EP0847363B1 - Aircraft gas turbine engine with a liquid-air heat exchanger - Google Patents

Aircraft gas turbine engine with a liquid-air heat exchanger Download PDF

Info

Publication number
EP0847363B1
EP0847363B1 EP96921980A EP96921980A EP0847363B1 EP 0847363 B1 EP0847363 B1 EP 0847363B1 EP 96921980 A EP96921980 A EP 96921980A EP 96921980 A EP96921980 A EP 96921980A EP 0847363 B1 EP0847363 B1 EP 0847363B1
Authority
EP
European Patent Office
Prior art keywords
gas turbine
heat exchanger
aircraft gas
duct
turbine engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96921980A
Other languages
German (de)
French (fr)
Other versions
EP0847363A1 (en
Inventor
Dimitrie Negulescu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolls Royce Deutschland Ltd and Co KG
Original Assignee
BMW Rolls Royce GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BMW Rolls Royce GmbH filed Critical BMW Rolls Royce GmbH
Publication of EP0847363A1 publication Critical patent/EP0847363A1/en
Application granted granted Critical
Publication of EP0847363B1 publication Critical patent/EP0847363B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/14Cooling of plants of fluids in the plant, e.g. lubricant or fuel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D33/00Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for
    • B64D33/08Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for of power plant cooling systems
    • B64D33/10Radiator arrangement
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the invention relates to an aircraft gas turbine engine, in particular a turboprop engine, with a liquid-air heat exchanger arranged in the engine nacelle, especially an oil cooler that is driven by a fed through an opening in the engine nacelle Cooling air flow can be acted upon.
  • a liquid-air heat exchanger arranged in the engine nacelle, especially an oil cooler that is driven by a fed through an opening in the engine nacelle Cooling air flow can be acted upon.
  • Aircraft turbine engines may require air-cooled To arrange liquid heat exchangers and especially oil coolers that these heat exchangers both during flight operations and when rolling forward of the plane, as well as when the plane is on the ground rolls backwards, optimally flowed with cooling air. Of special This requirement is important for turboprop engines because of the oil coolers of these engines dissipate relatively large amounts of heat have to.
  • a problem in particular when the aircraft rolls backwards is the promotion of the air flow acting on the heat exchanger. It is therefore an object of the present invention to provide a particularly premature solution to this problem.
  • the heat exchanger is arranged in a flow channel, which opens at the rear in the environment and which can be optionally connected at the front to an air inlet opening or to the inflow channel of the compressor of the aircraft gas turbine.
  • Advantageous training and further education are included in the subclaims.
  • the invention is explained in more detail with reference to the schematic diagram of a preferred one Embodiment.
  • the engine nacelle of a turboprop engine shown only partially.
  • an aircraft gas turbine arranged, of which essentially only the compressor 2 is shown is.
  • the aircraft gas turbine drives a propeller 4.
  • the lubricating oil of the transmission 3 is heated so much that always a effective oil cooling must take place; this is essentially within the engine nacelle 1 is a liquid-air heat exchanger 5, which follows is also referred to as an oil cooler 5.
  • the engine nacelle 1 On the front side the engine nacelle 1 is provided with an air inlet opening 7 the flow channel 6 can be connected.
  • a flow guide flap designated by 10 in the dashed line Position In this case a flow guide flap designated by 10 in the dashed line Position.
  • the flow channel 6 opens on the other side of the Oil cooler 5 either through a conventional nozzle according to arrow 16 in the area, by moving a movable flap 15, the flow channel 6 but also via an overflow opening 8 in the engine nacelle 1 be connected to the environment.
  • a so-called connecting channel branches from the flow channel 6 near the air inlet opening 7 9, with an adjustable in the area of the junction Flow guide flap 10 is provided.
  • the flow guide flap 10 is pivotable about a pivot point 13. Shown is this flow guide valve 10 in its two different End positions.
  • the flow guide flap 10 is shown in dashed lines shown position, there is a possible connection from the flow channel 6 interrupted to the connecting channel 9, d. H. it is not airborne from Flow channel 6 in the connecting channel 9 possible.
  • connection channel 9 can establish a connection between the Flow channel 6 and the inflow channel 11 of the compressor 2, via which the gas turbine operating air is supplied to the compressor 2.
  • the flow channel is located in the front area of the engine nacelle 1 6 essentially next to the inflow channel 11.
  • the flow guide flap 10 from the position shown in dashed lines to the Position shown by a solid line, so is now over opened connecting channel 9, the flow channel 6 with the inflow channel 11 connected while the air inlet opening 7 is closed becomes.
  • the flap 15 is moved such that the nozzle is closed and the transfer opening 8 is opened. This has the consequence that when operating the gas turbine or the compressor 2 air from the flow channel 6 is suctioned into the inflow duct 11.
  • the partially relatively hot cooler exhaust air should be supplied this application of hot air to the compressor 2 as well as possible distributed evenly over the circumference of the compressor.
  • the inflow channel 11 of the compressor 2 is ring-shaped as usual also the connecting channel 9 of the essentially annular engine nacelle 1 adapted also annular. With the transfer of Radiator exhaust air via the open flow guide flap 10 into the connecting duct 9 this hot radiator exhaust air will at least essentially distribute evenly over this annular connecting channel 9 and thus essentially evenly distributed in the compressor inflow channel 11 arrive.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Supercharger (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

