EP0838597B1 - Actuator for converting pressurized fluid energy into a mechanical force - Google Patents

Actuator for converting pressurized fluid energy into a mechanical force Download PDF

Info

Publication number
EP0838597B1
EP0838597B1 EP97118235A EP97118235A EP0838597B1 EP 0838597 B1 EP0838597 B1 EP 0838597B1 EP 97118235 A EP97118235 A EP 97118235A EP 97118235 A EP97118235 A EP 97118235A EP 0838597 B1 EP0838597 B1 EP 0838597B1
Authority
EP
European Patent Office
Prior art keywords
expansion chamber
actuator according
actuator
fluid
tie rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97118235A
Other languages
German (de)
French (fr)
Other versions
EP0838597A1 (en
Inventor
Werner Homann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE1996143649 external-priority patent/DE19643649C1/en
Application filed by Individual filed Critical Individual
Publication of EP0838597A1 publication Critical patent/EP0838597A1/en
Application granted granted Critical
Publication of EP0838597B1 publication Critical patent/EP0838597B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/08Characterised by the construction of the motor unit
    • F15B15/10Characterised by the construction of the motor unit the motor being of diaphragm type
    • F15B15/103Characterised by the construction of the motor unit the motor being of diaphragm type using inflatable bodies that contract when fluid pressure is applied, e.g. pneumatic artificial muscles or McKibben-type actuators

Definitions

  • the invention relates to an actuator for Converting the energy of a fluid to mechanical Force.
  • EP 0 261 721 A3 describes a hydraulic or alternative also pneumatically powered actuator of the aforementioned Kind known in which an inner, essentially tubular expansion chamber made of a resilient Material exists when the Expansion chamber with one mediated by the fluid Internal pressure an essentially radially oriented deformation experiences. This deformation of the expansion chamber will bounded by an outer power transmission sleeve, which surrounds the expansion chamber and is made of a flexible, however non-stretchable thread material that exists on the axial Ends of the expansion chamber is anchored.
  • the thread material consists of single threads or of Multiple threads bundled into strands or strands. These single or multiple threads are in opposite directions Spirals at an angle of inclination of approximately 50 ° to 80 ° combined into a network against the axis of the expansion chamber, a relative one at the thread crossings Angular displacement of the threads during expansion the expansion chamber allowed.
  • the threads are otherwise with their ends attached to tie rods, the ends the expansion chamber are non-positively connected.
  • an actuator in which a spherical Expansion chamber made of a resilient material, which for taking a rest position of the actuator to a flat structure deformed and fixed at two axially opposite points with two tie rods connected is.
  • the two tie rods there are also individual strands or strands firmly connected with an external attachment to the material of the expansion chamber run axially parallel to the main axis of the actuator and in the initial working position of the actuator in one between two adjacent ribs of the expansion chamber formed valley are arranged.
  • the strands it is also stated that they also consist of several strands exist and can be sections of an endless cords that are serpentine is wound between supports on the two tie rods, each section the endless cords with two opposite supports of the two tie rods connected is.
  • the invention has for its object an actuator to provide the type mentioned at the beginning, in which when generating the internal pressure radial expansion of the expansion chamber obtained on the axis of the actuator precisely and is concentrated while avoiding scattering so that the printing energy of the fluid accordingly optimally in terms of drive used axial forces is translated.
  • the response time of the actuator is further shortened with the measure be that the unused dead space of the expansion chamber with correspondingly preferably about 90 to 80% a floating core material is filled in, that do not participate in the expansion of the expansion chamber and should be braced between the tie rods Coil spring is centered.
  • the end of the two Tie rods can be attached, then results from the radial expansion of the expansion chamber along the Drive axle completely uniform size change of the communicating individual chambers.
  • the individual chambers adapt to one with the cylinder spiral predetermined slope, which in turn increases of the internal pressure for a radial expansion of the expansion chamber is adapted to the tensile forces thus obtained.
  • the spiral shape of the individual chambers changes therefore steadily increasing the axial tensile forces that therefore be equalized accordingly.
  • Embodiments of an actuator with which a conversion the energy of a fluid into a mechanical force can be realized is the supply source to be provided for this not shown for the working fluid.
  • a working fluid For example, compressed air is used, which at the work site of the Actuator via a connected supply line is introduced.
  • the actuator of FIGS. 1 to 5 is tubular Expansion chamber 1 formed on both of them Ends through the axial middle part of two tie rods 2 and 3 is closed.
  • the two tie rods 2, 3 are with the Ends of the expansion chamber 1 are positively connected.
  • each the two form-locking connections 4 and 5 are thus obtained that that over the axial middle part of the assigned Tie rod 2, 3 pushed tube end with a thread is wrapped several times so strongly that the relevant Working pressure of the expansion chamber 1 of the positive connection with the Tie rods 2,3 is not destroyed and tightness of the Expansion chamber 1 is guaranteed.
  • the positive connection for low working pressures also replaced by a frictional connection be, his special education also by others Measures can be realized.
  • the expansion chamber 1 gives the actual actuator of the actuator and consists of an elastic-resilient Material, which after the supply of the Compressed air or alternatively another working fluid one of the two tie rods 2, 3 through which to the Inner wall of the expansion chamber 1 mediated internal pressure undergoes a substantially radially oriented deformation.
  • This deformation is in Fig. 2 for an embodiment of the Actuator illustrated in which the expansion chamber 1 by pushed over ring body 6, which over the effective length of the expansion chamber 1 with the same mutual distance are lined up in each other communicating individual chambers 1 'is divided, the radial Widening to the axial space between the ring bodies 6 is limited.
  • a coil spring 7 is arranged, which between the two tie rods 2, 3 is braced and a core material 8 surrounds that arranged floating in the expansion chamber 1 is.
  • the core material 8 is in the starting position of the actuator by the spiral spring 7 without contact held with the inner wall of the expansion chamber 1.
  • the spiral spring 7 centers the core material 8 inside the expansion chamber 1 and ensures its floating arrangement the compressed air supply. Through a line touch the coil spring 7 with the inner wall of the expansion chamber it is also guaranteed that the working fluid evenly distributed into the individual chambers 1 'and thus these individual chambers 1 'a common expansion can experience.
  • the core material takes over 8 only the passive role of filling in a Dead space in the filling of the expansion chamber 1 with the working fluid for the deformation of the resilient Material is not needed.
  • the initial usable space should be appropriate to about 10 to 20% of the total Filling volume of the expansion chamber may be limited to one safe and economical operation of the actuator to guarantee.
  • the actuator is further completed by an outer force transmission sleeve 9, which surrounds the expansion chamber 1 and consists of a flexible, but not stretchable thread material.
  • This thread material is formed with an endless thread, which is deflected around the two tie rods 2 and 3 for a multi-layer covering of the expansion chamber 1 in the back and forth.
  • the deflection of the continuous thread is carried out via deflection arms 10, which are radially aligned with the axial middle part of each tie rod 2, 3.
  • the form-fitting connection of the tie rods 2, 3 at their axial middle part to the ends of the expansion chamber 1 is expediently made such that the deflecting arms 10 of one tie rod 2 to the deflecting arms 10 of the other tie rod 3 are offset.
  • this arrangement ensures that the power transmission sleeve 9 obtained with the continuous thread is closed to form a dense package of longitudinal threads.
  • an axial tensile force of about 6 kN can be generated with a working pressure of, for example, about 8 bar, at the same time only about 10 to 20% of the initial useful volume of the expansion chamber 1 having to be specified.
  • the expansion chamber 1 for the exercise of an internal pressure by the one Connection 2 'of a tie rod 2 supplied working fluid together with a core material 12 with the two tie rods 2, 3 positively connected.
  • the one positive connection 4 ' is obtained so that the associated axial ends of the expansion chamber 1 and of the core material 12 are connected to one another in a fluid-tight manner and in an axial bore of the axial middle part of the tie rod 2 pressed and glued therein.
  • a corresponding positive connection 5 ' thus obtained that the expansion chamber 1 and the core material 12 on their end faces with the end face of the Tie rods 3 are glued.
  • this positive connection 5 'but can also be designed in the same way as the positive connection 4 ', so with one in the axial Central part of the tie rod 3 formed bore, in which the ends of the Expansion chamber 1 and the core material 12 pressed and glued into it.
  • the core material 12 consists of the same or approximately same resilient material as that Expansion chamber 1. This allows in this embodiment dispenses with the arrangement of a special coil spring and the entire cavity of the expansion chamber with the Core material must be filled in, so that its main length with the surrounding expansion chamber 1 kept in contact is.
  • an incorporated fluid channel in the formation of at least one longitudinal groove 13 provided that a central bore 13 'at the end of the Tie rod 2 connects to the connector 2 'of the fluid supply of the actuator. So if that Working fluid in this incorporated fluid channel 13, 13 ' of the core material 12 is supplied, then an im essentially radially oriented deformation of the expansion chamber 1 received, which to an outer power transmission sleeve 9 is transmitted.
  • the power transmission sleeve 9 consists of an endless thread, which is deflected in the back and forth over the two tie rods 2, 3 and surrounds the expansion chamber 1 in multiple layers. Because the core material 12 is held in contact with the expansion chamber 1 and is positively connected together with the expansion chamber 1 at the axial ends to the two tie rods 2, 3, this results in an output length l 0 of the actuator in the arrangement shown in FIG. 6 easier winding process of the continuous thread than in the first embodiment described above.
  • the force transmission sleeve 9 is surrounded by an inelastic cylindrical spiral 14, which is attached with its ends to the two tie rods 2, 3 so as to be secured against rotation the communicating individual chambers 1 ′′ of the expansion chamber 1 during the radially oriented deformation of the expansion chamber have a spiral course along the drive axis 11 of the actuator that follows the gradient of the cylinder spiral.
  • the incorporated fluid channel of the core material 12 can also have several such longitudinal grooves with a uniform distribution over the circumference of the core material.
  • the surface of the core material 12 can also be provided with scratches running parallel to the axis and equally spaced over the circumference of the core material. Such scoring can make the core material more supple if it is compressed from its initial length l 0 to the working length l 1 while the actuator is being shortened.
  • the expansion chamber 1 can also be surrounded by a sleeve 15.
  • This sleeve 15 is specially designed in the manner of a pipe clamp and consists of an elastically flexible material which wraps around the force transmission sleeve 9 and which is fastened to two clamping jaws 17 which can be tightened by means of adjusting screws 16.
  • the outer transmission sleeve can reduce lateral forces be soaked with a lubricant, taking it for that then expediently with a tubular coating an elastic material is provided to prevent escape to prevent the lubricant.

