005-03-29 3M Innovative Properties Company Laser diode chip with waveguide
US6922508B2 (en) * 2001-08-17 2005-07-26 Fujitsu Limited Optical switching apparatus with adiabatic coupling to optical fiber
US7426328B2 (en) * 2002-08-28 2008-09-16 Phosistor Technologies, Inc. Varying refractive index optical medium using at least two materials with thicknesses less than a wavelength
US8538208B2 (en) * 2002-08-28 2013-09-17 Seng-Tiong Ho Apparatus for coupling light between input and output waveguides
US7303339B2 (en) * 2002-08-28 2007-12-04 Phosistor Technologies, Inc. Optical beam transformer module for light coupling between a fiber array and a photonic chip and the method of making the same
JP6274224B2 (en) * 2014-01-10 2018-02-07 富士通株式会社 Optical semiconductor device and manufacturing method thereof
US10359569B2 (en) * 2016-05-09 2019-07-23 Huawei Technologies Co., Ltd. Optical waveguide termination having a doped, light-absorbing slab

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0498170B1 (en) * 1991-02-08 1997-08-27 Siemens Aktiengesellschaft Integrated optical component for coupling waveguides of different dimensions
DE69414208T2 (en) * 1993-08-31 1999-03-25 Fujitsu Ltd Semiconductor optical device and manufacturing method
JPH0794833A (en) * 1993-09-22 1995-04-07 Mitsubishi Electric Corp Semiconductor laser and its manufacturing method
DE4412254A1 (en) * 1994-04-07 1995-10-12 Hertz Inst Heinrich Optical coupling element and method for its production
WO1995031741A1 (en) * 1994-05-18 1995-11-23 Siemens Aktiengesellschaft Semiconductor component with branched waveguide
JPH08116135A (en) * 1994-10-17 1996-05-07 Mitsubishi Electric Corp Manufacture of waveguiding path integrated element and waveguiding path integrated element
DE19626113A1 (en) 1996-06-28 1998-01-02 Sel Alcatel Ag Optical semiconductor component with a deep ribbed waveguide
DE19626130A1 (en) * 1996-06-28 1998-01-08 Sel Alcatel Ag Optical semiconductor component with a deep ribbed waveguide
JPH10221572A (en) * 1997-02-07 1998-08-21 Fujitsu Ltd Optical device
US6052397A (en) * 1997-12-05 2000-04-18 Sdl, Inc. Laser diode device having a substantially circular light output beam and a method of forming a tapered section in a semiconductor device to provide for a reproducible mode profile of the output beam

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9800894A3 *

Also Published As

Publication number Publication date
WO1998000894A3 (en) 1998-02-19
US6181722B1 (en) 2001-01-30
WO1998000894A2 (en) 1998-01-08
DE19626113A1 (en) 1998-01-02
JPH11511911A (en) 1999-10-12

Similar Documents

Publication Publication Date Title
EP0498170B1 (en) Integrated optical component for coupling waveguides of different dimensions
EP0284910B1 (en) Integrated-optical device for bi-directional optical communications- or signal- transmission
DE4328777B4 (en) Optical filter device
DE60212344T2 (en) BY ELECTRICAL ABSORPTION MODULATED LASER WITH ASYMMETRICAL WAVE LADDER
EP0187198B1 (en) Method of manufacturing an integrated optical device
DE60123427T2 (en) PHOTONIC INTEGRATED DETECTOR WITH SEVERAL ASYMMETRICAL WAVE-GUIDES
WO1998000894A2 (en) Optical semiconductor component with deep ridged waveguide
DE60014969T2 (en) SEMICONDUCTOR LASER DEVICE WITH A DIVERGING REGION
WO1998000738A1 (en) Optical semiconductor component with deep ridged waveguide
DE60028743T2 (en) OPTICAL COUPLING SWITCH WITH VERTICAL COUPLED WAVELINE STRUCTURE
WO1998011461A1 (en) Device for coupling wave guides
EP0309744A2 (en) Arrangement with a thin-film waveguide extending in a flat manner
EP0495202B1 (en) Device to change an optical wave with a small waist diameter into a wave with a bigger waist diameter
DE10201126A1 (en) Optoelectronic component has monolithic light source and photodetector monitoring light output for regulation of optoelectronic component
DE69730872T2 (en) LASER DEVICE
DE69814650T2 (en) ARRANGEMENT FOR OPTICAL REINFORCEMENT AND COUPLING ACCORDING TO THE MULTIMODE INTERFERENCE PRINCIPLE AND THEIR APPLICATIONS
EP0948752B1 (en) Optoelectronic module
DE60201464T2 (en) Semiconductor laser
DE102013223499B4 (en) Wide-band laser and method for producing a wide-band laser
EP0257531A2 (en) Array of optical resonators
DE3626702C2 (en)
EP0768740B1 (en) Optoelectronic element with codirectional mode coupling
DE4034000C1 (en)
DE60018418T2 (en) Refractive index compensation of impregated InP
DE4338606C2 (en) Profit-coupled laser diode

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980305

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE ES FR GB IT NL SE

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALCATEL

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALCATEL

17Q First examination report despatched

Effective date: 19990827

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20010608