Die Erfindung betrifft ein Fluggasturbinen-Triebwerk, insbesondere Turboprop-Triebwerk, mit einem in der Triebwerks-Gondel angeordneten Flüssigkeits-Luft-Wärmetauscher, insbesondere Ölkühler, der von einem zwangsgeförderten, über eine Öffnung in der Triebwerks-Gondel zugeführten Kühlluftstrom beaufschlagbar ist. Zum bekannten Stand der Technik wird beispielshalber auf die EP 0 514 119 A1 verwiesen.The invention relates to an aircraft gas turbine engine, in particular a turboprop engine, with a liquid-air heat exchanger arranged in the engine nacelle, especially an oil cooler that is driven by a fed through an opening in the engine nacelle Cooling air flow can be acted upon. The known prior art For example, refer to EP 0 514 119 A1.

An Fluggasturbinen-Triebwerken kann es erforderlich sein, luftgekühlte Flüssigkeits-Wärmetauscher und insbesondere Ölkühler so anzuordnen, daß diese Wärmetauscher sowohl bei Flugbetrieb sowie beim Vorwärts-Dahinrollen des Flugzeuges, als auch dann, wenn das Flugzeug am Boden rückwärts dahinrollt, optimal mit Kühlluft angeströmt werden. Von besonderer Bedeutung ist diese Anforderung bei Turboprop-Triebwerken, da über die Ölkühler dieser Triebwerke relativ große Wärmemengen abgeführt werden müssen.Aircraft turbine engines may require air-cooled To arrange liquid heat exchangers and especially oil coolers that these heat exchangers both during flight operations and when rolling forward of the plane, as well as when the plane is on the ground rolls backwards, optimally flowed with cooling air. Of special This requirement is important for turboprop engines because of the oil coolers of these engines dissipate relatively large amounts of heat have to.

Ein Problem insbesondere beim Rückwärts-Dahinrollen des Flugzeuges ist dabei die Förderung des den Wärmetauscher beaufschlagenden Luftstromes. Eine besonders voreilhafte Lösung für dieses Problem aufzuzeigen, ist demzufolge Aufgabe der vorliegenden Erfindung.
Zur Lösung dieser Aufgabe ist vorgesehen, daß der Wärmetauscher in einem Strömungskanal angeordnet ist, der rückseitig in der Umgebung mündet und der vorderseitig wahlweise mit einer Lufteintrittsöffnung oder mit dem Zuströmkanal des Verdichters der Fluggasturbine verbindbar ist. Vorteilhafte Aus- und Weiterbildungen sind Inhalt der Unteransprüche.
A problem in particular when the aircraft rolls backwards is the promotion of the air flow acting on the heat exchanger. It is therefore an object of the present invention to provide a particularly premature solution to this problem.
To solve this problem it is provided that the heat exchanger is arranged in a flow channel, which opens at the rear in the environment and which can be optionally connected at the front to an air inlet opening or to the inflow channel of the compressor of the aircraft gas turbine. Advantageous training and further education are included in the subclaims.