Description

Die Erfindung bezieht sich auf einen Stellantrieb zur Umwandlung der Energie eines Fluids in eine mechanische Kraft.The invention relates to an actuator for Converting the energy of a fluid to mechanical Force.

Aus der EP 0 261 721 A3 ist ein hydraulisch oder alternativ auch pneumatisch versorgter Stellantrieb der vorgenannten Art bekannt, bei welchem eine innere, im wesentlichen rohrförmige Expansionskammer aus einem elastisch-nachgiebigen Material besteht, das bei einer Beaufschlagung der Expansionskammer mit einem durch das Fluid vermittelten Innendruck eine im wesentlichen radial ausgerichtete Verformung erfährt. Diese Verformung der Expansionskammer wird durch eine äußere Kraftübertragungshülle begrenzt, welche die Expansionskammer umgibt und aus einem flexiblen, jedoch nicht streckbaren Fadenmaterial besteht, das an den axialen Enden der Expansionskammer verankert ist. Bei der radialen Aufweitung der Expansionskammer wirken daher als Folge der nicht streckbaren Materialeigenschaften der Kraftübertragungshülle auf die Enden der Expansionskammer axial gegeneinander ausgerichtete Kräfte ein, die somit in axiale Zugkräfte übersetzt werden. Bei dem bekannten Stellantrieb besteht das Fadenmaterial aus Einzelfäden oder auch aus Mehrfachfäden, die zu Strängen oder Litzen gebündelt sind. Diese Einfach- oder Mehrfachfäden sind mit gegenläufigen Spiralen unter einem Neigungswinkel von etwa 50° bis 80° gegen die Achse der Expansionskammer zu einem Netzwerk zusammengefaßt, das an den Fadenüberkreuzungen eine relative Winkelverschiebung der Fäden bei der Aufweitung der Expansionskammer erlaubt. Die Fäden sind im übrigen mit ihren Enden an Zugankern befestigt, die mit den Enden der Expansionskammer kraftschlüssig verbunden sind.EP 0 261 721 A3 describes a hydraulic or alternative also pneumatically powered actuator of the aforementioned Kind known in which an inner, essentially tubular expansion chamber made of a resilient Material exists when the Expansion chamber with one mediated by the fluid Internal pressure an essentially radially oriented deformation experiences. This deformation of the expansion chamber will bounded by an outer power transmission sleeve, which surrounds the expansion chamber and is made of a flexible, however non-stretchable thread material that exists on the axial Ends of the expansion chamber is anchored. In the radial Expansion of the expansion chamber therefore act as a result of non-stretchable material properties of the power transmission cover axially against each other at the ends of the expansion chamber aligned forces, thus in axial tensile forces to be translated. In the known actuator the thread material consists of single threads or of Multiple threads bundled into strands or strands. These single or multiple threads are in opposite directions Spirals at an angle of inclination of approximately 50 ° to 80 ° combined into a network against the axis of the expansion chamber, a relative one at the thread crossings Angular displacement of the threads during expansion the expansion chamber allowed. The threads are otherwise with their ends attached to tie rods, the ends the expansion chamber are non-positively connected.

Aus der US-A-3 645 173 ist ein Stellantrieb bekannt, bei dem eine kugelförmige Expansionskammer aus einem elastisch-nachgiebigen Material besteht, welches für die Einnahme einer Ruheposition des Stellantriebes zu einem platten Gebilde verformt und an zwei axial gegenüberliegenden Stellen mit zwei Zugankern fest verbunden ist. Mit den beiden Zugankern sind auch einzelne Stränge oder Litzen fest verbunden, die mit einer äußeren Befestigung an dem Material der Expansionskammer achsparallel zu der Hauptachse des Stellantriebes verlaufen und in der anfänglichen Arbeitsposition des Stellantriebes jeweils in einem zwischen zwei benachbarten Rippen der Expansionskammer ausgebildeten Tal angeordnet sind. Für die Expansionskammer wird so eine anfänglich etwa sternförmige Querschnittsform erhalten, bei welcher eine radiale Aufweitung der Expansionskammer unter einem mit einem Fluid vermittelten Innendruck zuerst auf die Zwischenräume zwischen den Armen des sternenförmigen Querschnitts verteilt wird, bevor über die Stränge oder Litzen axiale Zugkräfte auf die beiden Zuganker ausgeübt werden. Für die Litzen ist noch angegeben, daß sie auch aus mehreren Strängen bestehen und Abschnitte einer Endloskorde sein können, die serpentinenförmig zwischen Stützen an den beiden Zugankern gewickelt ist, wobei jeder Abschnitt der Endloskorde mit zwei gegenüberliegenden Stützen der beiden Zuganker fest verbunden ist.From US-A-3 645 173 an actuator is known in which a spherical Expansion chamber made of a resilient material, which for taking a rest position of the actuator to a flat structure deformed and fixed at two axially opposite points with two tie rods connected is. With the two tie rods there are also individual strands or strands firmly connected with an external attachment to the material of the expansion chamber run axially parallel to the main axis of the actuator and in the initial working position of the actuator in one between two adjacent ribs of the expansion chamber formed valley are arranged. For the expansion chamber, this initially becomes an approximately star-shaped cross-sectional shape obtained, in which a radial expansion of the expansion chamber under an internal pressure mediated by a fluid first on the gaps is distributed between the arms of the star-shaped cross-section before Axial tensile forces are exerted on the two tie rods via the strands or strands become. For the strands it is also stated that they also consist of several strands exist and can be sections of an endless cords that are serpentine is wound between supports on the two tie rods, each section the endless cords with two opposite supports of the two tie rods connected is.