Näher erläutert wird die Erfindung anhand der Prinzipskizze eines bevorzugten Ausführungsbeispieles. Dabei ist mit der Bezugsziffer 1 die Triebwerks-Gondel eines nur teilweise dargestellten Turboprop-Triebwerks bezeichnet. In dieser in einem Teilschnitt dargestellten Triebwerks-Gondel ist eine Fluggasturbine angeordnet, von der im wesentlichen nur der Verdichter 2 dargestellt ist. Unter Zwischenschaltung eines Getriebes 3 treibt die Fluggasturbine einen Propeller 4 an. Aufgrund der hohen zu übertragenden Leistung wird das Schmieröl des Getriebes 3 so stark erwärmt, daß stets eine wirkungsvolle Ölkühlung erfolgen muß; hierzu ist im wesentlichen innerhalb der Triebwerks-Gondel 1 ein Flüssigkeits-Luft-Wärmetauscher 5, der im folgenden auch als Ölkühler 5 bezeichnet wird, angeordnet.The invention is explained in more detail with reference to the schematic diagram of a preferred one Embodiment. With the reference number 1 is the engine nacelle of a turboprop engine shown only partially. In this engine nacelle shown in a partial section is an aircraft gas turbine arranged, of which essentially only the compressor 2 is shown is. With the interposition of a transmission 3, the aircraft gas turbine drives a propeller 4. Because of the high power to be transmitted the lubricating oil of the transmission 3 is heated so much that always a effective oil cooling must take place; this is essentially within the engine nacelle 1 is a liquid-air heat exchanger 5, which follows is also referred to as an oil cooler 5.

Es gilt, diesen Ölkühler 5 stets mit einem Kühlluftstrom zu beaufschlagen. Hierzu ist der Ölkühler/Wärmetauscher 5 in einem Strömungskanal 6, der in die Triebwerks-Gondel 1 eingearbeitet ist, angeordnet. An der Vorderseite der Triebwerks-Gondel 1 ist eine Lufteintrittsöffnung 7 vorgesehen, die mit dem Strömungskanal 6 verbunden werden kann. In diesem Falle befindet sich eine mit 10 bezeichnete Strömungs-Leitklappe in der gestrichelt dargestellten Position. Der Strömungskanal 6 mündet auf der anderen Seite des Ölkühlers 5 entweder über eine übliche Düse gemäß Pfeil 16 in der Umgebung, durch Verschiebung einer beweglichen Klappe 15 kann der Strömungskanal 6 jedoch auch über eine Übertrittsöffnung 8 in der Triebwerks-Gondel 1 mit der Umgebung verbunden sein. It is important to always apply a flow of cooling air to this oil cooler 5. For this purpose, the oil cooler / heat exchanger 5 in a flow channel 6, which in the engine nacelle 1 is incorporated. On the front side the engine nacelle 1 is provided with an air inlet opening 7 the flow channel 6 can be connected. In this case a flow guide flap designated by 10 in the dashed line Position. The flow channel 6 opens on the other side of the Oil cooler 5 either through a conventional nozzle according to arrow 16 in the area, by moving a movable flap 15, the flow channel 6 but also via an overflow opening 8 in the engine nacelle 1 be connected to the environment.

Nahe der Lufteintrittsöffnung 7 zweigt vom Strömungskanal 6 ein sog. Verbindungskanal 9 ab, wobei im Bereich der Abzweigung eine verstellbare Strömungs-Leitklappe 10 vorgesehen ist. Mittels eines Verstellhebels 12 ist die Strömungsleitklappe 10 um einen Drehpunkt 13 verschwenkbar. Dargestellt ist diese Strömungs-Leitklappe 10 in ihren beiden unterschiedlichen Endpositionen. Befindet sich die Strömungs-Leitklappe 10 in der gestrichelt dargestellten Lage, so ist eine mögliche Verbindung vom Strömungskanal 6 zum Verbindungskanal 9 unterbrochen, d. h. es ist kein Luftübertritt vom Strömungskanal 6 in den Verbindungskanal 9 möglich. Über die Lufteintrittsöffnung 7 kann dann der Kühlluftstrom zur Beaufschlagung des Ölkühlers 5 direkt in den Strömungskanal 6 eintreten und stromab des Ölkühlers 5 als Kühler-Abluftstrom gemäß Pfeil 16 über die Düse wieder in die Umgebung austreten; die dargestellte Pfeilrichtung 14 ist in diesem Falle ohne Bedeutung.A so-called connecting channel branches from the flow channel 6 near the air inlet opening 7 9, with an adjustable in the area of the junction Flow guide flap 10 is provided. By means of an adjusting lever 12 the flow guide flap 10 is pivotable about a pivot point 13. Shown is this flow guide valve 10 in its two different End positions. The flow guide flap 10 is shown in dashed lines shown position, there is a possible connection from the flow channel 6 interrupted to the connecting channel 9, d. H. it is not airborne from Flow channel 6 in the connecting channel 9 possible. Via the air inlet opening 7 can then the cooling air flow to act on the oil cooler 5 enter directly into the flow channel 6 and downstream of the oil cooler 5 as cooler exhaust air flow according to arrow 16 via the nozzle back into the environment emerge; the arrow direction 14 shown is without in this case Meaning.

Der Verbindungskanal 9 kann eine Verbindung herstellen zwischen dem Strömungskanal 6 sowie dem Zuströmkanal 11 des Verdichters 2, über welchen dem Verdichter 2 die Gasturbinen-Betriebsluft zugeführt wird. Wie ersichtlich liegt im vorderen Bereich der Triebwerks-Gondel 1 der Strömungskanal 6 im wesentlichen neben dem Zuströmkanal 11. Wird nun die Strömungs-Leitklappe 10 aus der gestrichelt dargestellten Position in die mit durchgezogener Linie dargestellte Position gebracht, so wird über den nunmehr geöffneten Verbindungskanal 9 der Strömungskanal 6 mit dem Zuströmkanal 11 verbunden, während die Lufteintrittsöffnung 7 geschlossen wird. Gleichzeitig wird die Klappe 15 derart verschoben, daß die Düse geschlossen und die Übertrittsöffnung 8 geöffnet wird. Dies hat zur Folge, daß bei Betrieb der Gasturbine bzw. des Verdichters 2 Luft aus dem Strömungskanal 6 in den Zuströmkanal 11 abgesaugt wird. Als Folge hiervon gelangt ein Luftstrom gemäß Pfeilrichtung 14 über die Übertrittsöffnung 8 in den Strömungskanal 6, durchdringt den Ölkühler 5 und wird schließlich vom Verdichter 2 abgesaugt. Diese Betriebsweise bzw. diese Stellung der Strömungs-Leitklappe 10 sowie der verschiebbaren Klappe 15 wird somit dann gewählt, wenn zu Kühlungszwecken durch den Ölkühler 5 ein Luftstrom geschickt werden soll, wenn jedoch - beispielsweise wegen einer Rückwärtsfahrt des Flugzeuges - über die Lufteintrittsöffnung 7 praktisch kein Luftstrom zum Ölkühler 5 gelangen kann. Im Sinne einer vorteilhaften Funktionsvereinigung fungiert der Verdichter 2 dann gleichzeitig als Fördervorrichtung für einen den Flüssigkeits-Luft-Wärmetauscher 5 beaufschlagenden Kühlluftstrom.The connection channel 9 can establish a connection between the Flow channel 6 and the inflow channel 11 of the compressor 2, via which the gas turbine operating air is supplied to the compressor 2. As can be seen the flow channel is located in the front area of the engine nacelle 1 6 essentially next to the inflow channel 11. Now the flow guide flap 10 from the position shown in dashed lines to the Position shown by a solid line, so is now over opened connecting channel 9, the flow channel 6 with the inflow channel 11 connected while the air inlet opening 7 is closed becomes. At the same time, the flap 15 is moved such that the nozzle is closed and the transfer opening 8 is opened. This has the consequence that when operating the gas turbine or the compressor 2 air from the flow channel 6 is suctioned into the inflow duct 11. As a result of this an air flow in the direction of arrow 14 via the transfer opening 8 in the Flow channel 6, penetrates the oil cooler 5 and is finally from Compressor 2 aspirated. This mode of operation or this position of the flow guide flap 10 and the sliding flap 15 will then selected if an air flow is sent through the oil cooler 5 for cooling purposes should, however, if - for example because of a backward drive of the aircraft - practically no air flow via the air inlet opening 7 can get to the oil cooler 5. In the sense of an advantageous combination of functions The compressor 2 then simultaneously functions as a conveying device for a liquid-air heat exchanger 5 acting Cooling air flow.