Der Erfindung liegt die Aufgabe zugrunde, einen Stellantrieb der eingangs genannten Art bereitzustellen, bei welchem die bei der Erzeugung des Innendruckes erhaltene radiale Aufweitung der Expansionskammer auf die Achse des Stellantriebes präzise und unter Vermeidung einer Streuwirkung konzentriert wird, sodaß die Druckenergie des Fluids entsprechend optimal in die antriebsmäßig genutzten Axialkräfte übersetzt wird.The invention has for its object an actuator to provide the type mentioned at the beginning, in which when generating the internal pressure radial expansion of the expansion chamber obtained on the axis of the actuator precisely and is concentrated while avoiding scattering so that the printing energy of the fluid accordingly optimally in terms of drive used axial forces is translated.

Diese Aufgabe wird erfindungsgemäß mit einem Steilantrieb in der Ausbildung gemäß dem Patentanspruch 1 gelöst.This object is achieved with a steep drive solved in the training according to claim 1.

Bei einem Stellantrieb dieser Ausbildung stellt die Verwendung eines Endlosfadens als Fadenmaterial für die äußere Kraftübertragungshülle sicher, daß die radiale Aufweitung der Expansionskammer eine völlig vergleichmäßigte Verteilung über die gesamte Kraftübertragungshülle erfährt, auch wenn der Innendruck über die Länge der Expansionskammer unregelmäßig verteilt werden sollte oder sich ein örtlich unterschiedliches Materialverhalten ergibt. Ein abweichendes Materialverhalten ergibt sich insbesondere an den axialen Einspannenden der Expansionskammer im Verhältnis zu ihrem mittigen Bereich besonders im Dauerbetrieb des Stellantriebes. Jede örtliche Belastungsspitze wird jedoch durch das endlose Fadenmaterial unmittelbar ausgeglichen, wobei dieser Ausgleich über die formschlüssig ausgebildete Verbindung der endseitigen Zuganker mit der Expansionskammer eine Konzentration auf die Antriebsachse des Stellantriebes erfährt. Die mit der Zuleitung eines Fluids in die Expansionskammer erzeugte Druckenergie wird daher entsprechend optimal in die mit dem Stellantrieb genutzten axialen Zugkräfte übersetzt. Diese Übersetzung ergibt sich ab dem Beginn der radialen Aufweitung der Expansionskammer, weil sich wegen der axial verlaufenden Linienberührung des Fadenmaterials von Anfang an eine entsprechend günstige Kraftübersetzung ergibt.In the case of an actuator of this design, the use an endless thread as thread material for the outer Power transmission sleeve sure that the radial expansion the expansion chamber a completely even distribution experienced across the entire power transmission envelope, too if the internal pressure over the length of the expansion chamber should be distributed irregularly or become a local results in different material behavior. A different one Material behavior results in particular from the axial clamping ends of the expansion chamber in relation to their central area, especially during continuous operation of the Actuator. Every local peak is however immediately balanced by the endless thread material, this compensation over the form-fit Connection of the end tie rods with the expansion chamber a concentration on the drive axis of the actuator experiences. The one with the supply of a fluid in the Expansion chamber generated pressure energy is therefore appropriate optimal in the axial used with the actuator Traction forces translated. This translation results from Start of radial expansion of the expansion chamber because themselves because of the axial line contact of the Thread material from the beginning a correspondingly cheap Power transmission results.

Die Verwendung eines Endlosfadens als Fadenmaterial für die äußere Kraftübertragungshülle ergibt daneben den Vorteil einer einfachen Fertigungsmöglichkeit, da die Hin- und Herführung des Endlosfadens mit der abwechselnden Umlenkung an den beiden endseitigen Zugankern maschinell mit einfachsten Mitteln zu realisieren ist. Gleichzeitig kann bei dieser Hin- und Herführung des Endlosfadens die Dicke der für die Expansionskammer bereitgestellten mehrlagigen Umhüllung eine einfache Einstellung und Regulierung erfahren. Damit ist auch die Höhe der mit dem Stellantrieb zu übertragenden mechanischen Kraft im Verhältnis zu dem durch das Fluid vermittelten Innendruck optimal beeinflußbar, sodaß bei Vorgabe eines übereinstimmenden Sicherheitsfaktors Stellantriebe mit verschieden großen Leistungen garantiert werden können. Als Material für den Endlosfaden kommen hauptsächlich Kunststoffasern, wie bspw. Aramid- oder PE-Fasern, Kohlenstoffasern, Mischfasern usw. in Betracht, auch in der Ausbildung von Mehrfachfäden oder Litzen. The use of a continuous thread as thread material for the outer power transmission sleeve also gives the advantage a simple manufacturing option, since the back and forth Production of the continuous thread with the alternate deflection mechanically on the two end tie rods with the simplest Means to be realized. At the same time this back and forth of the filament the thickness of the multilayer casing provided for the expansion chamber experienced simple adjustment and regulation. This also means the height to be transmitted with the actuator mechanical force in relation to that by the fluid mediated internal pressure can be optimally influenced, so that when a matching safety factor is specified Actuators with different sizes can be guaranteed. As material for the continuous thread come mainly plastic fibers, such as aramid or PE fibers, carbon fibers, mixed fibers, etc. in Consider, also in the formation of multiple threads or Strands.

Der Wirkungsgrad des erfindungsgemäßen Stellantriebes kann weiter mit den Maßnahmen optimiert werden, die in den abhängigen Patentansprüchen beansprucht sind.The efficiency of the actuator according to the invention can be further optimized with the measures that are in the dependent claims are claimed.

So wird bspw. mit einer Unterteilung der Expansionskammer mittels übergeschobener Ringkörper aus einem unelastischen Material die radiale Aufweitung der Expansionskammer begrenzt und damit deren Sicherheitsfaktor erhöht. Gleichzeitig wird eine Vergrößerung des Freiheitsgrades bei der Auswahl des Fadenmaterials erhalten.For example, with a subdivision of the expansion chamber by means of a slid-on ring body made of an inelastic one Material limits the radial expansion of the expansion chamber and thus increases their safety factor. simultaneously is an increase in the degree of freedom in the Receive selection of thread material.

In Abhängigkeit von dem verwendeten Arbeitsfluid, wofür Druckluft oder ein anderes Druckgas und Hydrauliköl oder ein anderes flüssiges Medium in Betracht kommen, kann die Ansprech- und Taktzeit des Stellantriebes beeinflusst werden sowie damit auch die von der zu übertragenden Kraft abhängige, mit der äußeren Kraftübertragungshülle erzielbare Verkürzung der Arbeitslänge des Stellantriebes entlang der Antriebsachse. Die Verkürzung der Arbeitslänge des Stellantriebes kann bspw. bei etwa 10 bis 20 % liegen. Für diesen Wert wird berücksichtigt, daß die maximale Verkürzung der Arbeitslänge bei einem theoretischen Wert von etwa 36 % liegt. Wenn die Verkürzung der Arbeitslänge bspw. mit etwa 10 bis 20 % vorgegeben wird, dann kann die Ansprechzeit des Stellantriebes noch mit der Maßnahme weiter verkürzt werden, daß der ungenutzte Totraum der Expansionskammer mit entsprechend vorzugsweise etwa 90 bis 80 % mit einem schwimmend angeordneten Kernmaterial ausgefüllt wird, das an der Aufweitung der Expansionskammer nicht teilnehmen soll und dafür durch eine zwischen den Zugankern verspannte Spiralfeder zentriert wird. Depending on the working fluid used, for what Compressed air or another compressed gas and hydraulic oil or another liquid medium can be considered Response and cycle time of the actuator influenced as well as that of the force to be transmitted dependent, achievable with the outer transmission sleeve Shortening the working length of the actuator along the drive axle. The shortening of the working length of the Actuator can be, for example, about 10 to 20%. For this value is taken into account that the maximum shortening the working length at a theoretical value of about 36% lies. If, for example, the working length is shortened with about 10 to 20% is specified, then the response time of the actuator is further shortened with the measure be that the unused dead space of the expansion chamber with correspondingly preferably about 90 to 80% a floating core material is filled in, that do not participate in the expansion of the expansion chamber and should be braced between the tie rods Coil spring is centered.