Da dem Verdichter 2 beim Fördern des den Ölkühler 5 beaufschlagenden Kühlluftstromes die teilweise relativ heiße Kühler-Abluft zugeführt wird, sollte diese Beaufschlagung des Verdichters 2 mit heißer Luft so gut als möglich über den Umfang des Verdichters gleichmäßig verteilt erfolgt. Da der Zuströmkanal 11 des Verdichters 2 wie üblich ringförmig ausgebildet ist, ist ebenfalls der Verbindungskanal 9 der im wesentlichen ringförmigen Triebwerks-Gondel 1 angepaßt ebenfalls ringförmig ausgebildet. Mit Übertritt der Kühler-Abluft über die geöffnete Strömungs-Leitklappe 10 in den Verbindungskanal 9 wird sich diese heiße Kühlerabluft zumindest im wesentlichen gleichmäßig über diesen ringförmigen Verbindungskanal 9 verteilen und somit im wesentlichen gleichmäßig verteilt in den Verdichter-Zuströmkanal 11 gelangen. Wird zum einen späteren Zeitpunkt das beschriebene Fluggasturbinen-Triebwerk wieder von vorne angeströmt, so daß ein ausreichend hoher, die Lufteintrittsöffnung 7 beaufschlagender Kühlluftstrom zur Verfügung steht, so wird die Strömungs-Leitklappe 10 wieder in die in gestrichelter Linie dargestellte Position gebracht, so daß der Ölkühler 5 wieder wie üblich bezüglich des Triebwerkes von vorne nach hinten mit Kühlluft durchströmt wird. Mit der beschriebenen Anordnung ist es somit möglich, unter sämtlichen Betriebszuständen auf einfache Weise einen ausreichend großen Kühlluftstrom für die Beaufschlagung des Flüssigkeits-Luft-Wärmetauschers bzw. Ölkühlers 5 bereitzustellen. Dabei können selbstverständlich eine Vielzahl von Details insbesondere konstruktiver Art durchaus abweichend vom gezeigten Ausführungsbeispiel gestaltet sein, ohne den Inhalt der Patentansprüche zu verlassen.Since the compressor 2 when pumping the oil cooler 5 acting Cooling air flow, the partially relatively hot cooler exhaust air should be supplied this application of hot air to the compressor 2 as well as possible distributed evenly over the circumference of the compressor. Because the inflow channel 11 of the compressor 2 is ring-shaped as usual also the connecting channel 9 of the essentially annular engine nacelle 1 adapted also annular. With the transfer of Radiator exhaust air via the open flow guide flap 10 into the connecting duct 9 this hot radiator exhaust air will at least essentially distribute evenly over this annular connecting channel 9 and thus essentially evenly distributed in the compressor inflow channel 11 arrive. Will the aircraft gas turbine engine described later flowed again from the front, so that a sufficient high cooling air flow acting on the air inlet opening 7 for Is available, the flow guide valve 10 is again in dashed lines Position shown line, so that the oil cooler 5 again as usual with regard to the engine from the front to the rear with cooling air is flowed through. With the arrangement described it is thus possible sufficient under all operating conditions in a simple manner large cooling air flow for the loading of the liquid-air heat exchanger or to provide oil cooler 5. You can of course a variety of details, particularly of a constructive nature, are quite different be designed from the embodiment shown, without the content leave the claims.