Wenn für eine alternative Ausbildung des Stellantriebes die Kraftübertragungshülle anstelle der Ringkörper von einer Zylinderspirale umgeben ist, die endseitig an den beiden Zugankern befestigt sein kann, dann ergibt sich daraus bei der radialen Aufweitung der Expansionskammer eine längs der Antriebsachse völlig vergleichmäßigte Größenveränderung der miteinander kommunizierenden Einzelkammern. Die Einzelkammern passen sich hierbei an eine mit der Zylinderspirale vorgegebene Steigung an, die ihrerseits bei der Erhöhung des Innendruckes für eine radiale Aufweitung der Expansionskammer an die damit erhaltenen Zugkräfte angepasst wird. Der spiralförmige Verlauf der Einzelkammern verändert sich daher stetig bei der Erhöhung der axialen Zugkräfte, die deshalb entsprechend vergleichmäßigt werden.If for an alternative training of the actuator Power transmission sleeve instead of the ring body of one Cylinder spiral is surrounded, the end of the two Tie rods can be attached, then results from the radial expansion of the expansion chamber along the Drive axle completely uniform size change of the communicating individual chambers. The individual chambers adapt to one with the cylinder spiral predetermined slope, which in turn increases of the internal pressure for a radial expansion of the expansion chamber is adapted to the tensile forces thus obtained. The spiral shape of the individual chambers changes therefore steadily increasing the axial tensile forces that therefore be equalized accordingly.

Weitere Merkmale und Vorteile des erfindungsgemäßen Stellantriebes ergeben sich aus der folgenden Beschreibung von zwei Ausführungsformen, die in der Zeichnung schematisch dargestellt sind. Es zeigt

Fig. 1
eine teilweise geschnittene Ansicht des Stellantriebes gemäß einer ersten Ausführungsform mit einer Darstellung seiner Ausgangsposition,
Fig. 2
eine Ansicht des Stellantriebes der Fig. 1 in seiner Arbeitsposition,
Fig. 3
eine Schnittansicht des Stellantriebes nach der Linie III-III in Fig. 1,
Fig. 4
eine Schnittansicht des Stellantriebes nach der Linie IV-IV in Fig. 2,
Fig. 5
eine Schnittansicht des Stellantriebes nach der Linie V-V in Fig. 2,
Fig. 6
eine teilweise geschnittene Ansicht des Stellantriebes gemäß einer zweiten Ausführungsform mit einer Darstellung seiner Ausgangsposition,
Fig. 7
eine Ansicht des Stellantriebes der Fig. 6 in seiner Arbeitsposition und
Fig. 8
eine Schnittansicht des Stellantriebes nach der Linie VIII-VIII in Fig. 6.
Further features and advantages of the actuator according to the invention result from the following description of two embodiments, which are shown schematically in the drawing. It shows
Fig. 1
2 shows a partially sectioned view of the actuator according to a first embodiment with an illustration of its starting position
Fig. 2
2 is a view of the actuator of FIG. 1 in its working position,
Fig. 3
2 shows a sectional view of the actuator along the line III-III in FIG. 1,
Fig. 4
2 shows a sectional view of the actuator along the line IV-IV in FIG. 2,
Fig. 5
2 shows a sectional view of the actuator along the line VV in FIG. 2,
Fig. 6
FIG. 2 shows a partially sectioned view of the actuator according to a second embodiment with an illustration of its starting position,
Fig. 7
a view of the actuator of FIG. 6 in its working position and
Fig. 8
6 shows a sectional view of the actuator along the line VIII-VIII in FIG. 6.

Für die beiden in der Zeichnung schematisch dargestellten Ausführungsformen eines Stellantriebes, mit dem eine Umwandlung der Energie eines Fluids in eine mechanische Kraft realisierbar ist, ist die dafür bereitzustellende Versorgungsquelle für das Arbeitsfluid nicht gezeigt. Als Arbeitsfluid wird bspw. Druckluft verwendet, die am Arbeitsort des Stellantriebes über eine angeschlossene Versorgungsleitung herangeführt wird.For the two shown schematically in the drawing Embodiments of an actuator with which a conversion the energy of a fluid into a mechanical force can be realized is the supply source to be provided for this not shown for the working fluid. As a working fluid For example, compressed air is used, which at the work site of the Actuator via a connected supply line is introduced.

Der Stellantrieb der Fig. 1 bis 5 ist mit einer rohrförmigen Expansionskammer 1 ausgebildet, die an ihren beiden Enden durch den axialen Mittelteil von zwei Zugankern 2 und 3 verschlossen ist. Die beiden Zuganker 2, 3 sind mit den Enden der Expansionskammer 1 formschlüssig verbunden. Jede der beiden Formschlußverbindungen 4 und 5 ist damit erhalten, daß das über dem axialen Mittelteil des zugeordneten Zugankers 2, 3 übergeschobene Rohrende mit einem Faden mehrfach so stark umwickelt ist, daß bei dem maßgeblichen Arbeitsdruck der Expansionskammer 1 der Formschluß mit den Zugankern 2,3 nicht zerstört wird und eine Dichtheit der Expansionskammer 1 gewährleistet wird. Der Formschluß für niedrige Arbeitsdrücke auch durch einen Kraftschluß ersetzt sein, wobei seine spezielle Ausbildung auch durch andere Maßnahmen verwirklicht werden kann.The actuator of FIGS. 1 to 5 is tubular Expansion chamber 1 formed on both of them Ends through the axial middle part of two tie rods 2 and 3 is closed. The two tie rods 2, 3 are with the Ends of the expansion chamber 1 are positively connected. each the two form-locking connections 4 and 5 are thus obtained that that over the axial middle part of the assigned Tie rod 2, 3 pushed tube end with a thread is wrapped several times so strongly that the relevant Working pressure of the expansion chamber 1 of the positive connection with the Tie rods 2,3 is not destroyed and tightness of the Expansion chamber 1 is guaranteed. The positive connection for low working pressures also replaced by a frictional connection be, his special education also by others Measures can be realized.