Claims (4)

  1. An aircraft gas turbine engine, especially a turbo-prop engine, with a fluid-air heat exchanger (5) arranged in the engine nacelle (1), which can be subjected to a forced air stream, taken via an opening in the engine nacelle (1),
    characterised in that the heat exchanger (5) is arranged in an air stream duct (6), which opens into the environment at the rear and which can be connected optionally at the front end with an air entry opening (7), or with the infeed duct (11) of the compressor (2) of the aircraft gas turbine.
  2. An aircraft gas turbine engine according to Claim 1,
    characterised in that in the front end region of the engine nacelle (1) a connecting duct (9) having an adjustable air flow guide flap (10) is provided between the compressor infeed duct (11) and the adjacent heat exchanger air stream duct (6).
  3. An aircraft gas turbine engine according to Claim 1 or Claim 2,
    characterised in that the connecting duct (9) of the essentially annular engine nacelle (1) is formed in a matching ring shape.
  4. An aircraft gas turbine engine according to one of the preceding Claims,
    characterised in that the heat exchanger air stream duct (6) opens optionally via a nozzle (arrow 16) or via an overflow opening (8) into the environment.
EP96921980A 1995-07-07 1996-06-13 Aircraft gas turbine engine with a liquid-air heat exchanger Expired - Lifetime EP0847363B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19524733A DE19524733A1 (en) 1995-07-07 1995-07-07 Aircraft gas turbine engine with a liquid-air heat exchanger
DE19524733 1995-07-07
PCT/EP1996/002553 WO1997002984A1 (en) 1995-07-07 1996-06-13 Aircraft gas turbine engine with a liquid-air heat exchanger

Publications (2)

Publication Number Publication Date
EP0847363A1 EP0847363A1 (en) 1998-06-17
EP0847363B1 true EP0847363B1 (en) 1999-08-04

Family

ID=7766228

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96921980A Expired - Lifetime EP0847363B1 (en) 1995-07-07 1996-06-13 Aircraft gas turbine engine with a liquid-air heat exchanger

Country Status (4)