Die Expansionskammer 1 ergibt das eigentliche Stellglied des Stellantriebes und besteht dafür aus einem elastisch-nachgiebigen Material, welches nach der Zuleitung der Druckluft oder alternativ eines anderen Arbeitsfluids über einen der beiden Zuganker 2, 3 durch den damit an die Innenwand der Expansionskammer 1 vermittelten Innendruck eine im wesentlichen radial ausgerichtete Verformung erfährt. Diese Verformung ist in Fig. 2 für eine Ausführungsform des Stellantriebes veranschaulicht, bei welcher die Expansionskammer 1 durch übergeschobene Ringkörper 6, die über die wirksame Länge der Expansionskammer 1 mit einem gleichen gegenseitigen Abstand aneinandergereiht sind, in miteinander kommunizierende Einzelkammern 1' unterteilt ist, deren radiale Aufweitung somit auf den axialen Zwischenraum zwischen den Ringkörpern 6 begrenzt ist. In der Expansionskammer 1 ist eine Spiralfeder 7 angeordnet, welche zwischen den beiden Zugankern 2, 3 verspannt ist und ein Kernmaterial 8 umgibt, das in der Expansionskammer 1 schwimmend angeordnet ist. Das Kernmaterial 8 wird in der Ausgangsposition des Stellantriebes durch die Spiralfeder 7 berührungsfrei mit der Innenwand der Expansionskammer 1 gehalten. Die Spiralfeder 7 zentriert das Kernmaterial 8 im Innern der Expansionskammer 1 und sichert seine schwimmende Anordnung bei der Zuleitung der Druckluft. Durch eine Linienberührung der Spiralfeder 7 mit der Innenwand der Expansionskammer wird gleichzeitig garantiert, daß sich das Arbeitsfluid gleichmäßig in die Einzelkammern 1' verteilt und somit diese Einzelkammern 1' eine gemeinsame Aufweitung erfahren können. Bei dieser Aufweitung übernimmt das Kernmaterial 8 lediglich die passive Rolle der Ausfüllung eines Totraumes, der bei der Füllung der Expansionskammer 1 mit dem Arbeitsfluid für die Verformung des elastisch-nachgiebigen Materials nicht benötigt wird. Der anfängliche Nutzraum sollte zweckmäßig auf etwa 10 bis 20 % des gesamten Füllvolumens der Expansionskammer beschränkt sein, um ein sicheres und wirtschaftliches Arbeiten des Stellantriebes zu garantieren.The expansion chamber 1 gives the actual actuator of the actuator and consists of an elastic-resilient Material, which after the supply of the Compressed air or alternatively another working fluid one of the two tie rods 2, 3 through which to the Inner wall of the expansion chamber 1 mediated internal pressure undergoes a substantially radially oriented deformation. This deformation is in Fig. 2 for an embodiment of the Actuator illustrated in which the expansion chamber 1 by pushed over ring body 6, which over the effective length of the expansion chamber 1 with the same mutual distance are lined up in each other communicating individual chambers 1 'is divided, the radial Widening to the axial space between the ring bodies 6 is limited. In the expansion chamber 1, a coil spring 7 is arranged, which between the two tie rods 2, 3 is braced and a core material 8 surrounds that arranged floating in the expansion chamber 1 is. The core material 8 is in the starting position of the actuator by the spiral spring 7 without contact held with the inner wall of the expansion chamber 1. The spiral spring 7 centers the core material 8 inside the expansion chamber 1 and ensures its floating arrangement the compressed air supply. Through a line touch the coil spring 7 with the inner wall of the expansion chamber it is also guaranteed that the working fluid evenly distributed into the individual chambers 1 'and thus these individual chambers 1 'a common expansion can experience. With this expansion, the core material takes over 8 only the passive role of filling in a Dead space in the filling of the expansion chamber 1 with the working fluid for the deformation of the resilient Material is not needed. The initial usable space should be appropriate to about 10 to 20% of the total Filling volume of the expansion chamber may be limited to one safe and economical operation of the actuator to guarantee.

Der Stellantrieb wird weiter vervollständigt durch eine äußere Kraftübertragungshülle 9, welche die Expansionskammer 1 umgibt und aus einem flexiblen, jedoch nicht streckbaren Fadenmaterial besteht. Dieses Fadenmaterial ist mit einem Endlosfaden gebildet, der für eine mehrlagige Umhüllung der Expansionskammer 1 im Hin- und Hergang um die beiden Zuganker 2 und 3 umgelenkt ist. Die Umlenkung des Endlosfadens ist über Umlenkarme 10 vorgenommen, welche zu dem axialen Mittelteil jedes Zugankers 2, 3 radial ausgerichtet sind. Um eine einfache Umwicklung der bei den beiden Zugankern 2 und 3 sternförmig angeordneten Umlenkarme 10 zu erhalten, ist die formschlüssige Verbindung der Zuganker 2, 3 an ihrem axialen Mittelteil mit den Enden der Expansionskammer 1 zweckmäßig so getroffen, daß die Umlenkarme 10 des einen Zugankers 2 zu den Umlenkarmen 10 des anderen Zugankers 3 auf Lücke versetzt sind. Diese Anordnung stellt gleichzeitig sicher, daß die mit dem Endlosfaden erhaltene Kraftübertragungshülle 9 zu einem dichten Paket aus längs verlaufenden Fäden geschlossen wird. Bei der Aufweitung der miteinander kommunizierenden Einzelkammern 1' wird die Dichte des Paketes beibehalten, wie es die Querschnitte der Fig. 3 und 4 verdeutlichen. Damit wird sichergestellt, daß bei der Aufweitung der Einzelkammern 1' durch die Kraftübertragungshülle 9 eine auf die Achse der Zuganker 2 und 3 konzentrierte Kraft übertragen wird, die eine Verkürzung der Ausgangslänge l0 zu einer Arbeitslänge l1 ergibt. Es wird folglich eine korrespondierende Annäherung der beiden Zuganker 2 und 3 entlang der gemeinsamen Längsachse 11 erhalten. Diese Annäherung erzeugt wegen des flexiblen, jedoch nicht streckbaren Fadenmaterials der Kraftübertragungshülle 9 axiale Zugkräfte. Die Druckenergie des Fluids, das in die Expansionskammer 1 zugeleitet wird, wird daher in solche axiale Zugkräfte übersetzt. Die Längsachse 11 ergibt damit eine maßgebliche Antriebsachse des Stellantriebes, der in dieser Längsachse 11 mit einem beliebigen Stellorgan verbunden werden kann. Bei einer pneumatischen Ausbildung des Stellantriebes kann so mit einem Arbeitsdruck von bspw. etwa 8 bar eine axiale Zugkraft von etwa 6 kN erzeugt werden, wobei gleichzeitig nur etwa 10 bis 20 % anfängliches Nutzvolumen der Expansionskammer 1 vorzugeben ist.The actuator is further completed by an outer force transmission sleeve 9, which surrounds the expansion chamber 1 and consists of a flexible, but not stretchable thread material. This thread material is formed with an endless thread, which is deflected around the two tie rods 2 and 3 for a multi-layer covering of the expansion chamber 1 in the back and forth. The deflection of the continuous thread is carried out via deflection arms 10, which are radially aligned with the axial middle part of each tie rod 2, 3. In order to obtain a simple winding of the deflecting arms 10 arranged in a star shape in the two tie rods 2 and 3, the form-fitting connection of the tie rods 2, 3 at their axial middle part to the ends of the expansion chamber 1 is expediently made such that the deflecting arms 10 of one tie rod 2 to the deflecting arms 10 of the other tie rod 3 are offset. At the same time, this arrangement ensures that the power transmission sleeve 9 obtained with the continuous thread is closed to form a dense package of longitudinal threads. When the individual chambers 1 ′ communicating with one another are widened, the density of the packet is maintained, as the cross sections of FIGS. 3 and 4 illustrate. This ensures that when the individual chambers 1 'are widened, a force concentrated on the axis of the tie rods 2 and 3 is transmitted through the force transmission sleeve 9, which results in a shortening of the initial length l 0 to a working length l 1 . A corresponding approach of the two tie rods 2 and 3 along the common longitudinal axis 11 is consequently obtained. This approach generates 9 axial tensile forces because of the flexible but not stretchable thread material of the power transmission sleeve 9. The pressure energy of the fluid which is fed into the expansion chamber 1 is therefore translated into such axial tensile forces. The longitudinal axis 11 thus results in a significant drive axis of the actuator, which can be connected to any actuator in this longitudinal axis 11. With a pneumatic design of the actuator, an axial tensile force of about 6 kN can be generated with a working pressure of, for example, about 8 bar, at the same time only about 10 to 20% of the initial useful volume of the expansion chamber 1 having to be specified.

Bei der in den Fig. 6 bis 8 dargestellten zweiten Ausführungsform des Stellantriebes ist die Expansionskammer 1 für die Ausübung eines Innendruckes durch das über einen Anschluß 2' des einen Zugankers 2 zugeleitete Arbeitsfluid gemeinsam mit einem Kernmaterial 12 mit den beiden Zugankern 2, 3 formschlüssig verbunden. Bei dem Zuganker 2 wird die eine Formschlußverbindung 4' damit erhalten, daß die zugeordneten axialen Enden der Expansionskammer 1 und des Kernmaterials 12 fluiddicht miteinander verbunden und in eine axiale Ausbohrung des axialen Mittelteils des Zugankers 2 eingepreßt und darin verklebt sind. Bei dem Zuganker 3 ist eine entsprechende Formschlußverbindung 5' damit erhalten, daß die Expansionskammer 1 und das Kernmaterial 12 an ihren Stirnflächen mit der Stirnfläche des Zugankers 3 verklebt sind. Grundsätzlich kann diese Formschlußverbindung 5' aber auch gleich ausgebildet werden wie die Formschlußverbindung 4', also mit einer in dem axialen Mittelteil des Zugankers 3 ausgebildeten Ausbohrung, in welcher die miteinander fluiddicht verbundenen Enden der Expansionskammer 1 und des Kernmaterials 12 eingepreßt und darin verklebt sind.In the second embodiment shown in FIGS. 6 to 8 of the actuator is the expansion chamber 1 for the exercise of an internal pressure by the one Connection 2 'of a tie rod 2 supplied working fluid together with a core material 12 with the two tie rods 2, 3 positively connected. At the tie rod 2 the one positive connection 4 'is obtained so that the associated axial ends of the expansion chamber 1 and of the core material 12 are connected to one another in a fluid-tight manner and in an axial bore of the axial middle part of the tie rod 2 pressed and glued therein. At the tie rod 3 is a corresponding positive connection 5 ' thus obtained that the expansion chamber 1 and the core material 12 on their end faces with the end face of the Tie rods 3 are glued. Basically, this positive connection 5 'but can also be designed in the same way as the positive connection 4 ', so with one in the axial Central part of the tie rod 3 formed bore, in which the ends of the Expansion chamber 1 and the core material 12 pressed and glued into it.

Das Kernmaterial 12 besteht aus einem gleichen oder annähernd gleichen elastisch-nachgiebigen Material wie die Expansionskammer 1. Dadurch kann bei dieser Ausführungsform auf die Anordnung einer besonderen Spiralfeder verzichtet und der gesamte Hohlraum der Expansionskammer mit dem Kernmaterial ausgefüllt werden, sodaß dessen Hauptlänge mit der umgebendenen Expansionskammer 1 in Berührung gehalten ist. In dieser Berührungsfläche des Kernmaterials mit der umgebenden Expansionskammer ist ein eingearbeiteter Fluidkanal in der Ausbildung wenigstens einer Längsrille 13 vorgesehen, die über eine Mittelbohrung 13' an dem Ende des Zugankers 2 eine Verbindung mit dem Anschluß 2' der Fluidversorgung des Stellantriebes aufweist. Wenn daher das Arbeitsfluid in diesen eingearbeiteten Fluidkanal 13, 13' des Kernmaterials 12 zugeleitet wird, dann wird eine im wesentlichen radial ausgerichtete Verformung der Expansionskammer 1 erhalten, welche an eine äußere Kraftübertragungshülle 9 übertragen wird. The core material 12 consists of the same or approximately same resilient material as that Expansion chamber 1. This allows in this embodiment dispenses with the arrangement of a special coil spring and the entire cavity of the expansion chamber with the Core material must be filled in, so that its main length with the surrounding expansion chamber 1 kept in contact is. In this area of contact of the core material with the surrounding expansion chamber is an incorporated fluid channel in the formation of at least one longitudinal groove 13 provided that a central bore 13 'at the end of the Tie rod 2 connects to the connector 2 'of the fluid supply of the actuator. So if that Working fluid in this incorporated fluid channel 13, 13 ' of the core material 12 is supplied, then an im essentially radially oriented deformation of the expansion chamber 1 received, which to an outer power transmission sleeve 9 is transmitted.

Die Kraftübertragungshülle 9 besteht aus einem Endlosfaden, welcher im Hin- und Hergang über die beiden Zuganker 2, 3 umgelenkt ist und die Expansionskammer 1 mehrlagig umgibt. Weil das Kernmaterial 12 mit der Expansionskammer 1 in Berührung gehalten und gemeinsam mit der Expansionskammer 1 an den axialen Enden mit den beiden Zugankern 2, 3 formschlüssig verbunden ist, ergibt sich dadurch bei der in Fig. 6 gezeigten Anordnung einer Ausgangslänge l0 des Stellantriebes ein einfacherer Wickelvorgang des Endlosfadens als bei der vorbeschriebenen ersten Ausführungsform.The power transmission sleeve 9 consists of an endless thread, which is deflected in the back and forth over the two tie rods 2, 3 and surrounds the expansion chamber 1 in multiple layers. Because the core material 12 is held in contact with the expansion chamber 1 and is positively connected together with the expansion chamber 1 at the axial ends to the two tie rods 2, 3, this results in an output length l 0 of the actuator in the arrangement shown in FIG. 6 easier winding process of the continuous thread than in the first embodiment described above.

Zur Begrenzung der radialen Aufweitung der Expansionskammer 1 und für deren Unterteilung in miteinander kommunizierende Einzelkammern 1" ist die Kraftübertragungshülle 9 von einer unelastisch ausgebildeten Zylinderspirale 14 umgeben, die mit ihren Enden an den beiden Zugankern 2, 3 verdrehsicher befestigt ist. Durch die Zylinderspirale 14 erhalten die miteinander kommunzierenden Einzelkammern 1" der Expansionskammer 1 während der radial ausgerichteten Verformung der Expansionskammer einen der Steigung der Zylinderspirale stetig folgenden spiralförmigen Verlauf längs der Antriebsachse 11 des Stellantriebes. Dadurch wird bei der Verkürzung der Ausgangslänge l0 zu einer Arbeitslänge l1 des Stellantriebes eine optimale Vergleichmäßigung der mit dem Innendruck auf die Antriebsachse 11 übersetzten axialen Zugkräfte erhalten.In order to limit the radial expansion of the expansion chamber 1 and to subdivide it into individual chambers 1 ″ which communicate with one another, the force transmission sleeve 9 is surrounded by an inelastic cylindrical spiral 14, which is attached with its ends to the two tie rods 2, 3 so as to be secured against rotation the communicating individual chambers 1 ″ of the expansion chamber 1 during the radially oriented deformation of the expansion chamber have a spiral course along the drive axis 11 of the actuator that follows the gradient of the cylinder spiral. As a result, when the initial length l 0 is reduced to a working length l 1 of the actuator, an optimal equalization of the axial tensile forces translated with the internal pressure on the drive shaft 11 is obtained.

Anstelle nur einer Längsrille kann der eingearbeitete Fluidkanal des Kernmaterials 12 auch mehrere solcher Längsrillen mit einer gleichmäßigen Verteilung über den Umfang des Kernmaterials aufweisen. Die Oberfläche des Kernmaterials 12 kann alternativ oder zusätzlich auch mit achsparallel verlaufenden, über den Umfang des Kernmatrials gleich beabstandeten Anritzungen versehen sein. Solche Anritzungen können das Kernmaterial geschmeidiger machen, wenn es während der Verkürzung des Stellantriebes von seiner Ausgangslänge l0 in die Arbeitslänge l1 eine Stauchung erfährt.Instead of only one longitudinal groove, the incorporated fluid channel of the core material 12 can also have several such longitudinal grooves with a uniform distribution over the circumference of the core material. As an alternative or in addition, the surface of the core material 12 can also be provided with scratches running parallel to the axis and equally spaced over the circumference of the core material. Such scoring can make the core material more supple if it is compressed from its initial length l 0 to the working length l 1 while the actuator is being shortened.