Country Link
US (1) US6000210A (en)
EP (1) EP0847363B1 (en)
DE (2) DE19524733A1 (en)
WO (1) WO1997002984A1 (en)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2788308A1 (en) * 1999-01-07 2000-07-13 Snecma COOLING DEVICE FOR A TURBOMACHINE SPEED REDUCER
US6651929B2 (en) 2001-10-29 2003-11-25 Pratt & Whitney Canada Corp. Passive cooling system for auxiliary power unit installation
GB2389174B (en) * 2002-05-01 2005-10-26 Rolls Royce Plc Cooling systems
DE10233947A1 (en) * 2002-07-25 2004-02-12 Siemens Ag Wind power system has generator in gondola, turbine with rotor blade(s); generator has a closed primary cooling circuit; the gondola has an arrangement enabling cooling of primary cooling circuit
US6851255B2 (en) * 2002-12-18 2005-02-08 Pratt & Whitney Canada Corp. Normally open reverse flow flapper valve
US20060130454A1 (en) * 2004-12-22 2006-06-22 Caterpillar Inc. Cooling system using gas turbine engine air stream
FR2889254B1 (en) * 2005-07-28 2011-05-06 Airbus France AIRCRAFT TURBOREACTOR, PROPELLER ASSEMBLY COMPRISING SUCH A TURBOJET ENGINE, AND AIRCRAFT HAVING AT LEAST ONE SUCH A PROPELLER ASSEMBLY
US8776952B2 (en) * 2006-05-11 2014-07-15 United Technologies Corporation Thermal management system for turbofan engines
US7765788B2 (en) * 2006-07-06 2010-08-03 United Technologies Corporation Cooling exchanger duct
US7578369B2 (en) * 2007-09-25 2009-08-25 Hamilton Sundstrand Corporation Mixed-flow exhaust silencer assembly
US8171986B2 (en) * 2008-04-02 2012-05-08 Northrop Grumman Systems Corporation Foam metal heat exchanger system
DE102008028987A1 (en) * 2008-06-20 2009-12-24 Rolls-Royce Deutschland Ltd & Co Kg Turboprop engine with a device for generating a cooling air flow
US8915095B2 (en) * 2008-09-12 2014-12-23 Hamilton Sundstrand Corporation Hybrid environmental conditioning system
US20110182723A1 (en) * 2010-01-26 2011-07-28 Airbus Operations (S.A.S) Turbomachine aircraft propeller
GB201001410D0 (en) * 2010-01-29 2010-03-17 Rolls Royce Plc Oil cooler
FR2958974B1 (en) * 2010-04-16 2016-06-10 Snecma GAS TURBINE ENGINE PROVIDED WITH AN AIR-OIL HEAT EXCHANGER IN ITS AIR INLET HANDLE
GB201007063D0 (en) * 2010-04-28 2010-06-09 Rolls Royce Plc A gas turbine engine
US8973868B2 (en) 2011-03-28 2015-03-10 Rolls Royce North American Technologies, Inc. Airborne cooling system
EP3059413B1 (en) 2011-03-29 2019-05-08 Rolls-Royce North American Technologies, Inc. Vehicle system
US9200570B2 (en) 2012-02-24 2015-12-01 Pratt & Whitney Canada Corp. Air-cooled oil cooler for turbofan engine
US9194294B2 (en) 2012-05-07 2015-11-24 United Technologies Corporation Gas turbine engine oil tank
CN104943530B (en) * 2014-03-27 2017-07-28 中航商用航空发动机有限责任公司 The ventilation cooling device in engine core cabin
US9869240B2 (en) 2015-02-20 2018-01-16 Pratt & Whitney Canada Corp. Compound engine assembly with cantilevered compressor and turbine
US9896998B2 (en) 2015-02-20 2018-02-20 Pratt & Whitney Canada Corp. Compound engine assembly with modulated flow
US20160245162A1 (en) 2015-02-20 2016-08-25 Pratt & Whitney Canada Corp. Compound engine assembly with offset turbine shaft, engine shaft and inlet duct
US9932892B2 (en) 2015-02-20 2018-04-03 Pratt & Whitney Canada Corp. Compound engine assembly with coaxial compressor and offset turbine section
US9879591B2 (en) 2015-02-20 2018-01-30 Pratt & Whitney Canada Corp. Engine intake assembly with selector valve
US10428734B2 (en) 2015-02-20 2019-10-01 Pratt & Whitney Canada Corp. Compound engine assembly with inlet lip anti-icing
US9797297B2 (en) * 2015-02-20 2017-10-24 Pratt & Whitney Canada Corp. Compound engine assembly with common inlet
US10533492B2 (en) 2015-02-20 2020-01-14 Pratt & Whitney Canada Corp. Compound engine assembly with mount cage
US10408123B2 (en) * 2015-02-20 2019-09-10 Pratt & Whitney Canada Corp. Engine assembly with modular compressor and turbine
US10533500B2 (en) 2015-02-20 2020-01-14 Pratt & Whitney Canada Corp. Compound engine assembly with mount cage
US10544717B2 (en) 2016-09-07 2020-01-28 Pratt & Whitney Canada Corp. Shared oil system arrangement for an engine component and a generator
US11635024B2 (en) 2019-08-16 2023-04-25 Pratt & Whitney Canada Corp. Pusher turboprop powerplant installation
GB2587670A (en) * 2019-10-02 2021-04-07 Advanced Mobility Res And Development Ltd Systems and methods for aircraft
CN117999405A (en) * 2021-06-18 2024-05-07 赛峰航空助推器有限公司 Three-stream turbine structure
BE1029507B1 (en) * 2021-06-18 2023-01-23 Gen Electric STRUCTURE OF THREE-FLOW TURBOMACHINE