Um für die Arbeitslänge l1 des Stellantriebes eine Feinjustierung der axialen Zugkräfte zu erhalten, kann die Expansionskammer 1 noch von einer Manschette 15 umgeben sein. Diese Manschette 15 ist speziell nach Art einer Rohrschelle ausgebildet und besteht aus einem die Kraftübertragungshülle 9 umschlingenden elastisch-nachgiebigen Material, welches an zwei durch Stellschrauben 16 gegeneinander anziehbaren Klemmbacken 17 befestigt ist. Wenn somit durch den Innendruck des Arbeitsfluids die Expansionskammer 1 radial aufgeweitet wird und damit die beiden Zuganker 2, 3 unter Vermittlung der Kraftübertragungshülle 9 gegenseitig angenähert werden, dann folgt die Manschette 15 der radialen Aufweitung der von ihr umgebenen Einzelkammer 1", bis die Arbeitslänge l1 erreicht ist. Wenn dann die Klemmbacken 17 gegeneinander angezogen werden und somit die Umschlingungslänge der Manschette 15 verkürzt bzw. ihre Öffnungsgröße verkleinert wird, dann wird auf die Einzelkammer 1" ein dem Innendruck entgegenwirkender Gegendruck ausgeübt. Durch diesen Gegendruck wird die Arbeitslänge l1 des Stellantriebes wieder vergrößert und wird so eine Feinjustierung der axialen Zugkräfte erhalten, die für die Arbeitslänge l1 eingestellt wurden.In order to obtain a fine adjustment of the axial tensile forces for the working length l 1 of the actuator, the expansion chamber 1 can also be surrounded by a sleeve 15. This sleeve 15 is specially designed in the manner of a pipe clamp and consists of an elastically flexible material which wraps around the force transmission sleeve 9 and which is fastened to two clamping jaws 17 which can be tightened by means of adjusting screws 16. Thus, if the expansion chamber 1 is expanded radially by the internal pressure of the working fluid and thus the two tie rods 2, 3 are brought closer to one another by means of the force transmission sleeve 9, then the sleeve 15 follows the radial expansion of the individual chamber 1 ″ surrounded by it, until the working length 1 1. If the clamping jaws 17 are then tightened against one another and thus the loop length of the sleeve 15 is shortened or its opening size is reduced, then a counterpressure counteracting the internal pressure is exerted on the individual chamber 1 ". This counterpressure increases the working length l 1 of the actuator again and thus finely adjusts the axial tensile forces that have been set for the working length l 1 .

Um die im Arbeitsspiel des Stellantriebes auftretenden Querkräfte zu verringern, kann die äußere Kraftübertragungshülle mit einem Gleitmittel getränkt sein, wobei sie dafür dann zweckmäßig mit einem schlauchförmigen Überzug aus einem elastischen Material versehen wird, um ein Entweichen des Gleitmittels zu verhindern.To those that occur in the working cycle of the actuator The outer transmission sleeve can reduce lateral forces be soaked with a lubricant, taking it for that then expediently with a tubular coating an elastic material is provided to prevent escape to prevent the lubricant.

Claims (18)

  1. An actuator for converting energy of a fluid into a mechanical force, comprising
    an inner, substantially tubular expansion chamber (1) of an elastic, resiliently deformable material which receives a substantially radially outward directed deformation under an inner pressure of the fluid as admitted to the expansion chamber; and
    an outer power transmission envelope (9) surrounding the expansion chamber (1) and comprising a flexible but non-stretchable fiber material which is anchored at axial ends of the expansion chamber (1) for performing axial tension forces when the expansion chamber (1) is radially expanded;
    characterised in that
    the fiber material of the outer power transmission envelope (9) is formed by an endless filament or multifilament which for a closed envelope of the expansion chamber (1) with multiple layers is redirected with a back-and-fro motion between two tie rod members (2,3) that are connected with the two axial ends of the expansion chamber (1).
  2. An actuator according to claim 1, wherein each tie rod member (2,3) comprises multiple redirectional arms (10) that are arranged in a star-like formation as extending radially with respect to an axial center part that is provided for the transmission of the axial tension forces, said endless filament or multifilament of the power transmission envelope (9) being redirected by said redirectional arms (10) of the two tie rod members (2,3) one after the other and alternately in the circumferential direction when moved back-end-fro.
  3. An actuator according to claim 2, wherein the multiple redirectional arms (10) of the tie rod member (2) at the one end of the expansion chamber (1) are offset with respect to gaps between the number of redirectional arms (10) of the tie rod member (3) at its other end.
  4. An actuator according to claim 2, wherein the axial ends of the expansion chamber (1) are fitted over the axial center parts of the two tie rod members (2,3) and are connected therewith in a non-positive or positive as well as in a fluid-tight manner.
  5. An actuator according to claim 2, wherein the endless filament or multifilament of the power transmission envelope (9) is redirected between the redirectional arms (10) of the two tie rod members (2,3) with a back-and-fro motion so as to obtain initially a line contact with the expansion chamber (1) in parallel to its axis.
  6. An actuator according to claim 1, wherein the endless filament or multi filament of the power transmission envelope (9) is provided with a cast-on synthetic resin or the like for its fixation on the two tie rod members (2,3).
  7. An actuator according to claim 1, wherein the expansion chamber (1) is subdivided into individual chambers (1') communicating with each other by means of inelastic annular bodies (6) that are fitted over the outer power transmission envelope (9) with mutually equal distances to thereby restrict the radial expansion of said chambers between the two tie rod end members (2,3) to the axial space between the annular bodies (6).
  8. An actuator according to claim 1, wherein a spiral spring (7) is arranged in the expansion chamber (1) which is biased between the two tie rod members (2,3) for opposing the axial tension forces.
  9. An actuator according to claim 1, wherein a core material (8) is floatingly arranged in the expansion chamber (1) which is centered by that spiral spring (7) and which reduces the filling volume for the fluid of the expansion chamber (1) without participating in its radial expansion.
  10. An actuator according to claim 9, wherein the initial filling volume of the expansion chamber (1) is filled out with at least about 65 %, preferably with about 90 to 80 %, of the core material (8).
  11. An actuator according to claim 1, wherein the expansion chamber (1) is subdivided into mutually communicating individual chambers (1") by means of a cylinder spiral (14) which surrounds the power transmission envelope (9) whereby the cylinder spiral (14) is fixed its ends in a torsio-free manner with the two tie rod members (2,3) for obtaining a spiral running of the individual chambers along the driving axis (11) of the actuator that follows the lead or axial pitch of the cylinder spiral when the expansion chamber (1) is being expanded.
  12. An actuator according to claim 11, wherein the expansion chamber (1) is surrounded by a collar (15) at least at one of its individual chambers whereby the opening size of the same is adapted for being changed for achieving a counter pressure with respect to the inner pressure of the fluid to thereby obtain a fine-adjustment of the axial tension forces at the working length (I1) of the actuator.
  13. An actuator according to claim 12, wherein the collar (15) comprises an elastic, resiliently deformable material that envelopes the power transmission envelope (9) and is fixed on two clamping jaws (17) which for increasing the counter pressure with respect to the inner pressure may be tightened against each other by means of tightening screws (16).
  14. An actuator according to claim 11, wherein a core material (12) is arranged in the expansion chamber (1) comprising the same or substantially the same elastic, resiliently deformable material as the expansion chamber and being connected at its axial ends in a fluid-tight manner with the expansion chamber (1) and comprising a fluid channel (13, 13') which is connected to the fluid supply (2') of the actuator and opens into the expansion chamber (1) for imparting the inner pressure.
  15. An actuator according to claim 1, wherein at least the one tie rod member (2) is provided with an axial bore into which the one ends of the expansion chamber (1) and of the core material (12) as interconnected in a fluid-tight manner are press-fitted in a fluid-tight and positive manner for connecting to the fluid supply (2').
  16. An actuator according to claim 14, wherein a main length of the core material (12) is in contact with the surrounding expansion chamber (1) and wherein the incorporated fluid channel (13, 13') is provided with at least one connecting bore (13') connected with the fluid supply (2') and opening into the surface of the core material.
  17. An actuator according to claim 16, wherein the surface of the core material (12) is provided with slight slits extending parallel to the axis.
  18. An actuator according to any of the claims 1 to 17, wherein the fiber material of the power transmission envelope (9) is impregnated with a slip additive the emission of which is prevented by a tubular cover of an elastic material of the power transmission envelope.
EP97118235A 1996-10-22 1997-10-21 Actuator for converting pressurized fluid energy into a mechanical force Expired - Lifetime EP0838597B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE1996143649 DE19643649C1 (en) 1996-10-22 1996-10-22 Positioning drive converting fluid energy into mechanical force
DE19643649 1996-10-22
DE19725591A DE19725591A1 (en) 1996-10-22 1997-06-17 Actuator for converting the energy of a fluid into a mechanical force
DE19725591 1997-06-17

Publications (2)

Publication Number Publication Date
EP0838597A1 EP0838597A1 (en) 1998-04-29
EP0838597B1 true EP0838597B1 (en) 2002-05-15

Family

ID=26030603

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97118235A Expired - Lifetime EP0838597B1 (en) 1996-10-22 1997-10-21 Actuator for converting pressurized fluid energy into a mechanical force

Country Status (3)

Country Link
US (1) US5937732A (en)
EP (1) EP0838597B1 (en)
DE (2) DE19725591A1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29817162U1 (en) 1998-09-24 1999-01-07 Homann Werner M Dipl Ing Fh Device for a wing of an aircraft to change the shape of the wing
GB0002045D0 (en) * 2000-01-28 2000-03-22 Obrien Coker Duro Octopus
DE10017104A1 (en) * 2000-04-06 2001-10-11 Univ Ilmenau Tech Fluidic-mechanical drive system for manipulatory and locomotive movement systems consists of membrane structure with anisotropic characteristics curved outwards under internal pressure
JP2003301807A (en) * 2002-02-07 2003-10-24 Nippon Robotics Kk Fluid pressure actuator
US8087536B2 (en) * 2002-08-08 2012-01-03 Technische Universiteit Delft Pressurizable structures comprising different surface sections
US6868773B2 (en) * 2002-08-13 2005-03-22 Electro Cam Corporation Fluidic actuator
DE10339819A1 (en) * 2003-08-27 2005-03-31 Gkn Walterscheid Gmbh Linear actuator
DE10345587A1 (en) * 2003-09-29 2005-05-12 Karlsruhe Forschzent Fluidic drive
DE202004005018U1 (en) * 2004-03-30 2005-02-17 Homann, Werner, Dipl.-Ing. Pedal drive system, especially for bicycle, has pedals designed to compress and decompress fluid inside two vessels containing expandable chambers enclosed by transmission sleeves
CA2477797C (en) * 2004-09-01 2006-05-23 Edouard P. Kassianoff Tensioned inflatable cover module
US8210051B2 (en) * 2004-12-03 2012-07-03 General Electric Company System and method for cyclic testing
US8210050B2 (en) * 2004-12-03 2012-07-03 General Electric Company Apparatus and system for cyclic testing
US7353715B2 (en) * 2004-12-03 2008-04-08 General Electric Company System, apparatus and method for testing under applied and reduced loads
JP5246717B2 (en) 2007-05-11 2013-07-24 学校法人 中央大学 Fluid injection type actuator
CN102597534B (en) * 2009-10-05 2015-12-02 罗伯特·博世有限公司 Comprise the energy storage system of inflatable accumulator and memory assembly
US8701398B2 (en) 2012-03-20 2014-04-22 Robert Bosch Gmbh Strain energy accumulator
US9719534B2 (en) * 2014-06-26 2017-08-01 President And Fellows Of Harvard College Pneumatic insect robots
US10363670B1 (en) * 2015-11-04 2019-07-30 Ryan Gundling Devices, systems, and methods for dynamic bending of inflatable structures

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2925076A (en) * 1957-03-26 1960-02-16 Ford Motor Co Electrical switching circuit for power transmission mechanism range selector
NL6704918A (en) * 1966-04-08 1967-10-09
US3645173A (en) * 1969-10-20 1972-02-29 Trish Energetics Inc Fluid actuator
JPS5881205A (en) * 1981-11-09 1983-05-16 Shunji Hirabayashi Hydraulic actuator
US4615260A (en) * 1983-04-25 1986-10-07 Bridgestone Corporation Pneumatic actuator for manipulator
US4733603A (en) * 1983-11-21 1988-03-29 Mirko Kukolj Axially contractable actuator
SE453860B (en) * 1984-12-17 1988-03-07 Komatsu Mfg Co Ltd FLEXIBLE MANUAL DEVICE OF CORRUGATED PRESSURE HOSE
BE905465A (en) * 1986-09-22 1987-01-16 Beullens Theophile HYDRAULIC OR PNEUMATIC DRIVE DEVICE.
US4819547A (en) * 1988-03-28 1989-04-11 Mirko Kukolj Axially contractable actuator
JPH0324304A (en) * 1989-06-20 1991-02-01 Bridgestone Corp Actuator using elastic elongating body
JPH03113104A (en) * 1989-09-25 1991-05-14 Bridgestone Corp Bendable actuator
US5031510A (en) * 1990-03-22 1991-07-16 Welch Allyn, Inc. Evacuation spring for hydraulic/pneumatic muscle
US5018506A (en) * 1990-06-18 1991-05-28 Welch Allyn, Inc. Fluid controlled biased bending neck
JPH04145206A (en) * 1990-10-04 1992-05-19 Bridgestone Corp Hollow elastic expansion body
NO311989B1 (en) * 1990-11-05 2002-02-25 Audun Haugs Device by tensioning means
US5251538A (en) * 1991-08-21 1993-10-12 Battelle Memorial Institute Prehensile apparatus

Also Published As

Publication number Publication date
DE19725591A1 (en) 1998-12-24
DE59707273D1 (en) 2002-06-20
US5937732A (en) 1999-08-17
EP0838597A1 (en) 1998-04-29

Similar Documents

Publication Publication Date Title
EP0838597B1 (en) Actuator for converting pressurized fluid energy into a mechanical force
AT404580B (en) HOLLOW SHAFT, ESPECIALLY FOR A SHIP DRIVE
DE2951629C2 (en) Drive shaft made of fiber-reinforced plastic, with a lost mandrel and tightly wound end pieces
DE3908474A1 (en) RING SHAPED SPRING BODY MADE OF FIBER COMPOSITES
DE4135695C2 (en) Rod with a tubular wall made of fiber composite material and connection element arranged on both sides
DE3230932C2 (en) coupling
WO2016008858A1 (en) Fiber composite material connection portion and production method
EP0270484B1 (en) Fibre-reinforced connecting rod
DE1817855C3 (en) Coupling for sections of a cable sheath in a device for the transmission of motion by means of two opposing pull cables
WO2015172994A1 (en) Method for producing a damper tube from a composite fiber material for a vibration damper
DE102007040609B4 (en) Method for producing a cable-like spring element semifinished product, a spiral-shaped spring element, a tool for processing a cable-like spring element semifinished product, device for producing a spiral-shaped spring element
DE102019107078B4 (en) 3; Joint, eccentric screw pump and method for producing a joint
DE3936999C2 (en) Method for producing a shaft arrangement, in particular a cardan shaft arrangement, from a tube made of fiber-plastic material and an outer sleeve made of rigid material
DE2742664C2 (en) Torsional vibration damping coupling
DE19643649C1 (en) Positioning drive converting fluid energy into mechanical force
DE3416011A1 (en) Connecting rod made of fibre composite materials
EP1506921A1 (en) Submarine retractable unit and method for its manufacture
DE2139013C2 (en) Eccentric screw pump
DE102004021144B4 (en) Connection for the transmission of tensile forces in bars or inner pressure-loaded tubes
EP1059459B1 (en) Rotary fluid actuator
WO2017129512A1 (en) Winding machine
DE19524903A1 (en) Force transmission device for use in vehicle construction
EP0634236A1 (en) Method of making rotors for excentric spiral pumps
DE3821549A1 (en) FIBER-REINFORCED PRESSURE OR TIE ROD MADE OF PLASTIC MATERIAL
DE4108105C2 (en) Piston for the pump of a high-pressure cleaning device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

AX Request for extension of the european patent

Free format text: AL;LT;LV;RO;SI

17P Request for examination filed

Effective date: 19980925

AKX Designation fees paid

Free format text: DE FR GB

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 20000225

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59707273

Country of ref document: DE

Date of ref document: 20020620

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020802

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20021011

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20021017

Year of fee payment: 6

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031021

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20031021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040630

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050927

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070501