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR899601A (en) * 1941-08-18 1945-06-06 Daimler Benz Ag Device for extracting the required quantity of air in the case of aircraft powertrains
FR942092A (en) * 1942-08-21 1949-01-28 Constructions Aeronautiques Sudest Arrangement of radiators on aircraft
US2593541A (en) * 1947-04-03 1952-04-22 Napier & Son Ltd Cooling apparatus for use with aero or other engines
US2678542A (en) * 1949-12-23 1954-05-18 Bristol Aeroplane Co Ltd Aircraft cabin air-supply plant
US3080716A (en) * 1956-03-08 1963-03-12 Thompson Ramo Wooldridge Inc Engine lubricating oil cooling systems for turbojets or the like
GB949585A (en) * 1961-04-11 1964-02-12 Entwicklungsbau Pirna Veb Improvements in axial flow type gas turbines
US4773212A (en) * 1981-04-01 1988-09-27 United Technologies Corporation Balancing the heat flow between components associated with a gas turbine engine
US4474001A (en) * 1981-04-01 1984-10-02 United Technologies Corporation Cooling system for the electrical generator of a turbofan gas turbine engine
US4504030A (en) * 1982-12-06 1985-03-12 United Technologies Corporation Cooling means
GB9027782D0 (en) * 1990-12-21 1991-02-13 Rolls Royce Plc Heat exchanger apparatus
US5284012A (en) * 1991-05-16 1994-02-08 General Electric Company Nacelle cooling and ventilation system

Also Published As

Publication number Publication date
EP0847363A1 (en) 1998-06-17
WO1997002984A1 (en) 1997-01-30
US6000210A (en) 1999-12-14
DE59602649D1 (en) 1999-09-09
DE19524733A1 (en) 1997-01-09

Similar Documents

Publication Publication Date Title
EP0847363B1 (en) Aircraft gas turbine engine with a liquid-air heat exchanger
DE69120293T2 (en) HEAT EXCHANGE DEVICE FOR THE LIQUIDS OF A GAS TURBINE
DE2722357C2 (en) air conditioning
EP1078854B1 (en) Device for air-conditioning of passenger aircraft
DE19524731A1 (en) Turboprop engine with an air-oil cooler
EP2136052A1 (en) Turboprop engine comprising a device for creating a cooling air flow
DE3801042C2 (en) Indoor air conditioning system for aircraft
DE2149619A1 (en) TURBINE JET FOR VERTICAL OR SHORT-STARTING OR LANDING AIRPLANES
DE2121069A1 (en) Gas turbine engine with cooling system
DE3304417A1 (en) AIRCRAFT ENGINE
DE1431260A1 (en) Aircraft improvements
EP0046182A2 (en) Combustion engine with a retarder
DE102008027275A1 (en) Air-breathing nacelle for aircraft engine, has circular front contour and sucking unit that is provided for sucking air into nacelle, where sucking unit comprises turbocharger with fan and turbine
DE3007346A1 (en) AIR-COOLED INTERNAL COMBUSTION ENGINE WITH AT LEAST ONE HYDRODYNAMIC BRAKE
DE852786C (en) Time-graded cooling air throughput through the blades of gas or exhaust gas turbines
DE102019201155A1 (en) Arrangement and method for cooling a battery and motor vehicle
DE102014011602A1 (en) Heat exchanger device for an internal combustion engine
DE1214942B (en) Thrust nozzle assembly for aircraft jet engines
DE1506569C3 (en) Jet-powered aircraft capable of short or vertical takeoff
DE1287366B (en) Bypass gas turbine jet engine
CH398330A (en) plane
DE1481518C3 (en) Gas turbine power plant for aircraft
DE3908250A1 (en) AIR INLET FOR THE PUSH DRIVE OF AN AIR AND SPACE VEHICLE
CH248608A (en) Method for operating gas turbine systems, in particular for aircraft and water vehicles.
DE693277C (en) Method for regulating the charging air pressure in internal combustion engines with exhaust gas gyro fans

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19970731

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19980924

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19990805

REF Corresponds to:

Ref document number: 59602649

Country of ref document: DE

Date of ref document: 19990909

ET Fr: translation filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: CJ

Ref country code: FR

Ref legal event code: CA

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080523

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080521

Year of fee payment: 13

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090613

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080513

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100101